

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2019/0346898 A1

Nov. 14, 2019 (43) **Pub. Date:**

(54) CONTROL CIRCUIT FOR PROGRAMMABLE POWER SUPPLY

(71) Applicant: SEMICONDUCTOR COMPONENTS

INDUSTRIES, LLC, Phoenix, AZ

(US)

Inventor: Ta-Yung YANG, Milpitas, CA (US) (72)

(73) Assignee: SEMICONDUCTOR COMPONENTS

INDUSTRIES, LLC, Phoenix, AZ

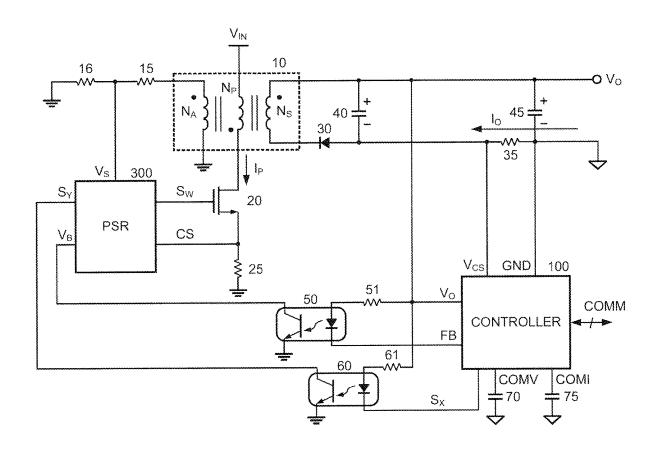
(US)

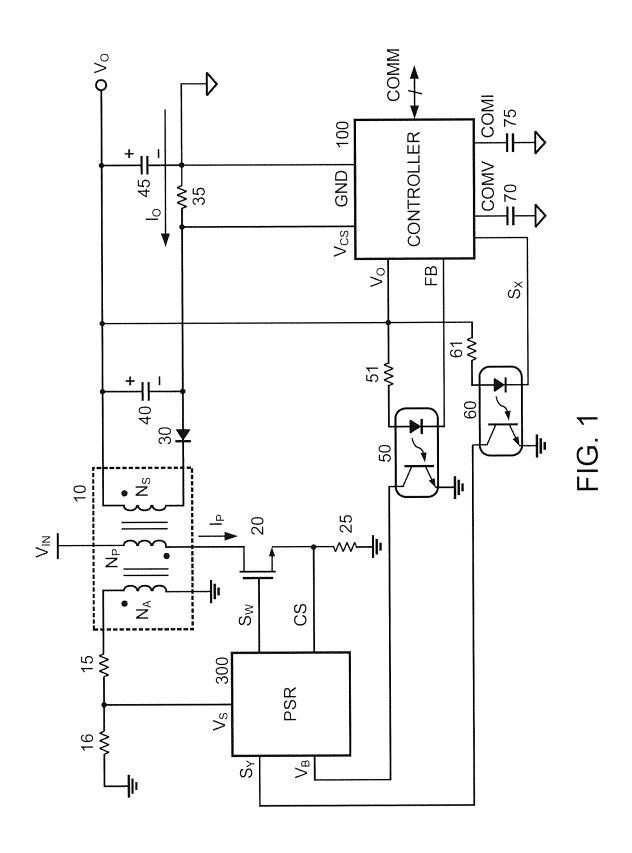
(21) Appl. No.: 16/521,043

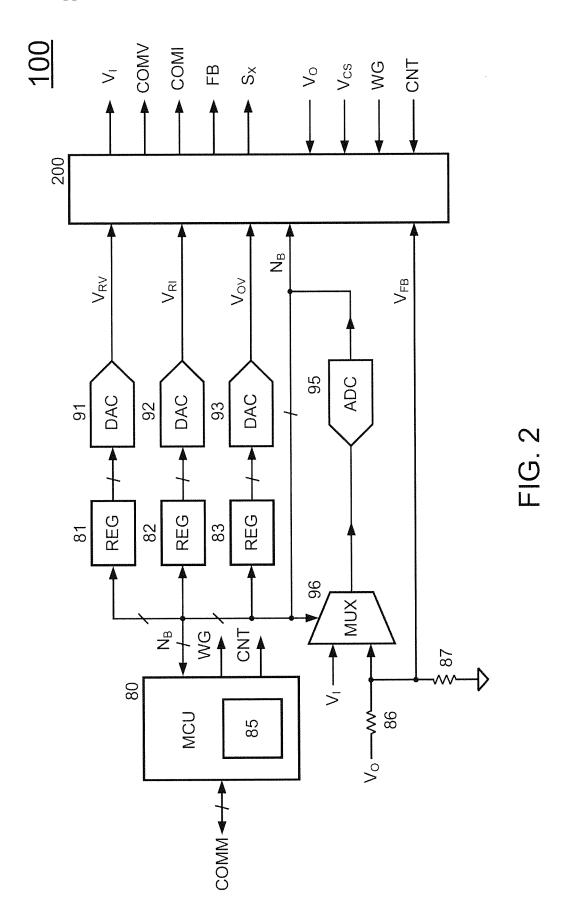
(22) Filed: Jul. 24, 2019

Related U.S. Application Data

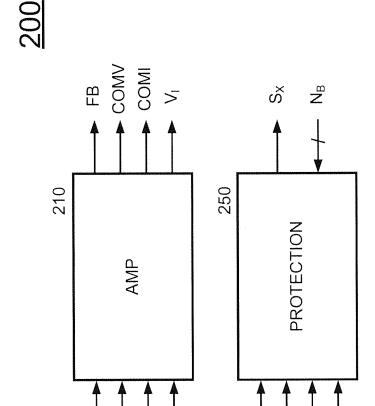
- (63) Continuation of application No. 15/891,035, filed on Feb. 7, 2018, now Pat. No. 10,401,929, which is a continuation of application No. 14/148,955, filed on Jan. 7, 2014, now Pat. No. 9,921,627.
- (60) Provisional application No. 61/749,972, filed on Jan. 8, 2013.


Publication Classification


Int. Cl. (51)G06F 1/26 (2006.01)H02M 3/335 (2006.01)

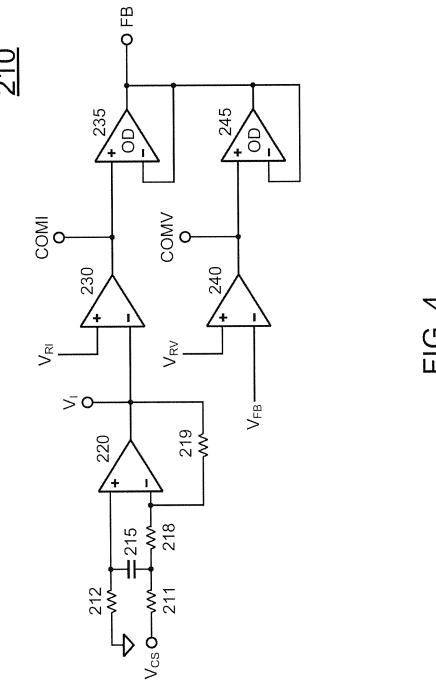
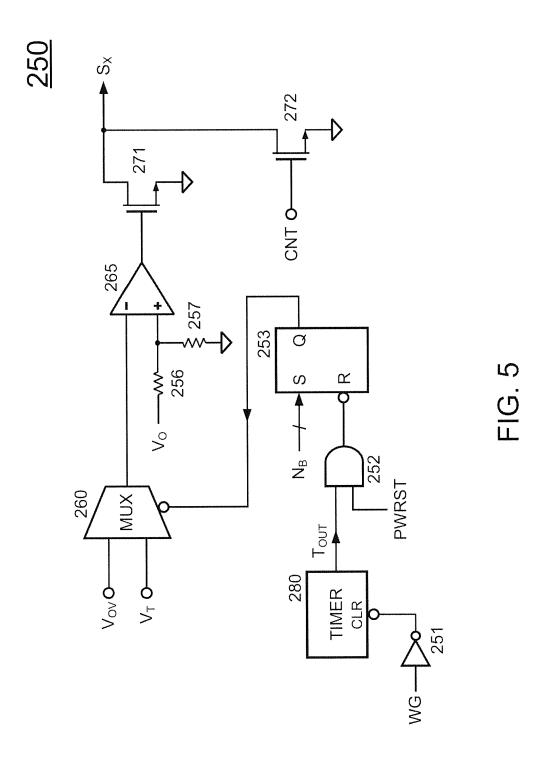
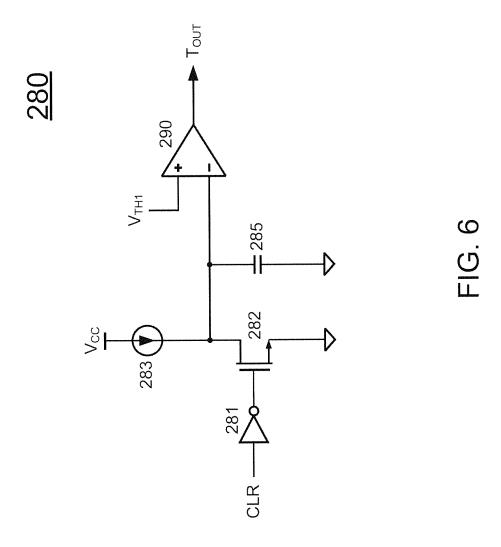
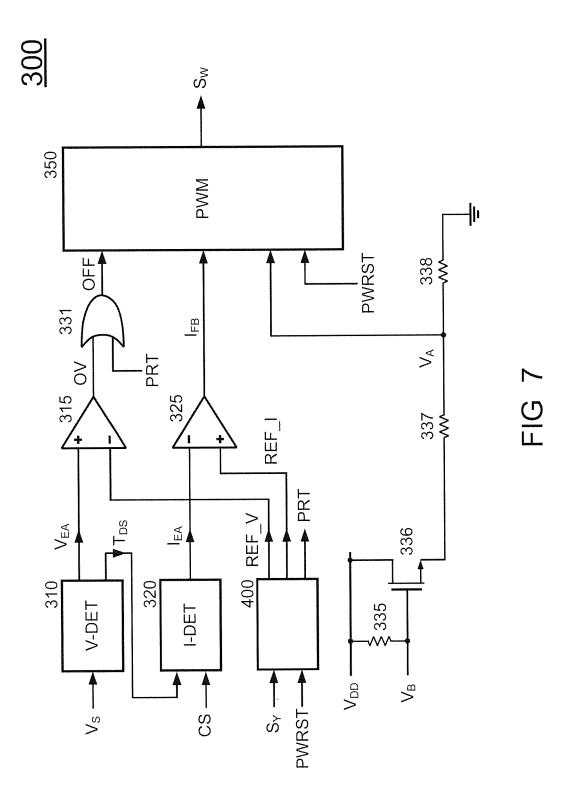
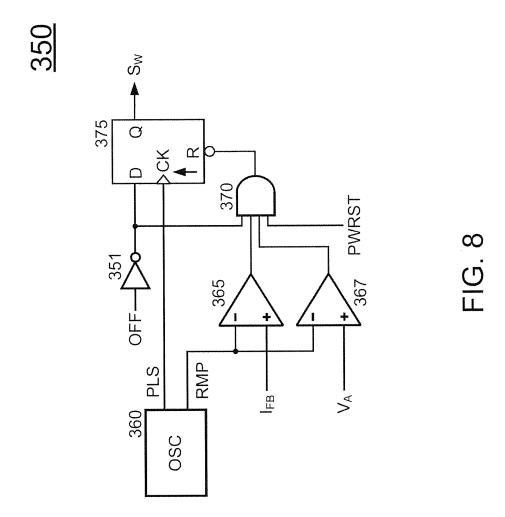

(52)U.S. Cl. CPC G06F 1/26 (2013.01); H02M 3/33523 (2013.01)

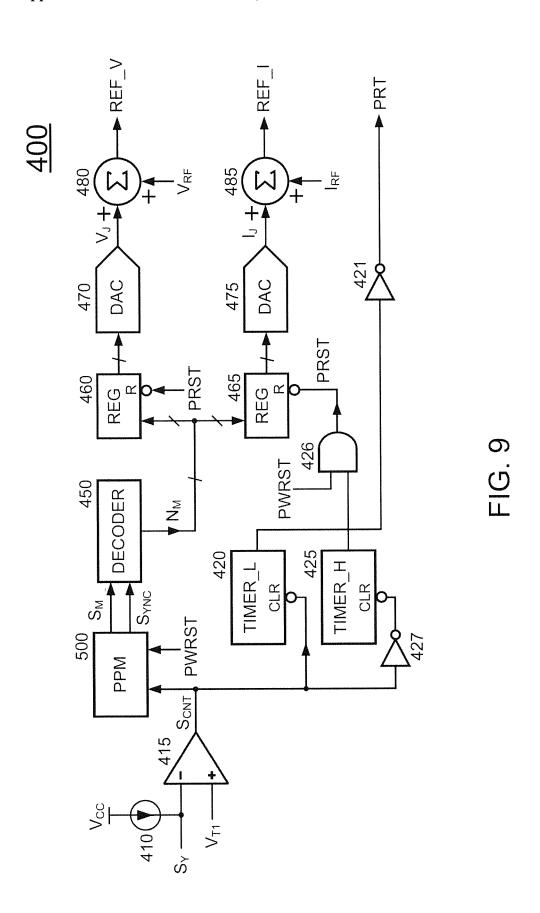
(57)ABSTRACT

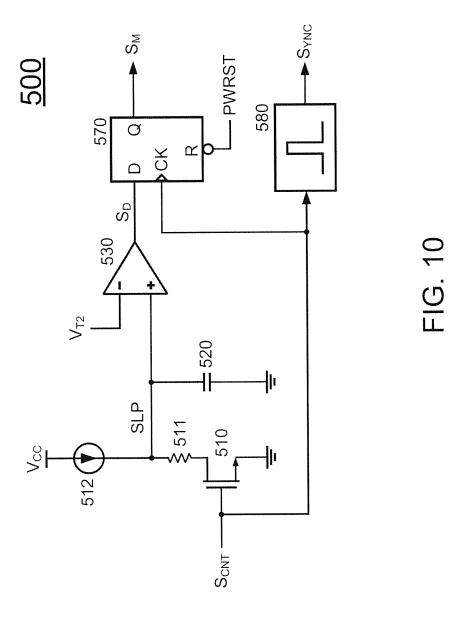

A control circuit for a programmable power supply is provided. It comprises a reference generation circuit generating a voltage-reference signal and a current-reference signal for regulating an output voltage and an output current of the power supply. A feedback circuit detects the output voltage and the output current for generating a feedback signal in accordance with the voltage-reference signal and the current-reference signal. A switching controller generates a switching signal coupled to switch a transformer for generating the output voltage and the output current in accordance with the feedback signal. A micro-controller controls the reference generation circuit. The micro-controller, the reference generation circuit, and the feedback circuit are equipped in the secondary side of the transformer. The switching controller is equipped in the primary side of the transformer. The control circuit can achieve good performance for the programmable power supply.

Vov · WG · CNT ·

V_{CS} .


FIG. 4



ent invention.

CONTROL CIRCUIT FOR PROGRAMMABLE POWER SUPPLY

REFERENCE TO RELATED APPLICATION

[0001] This patent application is based on Provisional Patent Application Ser. No. 61/749,972, filed 8 Jan. 2013, currently pending.

BACKGROUND OF THE INVENTION

Field of Invention

[0002] The present invention relates to a programmable power supply, and more specifically relates to a control circuit for the programmable power supply.

Description of the Related Art

[0003] A programmable power supply provides a wide range of the output voltage and the output current, such as 5V~20V and 0.5 A~5 A. In general, it would be difficult to develop a cost effective solution and achieve good protections, such as over-voltage protection, over-current protection, etc. The objective of the present invention is to solve this problem and achieve good performance for the programmable power supply.

BRIEF SUMMARY OF THE INVENTION

[0004] The objective of the present invention is to provide a control circuit for controlling a programmable power supply, and it achieves good performance for the programmable power supply.

[0005] A control circuit for a programmable power supply according to the present invention comprises a reference generation circuit, a feedback circuit, a switching controller, and a micro-controller. The reference generation circuit is coupled to generate a voltage-reference signal and a currentreference signal for regulating an output voltage and an output current of the power supply. The feedback circuit is coupled to detect the output voltage and the output current for generating a feedback signal in accordance with the voltage-reference signal and the current-reference signal. The switching controller generates a switching signal coupled to switch a transformer for generating the output voltage and the output current in accordance with the feedback signal. The micro-controller is coupled to control the reference generation circuit. The micro-controller, the reference generation circuit, and the feedback circuit are equipped in the secondary side of the transformer. The switching controller is equipped in the primary side of the transformer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The accompanying drawings are included to provide further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

[0007] FIG. 1 is a circuit diagram of an embodiment of a programmable power supply according to the present invention.

[0008] FIG. 2 is a circuit diagram of an embodiment of the controller according to the present invention.

[0009] FIG. 3 is a block diagram of an embodiment of the feedback circuit according to the present invention.
[0010] FIG. 4 is a circuit diagram of an embodiment of the error-amplifier circuit according to the present invention.
[0011] FIG. 5 is a circuit diagram of an embodiment of the protection circuit according to the present invention.
[0012] FIG. 6 is a reference circuit schematic of the watch-dog timer according to the present invention.
[0013] FIG. 7 is a circuit diagram of an embodiment of the switching controller according to the present invention.
[0014] FIG. 8 is a reference circuit schematic of the PWM circuit according to the present invention.
[0015] FIG. 9 is a circuit diagram of an embodiment of the programmable circuit according to the present invention.
[0016] FIG. 10 is a circuit diagram of an embodiment of

DETAILED DESCRIPTION OF EMBODIMENTS

the pulse-position modulation circuit according to the pres-

[0017] FIG. 1 is a circuit diagram of an embodiment of a programmable power supply according to the present invention. A current-sense device, such as a resistor 35, generates a current-sense signal V_{CS} in accordance with an output current I_O of the programmable power supply. The current-sense signal V_{CS} is correlated to the output current I_O . A controller 100 is coupled to receive an output voltage V_O and the current-sense signal V_{CS} to detect the output voltage V_O and the output current I_O for developing the feedback loop. The controller 100 generates a feedback signal FB coupled to a switching controller (PSR) 300 through a first signal-transfer device, such as an opto-coupler 50, for regulating the output voltage V_O and the output current I_O .

[0018] A capacitor 70 coupled to the controller 100 is used for a voltage-loop compensation. A capacitor 75 coupled to the controller 100 is applied to compensate a current-loop for the regulation of the output current I_Q . The controller 100 further generates a control signal S_X coupled to control the switching controller 300 through a second signal-transfer device, such as an opto-coupler 60. The control signal S_x is used for programming of the switching controller 300 and the protections. A resistor 51 is coupled to the opto-coupler ${\bf 50}$ and receives the output voltage ${\bf V}_{\cal O}$ from an output terminal of the programmable power supply. The resistor 51 is utilized to bias the operating current of the opto-coupler 50. A resistor 61 is coupled to the opto-coupler 60 and receives the output voltage $V_{\mathcal{O}}$ from the output terminal of the programmable power supply. The resistor 61 is applied to limit the current of the opto-coupler 60. The controller 100 includes a communication interface COMM, (e.g. USB-PD, IEEE UPAMD 1823, one-wire communication, etc.) for the communication with the external devices.

[0019] The opto-coupler 50 will generate a feedback signal V_B coupled to the switching controller 300 in accordance with the feedback signal FB. The opto-coupler 60 will generate a control signal S_Y coupled to the switching controller 300 in response to the control signal S_X . The switching controller 300 generates a switching signal S_W for switching a primary-side winding N_P of a transformer 10 and generating the output voltage V_O and the output current I_O at the secondary side of the transformer 10 through a secondary-side winding N_S , a rectifier 30, and an output capacitor 40. A capacitor 45 and the resistor 35 are coupled to the output terminal of the programmable power supply. A first terminal of the primary-side winding N_P receives an

input voltage V_{IN} . A transistor **20** is coupled to a second terminal of the primary-side winding N_P to switch the transformer **10** in response to the switching signal S_{W} .

[0020] An auxiliary winding N_A of the transformer 10 produces a reflected signal V_S coupled to the switching controller 300 via a voltage divider developed by resistors 15 and 16. The reflected signal V_S is correlated to the output voltage V_O . A resistor 25 is coupled between the transistor 20 and a ground to sense a switching current I_P of the transformer 10 for generating a current signal CS coupled to the switching controller 300. The switching controller 300 generates the switching signal S_W in accordance with the feedback signal V_S , the control signal S_S , the reflected signal V_S , and the current signal CS. The controller 100 is equipped in the secondary side of the transformer 10. The switching controller 300 is equipped in the primary side of the transformer 10.

[0021] FIG. 2 is a circuit diagram of an embodiment of the controller 100 according to the present invention. An embedded micro-controller (MCU) 80 has a memory 85 including a program memory and a data memory. The micro-controller 80 generates a watch-dog signal WG, a control signal CNT, and a control-bus signal N_B. The control-bus signal N_B is a bi-direction signal (input or output). The micro-controller 80 includes the communication interface COMM to communicate with the host and/or the I/O devices. The control-bus signal N_B is coupled to control a multiplexer (MUX) 96, an analog-to-digital converter (ADC) 95, and digital-to-analog converters (DAC) 91, 92, 93. The digital-to-analog converters 91, 92, and 93 are controlled by the micro-controller 80 through the controlbus signal N_B and registers (REG) 81, 82, 83. The registers 81, 82, and 83 have reference values. The control-bus signal N_B is utilized to set the reference values.

[0022] The current-sense signal V_{CS} is coupled to generate a current signal V_I through a feedback circuit 200. The current signal V_I is connected to the multiplexer 96. The current signal V_I is correlated to the output current I_Q shown in FIG. 1. Resistors 86 and 87 develop a voltage divider to generate a feedback signal V_{FB} in accordance with the output voltage \mathbf{V}_{O} . The feedback signal \mathbf{V}_{FB} is coupled to the multiplexer 96 and the feedback circuit 200. The output terminal of the multiplexer 96 is connected to the input terminal of the analog-to-digital converter 95. The output terminal of the multiplexer 96 outputs the current signal V_I or the feedback signal V_{FB} to the analog-to-digital converter 95 in response to the control-bus signal N_B . That is, the analog-to-digital converter 95 is coupled to detect the output voltage V_O and the output current I_O . The output terminal of the analog-to-digital converter 95 is coupled to the microcontroller 80. Therefore, via the control-bus signal N_B , the micro-controller 80 can read the information of the output current I_O and the output voltage V_O from the analog-todigital converter 95.

[0023] The micro-controller 80 controls the outputs of the digital-to-analog converters 91, 92, and 93. The first digital-to-analog converter 91 generates a voltage-reference signal V_{RV} in response to the reference value of the register 81 for controlling the output voltage V_O . The second digital-to-analog converter 92 generates a current-reference signal V_{RI} in response to the reference value of the register 82 for controlling the output current I_O . The third digital-to-analog converter 93 generates an over-voltage reference threshold V_{OV} in response to the reference value of the register 83 for

the over-voltage protection. Therefore, the digital-to-analog converters 91, 92, and 93 are operated as a reference generation circuit to generate the voltage-reference signal V_{RP} , the current-reference signal V_{RP} , and the over-voltage reference threshold V_{OP} .

[0024] The micro-controller 80 will control the overvoltage reference threshold V_{OV} in accordance with the level of the output voltage V_O . The registers 81, 82, and 83 will be reset to provide an initial value in response to the power-on of the power supply. For example, the initial value of the first register 81 will be utilized to produce a minimum value of the voltage-reference signal V_{RV} that is used to generate a 5V output voltage V_O . The initial value of the second register 82 will be utilized to produce a minimum value of the current-reference signal V_{RI} that is used to generate a 0.5 A output current I_O . In other words, the voltage-reference signal V_{RV} , the current-reference signal V_{RV} and the over-voltage reference threshold V_{OV} will be reset to the initial value in response to the power-on of the power supply.

[0025] The feedback circuit 200 generates a voltage-feedback signal COMV, a current-feedback signal COMI, the feedback signal FB, and the control signal S_X in response to the voltage-reference signal V_{RV} , the current-reference signal V_{RV} , the over-voltage reference threshold V_{OV} , the output voltage V_O , the feedback signal V_{FB} , the current-sense signal V_{CS} , the watch-dog signal WG, the control signal CNT, and the control-bus signal V_B . The feedback circuit 200 is coupled to detect the output voltage V_O and the output current V_{CS} for generating the feedback signal V_{CS} in accordance with the feedback signal V_{FB} , the current-sense signal V_{CS} , the voltage-reference signal V_{RV} , and the current-reference signal V_{RV} . The feedback signal FB is transferred from the feedback circuit 200 to the switching controller 300 by the opto-coupler 50 (as shown in FIG. 1).

[0026] FIG. 3 is a block diagram of an embodiment of the feedback circuit 200 according to the present invention. It includes an error-amplifier circuit (AMP) 210 and a protection circuit (PROTECTION) 250. The error-amplifier circuit 210 generates the voltage-feedback signal COMV, the current-feedback signal COMI, the feedback signal FB, and the current signal V_I in accordance with the voltage-reference signal V_{RD} , the current-sense signal V_{CS} , and the feedback signal V_{FB} . The protection circuit 250 generates the control signal V_{CD} , the output voltage V_O , the watch-dog signal V_I , the control signal CNT, and the control-bus signal V_B .

[0027] FIG. 4 is a circuit diagram of an embodiment of the error-amplifier circuit 210 according to the present invention. It includes resistors 211, 212, and a capacitor 215 coupled to receive the current-sense signal $V_{\it CS}$ and filter the noise. A first terminal of the resistor 211 is coupled to receive the current-sense signal V_{CS} . A first terminal of the resistor 212 is coupled to the ground. The capacitor 215 is coupled between second terminals of the resistors 211 and 212. The capacitor 215 is further connected between a positive input terminal of an operational amplifier 220 and the second terminal of the resistor 211. Resistors 218 and 219 determine the gain of the operational amplifier 220. The resistor 218 is coupled between the second terminal of the resistor 211 and a negative input terminal of the operational amplifier 220. The resistor 219 is coupled between the negative input terminal and an output terminal of the operational amplifier

220. The operational amplifier **220** generates the current signal V_I by amplifying the current-sense signal V_{CS} .

[0028] An error amplifier 230 generates the current-feedback signal COMI in accordance with the current signal V_I and the current-reference signal V_{RI} . The current signal V_I is coupled to a negative input terminal of the error amplifier 230. The current-reference signal V_{RI} is supplied with a positive input terminal of the error amplifier 230. An output terminal of the error amplifier 230 outputs the current-feedback signal COMI. Therefore, the error amplifier 230 generates the current-feedback signal COMI in accordance with the output current I_O (as shown in FIG. 1) and the current-reference signal V_{RI} . The current-feedback signal COMI is connected to the capacitor 75 (as shown in FIG. 1) for the loop-compensation.

[0029] An error amplifier 240 generates the voltage-feedback signal COMV in accordance with the feedback signal V_{FB} and the voltage-reference signal V_{RV} . The feedback signal V_{FB} is coupled to a negative input terminal of the error amplifier 240. The voltage-reference signal V_{RV} is supplied with a positive input terminal of the error amplifier 240 outputs the voltage-feedback signal COMV. Therefore, the error amplifier 240 generates the voltage-feedback signal COMV in accordance with the output voltage V_O (as shown in FIG. 1) and the voltage-reference signal V_{RV} . The voltage-feedback signal COMV is connected to the capacitor 70 (as shown in FIG. 1) for the loop-compensation.

[0030] The voltage-feedback signal COMV is further connected to a positive input terminal of a buffer (OD) 245 to generate the feedback signal FB. A negative input terminal of the buffer 245 is coupled to an output terminal of the buffer 245. The current-feedback signal COMI is further connected to a positive input terminal of a buffer 235. A negative input terminal of the buffer 235 is coupled to an output terminal of the buffer 235. The output terminal of the buffer 245 is parallel connected to the output terminal of the buffer 235. The buffer 235 and the buffer 245 have the open-drain output, thus they can be wire-OR connected.

[0031] FIG. 5 is a circuit diagram of an embodiment of the protection circuit 250 according to the present invention. The watch-dog signal WG is coupled to clear a watch-dog timer (TIMER) 280 via an inverter 251. The watch-dog timer 280 will generate an expired signal T_{OUT} (logic-low level) if the watch-dog signal WG is not generated (logic-low level) in time periodically. The expired signal T_{OUT} can be regarded as a time-out signal. The expired signal T_{OUT} and a power-on reset signal PWRST are coupled to a reset input terminal R of a RS flip-flop 253 via an AND gate 252 to reset the RS flip-flop 253. The RS flip-flop 253 is set by the micro-controller 80 (as shown in FIG. 2) through the control-bus signal N_B . The control-bus signal N_B is coupled to a set input terminal S of the RS flip-flop 253.

[0032] The over-voltage reference threshold ${\rm V}_{OV}$ and a threshold ${\rm V}_{T}$ are coupled to a multiplexer (MUX) 260. The multiplexer 260 outputs the over-voltage reference threshold ${\rm V}_{OV}$ or the threshold ${\rm V}_{T}$ as an over-voltage threshold for the over-voltage protection. Therefore, the multiplexer 260 is associated with the third register 83 and the third digital-to-analog converter 93 (as shown in FIG. 2) as a threshold generation circuit for generating the over-voltage threshold. The over-voltage reference threshold ${\rm V}_{OV}$ or the threshold ${\rm V}_{T}$ is coupled to a comparator 265 via the multiplexer 260. The multiplexer 260 is controlled by an output terminal Q of

the RS flip-flop 253. When the RS flip-flop 253 is set, the over-voltage reference threshold \mathbf{V}_{OV} will be outputted to a negative input terminal of the comparator 265. If the RS flip-flop 253 is reset, the threshold \mathbf{V}_T will be outputted to the negative input terminal of the comparator 265 for the over-voltage protection. The output voltage \mathbf{V}_O is coupled to a positive input terminal of the comparator 265 through a voltage divider developed by resistors 256 and 257.

[0033] The threshold \mathbf{V}_T is a minimum threshold for the over-voltage protection. The over-voltage threshold of the over-voltage protection is programmable by the microcontroller 80 through programming the level of the overvoltage reference threshold $V_{\it OV}$. This over-voltage threshold will be reset as a minimum value (the threshold V_T) if the watch-dog signal WG is not generated in time periodically. For example, the over-voltage threshold will be programmed to 14V for a 12V output voltage V_O , and the over-voltage threshold will be programmed to 6V for a 5V output voltage V_Q. If the watch-dog signal WG is not generated by the micro-controller 80 timely, then the overvoltage threshold will be reset to 6V even the output voltage V_O is set as 12V, which will protect the power supply from abnormal operation when the micro-controller 80 is operated incorrectly. Further, the over-voltage threshold also will be reset as the minimum value in response to the power-on of the power supply.

[0034] An output signal of the comparator 265 is coupled to a gate of a transistor 271. Once the output voltage V_Q is higher than the over-voltage threshold (the over-voltage reference threshold V_{OV} or the threshold V_T), the output signal of the comparator 265 drives the transistor 271 for generating the control signal S_X (logic-low level). A source of the transistor 271 is coupled to the ground. A drain of the transistor 271 outputs the control signal S_X . Accordingly, the comparator 265 is utilized to compare the output voltage ${\rm V}_{\scriptscriptstyle O}$ with the over-voltage threshold for the over-voltage protection. The comparator 265 is associated with the transistor 271 as an over-voltage protection circuit to generate the control signal S_X . The control signal S_X serves as an overvoltage signal. As shown in FIG. 1, the control signal S_x is sent to the switching controller 300 through the opto-coupler **60** to disable the switching signal S_W for the over-voltage protection.

[0035] The control signal CNT from the micro-controller 80 also drives a transistor 272 to generate the control signal S_X . The control signal CNT is coupled to a gate of the transistor 272. A source of the transistor 272 is coupled to the ground. A drain of the transistor 272 outputs the control signal S_X . The outputs of the transistors 271 and 272 are parallel connected. Thus, the control signal S_X is used for the protection of the power supply and the control of the micro-controller 80.

[0036] FIG. 6 is a reference circuit schematic of the watch-dog timer 280 according to the present invention. As shown in FIG. 6, the watch-dog timer 280 comprises an inverter 281, a transistor 282, a constant current source 283, a capacitor 285, and a comparator 290. A first terminal of the constant current source 283 is coupled to a supply voltage $V_{\it CC}$. A second terminal of the constant current source 283 is coupled to a drain of the transistor 282 and a first terminal of the capacitor 285. A source of the transistor 282 and a second terminal of the capacitor 285 are coupled to the ground. An input signal CLR of the watch-dog timer 280 is coupled to a gate of the transistor 282 through the inverter

281 to control the transistor 282. In this embodiment, the input signal CLR is the inversed watch-dog signal /WG generated from the inverter 251 shown in FIG. 5. A negative input terminal of the comparator 290 is coupled to the first terminal of the capacitor 285. A positive input terminal of the comparator 290 is coupled to receive a threshold V_{TH1} . The comparator 290 compares the voltage of the capacitor 285 with the threshold V_{TH1} for generating the expired signal T_{OUT} .

[0037] The constant current source 283 is utilized to charge the capacitor 285. The input signal CLR of the watch-dog timer 280 is coupled to discharge the capacitor 285 via the inverter 281 and the transistor 282. If the capacitor 285 is not discharged by the input signal CLR timely, then the comparator 290 will generate the expired signal T_{OUT} when the voltage of the capacitor 285 is charged and higher than the threshold V_{TH1} . At this time, the level of the expired signal T_{OUT} is the logic-low level.

[0038] FIG. 7 is a circuit diagram of an embodiment of the switching controller 300 according to the present invention. It includes a voltage detection circuit (V-DET) 310 to generate a voltage-loop signal $V_{\it EA}$ and a discharge time signal T_{DS} in response to the reflected signal V_S . The voltage-loop signal V_{EA} is correlated to the output voltage V_O shown in FIG. 1. The discharge time signal T_{DS} is correlated to the demagnetizing time of the transformer 10 shown in FIG. 1. Therefore, the switching controller 300 is coupled to detect the output voltage $V_{\mathcal{O}}$ by detecting the reflected signal $V_{\mathcal{S}}$ of the transformer 10. A current detection circuit (I-DET) 320 generates a current-loop signal I_{EA} in response to the current signal CS and the discharge time signal T_{DS} . The voltage detection circuit 310 and the current detection circuit 320 are related to the technology of the primary side regulation (PSR) of the power converter. The detail of the skill of the primary side regulation can be found in the prior arts of "Control circuit for controlling output current at the primary side of a power converter", U.S. Pat. No. 6,977,824; "Close-loop PWM controller for primaryside controlled power converters", U.S. Pat. No. 7,016,204; and "Primary-side controlled switching regulator", U.S. Pat. No. 7,352,595; etc.

[0039] The voltage-loop signal V_{EA} is coupled to a positive input terminal of a comparator 315. A reference signal REF_V is supplied with a negative input terminal of the comparator 315. The voltage-loop signal V_{EA} is coupled to the comparator 315 for generating an over-voltage signal OV when the voltage-loop signal V_{EA} is higher than the reference signal REF_V. The current-loop signal I_{EA} is coupled to a negative input terminal of an amplifier 325. A reference signal REF_I is supplied with a positive input terminal of the amplifier 325. The current-loop signal I_{EA} associated with the reference signal REF_I generates a current feedback signal II_B for generating the switching signal S_{W} . Therefore, the switching controller 300 generates the switching signal S_{W} in accordance with the reference signal REF_I.

[0040] A programmable circuit 400 is coupled to generate the reference signals REF_V, REF_I, and a protection signal PRT in response to the control signal $S_{\it Y}$ and the power-on reset signal PWRST. The reference signal REF_V is operated as an over-voltage threshold signal for the over-voltage protection. This over-voltage protection is developed by the detection of the reflected signal $V_{\it S}$. The reference signal REF_I is operated as a current limit threshold signal for

limiting the output current I_O (as shown in FIG. 1) of the power supply. Because the control signal $S_{\mathcal{X}}$ represents the control signal $S_{\mathcal{X}}$ from the micro-controller **80** (as shown in FIG. 2), the reference signals REF_V and REF_I are controlled by the control signal $S_{\mathcal{X}}$ for the over-voltage protection of the output voltage V_O and the current limit of the output current I_O .

[0041] The protection signal PRT and the over-voltage signal OV are coupled to generate an off signal OFF via an OR gate 331. A resistor 335 is utilized to pull high the feedback signal V_B . The feedback signal V_B is coupled to generate a secondary feedback signal V_A through a levelshift circuit. The level-shift circuit comprises a transistor 336, and resistors 335, 337, 338. A drain of the transistor 336 is coupled to a supply voltage V_{DD} . A first terminal of the resistor 335 is coupled to the supply voltage V_{DD} and the drain of the transistor 336. A second terminal of the resistor 335 is coupled to a gate of the transistor 336 and the feedback signal V_B . The gate of the transistor 336 is further coupled to receive the feedback signal V_B . A source of the transistor 336 is coupled to a first terminal of the resistor 337. The resistor 338 is coupled between a second terminal of the resistor 337 and the ground. The secondary feedback signal V_A is generated at the joint of the resistors 337 and 338. The secondary feedback signal $\mathbf{V}_{\!\scriptscriptstyle A}$ is correlated to the feedback signal V_B .

[0042] A PWM circuit (PWM) **350** generates the switching signal S_W in response to the secondary feedback signal V_A , the current feedback signal I_{FB} , the off signal OFF, and the power-on reset signal PWRST.

[0043] FIG. 8 is a reference circuit schematic of the PWM circuit 350 according to the present invention. An oscillator (OSC) 360 generates a clock signal PLS and a ramp signal RMP. The clock signal PLS is coupled to a clock input terminal CK of a flip-flop 375. An output terminal Q of the flip-flop 375 outputs the switching signal S_W . The off signal OFF is coupled to an input terminal D of the flip-flop 375 via an inverter 351.

[0044] The ramp signal RMP is coupled to negative input terminals of comparators 365 and 367. The current feedback signal I_{FB} is coupled to a positive input terminal of the comparator 365 to compare with the ramp signal RMP. The secondary feedback signal V_A is coupled to a positive input terminal of the comparator 367 to compare with the ramp signal RMP. Output terminals of the comparators 365 and 367 are coupled to input terminals of an AND gate 370. The off signal OFF is further coupled to the input terminal of the AND gate 370 though the inverter 351. The power-on reset signal PWRST is also coupled to the input terminal of the AND gate 370. An output terminal of the AND gate 370 is coupled to a reset input terminal R of the flip-flop 375.

[0045] The clock signal PLS periodically enables the switching signal S_W via the flip-flop 375. The switching signal S_W will be disabled once the ramp signal RMP is higher than the current feedback signal I_{FB} in the comparator 365 or the secondary feedback signal V_A in the comparator 367. The off signal OFF is also coupled to disable the switching signal S_W through the inverter 351 and the AND gate 370. The power-on reset signal PWRST is also coupled to disable the switching signal S_W through the AND gate 370.

[0046] FIG. 9 is a circuit diagram of an embodiment of the programmable circuit 400 according to the present invention. A current source 410 is connected to pull high the

control signal S_{I} . The current source **410** is coupled from the supply voltage V_{CC} to a negative input terminal of a comparator **415**. The control signal S_{I} is also coupled to the negative input terminal of the comparator **415**. The comparator **415** will generate a pulse signal S_{CNT} once the control signal S_{I} is lower than a threshold VTI supplied with a positive input terminal of the comparator **415**.

[0047] A pulse-position modulation circuit (PPM) 500 generates a demodulated signal S_M and a synchronous signal $S_{Y\!N\!C}$ in response to the pulse signal $S_{C\!N\!T}$. The pulse signal S_{CNT} indicates the control signal S_X of the controller 100 (as shown in FIG. 2). The demodulated signal S_M and the synchronous signal S_{YNC} are coupled to a digital-decoder (DECODER) 450 to generate a digital data N_M . The digital data N_M is stored into a register (REG) 460 and a register (REG) 465. The register 460 is coupled to output the digital data N_M to a digital-to-analog converter (DAC) 470 for generating a voltage-adjust signal $V_{\mathcal{J}}$. An add circuit 480 generates the reference signal REF_V by adding a reference signal V_{RF} and the voltage-adjust signal V_J . The register 465 is coupled to output the digital data N_M to a digital-to-analog converter (DAC) 475 for generating a current-adjust signal I_r. An add circuit **485** generates the reference signal REF_I by adding a reference signal I_{RF} and the current-adjust signal I_{J} . In other words, the digital data N_{M} is utilized to generate the voltage-adjust signal V_J and the current-adjust signal I_J for generating the reference signals REF_V and REF_I.

[0048] Therefore, the reference signal REF_V and the reference signal REF_I are programmable by the microcontroller 80 of the controller 100. The reflected signal V_S of the transformer 10 (as shown in FIG. 1) is used for the over-voltage protection in the primary side of the transformer 10. The threshold (reference signal REF_V) of this over-voltage protection (for output voltage V_O) is programmable by the controller 100 in the secondary side of the transformer 10. Furthermore, the current limit (reference signal REF_I) of the output current I_O (as shown in FIG. 1) can be programmed by the controller 100 in the secondary side of the transformer 10.

[0049] The pulse signal S_{CNT} is further coupled to a timer (TIMER_L) 420 for detecting the pulse width of the pulse signal S_{CNT} . That is, the timer 420 is used to detect the logic-low period of the control signal S_X shown in FIG. 1. The protection signal PRT will be generated by the timer 420 via an inverter 421 if the pulse width of the pulse signal S_{CNT} is over a period T_{OV} . The circuit of the timer 420 can be the same as the circuit of the watch-dog timer 280 shown in FIG. 6. The current of the constant current source 283, the capacitance of the capacitor 285, and the value of the threshold V_{TH1} determine the period T_{OV} .

[0050] This protection signal PRT is coupled to the OR gate 331 (as shown in FIG. 7) to generate the off signal OFF for disabling the switching signal S_{W} . Because the control signal S_{X} (the pulse signal S_{CNT}) shown in FIG. 5 will be generated greater than the period T_{OV} when the over-voltage of the output voltage V_{O} is detected by the controller 100 in the secondary side of the transformer 10 (as shown in FIG. 1), the switching signal S_{W} will be disabled by the switching controller 300 once the over-voltage of the output voltage V_{O} is detected.

[0051] Another timer (TIMER_H) 425 is coupled to receive the pulse signal S_{CNT} through an inverter 427. An output terminal of the timer 425 is coupled to an AND gate 426. The timer 425 will generate a reset signal PRST via the

AND gate **426** once the pulse signal S_{CNT} is not generated over a specific period T_{OT} . The circuit of the timer **425** can be the same as the circuit of the watch-dog timer **280** shown in FIG. **6**. The current of the constant current source **283**, the capacitance of the capacitor **285**, and the value of the threshold V_{TH1} determine the period T_{OT} . The power-on reset signal PWRST is also coupled to the AND gate **426** to generate the reset signal PRST through the AND gate **426**. The reset signal PRST is coupled to clear the registers **460** and **465** for resetting the value of the voltage-adjust signal V_J and the current-adjust signal I_J to the zero.

[0052] Therefore, the reference signal REF_V will be set to a minimum value (reference signal V_{RF}), that is the initial value, for the over-voltage protection once the control signal S_X is not generated in time by the controller 100 or the power supply is powered on. Besides, the reference signal REF_I will be set to a minimum value (reference signal I_{RF}), that is the initial value, for limiting the output current I_O once the control signal S_X is not generated in time by the controller 100 or the power supply is powered on. Therefore, if the micro-controller 80 is not operated properly, then the threshold (reference signal REF_I) for the output current limit will be reset to the minimum value for the protection.

[0053] Consequently, the control signal S_X generated by the controller 100 is used for,

[0054] (1) the over-voltage protection when the over-voltage is detected in the controller 100;

[0055] (2) the communication for setting the over-voltage threshold (REF_V) and the current limit threshold (REF_I) in the switching controller 300;

[0056] (3) resetting the timer 425 in the switching controller 300 to ensure the controller 100 is operated properly, otherwise the over-voltage threshold (REF_V) and the current limit threshold (REF_I) of the switching controller 300 will be reset to the minimum value for protecting the power supply.

[0057] FIG. 10 is a circuit diagram of an embodiment of the pulse-position modulation circuit 500 according to the present invention. It operates as a de-modulator for an input signal with the pulse-position modulation, such as the control signals S_X , S_Y , and the pulse signal S_{CNT} . A current source 512 is coupled from the supply voltage V_{CC} to a first terminal of a capacitor 520 to charge the capacitor 520. A second terminal of the capacitor 520 is coupled to the ground. A resistor 511 is coupled between the first terminal of the capacitor 520 and a drain of a transistor 510. A source of the transistor 510 is coupled to the ground. The pulse signal S_{CNT} is coupled to a gate of the transistor 510 to drive the transistor 510. The pulse signal S_{CNT} is coupled to discharge the capacitor 520 through the transistor 510 and the resistor 511. A slope signal SLP is thus generated at the capacitor 520.

[0058] A positive input terminal of a comparator 530 is coupled to the first terminal of the capacitor 520. A threshold V_{T2} is supplied with a negative input terminal of the comparator 530. The comparator 530 will generate a data signal S_D as a logic-high level once the slope signal SLP is higher than the threshold V_{T2} . The data signal S_D is coupled to an input terminal D of a flip-flop 570. The pulse signal S_{CNT} is further coupled to a clock input terminal CK of the flip-flop 570. The data signal S_D will be latched into the flip-flop 570 in response to the pulse signal S_{CNT} for generating the

demodulated signal S_M at an output terminal Q of the flip-flop 570. The power-on reset signal PWRST is coupled to a reset input terminal R of the flip-flop 570 to reset the flip-flop 570. The pulse signal S_{CNT} is further coupled to generate the synchronous signal S_{YNC} through a pulse generation circuit 580. The demodulated signal S_M is generated in accordance with the pulse position of the control signal S_M .

[0059] Although the present invention and the advantages thereof have been described in detail, it should be understood that various changes, substitutions, and alternations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims. That is, the discussion included in this invention is intended to serve as a basic description. It should be understood that the specific discussion may not explicitly describe all embodiments possible; many alternatives are implicit. The generic nature of the invention may not fully explained and may not explicitly show that how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Neither the description nor the terminology is intended to limit the scope of the claims.

1-37. (canceled)

- **38**. A control circuit for a programmable power supply circuit, comprising:
 - a controller circuit configured to provide a feedback signal for use by a switching controller for generating a switching signal to switch a transformer for generating an output voltage and an output current in accordance with the feedback signal;
 - a first reference circuit configured to generate a voltagereference signal, the first reference circuit having a first register having a first reference value;
 - a second reference circuit configured to generate a current-reference signal for regulating the output current, the second reference circuit having a second register having a second reference value; and
 - the controller circuit configured to read a first signal having a value that is representative of a value of the output voltage and to read a second signal that is representative of a value of the output current, the control circuit configured to access the first register and set the first reference value responsively to the value of the output voltage, and to access the second register and set the second reference value responsively to the value of the output current.
- **39**. The control circuit of claim **38** further including a feedback circuit configured to form the feedback signal from the voltage-reference signal and the first signal, and from the current-reference signal and the second signal.
- **40**. The control circuit of claim **39** wherein the feedback circuit includes a first comparator configured to receive the feedback signal and the voltage-reference signal and form a first output signal.
- 41. The control circuit of claim 40 wherein the feedback circuit includes a second comparator configured to receive the current-reference signal and the second signal and form a second output signal, the second output signal ORed together with the first output signal to form the feedback signal.
- 42. The control circuit of claim 38 wherein the first register stores the first reference value as a first digital value,

- the first reference circuit including a first digital-to-analog converter configured to receive the first reference value and form the voltage reference signal.
- **43**. The control circuit of claim **42** wherein the second register stores the second reference value as a second digital value, the first reference circuit including a second digital-to-analog converter configured to receive the second reference value and form the current-reference signal.
- **44**. The control circuit of claim **38** wherein the control circuit includes an analog-to-digital converter configured to convert the first signal and the second signal to a digital value, the control circuit configured to read the first signal and the second signal from the analog-to-digital converter.
- **45**. The control circuit of claim **38** wherein the control circuit includes a micro-controller coupled to the first register and coupled to the second register.
- **46**. The control circuit of claim **38** wherein the control circuit includes a third reference circuit configured to generate an over-voltage threshold of the output voltage, the third reference circuit having a third register having a third reference value representative of the over-voltage threshold.
- **47**. The control circuit of claim **46** wherein the control circuit is configured to access the third register and set a value of the third reference value.
- **48**. The control circuit of claim **46** further including an over-voltage protection circuit configured to form an over-voltage signal by comparing the output voltage and the third reference value.
- **49**. A circuit for a programmable power supply circuit, comprising:
 - a control circuit configured to provide a feedback signal for use by a switching controller for generating a switching signal to switch a transformer for generating an output voltage and an output current in accordance with the feedback signal;
 - a reference generation circuit configured to generate a voltage-reference signal responsively to a first value in a first register and to generate a current-reference signal responsively to a second value in a second register;
 - a feedback circuit configured to detect a value of the output voltage and detect a value of the output current, and form the feedback signal responsive to both the output voltage and the output current; and
 - a control circuit configured to set the first value in the first register and set the second value in the second register.
- **50**. The circuit of claim **49** wherein the control circuit includes a micro-controller configured to set the first value in the first register and set the second value in the second register.
- **51**. The circuit of claim **49** wherein the reference generation circuit includes a first register configured to hold the first value as a first digital value, and includes a first digital-to-analog converter to form the voltage-reference signal from the first digital value.
- **52.** The circuit of claim **51** wherein the reference generation circuit includes a second register configured to hold the second value as a second digital value, and includes a second digital-to-analog converter to form the current-reference signal from the second digital value.
- **53**. The circuit of claim **52** wherein the reference generation circuit includes a third register configured to hold an over-voltage threshold as a third digital value, and includes a third digital-to-analog converter to form an over-voltage threshold signal from the third digital value.

- **54**. The circuit of claim **53** wherein the over-voltage threshold will be reset to a minimum value in response to a power-on of the programmable power supply.
- **55**. The circuit of claim **49** wherein the control circuit is configured to read the value of the output voltage and read the value of the output current.
 - 56. A circuit for a power supply, comprising:
 - a control circuit configured to form a feedback signal for use by a switching controller that is configured to generate a switching signal to generate an output voltage and an output current in accordance with the feedback signal;
 - a first reference circuit configured to generate a voltagereference signal from a first value in a first register;
 - a second reference circuit configured to generate a current-reference signal from a second value in a second register;

- the control circuit configured to set the first value in the first register and to set the second value in the second register;
- a feedback circuit configured to detect the output voltage and the output current and form the feedback signal in response to both the output voltage and the output current; and
- the control circuit configured to adjust a value of the feedback signal in accordance with the detected voltage-reference signal and the detected current-reference signal.
- 57. The circuit of claim 56 wherein the feedback circuit is configured to compare the output voltage to the voltage-reference signal and form a first output, and configured to compare the output current to the current-reference signal and form a second output, the feedback circuit configured to OR the first output with the second output to form the feedback signal.

* * * * *