
(12) United States Patent
Stark

US009069558B2

US 9,069,558 B2
Jun. 30, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

RECURSIVE USE OF MULTIPLE
HARDWARE LOOKUPSTRUCTURES INA
TRANSACTIONAL MEMORY

Inventor: Gavin J. Stark, Cambridge (GB)

Assignee: NETRONOME SYSTEMS,
INCORPORATED, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 525 days.

Appl. No.: 13/552,619

Filed: Jul.18, 2012

Prior Publication Data

US 2014/OO25919 A1 Jan. 23, 2014

Int. C.
G06F 12/00 (2006.01)
G06F 9/34 (2006.01)
GO6F 3/40 (2006.01)
U.S. C.
CPC. G06F 9/34 (2013.01); G06F 13/40 (2013.01)
Field of Classification Search
CPC G06F 9/34: G06F 9/467; G06F 13/20;

G06F 13/36; G06F 12/10; G06F 13/40
USPC .. 711/206, 214
See application file for complete search history.

(56) References Cited

PUBLICATIONS

Intel IXP2800 Hardware Reference Manual, pp. 1-430 (Aug. 2004).
Netronome Network Flow Processor 3200 Preliminary Datasheet,
pp. 1-151 (Jul. 2008).

Primary Examiner — Reginald Bragdon
Assistant Examiner — Hannah A Faye-Joyner
(74) Attorney, Agent, or Firm — Imperium Patent Works; T.
Lester Wallace; Mark D. Marrello

(57) ABSTRACT

A lookup engine of a transactional memory (TM) has mul
tiple hardware lookup structures, each usable to perform a
different type of lookup. In response to a lookup command,
the lookup engine reads a first block of first information from
a memory unit. The first information configures the lookup
engine to perform a first type of lookup, thereby identifying a
first result value. If the first result value is not a final result
value, then the lookup engine uses address information in the
first result value to read a second block of second information.
The second information configures the lookup engine to per
form a second type of lookup, thereby identifying a second
result value. This process repeats until a final result value is
obtained. The type of lookup performed is determined by the
result value of the preceding lookup and/or type information
of the block of information for the next lookup.

21 Claims, 41 Drawing Sheets

-7000
A LOOKUP COMMAND ANDAN INPUT WALUE ARE RECEWEDONTO A TRANSACTIONAL

MEMORY. THE TRANSACTIONAL MEMORYNCLUDESA LOOKUPENGINEANA MEMORY UNIT.

THE LOKUENGINE REASAFIRST LOCK OF FIRST INFORMATION FROM THE MEMORY
UNIT.

THE LOCKUPENGINE USES THE FIRST INFORMATION TO CONFIGURE THE LOOKUPENGINEN
ArST CONFIGURATION

WHN CONFIGURED IN THE FIRST CONFIGURATION THOOKUPNGNPRFORMSAFIRST
LOOKUPOPRATION ONAFIRST PART OF THINUTWALU

THE LOOKUPENGINE OBTANSAFIRST RESULT WALUE ASARESULT OF PERFORMING THE
First L.KUOPERATION.

THE LOOKUPNGINEETERMINSFROM THE FIRST RESULTWALU Todd ONE OF THE
FOLLOWING: 1) PERFORMASECOND LOOKUP OPERATION2) ouTPUT THE FIRST RESULT

FOO1

FOO2

7003

004

795

WALUE FROM THE TRANSACTIONAL MEMRY AS THE RESULT OF THE LOOKUP COMMAND.
7007

ASARESULT OF THE TERMININGSTEPAT THEN OF THE FIRST LOOKUPOPERATION THE
LOOKUENGINE REASA SECON BLCK OF SECCND INFORMATION FROM THE MEMORY

UNIt.

w 7pe
THE LOOKUPENGINE USES THE SECON INFORMATION TO CONFIGURE THE LOOKUPENGINE

INA SECON CONFIGURATION.

N 009
WHEN CONFIGURE IN THE SECOM CONFIGURATION THE LOOKUENGINE PERFORMSA
SCON LOOKUPOPERATION ONASCON PART OF THE INPUT WAU. the type of

SECON LOCKUPERATIONSTERMNBY THESECON INFORMATION.

710
THE LOOKUPENGINE OBTANSASECN RESULTWALUASARESULT droRMING THE

SECCN LOCKUP CERATION

701
THE LOOKUPENGINEETERMINES FROM THE SECOND RESULT WALUE TCC On OF THE
FOLLOWING: 1) PERFORMATHIRDLOOKUPOPEATION, 2) OUTPUT THE SECOND RESULT
WALUE FROM THE TRANSACTIONAL MEMORYASARESULT OF THE LOOKUP COMMAN.

RECURSIVE USE OF MULTIPLE HARDWARE LOOKUPSTRUCTURES

U.S. Patent Jun. 30, 2015 Sheet 1 of 41 US 9,069,558 B2

CONFIG
MEM MEM PROM MEM

32 BIT DDR PHY 32 BIT DDR PHY GPO 32 BIT DDR PHY 32 BIT DDR PHY
18 48 19 20 17

EXTERNAL MU1 EXTERNAL MU2
SRAM SRAM
49 ME

CLUSTER(1) o 25

27 GBPS

25 SERDES ME PE65s 1 PCIE (1) CLUSTER (3) CRYPTO BULK 3
SERDES SERDES

29 30 31 s"),
W

25
25

GBPSSSRDES ME

SERDES

SERDES

9 9 USTCRYPTOBULK cuSERs GBPS
GBP o 16

25 ES SERDES
GBP 11 INTERLAKEN ME

St. "A" GBP 12 o

SERDES
INTERNAL MU1

SRAM

52 GPO

INTERNAL MU2 Y

SRAM
ME CLUSTER GPO

51 (8) DRE 32 BIT DDR PHY

48 2

- SMALLEST FLOW
O SECOND SMALLESTFLOW MEM

-ol SECONDLARGESTFLOW C U
D LARGEST FLOW

FIG. 1

U.S. Patent Jun. 30, 2015 Sheet 2 of 41 US 9,069,558 B2

\ YTY
No. 7 N la/
YTY
AN/N

HXXXIX) AN/NT/NT/N 3/
A Y|Y| YTY
Na/N AN AN/N
Y/ N/E N/Mu Y/N
AN AN 4/N2/Nagy
YY
A | A a a H

C

st 4/

X a
COMMAND-PUSH-PULL (CPP) DATABUS

STRUCTURE

FIG. 2

U.S. Patent Jun. 30, 2015 Sheet 3 of 41 US 9,069,558 B2

BUS TRANSASTION VALUE

METAPATA PAYLOAD 56

FINAL DESTINATION
(ISLAND NUMBER) PAYLOAD (ON COMMAND MESH)

META DATA AND PAYLOAD

FIG. 3
FIELD

TARGET

DESCRIPTION

CPP TARGET FOR THE COMMAND.

ACTION RECOGNIZED BY THE CPP TARGET INDICATING
ACTION WHAT SHOULD BE PERFORMED.

SUBTYPE OF ACTION RECOGNIZED BY THE CPP TARGET,
TOKEN INDICATING THE FLAVOR OF THE COMMAND.

LENGTH OF THE COMMAND, DEPENDENT ON THE ACTION/
LENGTH TOKEN, INTERPRETED BY THE CPP TARGET.

ADDRESS 40 ADDRESS THAT THE COMMAND SHOULD OFPERATE ON

BYTE MASK FURTHER OPTIONS OF A COMMAND (ABYTE MASK).

DATA MASTER ISLAND ISLAND OF DATA MASTER

DATA MASTER MASTER WITHIN THE ISLAND

PUSH-PULLD REFERENCE INDICATING TO THE DATA
DATA REF MASTER WHERE TO PUSHIPULL FROM

EXTENSION FOR DATA REF ASA DATA MASTER ONLY: FOR
OTHER MASTERS INDICATING WHICH MASTER WITHIN THE
DATA MASTER'S ISLAND SHOULD BE SIGNALED FOR THE

COMMAND.

REFERENCE WITHIN THE SIGNAL MASTER AS TO WHEN
SIGNAL SHOULD BE INDICATED WITH THE COMMANDS PULL

OR PUSH.

COMMAND PAYLOAD

FIG. 4

SIGNAL MASTER

SIGNAL REF 7

U.S. Patent Jun. 30, 2015 Sheet 4 of 41 US 9,069,558 B2

FIELD WDTH DESCRIPTION

TARGET ISLAND 6 ISLAND TO RETURN PULLDATA TO
IDENTIFIES THE SUB-CIRCUIT IN THE FINAL DESTINATION

TARGET PORT ISLAND THAT IS THE TARGET (OF AMULTI-TARGET ISLAND).
TARGET REF 14 TARGET SPECIFIC REFERENCE: RETURNED WITH PULLDATA.

DATA MASTER MASTER WITHIN THE ISLAND.

PUSH-PULLD REFERENCE INDICATING TO THE DATA MASTER
DATA REF WHERE TO PUSHIPULL FROM: NORMALLY COPIED FROM THE

NWOKING COMMAND.

EXTENSION FOR DATA REF ASADATA MASTER ONLY: FOR
OTHER MASTERS INDICATING WHICH MASTER WITHIN THE

SIGNAL MASTER DATAMASTERSISLAND SHOULD BESIGNALED WHEN THE
LAST DATA IS PULLED.

REFERENCEUSABLE BY THE MASTERTO DETERMINE WHICH SIGNAL REF SIGNAL SHOULD BEINDICATED WITH THE LAST PULLDATA
LENGTH 5 NUMBER OF 64-BIT DATA WORDS TO PULL FROM THE DATA

MASTER, STARTING AT THE SPECIFIED DATA REF.

PULL-ID PAYLOAD

FIG. 5
FIELD WDTH DESCRIPTION

DATA IS PULL ASSERTED FOR PULLDATA.

DATA MASTER OR DATA MASTER FOR PUSHDATAOR TARGET PORT FOR PULL
TARGET PORT DATA

DATA or ARGET- DATA REF FOR PUSHDATA OR TARGET REF FOR PULLDATA
ONLY USED FOR PUSH DATA, MASTER IN ISLAND TO SIGNAL IF

SIGNAL MASTER DATA MASTER IS NOT CTM; EXTENSION OF DATA REF FOR
DATA MASTER OF CTM.

SiGNSFOR- SIGNAL REF FOR PUSHDATA ORCYCLE FOR PULLDATA.
ASSERTED WITH THE LAST WORD OF DATA FOR PULL OR PUSH

ONEBIT PER 32-BITS OF DATA TO INDICATE AN

THE DATA IS TO BE WRITTENTO THE DATA MASTER.
FOR PUSHDATA ONLY, ASSERTED FOR SIGNALING TO

NO SPLIT 1 INDICATE THAT BOTH SIGNAL REF AND SIGNAL REF1 ARE TO no spur BE INDICATED TO THE SIGNALED MASTER.

DATA PAYLOAD

FIG. 6

U.S. Patent Jun. 30, 2015 Sheet 5 of 41 US 9,069,558 B2

FIELD WDTH DESCRIPTION

DATA IS PULL ASSERTED FOR PULLDATA.
IDENTIFIES THE SUB-CIRCUIT IN THE FINAL DESTINATION

TARGET PORT ISLAND THAT IS THE TARGET (OF AMULTI-TARGET ISLAND).

TARGET REF TARGET SPECIFIC REFERENCE, RETURNED WITH PULLDATA.

CYCLE-OF PULL CYCLE OF PULLDATA.

LAST ASSERTED WITH THE LAST WORD OF PULLDATA

DATA 64-BITS OF PULLED DATA FROM THE DATA MASTER.

ONE BIT PER 32-BITS OF PULLED DATA TO INDICATE AN
DATA ERROR 2 UNCORRECTABLE ERROR FROM THE DATA MASTER DATA

SOURCE.

DATA PAYLOAD (FOR A PULL)
FIG. 7

FIELD WDTH DESCRIPTION

DEASSERTED FOR PUSHDATA

PUSHID WITHIN THE ISLAND OF DATA MASTER THE DATAS
DATA MASTER DESTINED FOR.

DATA REF REFERENCE WITHIN DATA MSFR AS TO WHERE TO PUSH

FOR CTMAS ADATA MASTER ONLY THIS IS AN EXTENSION FOR
DATA REF: FOR OTHER MASTERS INDICATING WHICH MASTER

SIGNAL MASTER WITHIN THE DATA MASTERSISLAND SHOULD BESIGNALED
WHEN THE LAST DATA IS PUSHED.

SIGNAL REF 7 REFERENCE WITHIN THE SIGNAL MASTER AS TO WHICH
SIGNAL SHOULD BE INDICATED WITH THE LAST PUSHDATA.

LAST ASSERTED WITH THE LAST WORD OF PUSHDATA

DATA 64-BITS OF PUSH DATA FROM THE DATA MASTER.

ONE BIT PER 32-BITS OF PUSHED DATA TO INDICATE AN
DATA ERROR 2 UNCORRECTABLE ERROR FROM THE DATA MASTER DATA

SOURCE.

ONE BIT PER 32-BITS OF DATA TO INDICATE THAT THE DATAS
DATA VALID TO BE WRITTENTO THE DATA MASTER.

ASSERTED FOR SIGNALING TO INDICATE THAT BOTH
NO SPLIT 1 SIGNAL REF AND SIGNAL REF1 ARE TO BE INDICATED TO THE

SIGNALED MASTER

DATA PAYLOAD (FOR A PUSH)
FIG. 8

U.S. Patent Jun. 30, 2015 Sheet 6 of 41 US 9,069,558 B2

EB (EVENT BUS)

CB (CONTROL BUS)
DB (DATABUS)

65 s
s
S3

69

CBSLAND

BEE/BAABUS CB at

EB

CLUSTER
LOCAL

SCRATCH
68

40 : s

DBSLAND
BRIDGE
60

TWELVE
MICRO
ENGINE

PROCESSORS

TARGET
MEMORY

DATABUS
INGRESS PACKET INTERFACE
DESCRIPTOR HEADER 61

PORTION ME ISLAND

FIG. 9

U.S. Patent Jun. 30, 2015 Sheet 7 of 41 US 9,069,558 B2

EB (EVENT BUS)
CB (CONTROL BUS)

DB (DATABUS)

DATABUS
INTERFACE

CONTROL STATUS
REGISTER

HARDWARE
ENGINES

CACHE SRAM
76

MUISLAND

FIG 10

US 9,069,558 B2 Sheet 8 of 41 Jun. 30, 2015 U.S. Patent

| ||

(LINQ ÑIOWEW)

CINWWWOO
----g----------------

U.S. Patent Jun. 30, 2015 Sheet 9 of 41 US 9,069,558 B2

DCACHE

(MEMORY UNIT

95 B
1

91

ATOMCENGINE ly O
STATS ENGINE y
STATS ENGINE - >

5048

LOOK-UPENGINE ->im
LOOK-UP ENGINE - I

LOADBALANCER -> UD 93
BULKENGINE ->D
BULK ENGINE - I

96

9
ATOMCENGINE €

E. STATS ENGINE e

A. STATS ENGINE €
5049

LOOK-UP ENGINE e—it
|LOOK-UPENGINE — I
|LOAD BALANCER e-ys

BULKENGINE -it O
BULKENGINE e-III

ARBITER

DCACHE EXPANDED DAGRAM

FIG. 12

A R E R

1 1

DATASTRUCTURE
TABLE

98

DS1DS2Ds3Ds)
DS5DS6DS7DS8
DS9 DS10DS11DS12
EEE -
RRRE

I

:
II.

MEMORY
CONTROLLER

U.S. Patent Jun. 30, 2015 Sheet 10 of 41 US 9,069,558 B2

DCACHE
76

DATASTRUCTURE DATASTRUCTURE
DATA FIELD FIELD

STRUCTURE
TABLE
98 # OF PACKETS

IP ADDRESS RECEIVED
102 103

MAC
ADDRESS

104 105

TIMESTAMP

ii.
DATASTRUCTURE DATASTRUCTURE

FIELD FIELD

DATA STRUCTURE DIAGRAM

FIG. 13

U.S. Patent Jun. 30, 2015 Sheet 12 of 41 US 9,069,558 B2

106 HEADER 107 1.
-- N

DESTINATION SOURCE
ADDRESS ADDRESS PAYLOAD CRC (32 BITS)
(48 BITS) (48 BITS) 108 109

161

ETHERNETPACKET

FIG. 15

COMMAND RECEIVED GD (STATUS INDICATORSETTO"1")

NO COMMAND RECEIVED
(STATUS INDICATOR SETTO"O")

OUTPUT OPERATION
INSTRUCTION

COMPLETE (STATUS
INDICATOR SET TO "O")

PULL
STATE MACHINE
ISSUES CPP PULL
COMMAND TO PULL
HASHKEY FROMME

112

- HASHKEY S SENT TO
REGISTERPOOL FROM
INITIATING ME ACROSS

CPP BUS

- HASHKEY STORED IN
REGISTERPOOL

PULL OPERATION NOT COMPLETE
(STATUSINDICATORSET TO "1")

PULL OPERATION COMPLET
(STATUSINDICATORSET TO "1")

OUTPUT

OUTPUT OPERATION
INSTRUCTIONSENT

TO ARBITER

113

OUTPUT OPERATION
INSTRUCTION NOT COMPLETE
(STATUS INDICATORSET TO 1")

STATE MACHINE STATE DAGRAM

FIG. 16

U.S. Patent Jun. 30, 2015 Sheet 13 of 41 US 9,069,558 B2

REGISTERPOOL
86 86

HASHKEY
(FROMME) CONTROLLER

137 REGISTER 1
REGISTER 2
REGISTER 3

REGISTERN
HASHKEY SMADDRESS

(TO PIPELINE) (FROMPIPELINE)
137 138

REGISTERPOOL

FIG. 17

U.S. Patent Jun. 30, 2015 Sheet 14 of 41 US 9,069,558 B2

OPERATION
HASH INSTRUCTION
SY REGISTERPOOL 86 114
13, E-CONELLER TRANSLATOR

REGISTERS SM HASH HASH OP
PIPELINE ADDRESS BASED INDEX CODES

89 € e- (- (-

REQUEST STAGE
HASH 118
BUCKET
ADDRESS

129

READ STAGE
119

HASH LOOK-UPSTAGE
OP HASH BASE SM HASH HASH - - - - - 120

CODE INDEX als s suit Y o

HASH ADD STAGE
OP HASH BASE SM HASH HASH RESULTS - - - - 121

ps INDEX p es s age race o
- - - - - k

it. LOCK FOUND HASHBUCKET
LOCATION ID

HASH
OP HASH BASE SM HASH HASH RESULTS - - - -

cops INDEX as s Bucks age Y -
N

i LOCK FOUND HASH BUCKET
LOCATION ID

HASH WRITE STAGE
OP HASH BASE SM HASH HASH RESULTS - - - - 123

CODE INDEX ID ADRS KEY BUCKETPACKET Y o
1 UPDATED

Y HASHBUCKET

RESULTS PACKET. 157
€ -

CLK DETALED PIPELINE DIAGRAM

FIG. 18

U.S. Patent Jun. 30, 2015 Sheet 15 of 41 US 9,069,558 B2

136

128 BITS ?

32 BITS 32 BITS 32 BITS 32 BITS

Nuu-Y Nuu-Y Nuu-Y Nuu
BUCKET BUCKET BUCKET BUCKET

| LOCATION #1 | LOCATION #2 | LOCATION #3 | LOCATION #4
LOCK HASHKEY LOCK HASHKEY LOCK HASHKEY LOCK HASHKEY
FIELD FIELD FIELD FIELD FIELD FIELD FIELD FIELD
141 145 142 146 143 147 144 148

HASH BUCKET

FIG. 19

OP HASH BASE FSM HASH HASH RESULTS
ICODE INDEX ID ADRS KEYBUCKETPACKET M125 : Epissists
a Y W 22

7- - - - - - - - - - - it --- - - - - - v - - - -
Y - 1 Y w Y

/ - 1 Y y
/ BUCKET-BUCKET BUCKET BlyCKET

M OeAUGK LOCATION LOCATION LOCATION
Y 1 #2 #3

136

OP HASH
CODE KEY
149 137
->

- H - H. - - - - -

- - - - - - - - - - - - v--v---------- ADD STAGE

ADD LOCK FOUND HASH BUCKET
156 LOCATION ID

LOOK-UP STAGE

FIG. 20

U.S. Patent Jun. 30, 2015 Sheet 16 of 41 US 9,069,558 B2

-
FIELD WDTH DESCRIPTION

ADDED "1” IF HASHKEY WASADDED

LOCKED “1” IF DATASTRUCTURE IS CURRENTLY LOCKED

FOUND “1” IF HASHKEY WAS FOUND

HYT 2 IDENTIFICATION OF WHICH HASH BUCKET LOCATION IN THE
IDENTIFICATION (ID) HASH BUCKET CONTAINED THE MATCHINGHASHKEY

RESULTS PACKET

FIG 21

U.S. Patent Jun. 30, 2015 Sheet 17 of 41 US 9,069,558 B2

1000 y
1001

GO ETHERNETPACKET IS COMMUNICATED FROMNB ISLAND TO ME

1002

G2) ME PERFORMS HASHING OPERATION OF THE ETHERNET SOURCE ADDRESS TO
GENERATE A HASH INDEX.

1003

ME COMMUNICATES THE HASH INDEX, HASHKEY AND ATOMIC COMMAND TO ATOMIC
G3) ENGINE IN THE MUISLAND

1004

HASH INDEX AND ATOMIC INSTRUCTION IS RECEIVED BY ONE OF THE STATE MACHINES
GD WITHIN THE ATOMCENGINE.

1005

THE STATE MACHINE ISSUES PULL INSTRUCTION FOR ME TO COMMUNICATE THE HASH
(5) KEY TO THE REGISTERPOOL

(6) THE STATE MACHINE COMMUNICATES OPERATION INSTRUCTION AND HASH INDEX TO
TRANSLATOR.

1007

Gl) TRANSLATOR GENERATES OP CODES AND SUPPLIES OP CODES AND HASH INDEX TO
PIPELINE.

1008
FIRST PIPELINE STAGE: RECEIVES OPCODES AND HASH INDEX FROM TRANSLATOR AND
SENDS REQUEST FOR THE HASH BUCKET. LOCATED IN THE HASH.TABLE ADDRESSED BY

THE HASH INDEX AND THE HASHBUCKET BASE.
1009

G9) SECOND PIPELINE STAGE: RECEIVES THE HASH BUCKET FROM THE HASH.TABLE AND
THE HASHKEY FROM THE REGISTERPOOL

1010

THIRD PIPELINE STAGE: DETERMINES WHICH HASH BUCKET LOCATION MATCHES THE
HASHKEY AND GENERATES THE CORRESPONDINGHASH BUCKET LOCATION ID.

1011

FOURTH PIPELINE STAGE ADDS THE HASHKEY TO AWACANT HASH BUCKET LOCATION
(1) IF THE HASHKEY IS NOT FOUND.

TRANSACTIONAL MEMORY FLOWCHART

FIG.22A

U.S. Patent Jun. 30, 2015 Sheet 18 of 41 US 9,069,558 B2

1012

(12) FIFTH PIPELINE STAGE: SETS THE LOCK FIELD OF THE HASH BUCKET LOCATION THAT
CONTAINS THE MATCHINGHASHKEY.

1013

SIXTH PIPELINE STAGE: WRITES THE UPDATED HASH BUCKET INTO THE HASH.TABLE
AND COMMUNICATES THE RESULTS PACKET TO THE INITIATING ME.

1014

ME SENDS WRITEREOUEST TO THE BULK ENGINE TO WRITE TO THE ASSOCIATED DATA
STRUCTURE.

1015

(15) BULKENGINE WRITES TO THE DATASTRUCTURE.

1016

BULKENGINE COMMUNICATES A WRITE COMPLETED ACKNOWLEDGEMENT TO THE ME.

1017

(17) ME SENDS UNLOCK COMMAND TO ATOMCENGINE.

KEY TO FIG.22

TRANSACTIONAL MEMORY FLOWCHART

FIG. 22B

U.S. Patent Jun. 30, 2015 Sheet 20 of 41 US 9,069,558 B2

RECEIVEOP CODE, HASHTABLE BASE, AND HASHINDEX FROM TRANSLATOR 2001
REGUEST

STAGE SEND REQUEST TO DCACHE FOR THE 128 BIT HASH BUCKET. LOCATED AT THE HASH BUCKET 2002
ADDRESS (HASH.TABLE BASE +HASHINDEX

READ RECEIVE THE RECUESTED 128BIT HASHBUCKET FROMDCACHE AND HASHKEY FROMREGISTER
2003 STAGE POOL

LOOK-UP PERFORMLOOKUP (FIND WHICH HASH BUCKETLOCATION WITHIN THE HASHBUCKETMATCHES
TAGE THE HASHKEY) AND SET FOUND FIELD AND WRITE THE 2-BIT HASHBUCKETLOCATION ID 2004
STAGE CONTAINING THE HASHKEY MATCH TO THE HASHBUCKETLOCATIONIDFIELD IN RESULTS PACKET

HASHKEYS NOT ADDED TO HASH
BUCKETANDADDED FELDS SET TO "O"
AND FOUND FELDS SET ON RESULTS

PACKET

HASHKEY SADDED TO ANEMPTY HASH
SET ADDED FELD TO "O" BUCKET LOCATION AND THE ADDED FELD
AND FOUND FELD TO "1" ISSET TO “1” AND FOUND FELDS SET "O"
NRESULTS PACKET IN RESULTS PACKET

SET THE LOCK FIELD OF THE BUCKET 2011
LOCATION MATCHING THE HASHKEY SET LOCKFIELD TO "1" N RESULTS
TO'1"AND SET THE LOCKFIELD TO O"

NRESULTS PACKET

WRITE THE UPDATED HASHBUCKET TO
HASH.TABLE

SEND RESULTS PACKETTONITIATING
ME

END

PIPELINE OPERATIONAL FLOW

FG. 24

US 9,069,558 B2 Sheet 21 of 41 Jun. 30, 2015 U.S. Patent

(LHV HOTHd)

, – – – – – – – – – – – – – – – – – – –==<, SI WIS 7 HO-, SCITEI- SIWLS 8 E||WO|dfl OL

as - - - - ar'

US 9,069,558 B2 Sheet 22 of 41 Jun. 30, 2015 U.S. Patent

INTOO HO HIV/c}
| | |

GEIwddn |
| | |

U.S. Patent Jun. 30, 2015 Sheet 23 of 41 US 9,069,558 B2

NO COMMAND RECEIVED
(STATUS INDICATOR SET TO "O")

COMMAND RECEIVED
(STATUS INDICATORSET TO "1")

TPUT OPERATION
- ADDRESSESS READ OU Si6. O
FROMINITIATING ME COMPLETE (STATUS
ACROSS CPP BUS INDICATOR SET TO O")

- ADDRESSES STORED
IN REGISTERPOOL

PULL
STATE MACHINE

ISSUES A PULL-ID TO
PULL ADDRESSES

FROMME
3021

PULL OPERATION NOT COMPLETE
(STATUS INDICATORSET TO 1")

PULL OPERATION COMPLETE
(STATUS INDICATOR SET TO "1")

OUTPUT
OUTPUT OPERATION
INSTRUCTION TO

ARBITER
3022

OUTPUT OPERATION
INSTRUCTION NOT COMPLETE
(STATUS INDICATOR SET TO "1")

STATE DAGRAM OF STATS ENGINE STATE MACHINE

FIG. 27

U.S. Patent Jun. 30, 2015 Sheet 24 of 41 US 9,069,558 B2

4000

4001

STORING ASET OF FIRST VALUES INTO CORRESPONDING MEMORY LOCATIONS IN THE
MEMORY UNIT.

4002

RECEIVING AN ADD AND UPDATE COMMAND ONTO THE HARDWARE ENGINE.

4003

IN RESPONSE TO RECEIVING THE ADD AND UPDATE COMMAND CAUSING EACH MEMORY
LOCATION TO BE READ.

4004

IN RESPONSE TO RECEIVING THE ADD AND UPDATE COMMAND CAUSING THE SAME
SECOND VALUE TO BE ADDED TO EACH OF THE FIRST VALUES THEREBY GENERATING A

CORRESPONDING SET OF UPDATED FIRST VALUES.

4005

IN RESPONSE TO RECEIVING THE ADD AND UPDATE COMMAND CAUSING THE SET OF
UPDATED FIRST VALUES TO BE WRITTEN INTO THE PLURALITY OF MEMORY LOCATIONS.

FLOWCHART OF STATS ENGINE OPERATION

FIG. 28

U.S. Patent Jun. 30, 2015 Sheet 25 of 41 US 9,069,558 B2

5001
START M

50O2

ROUTER RECEIVES ANPPACKET ON AN INPUT PORT.

5003

ME SENDS LOOKUP COMMAND TO MU: THE COMMAND INCLUDES AREAD ADDRESS FOR
A 3X128 BLOCK OF DATA

5004

RECEIVE LOOKUP COMMAND FROM CPP BUS ONTO TRANSACTIONAL MEMORY

5005

LOOKUPENGINE STATE MACHINE SELECTOR SELECTS ONE STATE MACHINE.

THE SELECTED STATE MACHINE NITIATES A PULL ACROSS THE CPP BUS TO RETRIEVE
THE IP DESTINATION ADDRESS OF THE IP PACKET.

5007

IP DESTINATION ADDRESS IS RECEIVED ONTO TRANSACTIONAL MEMORY ANDS
STORED IN REGISTERPOOL

5008

THE SELECTED STATE MACHINE SENDS AN OPERATION INSTRUCTION TO TRANSLATOR.
TRANSLATOR SUPPLIES OP CODES AND THE READ ADDRESS TO PIPELINE

5009

RECQUEST STAGE OF PIPELINE ISSUES AREAD REOUEST TO THE MEMORY UNIT TO READ
3X138 BITS STARTING AT THE READ ADDRESS.

PIPELINE RECEIVES 3X128 BITS FROMMEMORY UNIT AND RECEIVES THE IP
DESTINATION ADDRESS FROM REGISTERPOOL

LOOKUP STAGE OF PIPELINE DOES TRIE LOOKUPIN ONE CLOCK CYCLEUSING
COMBINATIONAL LOGIC THEREBY GENERATINGA 32-BITNEXT HOP OUTPUT PORT

RESULT.

32-BITNEXT HOP OUTPUT PORT RESULT IS PUSHED BACK TO ME VIA THE DATABUS
INTERFACE OF THE TRANSACTIONAL MEMORY AND THE CPP DATABUS.

ROUTER OUTPUTS THE IP PACKET ONTO ANOUTPUT PORT INDICATED BY THE 32-BIT
NEXT HOP OUTPUT PORT RESULT

FLOWCHART OF A TRIE MULTI-BIT LOOKUP OPERATION

FIG. 29

U.S. Patent Jun. 30, 2015 Sheet 26 of 41 US 9,069,558 B2

LINE CARD BACKPLANE
5017 5021

OUTPUT SERDES CONFIG.
PORT PROM SERDES opics CONNECTIONS CONNECTIONS
N TRANSCEIVER

INPUT ?h ISLAND-BASED
PORT OPTICAL NETWORK FLOW
5016 FIBER PROCESSOR

(IB-NFP)
INTEGRATED

"" ; CIRCUIT
2 : C

in SWITCH
IP PACKET ty- FABRIC

5O15 OPTICAL 5024
5. OPTICS

TRANSCEIVER SERDES
OUTPUT CONNECTIONS
PORT
5028

LINE CARD
5018

LINE CARD
5019

OUTPUT / MANAGEMENT CARD
PORT 5020
5029

ROUTER

FIG. 30

U.S. Patent Jun. 30, 2015 Sheet 28 of 41 US 9,069,558 B2

COMMAND RECEIVED
(COMMAND INCLUDESAN ADDRESS)
(STATUS INDICATORSET TO "1")

FINAL RESULT BIT
(FRB) ISCLEAR

NOCOMMAND RECEIVED
TATUS INDICATORSET TO "O" IF FRBS CLEARTHEN (STATUS CATOR SET TO "O") INITIATEPUSH OF FINAL

RESULT TO THE

Stalia |ASSESSENT 555.
ISSUES CPPPULL FROMINITIATING ME COMMAND

COMMAND TO PULLP ACROSS CPPBUS
ADDRESS FROMME - PADDRESS STORED

5036 ... IN REGISTERPOOL

WAIT FOR RESULT

5046 OUTPUT OPERATION
PULL OPERATIONNOT COMPLETE INSTRUCTION COMPLETE
(STATUS INDICATOR SET TO "1") (STATUS pigATOR SET

PULLOPERATION COMPLET
(STATUS INDICATORSET TO 1")

OUTPUT

OUTPUT OPERATION
INSTRUCTIONSENT

TO ARBITER

5039

FINAL RESULT BIT
(FRB) ISSET

J; OUTPUT OPERATION |FRETURN FROM WAIT FOR RESULT"STATE
THEN THE RESULT VALUES USED TO NSTRSSNESSMEST
DETERMINE. 1) THE NEXT LOOKUP ()
ESSEWESS; NEXT 3X28BITS FRCMDCACHE AND3)THE
NUMBER OF 128-BIT WORDS TO READ

STATE DAGRAM FOR A STATE MACHINE OF THE
LOOKUP ENGINE

FIG. 32

U.S. Patent Jun. 30, 2015 Sheet 29 of 41 US 9,069,558 B2

LOOKUP REGISTER
STAGE IV R1
5052 5037 NCVS RVS 5051

s -- - - - N - - - - N

- - - - - - - - - - - - - - - 7

Zoe ZIP ? ? w- an cird d M. Waleil Wall, lllllllllllll:
n

ESERE
s & 4 1553

o ce Y c 1 c 1 cc co 1 cc Y ge SS/SS/SSYSSYSSY

S(IV)
- - - - - - a - - - 2 - 4 - NZ-Na-Ya-YZ - y4 - - N4 - N4 -NZ -Ya-YZ - 4 - S - a--

-----------------. -------------------
- - - - - - - - - T -------- T - - - - - - - -

LOOKUP - TCAM PMM SPLIT CAMR DIRECT DIREC
32 7 32 1 32 3"; "El TRIE HERE

5060 || 5059 || 5058 || 5057 || 5056 || 5055 || 5000 “

32 32 - 32 Y 32 32 32 32

| | | | ------ i

- - - - - - - - - - - - - ---------

- RES4LTXALYE (E.G. NEXT HOP OUTPUT
062 FORT DENTIFIER), ALU3
o 5054

X
X

RESULT
STAGE
5064

REGISTER
R2 5063

BLOCKDIAGRAM OF TRIE MULTI-BIT LOOKUP HARDWARE
OF LOOKUP STAGE OF PIPELINE

FIG. 33

U.S. Patent Jun. 30, 2015 Sheet 30 of 41 US 9,069,558 B2

TYPE = MULTI-BIT LOOKUP
A-GAREMULTI-BIT NODE 8 7 6 6 6 6 6 6 6

BITS BITS BITS BITS BITS BITS BITS BITS BITS -out (NCVS)

WORD is type spg | FE D C B A
RO-R7 ARE MULTI-BIT

31 BITS FINAL RESULT BIT (FRB)

32 BITS O = FINAL RESULT
31-BITVALUES THE FINAL

128 BITS RESULT (FOR EXAMPLE, NEXT
HOP OUTPUT PORT IDENTIFIER).

1 - ANOTHERLOOKUP.
3X128 BITS READ OUT OF MEMORY UNIT 31-BIT WALUE INDICATES

F G 34 ANOTHER LOOKUPTODO.
P DESTINATION
ADDRESS 5053

SP6:0) BARREL SHIFTER
(STARTINGBIT POSITION) F G 35

U.S. Patent Jun. 30, 2015 Sheet 31 of 41 US 9,069,558 B2

HARDWARE TRE
STRUCTURE

5000

D NODE CIRCUIT CIRCUIT

INTERNAL
NODE CIRCUIT,

i
D f LEAFNODE

...' CIRCUIT
INTERNAL LEAF NODE5076

NODE CIRCUIT 5072 CIRCUIT

INTERNAL .
NODE CIRCUIT .

IV --(ROOTNODE)

64 i AO .. f LEAF NODE
i s' CIRCUIT

5078 5083 RESULT
NTERNAL ESP WALUE

NODE CIRCUIT (NEXT HOP
OUTPUT PORT
IDENTIFIER)

INTERNAL
NODE CIRCUIT.

f EA NODE
CIRCUIT

INTERNAL
NODE CIRCUIT LEENSPE

5074

‘....90/f LEAF NODE
---------- CIRCUIT

5080

588;" |

HARWARE TRIESTRUCTURE

FIG. 36

U.S. Patent Jun. 30, 2015 Sheet 32 of 41 US 9,069,558 B2

D RO
(NEXT HOP OUTPUT
PORTIDENTIFIER)

IP DESTINATION ADDRESS
128-BIT R1

(July (NEXT HOP OUTPUT
32 BIT PORTIDENTIFIER)

1213.3.7 96-BITS NEXTH FouTPU YM V UTPUT

w M (ESSES! ER)
w

N SP /
Y. / R3

w (NEXT HOP OUTPUT
64. BITS OFA PORT IDENTIFIER)
128-BIT IPv6 IP RA

DESTINATION ADDRESS (NEXT HOP OUTPUT
PORTIDENTIFIER)

R5
(NEXT HOP OUTPUT
PORT IDENT FIER)
(NEXTHOP OUTPUT
PORT IDENTIFIER)

--

SELECISQNECE SIXT FOURBIISASPETERMINED BY 6-BITVALUE A.

R7
(NEXTHOP OUTPUT
PORT IDENTIFIER)

CONCEPTUAL DIAGRAM OF TRIE MULTI-BIT
LOOKUP OPERATION

FIG. 37

BIT : ; ; ; :

NUMBERN330,29 28:27 26:24 23:0

o 31-BIT ALGORTHMIC LOOKUPRESULT
1 HOWMANY 128-BIT 3-BIT TABLE 24-BIT ADDRESSINDACACHE

WORDS TO READ NUMBER WHERE 3X128 BIT STARTS

O = ALGORTHMC LOOKUP
O = NOT A DIRECTLOOKUP

FINAL RESULT BIT (FRB):
O = FINAL RESULT
1E NOT FINAL RESULT

RESULT VALUE
(IF THE ALGORITHMIC LOOKUP BIT IS ZERO)

FIG 38

U.S. Patent Jun. 30, 2015 Sheet 34 of 41 US 9,069,558 B2

MEMORY MEMORY MEMORY MEMORY
LOCATION 3 LOCATION 2 LOCATION 1 LOCATIONO

32 BITS 32 BITS 32 BITS 32 BITS
MEMORY WORDO R2
MEMORY WORD 1
MEMORY WORD 2 R9
MEMORY WORD 3
MEMORY WORD4.
MEMORY WORD 5
MEMORY WORD 6
MEMORY WORD 7 R31 R30 R29 R28

DIRECT 32-BIT MEMORY PACKING SCHEME

FIG. 40
PORTN-BITS,

SE MASK SIZE BASE ADDRESS if
BASE 6013

a C MASKSIZE ADDRESS STARTINS, BIT POSITION
6O16

SHIFTER CIRCUIT --> 6009 Sull IPORTION PORTION 27. 6d12 MEMORY
O:7) ARESS SELECTING CIRCUIT 6015

6O20 PORTIONO:1)

DIRECT 32-BIT REQUEST STAGE sition
FIG. 41

128-128-BIT WORD
6007

32-BIT 32-BIT 32-BIT 32-BIT

R1
5051

PORTION RESULT RESULT RESULT RESULT
O:1 WALUE 3 WALUE 2 WALUE WALUEO

ALU 3
- - - - - - - - - 5054

32 N N MULTIPLEXING
Y-CIRCUIT
/ 6011

- - - - (321X4 MUXS)

°- SET OF 32 OUTPUT LEADS

t (RESULT VALUE

PORTIONO:1

NEXT HOP OUTPUT PORT
IDENTIFIER)

DIRECT 32-BIT LOOKUP STAGE

FIG. 42

U.S. Patent Jun. 30, 2015 Sheet 35 of 41 US 9,069,558 B2

BIT

NUMBERN31 30 29 28 27:21 20:13 120
O 31-BIT DIRECTLOOKUPRESULT

TYPE OF DIRECT STARTING BIT MASK
LOOKUP POSITION SIZE BASE ADDRESS

O ALGORTHMIC LOOKUP
O NOT A DIRECT LOOKUP

FINAL RESULT BIT (FRB).
O = FINAL RESULT
1 - NOT FINAL RESULT

DIRECT RESULT VALUE
FIG. 43

U.S. Patent Jun. 30, 2015 Sheet 36 of 41 US 9,069,558 B2

6100
y 6101

ROUTER RECEIVES ANETHERNETPACKET ON AN INPUT PORT.

6102

ME SENDS LOOKUP COMMAND TOMU. THE COMMAND INCLUDESADDRESS
INFORMATION.

6103

RECEIVE LOOKUP COMMAND FROM CPP BUS ONTO TRANSACTIONAL MEMORY.

6104

LOOK-UPENGINE STATE MACHINE SELECTOR SELECTS ONE STATE MACHINE

6105

STATE MACHINE NITATES A PULL ACROSS THE CPP BUS TO RECEIVE THE INPUT VALUE
(DESTINATION IP ADDRESS OF THE ETHERNETPACKET).

6106

INPUT VALUE (IPADDRESS) IS RECEIVED ON TRANSACTIONAL MEMORY AND IS STORED
IN REGISTERPOOL

6107

STATE MACHINE SENDS OPERATION INSTRUCTION TO TRANSLATOR. TRANSLATOR SENDS
OP-CODES AND ADDRESS INFORMATION TO PIPELINE.

6108

REOUEST STAGE OF PIPELINE DETERMINES A MEMORY ADDRESS AND ISSUES AREAD
REQUEST TO THE MEMORY UNIT TO READ 128-BIT WORD FROMMEMORY.

6109

PIPELINE RECEIVES 128-BIT WORD FROMMEMORY UNIT.

6110

LOOK-UP STAGE OF PIPELINE SELECTS ONE OF FOUR 32-BIT RESULT VALUES FROM
128-BIT WORD IN ONE CLOCKCYCLEUSING COMBINATIONAL LOGIC.

61.11

32-BIT RESULT WALUES COMMUNICATED BACK TO THE INITIATING STATE MACHINE

6112

32-BIT RESULT WALUE IS PUSHED BACK TO ME WIA THE DATABUS INTERFACE OF THE
TRANSACTIONAL MEMORY AND THE CPP DATABUS.

61.13

ROUTER OUTPUTS THE ETHERNETPACKET ONTO AN OUTPUT PORT INDICATED BY THE
32-BIT RESULT VALUE.

DIRECT 32-BIT LOOKUP FLOWCHART

FIG. 44

U.S. Patent Jun. 30, 2015 Sheet 37 of 41 US 9,069,558 B2

START -7000
7001

A LOOKUP COMMAND AND AN INPUT WALUE ARE RECEIVED ONTO A TRANSACTIONAL
MEMORY. THE TRANSACTIONAL MEMORY INCLUDES A LOOKUPENGINE AND A MEMORY UNIT

7002

THE LOOKUPENGINE READSAFIRST BLOCK OF FIRST INFORMATION FROM THE MEMORY
UNIT.

7003

THE LOOKUP ENGINE USES THE FIRST INFORMATION TO CONFIGURE THE LOOKUP ENGINE IN
AFIRST CONFIGURATION.

7004

WHEN CONFIGURED IN THE FIRST CONFIGURATION THE LOOKUP ENGINE PERFORMS AFIRST
LOOKUP OPERATION ONAFIRST PART OF THE INPUT VALUE.

7005
THE LOOKUPENGINE OBTAINSAFIRST RESULT VALUE ASA RESULT OF PERFORMING THE

FIRST LOOKUP OPERATION

7006

THE LOOKUP ENGINE DETERMINES FROM THE FIRST RESULT VALUE TODO ONE OF THE
FOLLOWING: 1) PERFORMA SECOND LOOKUP OPERATION 2) OUTPUT THE FIRST RESULT
VALUE FROM THE TRANSACTIONAL MEMORY AS THE RESULT OF THE LOOKUP COMMAND.

7007

AS ARESULT OF THE DETERMINING STEP AT THE END OF THE FIRST LOOKUP OPERATION THE
LOOKUPENGINE READSA SECOND BLOCK OF SECOND INFORMATION FROM THE MEMORY

UNIT.

7998
THE LOOKUP ENGINE USES THE SECOND INFORMATION TO CONFIGURE THE LOOKUPENGINE

INA SECOND CONFIGURATION
7009

WHEN CONFIGURED IN THE SECOND CONFIGURATION THE LOOKUPENGINE PERFORMS A
SECOND LOOKUP OPERATION ON A SECOND PART OF THE INPUT WALUE THE TYPE OF

SECOND LOOKUP OPERATION IS DETERMINED BY THE SECOND INFORMATION

7010

THE LOOKUPENGINE OBTAINS ASECOND RESULT VALUE AS ARESULT OF PERFORMING THE
SECOND LOOKUP OPERATION

7011

THE LOOKUP ENGINE DETERMINES FROM THE SECOND RESULT VALUE TODO ONE OF THE
FOLLOWING: 1) PERFORMATHIRD LOOKUP OPEATION, 2) OUTPUT THE SECOND RESULT
WALUE FROM THE TRANSACTIONAL MEMORY AS ARESULT OF THE LOOKUP COMMAND.

END

RECURSIVE USE OF MULTIPLE HARDWARE LOOKUPSTRUCTURES

FIG. 45

US 9,069,558 B2 Sheet 38 of 41 Jun. 30, 2015 U.S. Patent

U.S. Patent Jun. 30, 2015 Sheet 39 of 41 US 9,069,558 B2

8 BITS 24. BITS 24. BITS 24. BITS 24. BITS 24. BITS

MEMORY WORD0 R4 R3 R2 R1 || RO
MEMORY WORD 1 R9 R8 R7 R6 R5
MEMORY WORD2 R44 R13
MEMORY WORD3 B8E.
MEMORY WORD4 R23 R22 || R2
MEMORY WORD 5 R27 R26 R25
MEMORY WORD6 R31 R30 R29
MEMORY WORD7 R4 R3 R2 R1 | RO
MEMORY WORD8 Re R8 R7 R6 R5
MEMORY WORD9 R14 R13
MEMORY WOR E.
MEMORY WOR

MEMORY WOR

MEMORY WOR

MEMORY WOR

MEMORY WOR

MEMORY WOR

MEMORY WOR E.
MEMORY WOR

MEMORY WOR

MEMORY WOR

WORD OFFSET
RESULT NUMBER VALUE

MEMORY WORD35 | R4 |\ R3 || R2 R1 | RO
MEMORY WORD36 R V R8 R7 R6 R5
MEMORY WORD37 R14 R13 R12 R11 R10
MEMORY WORD38 R19 2:32, R17 R16 R15 EE,
MEMORY WORD39 R23 R22 R21 R20
MEMORY WORD 40 R27 R26 R25 R24
MEMORY WORD 41 R31 R30 R29 R28

RESULT RESULT RESULT RESULT RESULT
LOCATION 4 LOCATION3 LOCATION 2 LOCATION LOCATION O

STORES32RESULTSUSING7LINESINSTEAD OF8INESREQUREDTO)
STORE 32 RESULTSUSINGDIRECT 32 LOOKUPMEMORY PACKING

DIRECT 24-BIT LOOKUP MEMORY PACKING

FIG. 47

U.S. Patent Jun. 30, 2015 Sheet 40 of 41 US 9,069,558 B2

PORTION BITS, 801

X.
STARTING r is

BIT POSITION IP Acá.

STARTINGBIT POSITION ALU 1
8O16 6,4

w FIRST
SUB-PORTION LOOKUPBLOCK re OFFSETWALUE 5: 7 8022 8023 BARREL

SHIFTER
8009 ->

Poition MEMORY
- H - H - H - H. -------

PORTION I WORD 8019 SELECTING CIRCUIT O:4) |SELECTOR 8020 SECOND 8021
SUB-PORTION

ADDRESS

RESULT >
LOCATION (O2) WORD OFFSET

8026 WALUE
8024

TO SUBSEQUENT STAGES
OF THE PIPELINE

DIRECT 24-BIT REQUEST STAGE

RESULT
LOCATION (O2) 120 BITS OF 128-BIT WORD

8026 (READ FROMMEMORY)
3 120 6007

RESULT 26
LOCATION R196R17R16R15 56. ALU 3

5054
- - - - - - --

24 124 124 124 124

- TT--
*a

MULTIPLEXING A 51 / M5A'N,
Y e 8011

(241X5 MUXS)
RESULT VALUE (F2, (NEXT HOP OUTPUTP RT

IDENTIFIER)

DIRECT 24-BIT LOOK-UP STAGE

FIG. 49

U.S. Patent Jun. 30, 2015 Sheet 41 of 41 US 9,069,558 B2

8100
y 81.01

ROUTER RECEIVES AN IP PACKET ON AN INPUT PORT.

81.02

ME SENDSLOOKUP COMMAND TO MU: THE COMMAND INCLUDESADDRESS
INFORMATION INDICATING SEVEN MEMORY WORDS WITHIN MEMORY.

81.03

RECEIVE LOOKUP COMMAND FROM CPP BUS ONTO TRANSACTIONAL MEMORY.

8104

LOOK-UP ENGINE STATE MACHINE SELECTOR SELECTS ONE STATE MACHINE.

81.05

STATE MACHINE NITIATES A PULL ACROSS THE CPP BUS TO RECEIVE THE PADDRESS
OF THE IP PACKET.

8106

IP ADDRESS IS RECEIVED ON TRANSACTIONAL MEMORY AND IS STORED IN REGISTER
POOL

81.07

STATE MACHINE SENDS OPERATION INSTRUCTION TO TRANSLATOR. TRANSLATOR SENDS
OP-CODES AND ADDRESS INFORMATION TO PIPELINE.

8108

REOUEST STAGE OF PIPELINE USES ADDRESS INFORMATION AND THE PADDRESS TO
GENERATE AMEMORY ADDRESS AND ISSUES AREAD RECRUEST TO THE MEMORY UNIT.

8109

IN RESPONSE TO THE READ REQUEST, THE PIPELINE RECEIVES A 128-BIT WORD
CONTAINING MULTIPLE RESULT VALUES FROM THE MEMORY UNIT

81,10

LOOK-UP STAGE OF PIPELINE PERFORMS DIRECT 24-BIT LOOKUPIN ONE CLOCK CYCLE
USING COMBINATIONAL LOGIC THEREBY SELECTING ONE 24-BIT RESULT VALUE.

81,11

24-BIT RESULT WALUES COMMUNICATED BACK TO THE INITIATING STATE MACHINE

8112

24-BIT RESULT VALUE IS PUSHED BACK TO ME VIA THE DATABUS INTERFACE OF THE
TRANSACTIONAL MEMORY AND THE CPP DATABUS

81,13

ROUTER OUTPUTS THE ETHERNETPACKET ONTO ANOUTPUT PORT INDICATED BY THE
24-BIT RESULT VALUE.

DIRECT 24-BIT LOOK-UP FLOWCHART

FIG. 50

US 9,069,558 B2
1.

RECURSIVE USE OF MULTIPLE
HARDWARE LOOKUPSTRUCTURES INA

TRANSACTIONAL MEMORY

TECHNICAL FIELD

The described embodiments relate generally to network
processor integrated circuits employing transactional memo
ries and to related methods.

BACKGROUND INFORMATION

A network processor is a device that executes programs to
handle packet traffic in a data network. A network processor
is also often referred to as a networkflow processor or simply
a flow processor. Examples include network processor inte
grated circuits on router line cards and in other network
equipment. In one example, a network processor integrated
circuit is capable of receiving packets, classifying and per
forming atomic operations on the packets and associated
packet data, and transmitting packets. Processors on the inte
grated circuit are called upon to perform processing functions
that include using hash functions and hash tables stored in
on-chip memories to find data structures that store informa
tion pertaining to different types of packets. A processor on
the integrated circuit may also be called upon to determine
and to log updated packet count and byte count information
into appropriate tables in memory. As throughput require
ments increase, ways of adding processing power are sought.

In one specific example, a network processor integrated
circuit uses the flexible and expandable IXP2800 architec
ture. The IXP2800 architecture allows multiple high-speed
processors (referred to as microengines) to access the same
memory resources via a common command/push/pull bus.
Due to use of the IXP2800 architecture and multiple
microengines, increased processing power is brought to bear
on the tasks of identifying data structures using hash func
tions and of logging packet and byte count information. If
more throughput is required, then more microengines can be
employed. If less throughput is required, then fewer
microengines can be employed. The NFP-3XXX and NFP
6XXX families of network processor integrated circuits
available from Netronome Systems, Inc. of Santa Clara,
Calif. include a selection of IXP2800-based network proces
sor integrated circuits having different numbers of
microengines.

SUMMARY

An Island-Based Network Flow Processor (IB-NFP)
includes a plurality of islands that are interconnected by a
configurable mesh Command/Push/Pull (CPP) data bus. A
first of the islands includes a processor. A second of the
islands includes a novel transactional memory. The CPP data
bus includes a configurable command mesh, a configurable
pull-id mesh, a configurable data0 mesh, and a configurable
data1 mesh.

In a first novel aspect, the processor of the first island sends
an Atomic Lookup Add and Lock (ALAL) command to the
novel transactional memory of the second island. The ALAL
command includes a first value. In one example, the first value
is a hash index. In response to receiving the ALAL command,
the transactional memory pulls a second value across the CPP
data bus. In one example, the second value is a hash key. The
transactional memory uses the first value to read a set of
locations from a memory. In one example, the set of locations

10

15

25

30

35

40

45

50

55

60

65

2
is a hashbucket made up of a set of hash bucket locations. A
memory of the transactional memory stores a hash table of
hash buckets.

Next, the transactional memory determines if any of the
locations read contains the second value. If no location con
tains the second value, then the transactional memory locks a
vacant location of the set of locations, adds the second value
to the vacant location, and returns a value to the processor
across the CPP data bus. The value returned indicates the
location where the second value was added. The reference to
“adds' the second value to the vacant location means that the
second value is written into the vacant location.

If a location contains the second value and the location is
not locked, then the transactional memory locks the location
and returns a value to the processor across the CPP data bus,
where the value returned indicates the location where the
second value was found. If a location contains the second
value but the location is locked, then the transactional
memory returns a value to the processor across the CPP data
bus, where the value returned indicates the location where the
second value was found and indicates that the location is
locked. Each location has a lock field. The location is locked
by setting a lockfield of the location. The location is unlocked
by clearing the lock field of the location.

Also stored in the memory of the transactional memory is
a data structure table. A set of data structures makes up the
data structure table. There is one such data structure for each
hashbucket location in the hash table. Setting the lock field of
a hash bucket location in the hash table locks access to the
associated data structure for any processor other than the
processor that sent the ALAL command. The processor that
controls a locked data structure can unlock the data structure
by writing to the associated hash bucket location in the hash
table, and clearing the lock field of that associated location.

In one specific example, the circuitry of the transactional
memory includes an atomic engine, a memory unit, a bulk
engine, and a data bus interface. The atomic engine in turn
includes a state machine selector, a state machine array
including multiple state machines, an arbiter, a translator, a
register pool, and a pipeline. The memory unit includes a
memory, input FIFOs, output FIFOs, and a pair of crossbar
switches. The hash table of hash buckets is stored in the
memory unit. The data structure table of data structures is also
stored in the memory unit.
When the transactional memory receives an ALAL com

mand, the command passes through the data bus interface and
to the state machine selector of the atomic engine. The State
machine selector selects one of the state machines of the State
machine array that is idle. The state machine selected then
transitions operation from the idle state to a pull state. As a
result, a pull occurs across the CPP data bus so that a hash key
is read back across the CPP data bus and is stored in the
registerpool. The State machine transitions from the pull State
to the output state. This results in the state machine outputting
an operation instruction. The operation instruction is trans
lated by the translator into a hash index and a set of op codes.
The set of op codes includes one op code for each of the stages
of the pipeline.
A first stage of the pipeline, as determined by its op code,

issues a read request to the memory unit to read a hashbucket
addressed by the hash index. The read request is serviced by
a memory controller of the memory unit. The memory unit
returns the requested hash bucket to the second stage of the
pipeline. The hash key (that was pulled across the CPP data
bus) is also supplied by the registerpool to the second stage of
the pipeline. Next, a third stage of the pipeline, as determined
by its op code, checks each of the hashbucket locations of the

US 9,069,558 B2
3

hash bucket to determine if any one of the hash bucket loca
tions is storing the hash key. Depending on whether the hash
key is found or not, and whether the hash bucket location
containing the hashkey is locked or not, the hashbucket value
is changed as appropriate to generate an updated hash bucket
value. A Subsequent stage in the pipeline, as determined by its
op code, then issues a write request to the memory unit to
write the updated hashbucket value back into the hashbucket
if appropriate. In addition, the stage of the pipeline outputs a
results packet that is sent to the requesting processor via the
CPP data bus. The results packet indicates, among other infor
mation, which hash bucket location of the hash bucket con
tained the hash key, ifany, and also indicates whether the hash
bucket location was locked.

There is only one pipeline, use of which is shared by the
several state machines of the state machine array. Multiple
state machines can be using the pipeline at the same time. The
state machines and the pipeline are dedicated hardware cir
cuits and involve no processor that fetches instructions,
decodes the instructions, and executes the instructions. The
processor that controls a locked data structure can unlock the
data structure across the CPP data bus by using the bulk
engine to write a value into the hash bucket location associ
ated with the data structure, where the value written causes
the lock field of the hash bucket location to be cleared. The
ALAL command is not limited to use with hash function and
hash key lookups, but rather the ALAL command has general
utility. The description of the ALAL command in connection
with a hash key lookup is just presented as one representative
application of the command.

In a second novel aspect, the processor on the first island
sends a Stats Add-and-Update (AU) command across the
command mesh of the CPP data bus to the novel transactional
memory of the second island. The AU command includes a
second value. A memory unit of the transactional memory
stores a plurality of first values in a corresponding set of
memory locations. A hardware engine of the transactional
memory receives the AU, and in response performs a pull
using other meshes of the CPP data bus thereby obtaining a
set of addresses, uses the pulled addresses to read the first
values out of the memory unit, adds the same second value to
each of the first values thereby generating a corresponding set
of updated first values, and causes the set of updated first
values to be written back into the plurality of memory loca
tions. The actual operations are performed as a read, an
update, and a write, where these steps are performed over and
over, once for each memory location to be updated. To carry
out these add and update operations, there is only one bus
transaction value sent across the command mesh of the CPP
data.

In one specific example, the circuitry of the transactional
memory includes a stats engine, a memory unit, and a data bus
interface. The stats engine in turn includes a state machine
selector, a state machine array including multiple state
machines, an arbiter, a translator, a register pool, and a pipe
line. The memory unit includes a memory, input FIFOs, out
put FIFOs, and a pair of crossbar switches. The first values are
stored in a corresponding set of memory locations in the
memory.
When the transactional memory receives an AU command,

the command passes through the data bus interface and to the
state machine selector of the stats engine. The state machine
selector selects one of the state machines of the State machine
array that is idle. The state machine selected then transitions
operation from the idle state to a pull state. A pull occurs
across the CPP data bus so that the set of addresses is read
back across the CPP data bus and is stored in the registerpool.

10

15

25

30

35

40

45

50

55

60

65

4
The state machine transitions from the pull state to the output
state. This results in the state machine outputting an operation
instruction. The operation instruction is translated by the
translator into a byte number value, a packet number value,
and a set of opcodes. The set of op codes includes one op code
for each of the stages of the pipeline.
A first stage of the pipeline, as determined by its op code,

issues a read request to the memory unit to use the first
address (the first address that was pulled across the CPP data
bus) to read a corresponding memory location of the memory
unit. The read request is serviced by a memory controller of
the memory unit. The memory unit returns the requested
contents of the memory location. In one example, the contents
is a packet number value. Next, a third stage of the pipeline, as
determined by its op code, adds the packet number value
received from the translator to the packet number value read
out of the memory location, thereby generating an updated
packet count value. A Subsequent stage in the pipeline, as
determined by its op code, then issues a write request to the
memory unit to write the updated packet count value back
into the memory location. This process is repeated for each
successive one of the addresses pulled across the CPP data
bus. If the count value read out of the memory location is a
packet count value, then the packet count value from the
translator is added to the packet count value read from the
memory unit, and the resulting updated packet count value is
written back into the memory location in the memory unit.
Likewise, if the count value read out of the memory location
is a byte count value, then the byte count value from the
translator is added to the byte count value read from the
memory unit, and the resulting updated byte count value is
written back into the memory location in the memory unit. In
Some embodiments, multiple count values are read out of
memory together, and these multiple count values are updated
in parallel, and the resulting multiple updated count values
are written back into memory together.

There is only one pipeline, use of which is shared by the
several state machines of the state machine array. Multiple
state machines can be using the pipeline at the same time. The
state machines and the pipeline are dedicated hardware cir
cuits and involve no processor that fetches instructions,
decodes the instructions, and executes the instructions. The
AU command is not limited to keeping packet counts and byte
counts, but rather is usable to log counts of other quantities.
The example of using the AU command to log a packet count
and a byte count is presented just as one application to which
the AU command can be put.

In addition to executing the AU command, the stats hard
ware engine of the transactional memory can also execute a
stats “Read and Clear” (RC) command. The stats read and
clear command is similar to the stats AU command in that one
command is sent across the command mesh of the CPP bus
but multiple memory operations result. Rather than writing
back a count value into each memory location, the stats read
and clear command results in writing a Zero value into each
indicated memory location. In addition, the write stage of the
pipeline returns a stats data value that is sent via the data bus
interface and CPP data bus back to the processor. The stats
data value is the set of count values for all the memory
locations that were cleared.

In a third novel aspect, the lookup engine of the transac
tional memory on the second island has a novel hardware trie
structure. The processor on the first island sends a lookup
command across the command mesh of the CPP data bus to
the transactional memory of the second island. The lookup
command includes address information. The address infor
mation identifies the location of a block of information stored

US 9,069,558 B2
5

in the memory unit of the transactional memory. In response
to receiving the lookup command, the lookup engine pulls a
key input value (IV) across the CPP bus from the first island.
In one example, the IB-NFP is part of a router, the key to
lookup is an IP destination address of an IP packet, and the
information to be looked up is an identifier that identifies a
next hop output port to which the IP packet is to be sent. Once
the IP address has been received by the lookup engine, the
lookup engine uses the address information received in the
lookup command to read the block of information from the
memory unit. The block of information includes information
for configuring the hardware trie structure. In one example,
the block of information is a block of three 128-bit words.
This 3x128-bit block includes a plurality of multi-bit node
control values (NVCs), a plurality of multi-bit result values
(RV), and a lookup type value. The lookup engine is capable
of performing several different types of lookups, including a
trie lookup operation. The lookup type value is Supplied to an
ALU within the lookup engine so that the hardware trie struc
ture will be used to perform the lookup operation.

The lookup engine also includes a storage device (for
example, a register) whose outputs are coupled to inputs of
the ALU. The lookup type value read from the memory unit is
Supplied to the ALU by loading the lookup type value into an
appropriate location in the storage device. Similarly, the
NVCs and the RVs are loaded into other positions in the
storage device such that the storage device supplies the NVCs
and the RVs to the proper inputs of the hardware triestructure.
Similarly, the IP address is loaded into an appropriate position
in the storage device so that the IP address is supplied onto a
set of input leads of the hardware trie structure. The hardware
trie structure includes a plurality of internal node circuits and
a plurality of leaf node circuits. Each of the NVCs as output
by the storage device is received by, and configures, a corre
sponding respective one of the internal node circuits. The
internal node circuits are organized as a tree with the root
node circuit receiving the IP address via the set of input leads.
Each of the RVs as output by the storage device is received by
a corresponding respective one of the leaf node circuits. The
hardware triestructure is purely combinatorial logic Such that
Supplying the IP address onto the set of input leads causes
signals to propagate through the combinatorial logic of the
hardware trie structure thereby causing one of the leaf nodes
to output its corresponding RV value onto a set of output leads
of the hardware trie structure.

In one example, the result value RV output by the hardware
trie structure includes a final result bit (FRB). The value of the
FRB indicates whether or not the result value as output by the
hardware trie structure is a final result value (in this case, a
next hop output port identifier). If the FRB indicates that the
result value is a final result value, then the lookup engine
sends the result value back to the first island across the CPP
data bus. The next hop output port identifier is used to route
the IP packet (the IP packet of which the IP destination
address was a part) through the router to an output port of the
router. If, on the other hand, the FRB indicates that the result
value is not a final result value then the lookup engine per
forms another lookup operation. The result value includes
address information that identifies a second block of infor
mation in the stored in the memory unit. The lookup engine
uses this address information to read the second block of
information from the memory of the transactional memory. If
the second lookup is an algorithmic lookup, then the lookup
type value of the second block determines the type of algo
rithmic lookup. The lookup type may, for example, indicate
that the second lookup operation is to also be a trie lookup. In
this way, multiple lookup operations may be performed by the

10

15

25

30

35

40

45

50

55

60

65

6
lookup engine in a recursive fashion until a final result value
is obtained. When the final result value is obtained, it is
supplied via the CPP data bus to the processor that issued the
original lookup command. In a sequence of Such recursive
lookups, different types of lookups can be performed on
different parts of a single key. The hardware trie structure, the
transactional memory and the related methods are of general
utility in looking up different types of information and are not
limited to looking up next hop output port information from
incoming IP addresses.

In a fourth novel aspect, the processor on the first island
sends a direct 32-bit lookup command across the command
mesh of the CPP data bus to the novel transactional memory
of the second island. The lookup command includes a base
address value, a starting bit position value, and a mask size
value. A memory unit of the transactional memory stores a
plurality of result values in a corresponding set of memory
locations. A state machine within a hardware engine of the
transactional memory receives the lookup command and in
response performs a pull using other meshes of the CPP data
bus thereby obtaining an input value (IV). The hardware
engine uses the starting bit position value and mask size value
to select a portion of the IV and generates a memory address
by summing a first sub-portion of the portion of the IV with
the base address value. The memory address is used to gen
erate a read request that is communicated to the memory unit
from the hardware engine. In response to the read request, the
memory unit sends a word containing multiple result values
to the hardware engine. The hardware engine uses a second
sub-portion of the portion of the IV to select one of the set of
result values, and communicate the result value to the initiat
ing state machine. The initiating state machine then checks if
the result value is a final result value. If the result value is a
final result, then the state machine causes the result value to be
communicated back to the processor. If the result value is not
a final result, then the state machine causes a new lookup
operation based upon the contents of the result value. The
actual operations are performed as a read, a lookup, and a
result communication, where these steps are performed
repeatedly until a final result value is found. To carry out these
multiple lookup operations, there is only one bus transaction
value sent across the command mesh of the CPP data bus.

In one specific example, the circuitry of the transactional
memory includes a lookup engine, a memory unit, and a data
bus interface. The lookup engine in turn includes a state
machine selector, a state machine array including multiple
state machines, an arbiter, a translator, a register pool, and a
pipeline. The memory unit includes a memory, input FIFOs,
output FIFOs, and a pair of crossbar switches. The result
values are stored in a corresponding set of memory locations
in the memory.
When the transactional memory receives a direct 32-bit

lookup command, the command passes through the data bus
interface and to the state machine selector of the lookup
engine. The state machine selector selects one of the state
machines of the state machine array that is idle. The state
machine selected then transitions operation from the idle State
to a pull state. A pull occurs across the CPP data bus so that an
input value is read back across the CPP data bus and is stored
in the register pool. The state machine transitions from the
pull state to the output state. This results in the state machine
outputting an operation instruction. The state machine tran
sitions from the output state to the wait for result state. The
operation instruction is translated by the translator into
address information and a set of op codes. The set of op codes
includes one op code for each of the stages of the pipeline.
After the pipeline has performed each op-code a final result

US 9,069,558 B2
7

value is communicated to the initiating state machine and the
state machine transitions to the idle state.
A first stage of the pipeline, as determined by its op code,

issues a read request to the memory unit to use the starting bit
position value and the mask size value to select a portion of
the IV. A first sub-portion of the portion of the IV is added to
the base address value (both of which were included in the
lookup command) to generate a memory address. The
memory address is used to generate a read request. The read
request is serviced by a memory controller of the memory
unit. The memory unit returns the requested contents of the
memory location. In one example, the contents is a word
containing multiple result values. Another stage of the pipe
line, as determined by its op code, performs a lookup opera
tion, thereby selecting one of the multiple result values
included in the received word. A result value is selected based
upon a second Sub-portion of the IV. A subsequent stage in the
pipeline, as determined by its op code, then communicates the
selected result value to the initiating state machine. If the
result value is a final result value then the state machine
communicates the result value to the processor. If the result
value is not a final result value, then the state machine issues
a new operation instruction based upon the contents of the
result value.

There is only one pipeline, use of which is shared by the
several state machines of the state machine array. Multiple
state machines can be using the pipeline at the same time. The
state machines and the pipeline are dedicated hardware cir
cuits and involve no processor that fetches instructions,
decodes the instructions, and executes the instructions. The
lookup command is not limited to performing direct 32-bit
lookup operations, but rather is usable to perform many other
types of lookup operations. The example of using the lookup
command to perform a direct 32-bit lookup operation is pre
sented just as one operation that the lookup engine can per
form.

In a fifth novel aspect, the lookup engine of the transac
tional memory has multiple hardware lookup structures. The
lookup engine is configurable in a first configuration Such that
a first hardware lookup structure of the lookup engine is
usable to perform a first lookup operation. The lookup engine
is configurable in a second configuration Such that a second
hardware lookup structure of the lookup engine is used to
perform a second lookup operation. The first lookup opera
tion may, for example, be a first type of lookup Such as a direct
lookup operation, and the second lookup operation may be a
second type of lookup such as an algorithmic lookup opera
tion. Initially, a lookup command and an input value (IV) are
received onto the transactional memory. In some examples,
the IV is not a part of the lookup command but rather is
received onto the transactional memory in a second bus trans
action. In other examples, the IV is a part of the lookup
command. A first block of first information is read from the
memory unit of the transactional memory by the lookup
engine. The lookup engine then uses the first information to
configure the lookup engine in the first configuration. The
lookup engine so configured is used to perform a first lookup
operation on a part of the input value. The part of the input
value may be determined by a starting point value of the first
information. A barrel shifter within the lookup engine may
receive the starting point value so that the barrel shifter out
puts the part of the input value that is used as an input value to
the lookup operation. As a result of the first lookup operation,
the lookup engine obtains a first result value. Based on the
first result value, the lookup engine determines to do one of
the following: 1) perform a second lookup operation, 2) out

10

15

25

30

35

40

45

50

55

60

65

8
put the first result value from the transactional memory as a
result of the lookup command.

In one example, the first result value has a Final Result Bit
(FRB). The value of the FRB indicates whether the first result
value is a final result value. If the first result value is a final
result value, then the final result value is output from the
transactional memory as the result of the lookup command.
If, on the other hand, the FRB indicates that the first result
value is not a final result value, then address information in
the first result value is used by the lookup engine to read a
second block of information from the memory unit. The
lookup engine then uses the second information to configure
the lookup engine in the second configuration. The lookup
engine so configured is used to perform a second lookup
operation on another part of the input value. As a result of the
second lookup operation, the lookup engine obtains a second
result value and based on the second result value, the lookup
engine determines to do one of the following: 1) perform a
third lookup operation, 2) output the second result value from
the transactional memory as a result of the lookup command.
In this way, the lookup engine performs lookup operation
after lookup operation in a recursive fashion. In one example,
the type of each Successive lookup operation is determined at
least in part by a type value that is a part of the block of
information read from the memory unit at the beginning of the
lookup operation. Address information in the result value of
the previous lookup operation is used by the lookup engine to
determine where to read the next block of information from
the memory unit. In one exemplary application, a first lookup
operation is a direct lookup type of lookup operation. If the
first lookup operation does not result in obtaining a final result
value, then the result of the first lookup operation is used to
select either a direct lookup as the second lookup operation or
an algorithmic lookup as the second lookup operation. If the
address space being considered in the second lookup opera
tion is densely packed with result values then the second
lookup operation is a direct lookup, whereas if the address
space being considered in the second lookup operation is
sparsely populated with result values then the second lookup
operation is an algorithmic lookup.

In a sixth novel aspect, the processor on the first island
sends a direct 24-bit lookup command across the command
mesh of the CPP data bus to the novel transactional memory
of the second island. The lookup command includes a base
address value, a starting bit position value, and a mask size
value. A memory unit of the transactional memory stores a
plurality of result values in a corresponding set of memory
locations. Each result value is a final result value. A state
machine within a hardware engine of the transactional
memory receives the lookup command and in response per
forms a pull using other meshes of the CPP data bus thereby
obtaining an input value (IV). The hardware engine uses the
starting bit position value and mask size value to select a
portion of the IV. The portion of the IV is used to generate a
lookup block offset value, a word offset value, and a result
location value. The hardware engine generates a memory
address by summing the lookup block offset value, the word
offset value, and the base address value. The memory address
is used to generate a read request that is communicated to the
memory unit from the hardware engine. In response to the
read request, the memory unit sends a word containing mul
tiple result values to the hardware engine. The hardware
engine uses the result location value to select one of the set of
result values, and communicates the result value to the initi
ating state machine. The state machine causes the result value
to be communicated back to the processor. To carry out the

US 9,069,558 B2

lookup operation, there is only one bus transaction value sent
across the command mesh of the CPP data bus.

In one specific example, the circuitry of the transactional
memory includes a lookup engine, a memory unit, and a data
bus interface. The lookup engine in turn includes a state
machine selector, a state machine array including multiple
state machines, an arbiter, a translator, a register pool, and a
pipeline. The memory unit includes a memory, input FIFOs,
output FIFOs, and a pair of crossbar switches. The result
values are stored in a corresponding set of memory locations
in the memory.
When the transactional memory receives a direct 24-bit

lookup command, the command passes through the data bus
interface and to the state machine selector of the lookup
engine. The state machine selector selects one of the state
machines of the state machine array that is idle. The state
machine selected then transitions operation from the idle State
to a pull state. A pull occurs across the CPP data bus so that an
input value is read back across the CPP data bus and is stored
in the register pool. The state machine transitions from the
pull state to the output state. This results in the state machine
outputting an operation instruction. The state machine tran
sitions from the output state to the wait for result state. The
operation instruction is translated by the translator into
address information and a set of op codes. The set of op codes
includes one op code for each of the stages of the pipeline.
After the pipeline has performed each op-code a final result
value is communicated to the initiating state machine, the
state machine cause the result value to be communicated to
the processor, and the state machine transitions to the idle
State.
A first stage of the pipeline, as determined by its op code,

issues a read request to the memory unit to use the starting bit
position value and the mask size value to select a portion of
the IV. The portion of the IV is used to generate a lookup block
offset value, a word offset value, and a result location value.
The hardware engine generates a memory address using the
block offset value, the word offset value, and the base address
value. The read request is serviced by a memory controller of
the memory unit. The memory unit returns the requested
contents of the memory location. In one example, the contents
is a word containing multiple result values. Another stage of
the pipeline, as determined by its op code, performs a lookup
operation, thereby selecting one of the multiple result values
included in the received word. A result value is selected based
upon the result location value. A Subsequent stage in the
pipeline, as determined by its op code, then communicates the
selected result value to the initiating state machine. The state
machine communicates the result value to the processor.

There is only one pipeline, use of which is shared by the
several state machines of the state machine array. Multiple
state machines can be using the pipeline at the same time. The
state machines and the pipeline are dedicated hardware cir
cuits and involve no processor that fetches instructions,
decodes the instructions, and executes the instructions. The
lookup command is not limited to performing direct 24-bit
lookup operations, but rather is usable to perform many other
types of lookup operations. The example of using the lookup
command to perform a direct 24-bit lookup operation is pre
sented just as one operation that the lookup engine can per
form.

Further details and embodiments and techniques are
described in the detailed description below. This summary
does not purport to define the invention. The invention is
defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, where like numerals indicate
like components, illustrate embodiments of the invention.

10

15

25

30

35

40

45

50

55

60

65

10
FIG. 1 is a top-down diagram of an Island-Based Network

Flow Processor (IB-NFP) integrated circuit 1 and associated
memory circuits 2-7 in an MPLS router application.

FIG. 2 shows the Command-Push-Pull (CPP) data bus
structure that interconnects functional circuitry in the islands
of FIG. 1.

FIG. 3 is diagram of a bus transaction value communicated
across the CPP data bus.

FIG. 4 is a table listing the parts of the command payload of
the bus transaction value of FIG. 3, when the bus transaction
value is a command sent across the command mesh of the
CPP data bus.

FIG. 5 is a table listing the width and description of each
field within the payload of a bus transaction value sent across
the pull-id mesh of the CPP data bus.

FIG. 6 is a table listing the width and description of each
field within the payload of a bus transaction value sent across
the data0 or data1 mesh of the CPP data bus.

FIG. 7 is a table listing the width and description of each
field within the data payload of a pull transaction.

FIG. 8 is a table listing the width and description of each
field within the data payload of a push transaction.

FIG. 9 is a simplified diagram of microengine (ME) island
40 of the IB-NFP integrated circuit of FIG. 1.

FIG. 10 is a simplified diagram of the memory unit (MU)
half island 42 and memory unit (MU) block 52 of the IB-NFP
integrated circuit of FIG. 1.

FIG. 11 is a diagram showing further detail of the atomic
engine in the MU half island and block of FIG. 10.

FIG. 12 is a diagram showing further detail of the Dcache
(memory unit) in the MU half island and block of FIG. 10.

FIG. 13 is a diagram showing further detail of the data
Structure table stored in the Dcache 76 of FIG. 12.

FIG. 14 is a timing diagram showing actions that occur
during a carrying out of an Atomic Look-up. Add and Lock
command.

FIG. 15 is a diagram illustrating the contents of an ethernet
packet.

FIG.16 is a state diagram illustrating the different states of
one of the state machines within the atomic engine.

FIG. 17 is a simplified diagram of the registerpool within
the MU half island and block.

FIG. 18 is a more detailed diagram of the pipeline showing
the contents of each FIFO and register within the atomic
engine of the MU half island and block.

FIG. 19 is a diagram illustrating the contents of a hash
bucket.

FIG. 20 is a more detailed diagram of the Look-Up stage
within the pipeline of the atomic engine of the MU half island
and block.

FIG. 21 is a table listing the width and description of each
field within a results packet.

FIGS. 22A and 22B area flowchart of describing the opera
tion of a transactional memory in response to an Atomic
Look-up. Add, and Lock command.

FIG. 23 is a diagram showing action arrows that corre
spond to each step described in the flowchart of FIGS. 22A
and 22B.

FIG. 24 is a detailed operational flowchart of the pipeline
within the atomic engine of the MU half island and block
42.52 of the IB-NFP integrated circuit of FIG. 1.

FIG. 25 (Prior Art) is a diagram of a transactional memory
performing a count update.

FIG. 26 is a detailed diagram of the stats engine within the
MU half island and block 42.52 of the IB-NFP integrated
circuit of FIG. 1.

US 9,069,558 B2
11

FIG. 27 is a state diagram of one of the state machines
within the stats engine of FIG. 26.

FIG. 28 is flowchart illustrating the operation of the pipe
line within the stats engine in response to receiving an Add
and Update command.

FIG. 29 is a flowchart of a method involving a novel hard
ware trie structure.

FIG. 30 is a diagram of a router that carries out the method
of FIG. 29.

FIG. 31 is a diagram showing a lookup engine within an
MU island in further detail.

FIG.32 is a state diagram for a state machine of the lookup
engine of FIG. 31.

FIG. 33 is a block diagram of the lookup stage of the
pipeline within the lookup engine of FIG. 31.

FIG. 34 is a diagram of a 3x128-bit block of information
(stored in the memory of the transactional memory) that
configures the hardware trie structure in the lookup stage of
the lookup engine of FIG. 31.

FIG. 35 is a circuit diagram of the barrel shifter in the
lookup engine of FIG. 31.

FIG.36 is a circuit diagram of the hardware triestructure in
the lookup stage of the lookup engine of FIG. 31.

FIG. 37 is a conceptual diagram of the operation of the
hardware trie lookup structure.

FIG.38 is a diagram that shows the various parts of a result
value as output by the hardware trie structure.

FIG. 39 is a detailed diagram of the lookup engine within
an MU island performing a direct 32-bit lookup operation.

FIG. 40 is a diagram of the direct 32-bit lookup memory
packing Scheme.

FIG. 41 is a circuit diagram of the request stage of the
pipeline within the lookup engine of FIG. 39.

FIG. 42 is a circuit diagram of the lookup stage of the
pipeline within the lookup engine of FIG. 39.

FIG. 43 is a diagram of a direct 32-bit result value.
FIG. 44 is a flowchart of a method involving a novel hard

ware direct 32-bit lookup operation.
FIG. 45 is a flowchart of a method 7000 in accordance with

another novel aspect.
FIG. 46 is a detailed diagram of the lookup engine within

an MU island performing a direct 24-bit lookup operation.
FIG. 47 is a diagram of the direct 24-bit lookup memory

packing Scheme.
FIG. 48 is a circuit diagram of the request stage of the

pipeline within the lookup engine of FIG. 46.
FIG. 49 is a circuit diagram of the lookup stage of the

pipeline within the lookup engine of FIG. 46.
FIG.50 is a flowchart of a method involving a novel hard

ware direct 24-bit lookup operation.

DETAILED DESCRIPTION

Reference will now be made in detail to background
examples and some embodiments of the invention, examples
of which are illustrated in the accompanying drawings. In the
description and claims below, relational terms such as “top”.
“down”, “upper”, “lower”, “top”, “bottom”, “left” and
“right” may be used to describe relative orientations between
different parts of a structure being described, and it is to be
understood that the overall structure being described can
actually be oriented in any way in three-dimensional space.

FIG. 1 is a top-down diagram of an Island-Based Network
Flow Processor (IB-NFP) integrated circuit 1 and associated
memory circuits 2-7 in an MPLS router application. IB-NFP
integrated circuit 1 includes many I/O (input/output) termi
nals (not shown). Each of these terminals couples to an asso

5

10

15

25

30

35

40

45

50

55

60

65

12
ciated terminal of the integrated circuit package (not shown)
that houses the IB-NFP integrated circuit. The integrated
circuit terminals may be flip-chip microbumps and are not
illustrated. Alternatively, the integrated circuit terminals may
be wire bond pads.

SerDes circuits 9-12 are the first set of four SerDes circuits
that are used to communicate with an external network via
optical cables. SerDes circuits 13-16 are the second set of four
SerDes circuits that are used to communicate with a switch
fabric (not shown) of the router. Each of these SerDes circuits
13-16 is duplex in that it has a SerDes connection for receiv
ing information and it also has a SerDes connection for trans
mitting information. Each of these SerDes circuits can com
municate packet data in both directions simultaneously at a
sustained rate of 25 Gbps. IB-NFP integrated circuit 1
accesses external memory integrated circuits 2-7 via corre
sponding 32-bit DDR physical interfaces 17-22, respectively.
IB-NFP integrated circuit 1 also has several general purpose
input/output (GPIO) interfaces. One of these GPIO interfaces
23 is used to access external PROM 8.

In addition to the area of the input/output circuits outlined
above, the IB-NFP integrated circuit 1 also includes two
additional areas. The first additional area is a tiling area of
islands 24–48. Each of the islands is either of a full rectangular
shape, or is half the size of the full rectangular shape. For
example, the island 29 labeled “PCIE (1) is a full island. The
island 34 below it labeled “ME CLUSTER (5) is a half
island. The functional circuits in the various islands of the
tiling area are interconnected by: 1) a configurable mesh
Command/Push/Pull (CPP) data bus, 2) a configurable mesh
control bus, and 3) a configurable mesh event bus. Each Such
mesh bus extends over the two-dimensional space of islands
with a regular grid or "mesh' pattern.

In addition to this tiling area of islands 24-48, there is a
second additional area of larger sized blocks 49-53. The func
tional circuitry of each of these blocks is not laid out to consist
of islands and half-islands in the way that the circuitry of
islands 24-48 is laid out. The mesh bus structures do not
extend into or over any of these larger blocks. The mesh bus
structures do not extend outside of island 24-48. The func
tional circuitry of a larger sized block may connect by direct
dedicated connections to an interface island and through the
interface island achieve connectivity to the mesh buses and
other islands.
The arrows in FIG. 1 illustrate an operational example of

IB-NFP integrated circuit 1 within the MPLS router. 100
Gbps packet traffic is received onto the router via an optical
cable (not shown), flows through an optics transceiver (not
shown), flows through a PHY integrated circuit (not shown),
and is received onto IB-NFP integrated circuit 1, is spread
across the four SerDes I/O blocks 9-12. Twelve virtual input
ports are provided at this interface. The symbols pass through
direct dedicated conductors from the SerDes blocks 9-12 to
ingress MAC island 45. Ingress MAC island 45 converts
Successive symbols delivered by the physical coding layer
into packets by mapping symbols to octets, by performing
packet framing, and then by buffering the resulting packets
for Subsequent communication to other processing circuitry.
The packets are communicated from MAC island 45 across a
private inter-island bus to ingress NBI (Network Bus Inter
face) island 46. In addition to the optical cable that supplies
packet traffic into the IB-NFP integrated circuit from the
router, there is another optical cable that communicates
packet traffic in the other direction out of the IB-NFP inte
grated circuit and to the router.

For each packet received onto the IB-BPF in the example of
FIG. 1, the functional circuitry of ingress NBI island 46

US 9,069,558 B2
13

examines fields in the header portion to determine what stor
age strategy to use to place the packet into memory. In one
example, NBI island 46 examines the header portion and
from that determines whether the packet is an exception
packet or whether the packet is a fast-path packet. If the
packet is an exception packet then the NBI island determines
a first storage strategy to be used to store the packet so that
relatively involved exception processing can be performed
efficiently, whereas if the packet is a fast-path packet then the
NBI island determines a second storage strategy to be used to
store the packet for more efficient transmission of the packet
from the IB-NFP. NBI island 46 examines a packet header,
performs packet preclassification, determines that the packet
is a fast-path packet, and determines that the header portion of
the packet should be placed into a CTM (Cluster Target
Memory) in ME (Microengine) island 40. The header portion
of the packet is therefore communicated across the config
urable mesh data bus from NBI island 46 to ME island 40. The
CTM is tightly coupled to microengines in the ME island 40.
The ME island 40 determines header modification and queu
ing strategy for the packet based on the packet flow (derived
from packet header and contents) and the ME island 40
informs a second NBI island 37 of these. The payload por
tions of fast-path packets are placed into internal SRAM
(Static Random Access Memory) MU block 52 and the pay
load portions of exception packets are placed into external
DRAM 6 and 7.

Half island 42 is an interface island through which all
information passing into, and out of SRAMMU block 52
passes. The functional circuitry within half island 42 serves as
the interface and control circuitry for the SRAM within block
52. For simplicity purposes in the discussion below, both half
island 42 and MU block 52 may be referred to together as the
MU island, although it is to be understood that MU block 52
is actually not an island as the term is used here but rather is
a block. The payload portion of the incoming fast-path packet
is communicated from NBI island 46, across the configurable
mesh data bus to SRAM control island 42, and from control
island 42, to the interface circuitry in block 52, and to the
internal SRAM circuitry of block 52. The internal SRAM of
block 52 stores the payloads so that they can be accessed for
flow determination by the ME island.

In addition, a preclassifier in the ingress NBI island 46
determines that the payload portions for others of the packets
should be stored in external DRAM 6 and 7. For example, the
payload portions for exception packets are stored in external
DRAM 6 and 7. Interface island 44, external MUSRAM
block 53, and DDR PHY I/O blocks 21 and 22 serve as the
interface and control for external DRAM integrated circuits 6
and 7. The payload portions of the exception packets are
therefore communicated across the configurable mesh data
bus from NBI island 46, to interface and control island 44, to
external MUSRAM block 53, to 32-bit DDR PHY I/O blocks
21 and 22, and to external DRAM integrated circuits 6 and 7.
At this point in the operational example, the packet header
portions and their associated payload portions are stored in
different places. The payload portions of fast-path packets are
stored in internal SRAM in MU block 52, whereas the pay
load portions of exception packets are stored in external
SRAM in external DRAMs 6 and 7.
ME island 40 informs second NBI island 37 where the

packet headers and the packet payloads can be found and
provides the second NBI island 37 with an egress packet
descriptor for each packet. The egress packet descriptor indi
cates a queuing strategy to be used on the packet. Second NBI
island 37 uses the egress packet descriptor to read the packet
headers and any header modification from ME island 40 and

5

10

15

25

30

35

40

45

50

55

60

65

14
to read the packet payloads from either internal SRAM 52 or
external DRAMs 6 and 7. Second NBI island 37 places packet
descriptors for packets to be output into the correct order. For
each packet that is then scheduled to be transmitted, the
second NBI island 37 uses the packet descriptor to read the
header portion and any header modification and the payload
portion and to assemble the packet to be transmitted. The
header modification is not actually part of the egress packet
descriptor, but rather it is stored with the packet header by the
ME when the packet is presented to the NBI. The second NBI
island 37 then performs any indicated packet modification on
the packet. The resulting modified packet then passes from
second NBI island 37 and to egress MAC island 38.

Egress MAC island 38 buffers the packets, and converts
them into symbols. The symbols are then delivered by con
ductors from the MAC island 38 to the four SerDes I/O blocks
13-16. From SerDes I/O blocks 13-16, the 100Gbps outgoing
packet flow passes out of the IB-NFP integrated circuit 1 and
to the switch fabric (not shown) of the router. Twelve virtual
output ports are provided in the example of FIG. 1.

General Description of the CPP Data Bus: FIG.2 shows the
Command-Push-Pull (CPP) data bus structure that intercon
nects functional circuitry in the islands of FIG.1. Within each
full island, the CPP data bus actually includes four mesh bus
structures, each of which includes a crossbar switch that is
disposed in the center of the island, and each of which
includes six half links that extend to port locations at the
edges of the island, and each of which also includes two links
that extend between the crossbar switch and the functional
circuitry of the island. These four mesh bus structures are
referred to as the command mesh bus, the pull-id mesh bus,
and data0 mesh bus, and the datal mesh bus. The mesh buses
terminate at the edges of the full island such that if another
identical full island were laid out to be adjacent, then the half
links of the corresponding mesh buses of the two islands
would align and couple to one another in an end-to-end col
linear fashion to form the staggered pattern illustrated in FIG.
2. For additional information on the IB-NFP, the IB-NFP's
islands, the CPP data bus, the CPP meshes, operation of the
CPP data bus, and the different types of bus transactions that
occur over the CPP data bus, see: U.S. patent application Ser.
No. 13/399.433 entitled “Staggered Island Structure in an
Island-Based Network Flow Processor filed on Feb. 17,
2012 (the entire subject matter of which is incorporated
herein by reference).

General Description of a Write That Results in a Pull: In
one example of a CPP bus transaction, a microengine (a
master) on ME island 40 uses the data bus interface of ME
island 40 to perform a write operation to a hardware engine (a
target) on MU half island 42, where the MU island 42
responds by performing a pull operation. To do this, the
microengine on the ME island 40 uses the data bus interface
to output a bus transaction value onto the command mesh of
the CPP data bus. The format of the bus transaction value is as
set forth in FIG. 3. A bus transaction value 54 includes a
metadata portion 55 and a payload portion 56 as shown. The
metadata portion 55 includes a final destination value 57 and
a valid bit 58.
The functional circuitry that receives the bus transaction

value and the data to be written is referred to as the “target' of
the write operation. The write command is said to be “posted
by the master onto the command mesh. As indicated in FIG.
3, the write command includes a metadata portion and a
payload portion. The metadata portion includes the 6-bit final
destination value. This final destination value identifies an
island by number, where the island identified is the final
destination of the bus transaction value. The final destination

US 9,069,558 B2
15

value is used by the various crossbar switches of the com
mand mesh to route the bus transaction value (i.e., the com
mand) from the master to the appropriate target, in this case to
a hardware engine on MU island 42. All bus transaction
values on the command mesh that originate from the same
island that have the same final destination value will traverse
through the configurable command mesh along the same one
path all the way to the indicated final destination island.
A final destination island may include more than one

potential target. The 4-bit target field of payload portion indi
cates which one of these targets in the destination island it is
that is the target of the command. In the case of MU island 42.
this 4-bit field indicates one of several hardware engines of
the MU island 42. The 5-bit action field of the payload portion
indicates that the command is a write. The 14-bit data refer
ence field is a reference usable by the master to determine
where in the master the data is to be found. The address field
indicates an address in the target where the data is to be
written. The length field indicates the amount of data.

The target (a hardware engine of MU island 42) receives
the write command from the command mesh and examines
the payload portion of the write command. From the action
field the hardware engine in MU island 42 determines that it
is to perform a write action. To carry out this action, the
hardware engine (i.e., posts) a bus transaction value called a
pull-id onto the pull-id mesh. FIG. 3 shows the format of the
overall bus transaction value, and FIG. 5 shows the format of
the payload. The final destination field of the metadata por
tion indicates the island where the master (in this case, a
microengine on the ME island 40) is located. The target port
field identifies which sub-circuit target it is within the targets
island that is the target of the command. In this example, the
target island is the MU island 42 so the sub-circuit is a hard
ware engine on the MU island. The pull-id is communicated
through the pull-id mesh back to ME island 40.

The master in the ME island receives the pull-id from the
pull-idmesh and uses the content of the data reference field of
the pull-id to find the data. In the overall write operation, the
master in the ME island knows the data it is trying to write into
the MU island. The data reference value that is returned with
the pull-id is used by the master in the ME island as a flag to
match the returning pull-id with the write operation the ME
had previously initiated.

The master on ME island 40 responds by sending the
identified data to the target on MU island 42 across one of the
data meshes data0 or data1 as a “pull data bus transaction
value. The term “pull means that the data of the operation
passes from the master (a microengine on the ME island) to
the target (a hardware engine on the MU island). The term
“push” means that the data of the operation passes from the
target to the master. The format of the “pull data bus trans
action value sent in this sending of data is also as indicated in
FIG. 3. The format of the payload portion in the case of the
payload being pull data is as set forth in FIG. 7. The first bit of
the payload portion is asserted. This bit being a digital high
indicates that the transaction is a data pull as opposed to a data
push. The target on MU island 42 then receives the data pull
bus transaction value across the data1 or data0 mesh. The data
received by the hardware engine as the data for the write is the
content of the data field (the data field of FIG. 7) of the pull
data payload portion.

FIG. 6 is a generic description of the data payload, and FIG.
7 is a description of the data payload when the first bit of the
data payload indicates the data payload is for a pull transac
tion. FIG. 8 is a description of the data payload when the first
bit of the data payload indicates that payload is for a push
transaction.

10

15

25

30

35

40

45

50

55

60

65

16
General Description of a Read That Results in a Push: In

another example, a master (for example, a microengine on
ME island 40) uses the data bus interface of island 40 to
perform a read operation from a target (for example, a hard
ware engine on MU island 42), where the target responds by
performing a push operation. The microengine circuitry in
ME island 40 uses the data bus interface of island 40 to output
(to “post') a bus transaction value onto the command mesh
bus of the configurable mesh CPP data bus. In this case, the
bus transaction value is a read command to read data from the
target hardware engine in MU island 42. The format of the
read command is as set forth in FIGS. 3 and 4. The read
command includes a metadata portion and a payload portion.
The metadata portion includes the 6-bit final destination value
that indicates the island where the target is located. The action
field of the payload portion of the read command indicates
that the command is a read. The 14-bit data reference field is
usable by the master as a flag to associate returned data with
the original read operation the master previously initiated.
The address field in the payload portion indicates an address
in the target where the data is to be obtained. The length field
indicates the amount of data.
The target (a hardware engine of MU island 42) receives

the read command and examines the payload portion of the
command. From the action field of the command payload
portion the target determines that it is to perform a readaction.
To carry out this action, the target uses the address field and
the length field to obtain the data requested. The target then
pushes the obtained data back to the master across data mesh
data1 or data0. To push the data, the target outputs a push bus
transaction value onto the data1 or data0 mesh. FIG. 3 sets
forth the format of the overall push bus transaction value and
FIG. 8 sets forth the format of the payload portion of this push
bus transaction value. The first bit of the payload portion
indicates that the bus transaction value is for a data push, as
opposed to a data pull. The master (the microengine of ME
island 40) receives the bus transaction value of the data push
from the data mesh bus. The master in the ME island then uses
the data reference field of the push bus transaction value to
associate the incoming data with the original read command,
and from the original read command determines where the
pushed data (data in the date field of the push bus transaction
value) should be written into the master. The master then
writes the content of the data field into the master's memory
at the appropriate location.
ME Island: FIG. 9 is a diagram of the microengine (ME)

island 40. In the operational flow of FIG. 1, packet headers
and the associated preclassification results are DMA trans
ferred from the ingress NBI island 46 across the configurable
mesh data bus and into the Cluster Target Memory (CTM) 59
of ME island 40. A DMA engine in the ingress NBI island 46
is the master and CTM59 in ME island 40 is the target for this
transfer. The packet header portions and the associated
ingress packet descriptors pass into the ME island via data bus
island bridge 60 and data bus interface circuitry 61. Once in
the CTM59, the header portions are analyzed by one or more
microengines. The microengines have, through the DB island
bridge 60, a command out interface, a pull-id in interface, a
pull-data out interface, and a push data in interface. There are
six pairs of microengines, with each pair sharing a memory
containing program code for the microengines. Reference
numerals 62 and 63 identify the first pair of microengines and
reference numeral 64 identifies the shared memory. As a
result of analysis and processing, the microengines modify
each ingress packet descriptor to be an egress packet descrip
tor. Each egress packet descriptor includes: 1) an address
indicating where and in which ME island the header portion

US 9,069,558 B2
17

is found, 2) an address indicating where and in which MU
island the payload portion is found, 3) how long the packet is,
4) sequence number of the packet in the flow, 5) an indication
of which queue the packet belongs to (result of the packet
policy), 6) an indication of where the packet is to be sent (a
result of the packet policy), 7) user metadata indicating what
kind of packet it is.
Memory errors and other events detected in the ME island

are reported via a local event ring and the global event chain
back to the ARM island 25. A local event ring is made to snake
through the ME island 40 for this purpose. Event packets from
the local event chain are received via connections 65 and
event packets are Supplied out to the local event chain via
connections 66. The CB island bridge 67, the cluster local
scratch 68, and CTM 59 can be configured and are therefore
coupled to the control bus CB via connections 69 so that they
can receive configuration information from the control bus
CB.
MU Island: FIG. 10 is a diagram of MU half island 42 and

SRAM block 52. MU half island 42 includes several hard
ware engines 70-74. In the operational example, fast path
packet payloads are DMA transferred directly from ingress
NBI island 46 and across the configurable mesh data bus,
through data bus interface 75 of half island 42, and into the
data cache SRAM 76 of block 52. The ingress NBI DMA
engine issues a bulk write command across the configurable
mesh data bus to the bulk transfer engine 70. The destination
is the MU island 42. The action is bulk write. The address
where the data is to be written into the MU island is the
address taken out of the appropriate buffer list. The bulk write
command received at the MU is a bulk write, so the data bus
interface 75 presents the command to the bulk engine 70. The
bulk engine 70 examines the command which is a write. In
order to perform a write the bulk engine needs data, so the
bulk engine issues a pull-id through the pull portion of inter
face 75, which in turn issues a pull-id back onto the config
urable mesh data bus. The DMA engine in NBI island 46
receives the pull-id. Part of the pull-id is a data reference
which indicates to the DMA engine which part of the packet
is being requested as data. The DMA engine uses the data
reference to read the requested part of the packet, and presents
that across the data part of the data bus back to bulk engine 70
in MU island 42. The bulk engine 70 then has the write
command and the packet data. The bulk engine 70 ties the two
together, and it then writes the packet data into SRAM 76 at
the address given in the write command. In this way, fast path
packet payload portions pass from DMA engine in the ingress
NBI island, across the configurable mesh data bus, through
the data bus interface 75, through a bulk transfer engine 70,
and into data cache SRAM 76 of block 52. In a similar
fashion, exception packet payload portions pass from the
DMA engine in ingress NBI island 46, across the config
urable mesh data bus, through the data bus interface of half
island 44, through the bulk transfer engine of half island 44.
and through DDR PHY's 21 and 22, and into external memo
ries 6 and 6.

Various parts of MU island 42 are configurable by chang
ing the contents of registers and memory via the control bus
CB and connections 77 and control status registers 78. Errors
detected on the MU island by circuits 79 and 80 are reported
into a local event ring. Event packets from the local event ring
are received via input connections 81 and the MU island
outputs event packets to the local even ring via output con
nections 82.

FIG.11 is a diagram showing the atomic engine 11 and data
cache SRAM 76 of FIG.10 in more detail. The MU island 42,
52 is a transactional memory. Atomic engine 11 includes a

10

15

25

30

35

40

45

50

55

60

65

18
state machine array 84, a state machine selector 85, a register
pool 86, an arbiter 87, a translator 88, and a pipeline 89.
Dcache (“Memory Unit”) 76 includes a memory 90, FIFOs
91-94, and two cross-bar switches 95 and 96. Memory con
troller 97 manages reads from and writes to the memory.
Memory 90 stores a data structure table 98 and a hash table
99. Data structure table 98 includes a plurality of data struc
tures DS1-DSN. Hash table 99 includes a plurality of hash
buckets HB1-HBN.

FIG. 12 is a more detailed diagram of Dcache (“Memory
Unit) 76. Each incoming FIFO of a crossbar switch has an
associated arbiter. For example, arbiter 100 is the arbiter for
incoming FIFO 101. Each of the arbiters, such as arbiter 100,
receives a separate request signal from each of the input
FIFOs on the other side of IN crossbar 95. For additional
information on crossbar switches, their arbiters, and their
operation, see: U.S. patent application Ser. No. 13/399.433
entitled “Staggered Island Structure in an Island-Based Net
work Flow Processor filed on Feb. 17, 2012 (the entire
subject matter of which is incorporated herein by reference).

FIG. 13 is a more detailed diagram of the data structure
table 98 of FIG. 12. Each data structure includes four data
structure fields: 1) an IP address field for storing an IP
address, 2) a number of packets field for storing a number of
packets received, 3) a MAC address field for storing a MAC
address, and 4) a timestamp field for storing a timestamp.
Data structure DS4 includes IP address field 102, number of
packets received field 103, MAC address field 104 and times
tamp field 105.

In one example, one of the microengines 160 in ME island
40 receives an ethernet packet 106. The contents of ethernet
packet 106 are illustrated in FIG. 15. Ethernet packet 106
includes a header 107, a payload 108, and a CRC 109. There
is one data structure stored in memory 90 for each source
address of incoming ethernet packets. Data structure DS4 in
this example is the data structure for ethernet packets having
the source address 161. A task to be performed is to use to
Source address 161 of the incoming ethernet packet to locate
and access the data structure DS4, and then to update the
timestamp field 105 in the data structure to log the time when
the ethernet packet was received.

FIG.14 is a timeline. Events noted in the top line of FIG. 14
indicate actions pertaining to microengine 160 in ME island
40. Events noted in the bottom line indicate actions pertaining
to another microengine in another ME island. The receiving
of the ethernet packet 106 is indicated at time T1 in the
timeline of FIG. 14. In response to receiving the packet,
microengine 160 in ME island 40 uses a hash function to
calculate a hash index 116. The hash index is related to the
Source address. In addition, microengine 160 sends an
Atomic Lookup. Add and Lock (ALAL) command across the
Command-Push-Pull (CPP) data bus 159 to the atomic engine
71 of MU island 42, 52. FIG. 14 shows the sending of the
ALAL command to occur at time T2. Arrow 110 of FIG. 11
shows the incoming ALAL command. State machine selector
85 monitors the status indicator of each state machine and
allocates the ALAL command 110 to an idle state machine.

FIG. 16 is a state diagram for one of the state machines.
Before receiving the ALAL command 110 from the state
machine selector 85 the state machine is in the IDLE state
111. Receiving the ALAL command causes the State machine
to transition from the IDLE state 111 to the PULL State 112.
The state machine then causes a PULL bus transaction value
to be sent via data bus interface 75 back to microengine 160 in
ME island 40. This pull is an instruction to the microengine to
write data (the data is a hashkey) to the registerpool 86 within
MU island 42, 52. FIG. 14 shows the sending of the pull

US 9,069,558 B2
19

command to occur at time T3. Once the hash key 137 is
received into the register pool, then the state machine transi
tions to the OUTPUT state 113. In state 113, the state machine
outputs an operation instruction 114 to arbiter 87. The arbiter
87 arbitrates information flow to translator 88. Once the out
put operation is complete the state machine operations tran
sitions from OUTPUT State 113 to IDLE state 111. Translator
88 converts the operation instruction 114 into a plurality of
OPCODES 115. Part of the instruction is the hash index 116.
Hash index 116 and the OPCODES 115 are supplied by the
translator 88 to pipeline 89. FIG. 14 shows the sending of the
OP CODES and the hash index to the pipeline occurring at
time T4. The OPCODES 115 and hash index 116 are pushed
into a FIFO 117 of request stage 118 of the pipeline. As
indicated in FIG. 11, the pipeline includes stages 118-123.
Each pipeline stage has an input register or FIFO, and an
ALU. Reference numeral 124 identifies the input FIFO of the
read stage 119 of the pipeline. Reference numerals 125-128
identify the incoming registers for pipeline stages 120-123,
respectively. Reference numerals 129-134 identify the ALUs
for pipeline stages 118-123, respectively.

Request stage 118 of the pipeline, in response to receiving
the OP CODES 115 and hash index 116, outputs a hash
bucket address 135. The hashbucket address 135 includes the
hash index 116, as well as a hashbase identifier. The hashbase
identifier indicates one of several possible hash tables. In the
case that only one hash table is utilized, the hash base iden
tifier is not necessary. FIG. 14 shows the outputting of hash
bucket address 135 to read a hashbucket from hash table 99
at time T5. Request stage 118 generates a read request includ
ing hashbucket address 135. The hash bucket address passes
through FIFO 91, and crossbar switch95, to memory control
ler 97. The hash bucket address is an address that identifies
one of the hash buckets. The identified hash bucket 136 is
returned via crossbar switch96 and FIFO 92 to the read stage
119 of the pipeline.

FIG. 17 is a more detailed diagram of register pool 86.
Register pool 86 includes a controller 139 and a plurality of
registers 140. There is one register in the registerpool for each
state machine. Controller 139 reads a state machine address
138 out of the last location of the FIFO 124 of the read stage
119 of the pipeline, and uses the state machine address 138 to
identify the associated register. The associated register stores
the hash key 137 that was pulled from the ME island. Con
troller 139 reads the hash key 137 from the appropriate reg
ister and supplies the hash key 137 to the read stage 119.

FIG. 18 is a more detailed diagram that shows the contents
of the FIFOs and registers of the various stages of the pipe
line. The hash key 137 and the hashbucket 136 pass through
ALU and are loaded into register of lookup stage 120.

FIG. 19 is a more detailed diagram of hash bucket 136.
Hashbucket 136 includes four 32-bit fields. Each 32-bit field
includes a hash bucket location and an associated lock field.
In one example, the hash bucket location is 31 bits and the
associatedlock field if 1 bit. The lock fields are indicated with
reference numerals 141-144. The hash bucket locations are
indicated with reference numerals 145-148. Each hashbucket
has the identical structure. A hash bucket location may be
occupied in that it stores a hash key, or may be vacant in that
it does not store a hash key.

FIG. 20 is a diagram that illustrates operation of the lookup
stage 120 of the pipeline. The OPCODES 115 shown in FIG.
11 include an OPCODE for each of the stages of the pipeline.
The OP CODE 149 for the lookup stage is supplied to the
ALU 131 to determine the combinatorial logic function per
formed by the ALU. In the present example, ALU 131
includes four comparators 150-153. Each comparator com

10

15

25

30

35

40

45

50

55

60

65

20
pares the contents of a corresponding hash key field of the
hash bucket 136 with the hash key 137. As indicated in FIG.
20, the hashbucket 136, the OPCODE 149, and the hash key
137 are supplied to the ALU 131 by the register 125. Each one
of the comparators 150-153 outputs a single digital bit value
indicating whether the corresponding hash bucket entry
matched the hashkey 137. The resulting four digital bit values
as output by the comparators are encoded by logic 154 into a
two-bit hashbucket location ID value 155 and a one bit found
value 156. The hash bucket location ID value 155 and the
found bit value 156 are loaded into bit locations in the register
126 of the next stage of the pipeline. If the found bit 156 is set
then an entry in a hash bucket location matched the hash key
137, whereas if the found bit 156 is not set then no hashbucket
location matched the hash key 137. If there was a match, then
the two-bit hashbucket location ID is a number that identifies
one of the four hash bucket locations that had the matching
entry. The information stored in the FIFOs and registers of the
various stages is indicated in FIG. 18. Depending on the OP
CODES, the various stages perform various operations and
fill in information in a results packet 157. An example of the
contents included in the results packet is illustrated in FIG.
21. FIG. 14 shows the lookup operation occurring at time T6.

In this example, the data structure associated with the
source address of ethernet packet 106 was not found. As a
result, the add stage 121 of the pipeline adds the missing hash
key into a vacanthashbucket location within the hashbucket.
Once the missing hash key has been added, the lock stage of
the pipeline sets the lock field of the added hash bucket
location, thereby locking the associated data structure. Next,
the write stage 123 of the pipeline supplies the results packet
157 via data bus interface 75 across the CPP data bus to the
initiating microengine 160 on the ME island 40. In addition,
the write stage 123 of the pipeline generates and communi
cates a write command including the updated hashbucket 158
(that contains the added hash key 137) to memory controller
97 via FIFO 91. Memory controller 97 writes the updated
hash bucket 158 into hash bucket HB1 of the hash table 99.
FIG. 14 shows the supplying of the results packet 157 to the
ME island 40 and the updating of the hash bucket HB1 to be
occurring at time T7.
At this point in the process, the data structure DS4 for the

source address of the received packet 106 has been locked and
microengine 160 has received the results packet 157. From
the hashbucket locationID value of the results packet 157, the
microengine 160 determines the location of the data structure
DS4. Microengine 160 then performs a write across the CPP
data bus 159, through the bulk engine 70, and to the times
tamp field 105 of data structure DS4. FIG. 14 shows this
writing of the timestamp to be occurring at time T9 and
communication of a Successful write operation at time T10.
Microengine 160 can read from, and write to, data structure
DS4 as it wishes multiple times. In FIG. 14, such reads and
writes are indicated to be occurring at times T11-T12. Once
microengine 160 no longer needs access to DS4, then
microengine 160 unlocks DS4 by issuing an atomic com
mand to the atomic engine 71. The atomic command causes
the pipeline to clear the lock field of the hashbucket location
associated with DS4. FIG. 14 shows this clearing of the lock
field occurring at time T15. After the clearing, the pipeline
returns a results packet to the initiating microengine 160
indicating that the associated hash bucket location is
unlocked. In FIG. 14, this returning of the results packet
indicating that the hash bucket location is unlocked is indi
cated to occur at time T16.
The ALAL command provides protection against memory

contention. This is illustrated in FIG. 14 where a second

US 9,069,558 B2
21

microengine MEH2 attempts to access the same data structure
DS4 while the data structure DS4 is locked by microengine
160. In this example, the other microengine receives the same
ethernet packet 106 at time T1, but when it issues its atomic
ALAL command at time T3, the data structure DS4 has
already been locked. The results packet for the atomic com
mand from the other microengine indicates that the data
structure DS4 is locked. In FIG. 14, this is indicated to occur
at time T8. The second microengine is barred from access to
DS4 and waits until time T13 to attempt another atomic
ALAL command to access the same data structure. At time
T13, the data structure is still locked, so at time T14 the
returning results packet indicates that the data structure DS4
is still locked. At time T17 the other microengine issues its
third atomic command to access DS4. This time, DS4 is
unlocked due to the unlock command sent by microengine
160 at time T15. As a result of the atomic command, at times
T18-21 the transactional memory locks DS4 and returns a
results packet at time T22 indicating that DS4 is now locked
for use by the other microengine. The operations performed at
times T18-21 correspond to the operations performed at times
T3-6. The other microengine can then read and write to the
data structure (as indicated to occur at times T23-26). When
the other microengine now longer needs access to DS4, the
other microengine sends an atomic command to unlock DS4
at time T27.

FIG.22 is a flowchart of a method 1000 inaccordance with
one novel aspect. The steps 1001-1017 of method 1000 are
steps in the example described above.

FIG. 23 is a diagram of ME island 40 and MU island
(Transactional Memory) 42.52. In FIG. 23, an arrow labeled
with a number in a circle corresponds to the step in of FIG.22
that is labeled with the same circled number.

FIG. 24 is a simplified logic flowchart that illustrates func
tions pipeline 89 can perform. Steps 2001-2004 correspond to
steps 1008-1010 of the flowchart of FIG. 22. In the example
described above in connection with FIG. 14, the scenario
involved the hash key not being found and as a result the
missing hash key was added to the hash bucket location.
These operations are shown in FIG. 24 in blocks 2005-2007.
If the hash key is not found, and there are no vacant hash
bucket locations within the hash bucket location, then (step
2008) the results packet sent to the microengine indicates that
the hash key was not found and that the hash key was not
added to the hash bucket. In other scenarios, the hash key is
found in the hash table. This corresponds to match found
decision diamond 2005 being true and processor flow pro
ceeding to block 2009. When the hashkey is found in the hash
table, there are two possibilities: the hash bucket location is
locked or the hashbucket location is unlocked. The situation
of the hashbucket location being locked corresponds to deci
sion diamond 2010 being true and process flow proceeding to
block 2011. The lock field in the results packet is set and the
results packet is sent (step 2014) to the initiating microengine
to inform the initiating microengine that the associated data
structure is locked by another microengine. The situation of
the hash bucket location being unlocked corresponds to
locked decision diamond 2010 being false and process flow
proceeding to block 2012. The lock field in the results packet
is cleared to “0” indicating to the initiating microengine that
the associated data structure is not locked. The updated hash
bucket is written into the hash table (step 2013), and the
results packet is sent to the initiating microengine (step 2014)
indicating to the initiating microengine that the hash key was
found and that the associated data structure is not locked by
another microengine.

10

15

25

30

35

40

45

50

55

60

65

22
FIG. 25 (Prior Art) is a diagram of a prior art transactional

memory 3000 in a network processor integrated circuit 3001
sold by Netronome Systems, Inc., 5201 Great America Park
way, Santa Clara, Calif.,95054. The integrated circuit 3001 is
part of a network device that that is on local area network with
multiple users. Multiple tables 3002-3005 were stored in
memory 3006 of a Dcache 3007. A microengine 3008
received ethernet packets from the local area network. Each
received ethernet packet was received onto the network
device and in turn onto the integrated circuit 3001 via a
physical port and a virtual port. Table 3002 includes a packet
count and byte count row for each physical port. Table 3003
includes a packet count and byte count row for virtual port.
The packet may have been received from one of the users on
the network. Table 3004 includes a packet count and byte
count row for each Such user. A received packet may also be
associated with an application program executing on the user
terminal. Table 3005 includes a packet count and byte count
row for each Such application program. In one example, the
application program may be a web browser Such as internet
explorer.

In one operation, a packet is received onto the integrated
circuit 3001. The packet count and byte count values main
tained in the tables 3002-3005 in memory 3006 are updated.
A microengine that receives the incoming ethernet packet
updates the counts in the tables 3002-3005 by issuing read
and write commands to bulk engine 3010 across CPP bus
3009 and data bus interface 3011. The bulk engine 3010
actually handles the read and writes from memory 3006.
Typically for each incoming packet there were sixteen bulk
read and write commands performed: two to update the
packet count for physical port, two to update the byte count
for physical port, two to update the packet count for virtual
port, two to update the byte count for virtual port, two to
update the packet count for user ID, two to update the byte
count for user ID, two to update the packet count for appli
cation type, and two to update the byte count for application
type. Each update operation involved reading a count value
from memory 3006, adding a number to that count, and then
writing the updated count value back into memory 3006 to the
same memory location. In the case of a packet count, the
packet count is incremented by one. In the case of a byte
count, the number of bytes of the incoming ethernet packet is
added to the prior byte count.

FIG. 26 is a diagram of MU island (“Transactional
Memory') 42, 52 showing the stats hardware engine 73 in
further detail. Like the atomic hardware engine 71 described
above, the stats hardware engine 73 is tightly coupled to
memory 90 within Dcache (“memory unit') 76. The atomic
hardware engine 71 interfaces to Dcache 76 using certain
input and output FIFOs, whereas the stats hardware engine 73
interfaces to Dcache 76 using certain other input and output
FIFOs. Like the atomic hardware engine 71 described above,
the stats hardware engine 73 includes a state machine array
3012, a pipeline 3013, a state machine selector 3014, an
arbiter 3015, a translator 3016, and a registerpool 3017. The
state machines SMH1 to SMHN share use of the pipeline. In
the example shown in FIG. 26 all state machines SMH1 to
SMHN share the single pipeline 3012. In another example,
state machines SMH1 to SMHN share multiple pipelines. Any
one of the state machines can execute an Add and Update
command (AU Command) to update eight count values. For
each count value, the state machine and pipeline 3013 operate
together to cause a count value to be read from memory 90, to
cause a value to be added to the count value thereby generat
ing an updated count value, and to cause the updated count
value to be written back into the memory location in memory

US 9,069,558 B2
23

90. The memory controller 3018 actually performs the
memory reads and writes at the direction of the pipeline 3013.
The MU island (“transactional memory') 42, 52 does not
include any processor that fetches instructions from a
memory, decodes the instructions, and executes the instruc
tions. In one example, microengine 160 receives an ethernet
packet. The ethernet packet has an associated physical port,
virtual port, user ID and application type. The packet is a
number of bytes in length. Microengine 160 may receive
multiple such ethernet packets so that a packet number value
greater than one is to be added to the packet counts stored in
memory 90, or microengine 160 may elect to perform the
updating of the count values in memory 90 for just one eth
ernet packet. Regardless of the packet number value and the
byte number value to be added to the count values in memory
90, the microengine 160 issues one Add and Update com
mand (“AU Command”) 3019 across the CPP command
mesh of CPP bus 159. The AU command 3019 is of the format
shown in FIG. 4. The AU command does not include any
addresses of memory locations within the Dcache 76. The
ACTION field indicates that the command is an AU com
mand. The DATA REF field gives a pull-id identifier for the
AU command. The AU command 3019 includes the packet
number value and the byte number value. A starting address
value and a number of addresses to follow value is also
included in the AU command. The starting address value
points to a memory location within microengine 160. The
number of addresses to follow value indicates how many
addresses sequentially stored in the microengine memory
(starting at the starting address value) are to be pulled onto the
transactional memory 42, 52. The state machine selector
3014 monitors the status indicator of each state machine, and
routes the AU command to an idle state machine.

FIG. 27 is a state diagram for a state machine of the stats
hardware engine 73. The state machine transitions from the
idle state 3020 to the pull state 3021 when an AU command
sent by microengine 160 is received by the stats machine. The
state machine causes a pull-id bus transaction to be sent back
to the microengine 160 via data bus interface 75 and CPP bus
159. The format of the pull-id bus transaction is shown in FIG.
5. The DATA REF field contains the pull-id identifier that the
microengine 160 provided in the original AU command. The
TARGET REF field contains an identifier supplied by the
state machine target. This target ref is usable by the target to
identify later received data payloads with the pull-id. The
starting address value and number of addresses to follow
value are also included in the pull-id bus transaction. The
pull-id bus transaction is received by microengine 160 across
the pull-idmesh. From the DATA REF field of the pull-id bus
transaction, the microengine 160 determines that the pull-idis
associated with the original AU command and that the
microengine 160 should return to the target a set of addresses.
The addresses identify memory locations in memory 90
where the count values to be updated are stored. Microengine
160 therefore responds by sending one or more data bus
transactions across the data0 or data1 mesh to register pool
3017. Registerpool 3017 includes a controller and a plurality
of registers. In one example, each register of the registerpool
is associated with an individual state machine of the state
machine array 3012. The format of the data bus transactions
is set forth in FIG. 6. The microengine 160 includes the
TARGET REF identifier from the pull-id so that the receiv
ing state machine can associate the incoming data bus trans
actions with the pull-id. There may be one or more such data
bus transactions. The LAST bit of a data bus transaction
indicates whether there are more data bus transactions to
follow, or whether the data bus transaction is the last data bus

10

15

25

30

35

40

45

50

55

60

65

24
transaction for the pull-id. The DATA fields of these data bus
transactions include the addresses where the count values are
stored.
Once all the pull data has been received and is stored in the

appropriate register in register pool 3017, then the state
machine operation transitions from PULL state 3021 to OUT
PUT state 3022. The state machine outputs an operation
instruction 3023 to arbiter 3015. Once the output operation is
complete, state machine operation transitions from OUTPUT
State 3022 to IDLE state 3020. The arbiter 3015 arbitrates
information flow to translator 3016. Translator 3016 receives
the operation instruction 3023 and from the operation instruc
tion outputs OPCODES3024, PACKET# VALUE3025, and
BYTE if VALUE3026. The PACKETHVALUE3O25 and the
BYTE H VALUE 3026 are the numbers to be added to the
count values stored in memory 90 once the count values have
been read out of memory 90.
The request stage of the pipeline Supplies the state machine

number to the register pool. The register pool uses the State
machine number to return to the pipeline the first address
3031 stored in the registerpool for that state machine number.
The request stage uses this address to issue a read request to
memory controller 3018 via FIFOs 3027-3030 and crossbar
switches 95 and 96. The memory controller 3018 handles
reading the first pair of count values 3032 from the memory
location indicated by the first address 3031 pulled out of the
register pool. The read stage of the pipeline receives the first
pair of count values 3032. In the present example, the first pair
of count values 3032 is a packet count and byte count read
from physical port table 3033. In the example of FIG. 26 each
row of the physical port tables 3033 is a memory location that
stores two values, a packet count value and a byte count value.
In other examples, the memory location may store other val
ues such as number of users per server or connections per
user. An ALU in the adder stage adds the PACKET #VALUE
3025 and BYTE # VALUE to the first pair of count values
3032, thereby generating an updated pair of count values
3037. The write stage of the pipeline causes the updated pair
of count values 3037 to be written back into the memory
location in physical port table 3033. The pipeline causes the
update to be performed by issuing a write request to memory
controller 3018. This completes the updating of one pair of
count values. There are, however, four updates to be per
formed (updating the pair of count values for the physical
port, virtual port, user id, and application type). In the next
clock cycle after the request stage received the first address
3031 from the register pool, the request stage receives the
next address from the registerpool, and in the next clock cycle
the request stage receives the next address, and so forth.
During a given clock cycle, each stage of the pipeline is
processing an update to a different pair of count values.
Packet count values can be either incremented by one or can
be increased by a number greater than one depending on the
PACKET HVALUE 3025 received in the AU command from
the microengine 160. Byte count values are increased by the
BYTE HVALUE 3026 received in the AU command from the
microengine 160. There is only one AU command issued
across the command mesh of the CPP data bus 159 despite the
fact that eight count updates are performed.

In addition to executing the Add and Update command, the
stats hardware engine 73 can also execute a stats “Read and
Clear” (RC) command. The stats read and clear command is
similar to the stats AU command described above in that one
command is sent across the command mesh of the CPP bus
but multiple memory operations result. Rather than writing
back a count value into each memory location, the stats read
and clear command results in writing a Zero value into each

US 9,069,558 B2
25

indicated memory location. The write stage returns STATS
DATA3038 that is sent via data bus interface 75 and CPP data
bus 159 to the microengine 160. The STATS DATA 3038 is
the set of count values for all the memory locations that were
cleared. In one embodiment the clear function is performed
by the adder stage. In another embodiment, the clear function
is performed by a separate stage within the pipeline.

FIG. 28 is a flowchart 4000 illustrating the operation of
stats engine 73. A set offirst values are stored (Step 4001) into
corresponding memory locations in the memory unit. An Add
and Update command (AU command) is received onto the
hardware engine (Step 4002). In response to receiving the AU
command, each memory location is read from memory (step
4003). A same second value is then added to each of the first
values (Step 4004) thereby generating a corresponding set of
updated first values. The set of updated first values are written
into the corresponding memory locations (Step 4005).

In one example, the pipeline within the stats engine is the
only circuitry that can read or write to the memory locations
in memory 90. In another example, the pipeline within the
stats engine is the only circuitry that does read or write to the
memory locations. In either example, the memory locations
in memory 90 shown in FIG. 26 do not require a locking
mechanism because the single pipeline is the only circuitry
that will read data from or write data to the memory locations
during operation.
Op codes 3024 is supplied to each ALU in each state of the

pipeline. Op codes 3024 includes one operation code (op
code) for each stage of the pipeline. Each operation code
includes a plurality of bits. The particular combination of
these bits indicate one of several different operation com
mands. The operation performed in each stage of the pipeline
can be varied by changing the op code assigned to a given
pipeline stage. For example, the operation of the third stage of
the pipeline 3013 can be changed from adding values to
Subtracting values by changing the operation code assigned to
the third stage of the pipeline. This allows flexible program
ming of each stage of the stats engine 73.

FIGS. 29-38 set forth a recursive lookup operation involv
ing a hardware trie structure 5000 that has no sequential logic
elements. In the method 5001 of FIG. 29, a router 5014
receives an IP packet 5015 (step 5002) on an input port of the
router. The input port is one of many virtual ports of a physical
input port 5016. Router 5014 includes a plurality of line cards
5017-5019 and a management card 5020 that fit into a attach
to a backplane 5021. The line cards are identical. Line card
5017 includes optics transceivers 5022 and5023, PHY's 5024
and 5025, an instance of the Island-Based Network Flow
Processor (IB-NFP) integrated circuit 1 of FIG. 1, configura
tion PROM 8, and DRAM integrated circuits 2-7. The IP
packet 5015 is communicated through optical fiber 5026,
through optics transceiver 5022, through PHY 5024, and to
IB-NFP1. The IB-NFP 1 in this router looks at the IP desti
nation address of the packet and identifies one of several
output ports to which the IP packet is to be routed. The
IB-NFP then forwards the IP packet so that the IP packet will
be output from the router via the determined output port. In
the illustrated example, the output port may be one of many
virtual output ports of physical output port 5027, or may be
one of the many virtual output ports of physical output port
5028, or may be one of the many virtual output ports of
physical output port 5029.

FIG. 31 is a diagram that illustrates a second step (step
5003) in which a processor 160 of ME island 40 of the
IB-NFP 1 sends a lookup command 5030 across the CPP data
bus 159 to the transactional memory in the MU island 42,52.
Lookup engine 74 is one of several hardware engines of the

10

15

25

30

35

40

45

50

55

60

65

26
MU island as indicated earlier in this patent document. The
lookup engine 74 is illustrated in more detail here and illus
trations of the other lookup engines are omitted. Lookup
command 5030 includes address information that indicates
where a 3x128-bit block 5031 of data is stored in memory 90
of the Dcache memory unit 76. The lookup command 5030 is
received (step 5004) from the CPP data bus 159 onto the
transactional memory via data bus interface 75. Lookup
engine state machine selector 5032 examines the status indi
cators of the state machines SM#1-SMHN of state machine
array 5033, and selects (step 5005) an idle state machine to
process the incoming command.

FIG.32 is a state diagram for a state machine of the lookup
engine 74. Initially the state machine was in the idle state
5035. The state machine selector 5032 passes the lookup
command 5030 to the state machine, thereby causing the
selected State machine to transition to operating in the pull
state 5036. The selected state machine then initiates a pull
(step 5006) across the CPP data bus to receive an input value
(IV). For each IV value, there is a final result value stored. The
overall function of the lookup operation is to receive one of
the IV values and to lookup and result its associated final
result value. In the present example, the IV value is the IP
destination address5037 of IP packet 5015. The selected state
machine interacts with the pull interface of data bus interface
75 to cause the pull to occur.

In response, the IP destination address 5037 is received
from the CPP bus 159 onto the transactional memory. The IP
destination address 5034 is then stored in an appropriate one
of the registers in register pool 5038. There is one register
pool register associated with each state machine. The IP
address is received (step 5007) onto the transactional memory
and is stored into the register associated with the state
machine that initiated the pull. As indicated by the state
diagram of FIG. 32, completion of the pull causes the state
machine to transition to the output state 5039. In the output
state 5039, the state machine outputs an operation instruction
5040 (step 5008) to arbiter 5041. Arbiter 504.1 may receive
several Such operation instructions from multiple ones of the
state machines. Arbiter 5041 arbitrates and only supplies one
of the operation instructions at a time to translator 5042. The
translator translates the operation instruction 5041 into a set
of op codes 5044, one for each stage of the pipeline 5043. In
addition, the translator 5042 outputs the memory address
5045 to the pipeline. Once the operation instruction 5040 has
been output from the State machine, the state machine transi
tions to the wait for result state 5046.
The request stage 5047 of pipeline 5043 issues (step 5009)

a read request to the memory unit 76 to read the 3x128-bit
block 5031 of data out of memory 90. The read request is
pushed into input FIFO 5048. The read request passes
through input FIFO 5048, and IN cross-bar switch95, and is
handled by the memory controller of memory 90. This is the
same memory controller that handles read requests received
from other hardware engines. The 3x128-bit block 5031 is
read from memory 90, is passed through OUT crossbar
switch96, the through output FIFO 5049, and into the read
stage 5050 of pipeline 5043.
The read stage 505 of the pipeline supplies the state

machine number to registerpool 5038. In response, the IV (IP
address 5037 in this case) is sent from the registerpool back
to the read stage 5050. At this point in the process, pipeline
5043 has received (step 5010) both the 3x128-bit block of
data and the IV (IP address in this case). These values are
loaded into one long register R15051 of lookup stage 5052 of
the pipeline.

US 9,069,558 B2
27

FIG.33 is a more detailed diagram of lookup stage 5052.
Lookup stage 5052 includes register R15051, a barrel shifter
5053, and ALU35054. ALU3 includes a plurality of lookup
hardware blocks 500 and 5055-5060, a decoder 5061, and an
output multiplexing circuit 5062 interconnected as shown.
Register R25063 in FIG.33 is the register R2 at the front of
the result stage 5064 of the pipeline. The 32-bit result from
one of the lookup hardware blocks is output as the 32-bit
output of ALU35054. Which one of the results it is that is
output by multiplexing circuit 5062 is determined by
OPCODE3 and TYPE

FIG. 34 is a diagram of the 3x128-bit block 5031. The
block includes three 128-bit words. The first word WORDH1
includes an 8-bit type value, a 7-bit starting position value
(SP), and seven 6-bit multi-bit node control values (NCVs)
A-G. The second and third words WORDH2 and WORDH3
include eight 32-bit multi-bit results values (RVs) R0–R7.
Each RV includes a final result bit (FRB). The memory 90
stores and outputs 128-bit words, so the information to con
figure the hardware trie structure for a lookup is packed
efficiently into a minimum number of 128-bit words.

The type value, the NCVs and the RVs from the 3.x128-bit
block 5031 are loaded into register R1 into the bit positions as
indicated in FIG.33. The outputs of the bits of register R1 are
supplied in parallel to ALU3 as illustrated in FIG. 33. In
addition to the values from the 3x128-bit block 5031 and the
IV value 5037, the opcode OPCODE3 for the lookup stage
5052 is also stored in register R1. The lookup stage 5054
performs a three-level trie lookup operation in one pipeline
clock cycle using combinatorial logic of the novel hardware
trie structure 5000, thereby outputting a 32-bit result value. In
this specific example, the 32-bit result value includes a 31-bit
next hop output port identifier (step 5011).

Rather than the first sixty-four bits of the 128-bit IP address
value being supplied directly to ALU3, the 128-bit IP address
value may be supplied in shifted form. Barrel shifter 5053
shifts the 128-bit IP address 5037 by a number of bit posi
tions. The number of bit positions is indicated by the 7-bit
starting portion value (SP). Due to the use of barrel shifter
5053, a 64-bit section of the IP address can be supplied to
ALU3 as the incoming IV value. The particular 64-bit section
is predetermined by the starting point value SP stored in the
3x128-bit block. For simplicity of explanation here, the
shifted IV value is referred to below simply as the IV value,
although it is understood that the IV value actually received
by hardware trie structure 500 may be a shifted sixty-four bit
Section of the IV value 5037.

FIG. 35 is a more detailed diagram of barrel shifter 5053.
Each multiplexing circuit represented by a multiplexer sym
bol in the diagram involves one hundred twenty-eight 2:1
multiplexers. Multiplexing circuit 5065, for example, Sup
plies either the incoming 128-bit IP address onto its output
leads in unshifted form if the select input signal SPI6 is a
digital low, or the multiplexing circuit 5065 supplies the IP
address shifted sixty-four bits to the left. The leftmost sixty
four bits are therefore not passed on to the next lower multi
plexing circuit, and the rightmost sixty-four bit positions of
the 128-bit output value are filled in with digital Zero values.
This first multiplexing circuit 5065 shifts to the left by sixty
four bit positions if SPI6 is set, the second multiplexing
circuit 5066 shifts to the left by thirty-two bit positions if
SP5 is set, the third multiplexing circuit 5067 shifts to the
left by sixteen bit positions if SP4 is set, and so forth.

FIG. 36 is a circuit diagram of hardware tri structure 5000
of ALU3 5054 of FIG. 33. Hardware trie Structure 5000
includes a plurality of internal node circuits 5068-5074 and a
plurality of leaf node circuits 5075-5082. Each internal node

5

10

15

25

30

35

40

45

50

55

60

65

28
circuit receives and is configured by a corresponding one of
the NCVs. The NCV is received onto select input leads of a
multiplexing circuit of the internal node circuit. Each internal
node circuit also receives sixty-four bits of the 128-bit IV
value as output by barrel shifter 5053. The 64-bit IV value is
received onto the hardware trie structure 5000 via a set of
input leads 5083 of the hardware triestructure. Each leafnode
receives a corresponding one of the RVs. A leaf node circuit,
if it receives a digital high enable signal from its correspond
ing upstream internal node circuit, Supplies its RV value onto
the set of output leads 5084. Only one of the leaf node circuits
is enabled at a time, so the leaf node circuits together perform
a multiplexing function in that one of the RV values is Sup
plied onto the set of output leads 5084, where which one of the
RV values it is that is supplied onto the set of output leads is
determined by the internal node circuit portion of the trie
structure. There is no sequential logic element in the circuitry
of the hardware trie structure 5000. The hardware trie struc
ture is set up by supplying the NCVs A-G to the internal node
circuits of the trie structure, and by supplying the RV values
R0–R7 to the leaf node circuits of the trie structure. Supplying
an IV value onto the set of input leads 5083 causes signals to
propagate through the hardware trie structure 5000 such that
a selected one of the RV values is output onto the output leads
SO84.

FIG. 37 is a diagram that illustrates operation of the hard
ware triestructure 5000. The 64-bit value IV is supplied to the
root internal node circuit 5068. One of the bits of the 64-bit
value IV is selected and is output. Which one of the bits it is
that is output is determined by the value A. If the selected bit
has a value of a digital high then decision flow proceeds
downward in the treeto internal node circuit 5070, whereas if
the selected bit has a value of a digital low then decision flow
proceeds upward in the tree to internal node circuit 5069.

Consider the situation in which the selected bit was a
digital high. Once a branch is not taken, all Sub-branches to
the right carry unasserted signals. Accordingly, in the
example of FIG. 37, none of R0–R3 can be selected as the
output result value of the trie. Internal node circuit 5070
selects another bit of the 64-bit value IV as determined by the
value C. If this second selected bit has a value of a digital high
then decision flow proceeds downward in the tree to internal
node circuit 5074, whereas if the second selected bit has a
value of a digital low then decision flow proceeds upward in
the tree to internal node circuit 5073. In this way, decision
flow passes through the trie structure such that only one
asserted signal is output to one output of one of the internal
node circuits. For example, if the bit indicated by A is a digital
high, and if the bit indicated by C is a digital low, and if the bit
indicated by F is a digital high, then decision flow terminates
at the R5 next hop output port identifier. Only this R5 value is
selected. Likewise, in the specific circuit of FIG. 36, if the bit
of IV indicated by A is a digital high, and if the bit of IV
indicated by C is a digital low, and if the bit of IV indicated by
F is a digital high, then the enable signal Supplied to leaf node
circuit 5080 is asserted. The enable signals to all other leaf
node circuits are not asserted. Leaf node circuit 5080 there
fore outputs the RV value R5 onto the set of output leads 5084.
Each RV value is output when three identified bits of the IV
value have three particular digital values. In the example
being described here, the IV value is supplied to the hardware
trie structure, along with the configuring NCVs and RVs, so
that the hardware trie structure outputs (step 5011) one RV
value onto output leads 5084.
FIG.38 is a diagram that shows the various bits of a result

value as output by the hardware triestructure 5000. If the final
result bit (FRB) is a digital logic low, then the remaining

US 9,069,558 B2
29

thirty-one bits of the RV contain the algorithmic lookup
result. In the example of the router being described here, a
final lookup result value is a next hop output port identifier.
The result stage of the pipeline interacts with the data bus
interface 75 to cause the result value to be sent to processor
160 in the ME that initiated the original lookup command
5030. As illustrated in FIG. 32, state machine operation tran
sitions from the wait for result state 5046 to the idle state
5035.

In the specific example of the method of FIG. 29, the FRB
bit of the result value is clear indicating a final result value.
The result stage 5064 of the pipeline therefore initiates a CPP
bus push of the final result value 5085 (including the 31-bit
algorithmic lookup result value output by the hardware trie
structure) back to processor 160, so that the next hop value is
returned (step 5012) to the processor 160 that issued the
original lookup command. As a result, router 5014 outputs
(step 5013) the IP packet 5015 onto the output port of the
router identified by the final result 5085 (a next hop output
port identifier).
As indicated in FIG. 38, the FRB bit of the result value

output by the hardware trie structure 5000 need not be a
digital logic low. If the FRB is a digital logic high, then the
31-bit remainder of the RV value is supplied back to the state
machine of the lookup engine. The state machine transitions
from the wait for result state 5046 to the output state 5039.
The state machine receives this 31-bit value as a form of an
instruction to perform another lookup operation. Rather than
the address information on where to read a block from
memory 90 coming from an original lookup command, the
address information is supplied as part of the 31-bit result
value. For example, if bit 30 is a digital logic low and if bit 29
is also a digital logic low, then the next lookup will be an
algorithmic lookup. There are several types of algorithmic
lookups, one of which is the trie lookup described above.
What type of algorithmic lookup it is that is to be performed
in the next lookup is not indicated in the result value Supplied
to the state machine, but rather is indicated by the type value
of the next 3x128-bit block to be read from memory 90. Bits
23: 0 are a 24-bit starting address in memory 90 where the
beginning of the next 3x128-bit block to be read is stored. Bits
28:27 indicate how many 128-bit words to read starting at that
address. These values are used to read an indicated second
number of 128-bit words from memory 90. If the type value
indicates the next lookup is another trie lookup, then the
process repeats as described above with the values of the
3x128-bit block being used to configure the hardware trie
hardware for the second lookup. If the type value indicates
another type of lookup, then the contents of the 128-bit words
are used in other ways by another selected one of the lookup
hardware blocks 5055-5060. In this way, successive lookup
operations can be performed by the lookup engine on differ
ent parts of the IP address until a final result is obtained. In the
case of the next lookup being a direct lookup, then the type of
direct lookup is determined by information in the non-final
result value of the prior lookup. In the case of the next lookup
being an algorithmic lookup, then the type of algorithmic
lookup is determined the type value in the 3x128-bit block
read from memory 90 at the beginning of the next lookup.
When a lookup results in a final result being obtained, then the
result stage 5064 initiates a CPP bus push operation to return
the 31-bit final result (next hop output port indicator) back to
the requesting processor via data bus interface 75 and CPP
data bus 159.
The novel hardware trie structure, the transactional

memory that contains it, and the related methods described
above are of general utility in looking up different types of

10

15

25

30

35

40

45

50

55

60

65

30
information and are not limited to looking up next hop output
port information from incoming IP addresses. Although the
IV is pulled across the bus in a second bus transaction after the
initial lookup command passes across the bus in a first bus
transaction in the example described above, the IV in other
examples can be a part of the original lookup command.

FIG.33 shows the various hardware lookup blocks within
lookup engine 74. Only one output of the various hardware
lookup blocks is utilized during a specific clock cycle. The
contents stored in register R1 5051 varies depending on
which hardware lookup block is being utilized in the given
clock cycle. Register R1 5051 is coupled to each hardware
lookup block. In one example, to reduce power consumption
OPCODE is also supplied to eachhardware lookup block and
causes only one of the hardware lookup blocks to be turned on
during a given clock cycle. In another example, OPCODE is
only supplied to multiplexer 5062 and causes a single hard
ware lookup block output to be coupled the results stage. In
one example, multiplexercircuit 5062 may be implemented
utilizing a plurality of multiplexers. Three of the hardware
lookup blocks (5055-50557) shown in FIG. 33 are direct
lookup blocks. One of the three hardware lookup blocks
(5055-5057) shown in FIG.33 is a direct 32-bit lookup hard
ware lookup block 5055.

FIG. 39 illustrates the values communicated in the lookup
engine 74 during a direct 32-bit lookup. In one example, upon
receiving an ethernet packet microengine 160 sends a lookup
command 6000 to transactional memory 42, 52 via a CPP bus
159. In this example, the purpose of the lookup command
6000 is to determine what physical port and virtual port the
ethernet packet is to be routed to. The lookup command 6000
includes a base address value, a starting bit position value, and
a mask size value. The combination of the base address value,
starting bit position value, and mask size value is referred to
as address information 6003. In another example, the mask
size value is predetermined and not included in the address
information 6003. The lookup command 6000 is communi
cated through the data bus interface 75 to state machine
selector 5032. State machine selector 5032 monitors the sta
tus indicator in each state machine within state machine array
5033 and routes lookup command 6000 to idle state machine
SMH1. In response to receiving lookup command 6000, the
selected state machine SMH1 issues a pull-id command to the
initiating microengine 160.

FIG.32 is a state machine state diagram. The state machine
transitions from the idle state5035 to the pull state5036 when
a lookup command 6000 sent by microengine 160 is received
by the State machine. The state machine causes a pull-id bus
transaction to be sent back to the microengine 160 via data
bus interface 75 and CPP bus 159. The format of the pull-id
bus transaction is shown in FIG. 5. The DATA REF field
contains the pull-id identifier that the microengine 160 pro
vided in the original lookup command 6000. The TARGE
T REF field contains an identifier supplied by the state
machine target. This target ref is usable by the target to
identify later received data payloads with the pull-id. The
starting address value and number of addresses to follow
value are also included in the pull-id bus transaction. The
pull-id bus transaction is received by microengine 160 across
the pull-idmesh. From the DATA REF field of the pull-id bus
transaction, the microengine 160 determines that the pull-idis
associated with the original lookup command 6000 and that
the microengine 160 should return to the target an input value
6005. In one example, the input value 6005 is a destination
Internet Protocol (IP) address. The IP address 6005 is used by
the lookup engine 74 to determine the destination (physical
port and virtual port) to which the ethernet packet should be

US 9,069,558 B2
31

sent. Microengine 160 therefore responds by sending one or
more data bus transactions across the data0 or data1 mesh to
register pool 5038. Register pool 5038 includes a controller
and a plurality of registers. In one example, each register of
the register pool 5038 is associated with an individual state
machine of the state machine array 5033. The format of the
data bus transactions is set forth in FIG. 6. The microengine
160 includes the TARGET REF identifier from the pull-id so
that the receiving state machine can associate the incoming
data bus transactions with the pull-id. There may be one or
more such data bus transactions. The LAST bit of a data bus
transaction indicates whether there are more data bus trans
actions to follow, or whether the data bus transaction is the
last data bus transaction for the pull-id. The DATA fields of
these data bus transactions include the addresses where the
count values are stored.
Once all the pull data has been received and is stored in the

appropriate register in register pool 5038, then the state
machine operation transitions from PULL state 5036 to OUT
PUT state 5039. The state machine outputs an operation
instruction 6001 to arbiter 5041. Once the output operation is
complete, state machine operation transitions from OUTPUT
state 5039 to WAIT FOR RESULT state 5046. During the
WAIT FOR RESULT state 5046, the pipeline requests and
reads a 128-bit word 6007 from memory 90, selects one of
four 32-bit result values included in the received 128-bit word
6007, and returns the selected result value 6008 to the state
machine (SMH1). FIG. 43 illustrates an example of the dif
ferent fields included in result value 6008. The result value
6008 includes a final result field. In one example, the final
result field is 1-bit wide. The result value 6008 has a first set
offields when the result value 6008 is a final result value. The
result value 6008 has a second set of fields when the result
value 6008 is not a final result value. When the result value
6008 is a final result value, 31 bits of the 32-bit result value is
the desired lookup result field. When the result value 6008 is
not a final result, the result value includes a type of direct
lookup field, a base address field, a start bit position field, and
a mask size field. If the final result field is set, a final result
value has been found and the state machine operation transi
tions from WAIT FOR RESULT State 5046 to IDLE state
5035 and the result value 6008 is sent the ME. In one example,
the result value 6008 is a next hop output port identifier. If the
final result field is not set, the final result value has not been
found and the state machine operation transitions from WAIT
FOR RESULT State 5046 to OUTPUT State 5039 and a Sub
sequent lookup operation is performed based upon the con
tents of the selected result value 6008. The arbiter 5041 arbi
trates information flow to translator 5042. Translator 5042
receives the operation instruction and from the operation
instruction outputs new OPCODES and new address infor
mation. Address information includes a base address, starting
bit position, and mask size that are used in the pipeline to
retrieve another result value.
As shown in FIG. 39, pipeline 5043 includes request stage

5047. Request stage 5047 of the pipeline 5043 is shown in
greater detail in FIG. 41. Request stage 5047 includes FIFO
F1 6013 and ALU 16014. ALU 16014 includes selecting
circuit 6020 and adding circuit 6012. Selecting circuit 6020
includes barrel shifter 6009 and mask circuit 6010. The
request stage of the pipeline Supplies the state machine num
ber to the registerpool 5038. The registerpool 5038 uses the
state machine number to return to the pipeline the input value
(IP address) 6005 stored in the registerpool 5038 for that state
machine number. The request stage uses the starting bit posi
tion and mask size to select a portion 6015 of the input value
(IP address) 6005. In one example, the portion 6015 is an

5

10

15

25

30

35

40

45

50

55

60

65

32
eight bit portion of the input value (IP address) 6005. The
portion 6015 is selected by performing a barrel shift operation
followed by a masking operation. The barrel shift operation is
performed by barrel shifter 6009. Barrel shifter 6009 receives
the input value (IP address) 6005 and starting bit position
6016 and generates a shifted version of input value (IP
address) 6005. A detailed circuit diagram of the barrel shifter
6009 is provided in FIG. 35. Description of the barrel shifter
operation is provided in the description of FIG. 35 above.
Mask circuit 6010 receives the shifted version of the input
value (IP address) 6005 from barrel shifter 6009 and the mask
size 6017 and performs a masking operation whereby all bits
received from the barrel shifter are masked out with exception
to the desired portion bits 6015. In one example, masking
circuit 6010 is an array of AND gates where all undesired bits
are anded with 'O' and desired bits are anded with “1”. The
portion bits 6015 are then separated into two different bit
groupings. In one example, the portion 6015 is an eight bit
value that is separated into a first two bit group PORTION
0:1 and a second six bit group PORTION 2:7). Adding
circuit 6012 receives PORTION 2:7 and base address 6018
and generates memory address 6019. Memory address 6019
is included in read request 6006 (shown in FIG. 39). POR
TION 0:1 is communicated to the following stages of the
pipeline and is utilized within the lookup stage 5052. Request
stage 5047 then issues a read request to memory controller 97
via FIFO 5048 and crossbar switch95. The memory control
ler 97 handles reading a single 128-bit word 6007 from the
memory location indicated by the read request 6006. FIG. 40
illustrates how the direct 32-bit result values are packed in
memory 90.
As shown in FIG. 39, read stage 5050 of pipeline 5043

includes FIFO F2 and ALU2. In response to the read request
6006 send by request stage 5047, read stage 5050 of the
pipeline 5043 receives 128-bit word 6007 from memory 90
via crossbar switch96 and FIFO 5049. In one example, the
128-bit word 6007 includes four 32-bit result values (as
shown in FIG. 40). Read stage 5050 also receives PORTION
0:1 from the read stage 5050. Read stage 5050 then writes
both the 128-bit word 6007 and PORTION 0:1) to register
R15051 within lookup stage 5052.
As shown in FIG. 39, pipeline 5043 includes register

lookup stage 5052. Lookup stage 5052 of the pipeline is
shown in greater detail in FIG. 42. Lookup stage 5052
includes register R15051 and ALU 35054. ALU 35054
includes a multiplexing circuit 6011. In one example, multi
plexing circuit 6011 includes thirty-two one by four multi
plexers. multiplexing circuit 6011 receives PORTION 0:1
and the four 32-bit result values from the 128-bit word 6007
received in read stage 5050. The multiplexing circuit 6011
selects one of the four 32-bit result values based upon the
value of PORTION 0:1. The selected 32-bit result value is
then written to register R2 5063 of result stage 5064. Result
stage 5064 causes the selected result value to be communi
cated to the initiating state machine.

FIG. 43 is a flowchart 6100 illustrating the direct 32 bit
lookup operation of lookup engine 74. Router receives an
ethernet packet on an input port (Step 6101). The ethernet
packet includes a destination IP address. The ethernet packet
is communicated to a microengine within the router. The
microengine sends a lookup command to the transactional
memory (Step 6102). The lookup command includes a base
address value, a starting bit position value, and a mask size
value. The base address value, starting bit position value, and
mask size value are referred to as address information. The
lookup command is received onto the transactional memory
via the CPP bus (Step 6103). In response to receiving the

US 9,069,558 B2
33

lookup command, an idle state machine is selected to receive
the command by a state machine selector (Step 6104). In
response to receiving the lookup command, the selected State
machine initiates a pull across the CPP bus to read the input
value (destination IP address) of the ethernet packet from the
microengine (Step 6105). The input value (destination IP
address) is then received onto the transactional memory and
stored in a register pool (Step 6106). The state machine then
sends an operation instruction to a translator that causes the
translator to send OP-CODES and address information to the
pipeline (Step 6107). The request stage 5047 uses the input
value (destination IP address) and the address information to
determine a memory address. The request stage 5047 of the
pipeline then issues a read request (including the memory
address) to the memory unit to read a single 128-bit word
(Step 6108). The pipeline then receives the 128-bit word from
the memory unit (Step 6109). The lookup stage of the pipeline
then selects one of four 32-bit result values from 128-bit word
in one clock cycleusing combinational logic (Step 6110). The
result of the direct32-bit lookup is a single 32-bit result value.
The 32-bit result value is communicated back to the initiating
state machine (Step 6111). The 32-bit result value is pushed
back from the state machine to the microengine via the data
bus interface of the transactional memory and the CPP data
bus (Step 6112). The router then outputs the ethernet packet
onto an output port indicated by the 32-bit result value (Step
6113).
Op codes 6002 is supplied to each ALU in each state of the

pipeline. Op codes 6002 includes one operation code (op
code) for each stage of the pipeline. Each operation code
includes a plurality of bits. The particular combination of
these bits indicates one of several different operation com
mands. The operation performed in each stage of the pipeline
can be varied by changing the op code assigned to a given
pipeline stage. For example, the operation of the lookup stage
of the pipeline 5043 can be changed from performing a direct
32-bit lookup to a direct 24-bit lookup. This allows flexible
programming of each stage of the lookup engine 74 So that
various lookup operations can be performed by the single
lookup engine.

FIG. 45 is a flowchart of a method 7000 in accordance with
another novel aspect. The lookup engine of the transactional
memory has multiple hardware lookup structures. The lookup
engine is configurable in a first configuration Such that a first
hardware lookup structure of the lookup engine is usable to
perform a first lookup operation. The lookup engine is also
configurable in a second configuration Such that a second
hardware lookup structure of the lookup engine is usable to
perform a second lookup operation. The first lookup opera
tion may, for example, be a first type of lookup Such as a direct
lookup operation, and the second lookup operation may be a
second type of lookup such as an algorithmic lookup opera
tion. The first lookup operation may be the direct 32 lookup
operation described above and the second lookup operation
may be the hardware trie lookup operation described above.

Initially, a lookup command and an input value (IV) are
received (step 7001) onto the transactional memory 42.53. In
Some examples, the IV is not a part of the lookup command
but rather is received onto the transactional memory in a
second bus transaction. In other examples, the IV is a part of
the lookup command. The bus across which the lookup com
mand is received onto the transactional memory is CPP data
bus 159. A first block of first information is read (step 7002)
from memory unit 76 of the transactional memory by lookup
engine 74. In one example, the lookup command includes
address information that the lookup engine uses to read the
first block of first information from the memory unit.

10

15

25

30

35

40

45

50

55

60

65

34
The lookup engine then uses the first information to con

figure (step 7003) the lookup engine in the first configuration.
The lookup engine so configured is used to perform a first
lookup operation (step 7004) on a part of the input value. The
part of the input value may be determined by a starting point
value (SP) of the first information. A barrel shifter within the
lookup engine may receive the starting point value so that the
barrel shifter outputs the part of the input value that is used as
an input value for the lookup operation. As a result of the first
lookup operation, the lookup engine obtains a first result
value (step 7005). Based on the first result value, the lookup
engine determines (step 7006) to do one of the following: 1)
perform a second lookup operation, 2) output the first result
value from the transactional memory as the final result of the
lookup command.

In one example, the first result value has a Final Result Bit
(FRB). The value of the FRB indicates whether the first result
value is a final result value. If the first result value is a final
result value, then the first result value is output from the
transactional memory as the final result of the lookup com
mand. If, on the other hand, the FRB indicates that the first
result value is not a final result value, then address informa
tion in the first result value is used by the lookup engine to
read a second block of information from the memory unit.

In one specific example, the FRB of the first result value
indicates that the first result value is not a final result value and
that another lookup operation is to be performed. The lookup
engine uses the second information to configure (step 7008)
the lookup engine in the second configuration. The lookup
engine so configured is used to perform a second lookup
operation (step 7009) on another part of the input value. As a
result of the second lookup operation, the lookup engine
obtains a second result value (step 7010) and based on the
second result value, the lookup engine determines (step 7011)
to do one of the following: 1) perform a third lookup opera
tion, 2) output the second result value from the transactional
memory as a result of the lookup command. In this way, the
lookup engine performs lookup operation after lookup opera
tion in a recursive fashion until a final result value is obtained.
In one example, the type of each Successive lookup operation
is determined at least in part by a type value that is a part of the
block of information read from the memory unit at the begin
ning of the lookup operation. Address information in the
result value of the previous lookup operation is used by the
lookup engine to determine where to read the next block of
information from the memory unit. The address information
also indicates how much information to read.

In one exemplary application, a first lookup operation is a
direct lookup type of lookup operation. If the first lookup
operation does not result in obtaining a final result value, then
the result value of the first lookup operation is used to select
either a direct lookup as the second lookup operation or an
algorithmic lookup as the second lookup operation. If the
address space being considered in the second lookup opera
tion is densely packed with result values then the second
lookup operation is a direct lookup, whereas if the address
space being considered in the second lookup operation is
sparsely populated with result values then the second lookup
operation is an algorithmic lookup. Each Successive lookup
operation looks at a different part of the input value and may
be a different type of lookup. The part of the input value being
considered in a lookup operation is determined by a barrel
shifter control value stored in the block of information for the
lookup operation. The type of the next lookup operation is
determined by the result value of the prior lookup and/or by
type information of the block of information read at the begin
ning of the next lookup operation. If the address of the block

US 9,069,558 B2
35

in memory is dependent upon the key then the type of lookup
is encoded in the lookup command or lookup initiating result
value, whereas if the address of the block in memory is not
dependent upon the key then the type of lookup is set forth by
the type field in the block itself. The transactional memory
that carries out the lookup command includes no processor
that fetches instructions, decodes the instructions, and
executes the instructions. Method 7000 of FIG. 45 is not
limited to the particulars of the transactional memory 42, 52
of the specific example of IB-NFP 1, but rather is of general
applicability and extends to other transactional memory and
lookup engine architectures.

FIG.33 shows the various hardware lookup blocks within
lookup engine 74. Only one output of the various hardware
lookup blocks is utilized during a specific clock cycle. The
contents stored in register R1 5051 varies depending on
which hardware lookup block is being utilized in the given
clock cycle. Register R1 5051 is coupled to each hardware
lookup block. In one example, to reduce power consumption
OPCODE is also supplied to each hardware lookup block and
causes only one of the hardware lookup blocks to be turned on
during a given clock cycle. In another example, OPCODE is
only supplied to multiplexer 5062 and causes a single hard
ware lookup block output to be coupled the results stage. In
one example, multiplexercircuit 5062 may be implemented
utilizing a plurality of multiplexers. Three of the hardware
lookup blocks (5055-50557) shown in FIG. 33 are direct
lookup blocks. One of the three hardware lookup blocks
(5055-5057) shown in FIG.33 is a direct 24-bit lookup hard
ware lookup block 5056.

FIG. 46 illustrates the values communicated in the lookup
engine 74 during a direct 24-bit lookup. In one example, upon
receiving an ethernet packet microengine 160 sends a lookup
command 8000 to transactional memory 42, 52 via a CPP bus
159. In this example, the purpose of the lookup command
8000 is to determine what physical port and virtual port the
ethernet packet is to be routed to. The lookup command 8000
includes a base address value, a starting bit position value, and
a mask size value. The combination of the base address value,
starting bit position value, and mask size value is referred to
as address information 8003. In another example, the mask
size value is predetermined and not included in the address
information 8003. The lookup command 8000 is communi
cated through the data bus interface 75 to state machine
selector 5032. State machine selector 5032 monitors the sta
tus indicator in each state machine within state machine array
5033 and routes lookup command 8000 to idle state machine
SMH1. In response to receiving lookup command 8000, the
selected state machine SMH1 issues a pull-id command to the
initiating microengine 160.

FIG.32 is a state machine state diagram. The state machine
transitions from the idle state5035 to the pull state5036 when
a lookup command 8000 sent by microengine 160 is received
by the State machine. The state machine causes a pull-id bus
transaction to be sent back to the microengine 160 via data
bus interface 75 and CPP bus 159. The format of the pull-id
bus transaction is shown in FIG. 5. The DATA REF field
contains the pull-id identifier that the microengine 160 pro
vided in the original lookup command 8000. The TARGE
T REF field contains an identifier supplied by the state
machine target. This target ref is usable by the target to
identify later received data payloads with the pull-id. The
starting address value and number of addresses to follow
value are also included in the pull-id bus transaction. The
pull-id bus transaction is received by microengine 160 across
the pull-idmesh. From the DATA REF field of the pull-id bus
transaction, the microengine 160 determines that the pull-idis

5

10

15

25

30

35

40

45

50

55

60

65

36
associated with the original lookup command 8000 and that
the microengine 160 should return to the target an input value
8005. In one example, the input value 8005 is a destination
Internet Protocol (IP) address. The IP address 8005 is used by
the lookup engine 74 to determine the destination (physical
port and virtual port) to which the ethernet packet should be
sent. Microengine 160 therefore responds by sending one or
more data bus transactions across the data0 or data1 mesh to
register pool 5038. Register pool 5038 includes a controller
and a plurality of registers. In one example, each register of
the register pool 5038 is associated with an individual state
machine of the state machine array 5033. The format of the
data bus transactions is set forth in FIG. 6. The microengine
160 includes the TARGET REF identifier from the pull-id so
that the receiving state machine can associate the incoming
data bus transactions with the pull-id. There may be one or
more such data bus transactions. The LAST bit of a data bus
transaction indicates whether there are more data bus trans
actions to follow, or whether the data bus transaction is the
last data bus transaction for the pull-id. The DATA fields of
these data bus transactions include the addresses where the
count values are stored.

FIG. 47 illustrates how the direct 24-bit result values are
packed in memory 90. In one example, the direct 24-bit table
8014 only includes final result values. If all result values are
final values each result value may only require 24-bits of
information compared to the 32-bit result values of the direct
32-bit result values. This reduction in result value size allows
storage of thirty-two 24-bit result values within seven 128-bit
memory words (instead of the eight 128-bit memory words
required to store thirty-two 32-bit result values). The reduc
tion in result value size results in a 12.5% improvement in
memory density over direct 32-bit memory packing. FIG. 47
illustrates four lookup blocks. Each lookup block includes
seven 128-bit memory words. Each 128-bit memory word
includes one 8-bit field and five 24-bit fields. Five different
result values are stored in the five 24-bit fields. In one
example, the 8-bit field is not used to store any information. In
another example, five bits are used to select one of the 24-bit
result values in a lookup block thus limiting the addressable
content of each lookup block to thirty-two result values. In
this example, the five select bits of addressing within a lookup
block results in only storing result values in thirty-two of the
thirty-five available 24-bit fields within a lookup block. The
locations of the three empty 24-bit fields are the same for
every lookup block in a given embodiment. However, the
locations of the three empty 24-bit fields may vary in different
embodiments. The above example is only one exemplary
embodiment of the present invention. In other embodiments
the direct 24-bit table may also include non-final result values
and the direct 24-bit table may store result values of various
bit widths.
Once all the pull data has been received and is stored in the

appropriate register in register pool 5038, then the state
machine operation transitions from PULL state 5036 to OUT
PUT state 5039. The state machine outputs an operation
instruction 8001 to arbiter 5041. Once the output operation is
complete, state machine operation transitions from OUTPUT
state 5039 to WAIT FOR RESULT state 5046. During the
WAIT FOR RESULT state 5046, the pipeline requests and
reads a 128-bit word 8007 from memory 90, selects one of
five 24-bit result values included in the received 128-bit word
8007, and returns the selected result value 8008 to the state
machine (SMH1). FIG. 43 illustrates an example of the dif
ferent fields included in result value 8008. The result value
8008 does not include a final result field. In the present
embodiment, all result values stored within the 24-bit result

US 9,069,558 B2
37

table in memory 90 are final result values, therefore each
24-bit lookup command results in a single memory read from
memory. The result value is then communicated to the initi
ating state machine. The state machine operation transitions
from WAIT FOR RESULT State 5046 to IDLE State 5035 and
the result value 6008 is sent the ME. In one example, the result
value 6008 is a next hop output port identifier. In another
embodiment, the result values stored within the 24-bit result
table are both non-final result values and final result values. If
the final result field is not set, the final result value has not
been found and the state machine operation transitions from
WAIT FOR RESULT State 5046 to OUTPUT State 5039 and
a Subsequent lookup operation is performed based upon the
contents of the selected result value. The arbiter 5041 arbi
trates information flow to translator 5042. Translator 5042
receives the operation instruction and from the operation
instruction outputs new OPCODES and new address infor
mation. Address information includes a base address, starting
bit position, and mask size that are used in the pipeline to
retrieve another result value.
As shown in FIG. 46, pipeline 5043 includes request stage

5047. Request stage 5047 of the pipeline 5043 is shown in
greater detail in FIG. 48. Request stage 5047 includes FIFO
F1 6013 and ALU 16014. ALU 16014 includes selecting
circuit 8020, word selector circuit 8021, adding circuit 8012,
and multiplying circuit 8022. Selecting circuit 8020 includes
barrel shifter 8009 and mask circuit 8010. The request stage
of the pipeline Supplies the state machine number to the
register pool 5038. The register pool 5038 uses the state
machine number to return to the pipeline the input value (IP
address) 8005 stored in the register pool 5038 for that state
machine number. The request stage uses the starting bit posi
tion and mask size to select a PORTION. 8015 of the input
value (IP address) 8005. In one example, the PORTION8015
is an eight bit portion of the input value (IP address) 8005. The
PORTION 8015 is selected by performing a barrel shift
operation followed by a masking operation. The barrel shift
operation is performed by barrel shifter 8009. Barrel shifter
8009 receives the input value (IP address) 8005 and starting
bit position 8016 and generates a shifted version of input
value (IP address) 8005. A detailed circuit diagram of the
barrel shifter 8009 is provided in FIG. 35. Description of the
barrel shifter operation is provided in the description of FIG.
35 above. Mask circuit 8010 receives the shifted version of
the input value (IP address) 8005 from barrel shifter 8009 and
the mask size 8017 and performs a masking operation
whereby all bits received from the barrel shifter are masked
out with exception to the desired PORTION bits 8015. Mask
size 8017 represents how many bits are to be masked out from
the 128-bit string received from barrel shifter 8009. In one
example, the mask size is seven bits wide and represents
120-bits to be masked out of the 128-bit string received from
barrel shifter 8009. The result of the masking operation is
8-bit PORTION 0:7. In another example, masking circuit
8010 is an array of AND gates where mask size 8017 deter
mines which bits received from barrel shifter 8009 are anded
with “O'” and which bits received from barrel shifter 8009 are
anded with “1”. The PORTION bits 8015 are then separated
into two different bit groupings. In one example, the POR
TION 8015 is an eight bit value that is separated into a first
two bit group PORTION 0:4 and a second six bit group
PORTION 5:7. In other examples, the hardware engine can
select and utilize portions with more than eight bits. Multi
plying circuit 8022 receives PORTION 5:7). The output of
multiplying circuit 8022 is the lookup block offset value. The
lookup block offset value indicates the offset between the
base address value and the first word of a specific lookup

10

15

25

30

35

40

45

50

55

60

65

38
block. The output of multiplying circuit 8022 is coupled to an
input of adding circuit 8012. PORTION 0:4) is received by
word Selector circuit 8021. Word selector circuit 8021
receives PORTION 0:4 and outputs a word offset value
8024 and result location value 8026. Word offset value 8024
indicates an offset between the first word within a lookup
block and a specified word within a lookup block. In one
example, the word offset value may be a value between Zero
and six when each lookup block contains seven memory
words. The word offset value 8024 output from word selector
circuit 8021 is coupled to another input of adding circuit
8012. The result location value 8026 output from word selec
tor circuit 8021 is coupled to FIFO F2 the next stage (read
stage 5050) of the pipeline 5043. A third input of adding
circuit 8012 receives base address value 8018. The output of
adding circuit 8012 is a memory address of the desired 128
bit word in memory 90. Memory address 8019 is included in
read request 8006 (shown in FIG.46). RESULT LOCATION
0:2 is communicated to the following stages of the pipeline
and is utilized within the lookup stage 5052. Request stage
5047 then issues a read request 8006 to memory controller 97
via FIFO 5048 and crossbar switch95. The memory control
ler 97 handles reading a single 128-bit word 8007 from the
memory location indicated by the read request 8006.

In one example, PORTION 0:7 output by masking circuit
2010 is a binary value of 01 010010. As show in FIG. 48, the
five least significant bits PORTION 0:4) (10010) are coupled
to word selector circuit 8021. The three most significant bits
PORTION 5:7 (101) are coupled to multiplying circuit
8022. In one example, multiplying circuit 8022 multiplies all
inputs by a factor of seven and outputs the resulting value. The
multiplier applied in multiplying circuit 8022 is the number
of words contained within a lookup block. Multiplying circuit
8022 multiplies 101 (5 in decimal) and generates an output
value 100011 (35 in decimal). The output of multiplying
circuit 8022 represents an address offset of the first memory
word of the lookup block containing the desired result field.
Simultaneously, word selector circuit 8021 determines that
the binary value 10010 (18 in decimal) represents 24-bit
result number R18 and that result number R18 is located in
the third memory word position (“memory word 38”) within
the lookup block (shown in FIG. 48). Word selector circuit
8021 then outputs a 3-bit word offset value 8024 representing
the third memory word position. In one example, the 3-bit
word offset value 8024 representing the third memory word
position is 011 (3 in decimal). Word selector circuit 8021 also
outputs a 3-bit result location value 8026 indicating the result
location (column shown in FIG. 47) in which the result num
ber (R18) resides. It is noted that in other examples additional
result location values may be utilized to store more result
values in a single word, and that additional result locations
may require more than 3-bits to address the additional result
locations. Word selector circuit 802.1 may be implemented in
various ways. In one example, word selector circuit 802.1 may
implemented using a lookup table to generate a word offset
value 8024 and a result location value 8026. In another
example, word selector circuit 802.1 may be implemented
using arithmetic logic that calculates the word offset value
8024 and the result location value 8026. The word offset value
8024 output from word selector circuit 8021 represents an
address offset from the address of the first memory word in
the lookup block containing the desired result field. Adding
circuit 8012 sums the lookup block offset value 8024 output
from multiplying circuit 8022, the word offset value 8024
output from word selector circuit 8021, and the base address
8018. Base address 8018 represents the memory address of
the first word within the 24-bit lookup table. In one example,

US 9,069,558 B2
39

the base address 8018 is zero. The output of adding circuit
8012 is the sum of 0, 011 and 100011 which is 100110
(0+3+35–38 in decimal). Adding circuit 8012 outputs the
memory address 8019 of the word (“memory word 38') in
memory containing the desired result field (R18 of lookup
block #5 as highlighted in FIG. 47).
As shown in FIG. 46, read stage 5050 of pipeline 5043

includes FIFO F2 and ALU 2. In response to the read request
8006 send by request stage 5047, read stage 5050 of the
pipeline 5043 receives 128-bit word 8007 from memory 90
via crossbar switch96 and FIFO 5049. In one example, the
128-bit word 8007 includes five 24-bit result values
(“memory word #38” as shown in FIG. 47). Read stage 5050
also receives RESULT VALUE 0:2 8026 from the request
stage 5047. Read stage 5050 then writes both the 128-bit
word 8007 and RESULT LOCATION 0:2 to register R1
5051 within lookup stage 5052.
As shown in FIG. 46, pipeline 5043 includes register

lookup stage 5052. Lookup stage 5052 of the pipeline is
shown in greater detail in FIG. 49. Lookup stage 5052
includes register R15051 and ALU 35054. ALU 35054
includes a multiplexing circuit 8011. In one example, multi
plexing circuit 8.011 includes twenty-four one by five multi
plexers. Multiplexing circuit 8011 receives RESULT LOCA
TION 0:2 8026 and the five 24-bit result values from the
128-bit word 8007 received in read stage 5050. The multi
plexing circuit 8011 selects one of the five 24-bit result values
based upon the value of RESULT LOCATION 0:2) 8026.
The selected 24-bit result value is then written to register R2
5063 of result stage 5064. In one example, result value R18
from lookup block #5 (as shown in FIG. 47) is selected by
multiplexing circuit 8011 and output to result stage 5064.
Result stage 5064 causes the selected result value (R18) to be
communicated to the initiating state machine.
FIG.50 is a flowchart 8100 illustrating the direct 24-bit

lookup operation of lookup engine 74. Router receives an
ethernet packet on an input port (Step 8101). The ethernet
packet includes a destination IP address. The ethernet packet
is communicated to a microengine within the router. The
microengine sends a lookup command to the transactional
memory (Step 8102). The lookup command includes a base
address value, a starting bit position value, and a mask size
value. The base address value, starting bit position value, and
mask size value are referred to as address information. The
lookup command is received onto the transactional memory
via the CPP bus (Step 8103). In response to receiving the
lookup command, an idle state machine is selected to receive
the command by a state machine selector (Step 8104). In
response to receiving the lookup command, the selected State
machine initiates a pull across the CPP bus to read the input
value (destination IP address) of the ethernet packet from the
microengine (Step 8105). The input value (destination IP
address) is then received onto the transactional memory and
stored in a register pool (Step 8106). The state machine then
sends an operation instruction to a translator that causes the
translator to send OP-CODES and address information to the
pipeline (Step 8107). The request stage uses the input value
(destination IP address) and the address information to deter
mine a memory address. The request stage of the pipeline then
issues a read request (including the memory address) to the
memory unit to read a single 128-bit word (Step 8108). The
pipeline then receives the 128-bit word from the memory unit
(Step 8109). The lookup stage of the pipeline then selects one
of five 24-bit result values from 128-bit word in one clock
cycle using combinational logic (Step 8110). The result of the
direct 24-bit lookup is a single 24-bit result value. The 24-bit
result value is communicated back to the initiating State

10

15

25

30

35

40

45

50

55

60

65

40
machine (Step 8111). The 24-bit result value is pushed back
from the State machine to the microengine via the data bus
interface of the transactional memory and the CPP data bus
(Step 8112). The router then outputs the ethernet packet onto
an output port indicated by the 24-bit result value (Step 8113).
Op codes 6002 is supplied to each ALU in each state of the

pipeline. Op codes 6002 includes one operation code (op
code) for each stage of the pipeline. Each operation code
includes a plurality of bits. The particular combination of
these bits indicates one of several different operation com
mands. The operation performed in each stage of the pipeline
can be varied by changing the op code assigned to a given
pipeline stage. For example, the operation of the lookup stage
of the pipeline 5043 can be changed from performing a direct
24-bit lookup to a direct 32-bit lookup. This allows flexible
programming of each stage of the lookup engine 74 So that
various lookup operations can be performed by the single
lookup engine.

Although certain specific embodiments are described
above for instructional purposes, the teachings of this patent
document have general applicability and are not limited to the
specific embodiments described above. Accordingly, various
modifications, adaptations, and combinations of various fea
tures of the described embodiments can be practiced without
departing from the scope of the invention as set forth in the
claims.
What is claimed is:
1. A method comprising:
(a) receiving a lookup command and an input value onto a

transactional memory, wherein the transactional
memory includes a lookup engine and a memory unit;

(b) reading a first block of first information from the
memory unit;

(c) using the first information to configure the lookup
engine in a first configuration;

(d) using the lookup engine as configured in (c) to perform
a first lookup operation on at least a part of the input
value;

(e) obtaining a first result value as a result of the first lookup
operation; and

(f) determining from the first result value to do one of the
following: 1) perform a second lookup operation, 2)
output the first result value from the transactional
memory as a result of the lookup command, wherein (a)
through (f) are performed by the transactional memory.

2. The method of claim 1, wherein the lookup engine is
configurable to perform a selected one of a plurality of dif
ferent types of lookup operations, and wherein a type value in
the block of information determines which one of the plural
ity of different types of lookup operations it is that the lookup
engine will perform to output the first result value obtained in
(e).

3. The method of claim 1, further comprising:
(g) as a result of the determining of (f) reading a second

block of second information from the memory unit;
(h) using the second information to configure the lookup

engine in a second configuration;
(i) using the lookup engine as configured in (h) to perform

a second lookup operation on at least a part of the input
value;

() obtaining a second result value as a result of the second
lookup operation; and

(k) determining from the second result value to do one of
the following: 1) perform a third lookup operation, 2)
output the second result value from the transactional
memory as a result of the lookup command, wherein (g)
through (k) are performed by the transactional memory.

US 9,069,558 B2
41

4. The method of claim 3, wherein the first result value
includes address information indicative of where in the
memory unit the second block of second information is
stored.

5. The method of claim 3, wherein the first result value
includes address information indicative of where in the
memory unit the second block of second information is
Stored, and wherein the address information is used in (g) to
read the second block of second information.

6. The method of claim 3, wherein the first block of first
information read in (b) contains a first starting point value,
wherein the first starting point value determines a first part of
the input value on which the first lookup operation is per
formed, wherein the second block of second information read
in (g) contains a second starting point value, and wherein the
Second starting point value determines a second part of the
input value on which the second lookup operation is per
formed.

7. The method of claim 1, wherein the lookup engine
includes a barrel shifter, and wherein the first block of first
information read in (b) includes a barrel shifter control value.

8. The method of claim 1, wherein the lookup engine
includes a hardware algorithmic lookup structure and a hard
ware direct lookup structure, wherein the lookup engine is
usable to perform an algorithmic lookup operation using the
hardware algorithmic lookup structure, and wherein the
lookup engine is usable to perform a direct lookup using the
hardware direct lookup structure.

9. The method of claim 1, wherein the lookup engine is
configurable to perform a selected one of a plurality of dif
ferent types of lookup operations, wherein a first of the types
is a directlookup operation, and wherein a second of the types
is an algorithmic lookup operation.

10. The method of claim 1, wherein the lookup command
is received onto the transactional memory in (a) in a first bus
transaction, and wherein the input value is received onto the
transactional memory in (a) in a second transactional
memory.

11. The method of claim 1, wherein if the determining of (f)
is a determining to do a second lookup then the first result
Value determines whether the second lookup is an algorithmic
lookup or is a direct lookup.

12. A transactional memory comprising:
a memory unit that stores a block of information, wherein

the block of information includes type value and a plu
rality of result values; and

a lookup engine that in response to a lookup command
reads the block of information from the memory unit,
uses the type value to determine a type of lookup opera
tion to perform, and performs a lookup operation of the
determined type thereby identifying one of the plurality
of result values.

13. The transactional memory of claim 12, further com
prising:

5

10

15

25

30

35

40

45

50

42
a data bus interface through which a lookup command is

received onto the transactional memory, wherein the
lookup engine performs multiple lookup operations in
response to receiving the lookup command, wherein a
last of the lookup operations results in a final result value
being identified by the lookup engine, and wherein the
final result value is output from the transactional
memory as a result of the lookup command via the data
bus interface.

14. The transactional memory of claim 12, wherein the
lookup engine comprises:

a barrel shifter, wherein the block of information includes
a barrel shifter control value, and wherein the barrel
shifter control value is supplied to the barrel shifter in
carrying out the lookup operation.

15. The transactional memory of claim 12, wherein the
lookup engine comprises:

a configurable lookup stage, wherein the type value is used
to configure the configurable lookup stage when the
lookup engine carries out the lookup operation of the
determined type.

16. The transactional memory of claim 12, wherein said
one of the plurality of result values identified by the lookup
engine includes a final result bit, wherein the final result bit
indicates whether the said one of the plurality of result values
is a final result value.

17. The transactional memory of claim 16, wherein the
transactional memory includes no processor that fetches
instructions and decodes the instructions and executes the
instructions.

18. The transactional memory of claim 16, wherein a
lookup command is received onto the transactional memory,
and wherein the lookup command includes address informa
tion indicative where in the memory unit it is that the block of
information is stored.

19. A circuit comprising:
a memory unit that stores a block of information, wherein

the block of information includes type value and a plu
rality of result values; and

means for reading the block of information from the
memory unit in response to a lookup command, and for
using the type value to determine a type of lookup opera
tion to perform, and for performing a lookup operation
of the determined type thereby identifying one of the
plurality of result values.

20. The circuit of claim 19, wherein the block of informa
tion also includes a position value, wherein the means is also
for using the position value to determine a part of an input
value to use in the lookup operation.

21. The circuit of claim 19, wherein the circuit is a trans
actional memory, and wherein the means includes a lookup
engine and a data bus interface.

:k k k k k

