US 20190347027A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0347027 A1

MEHRA et al. 43) Pub. Date: Nov. 14, 2019
(54) PINNING IN A MULTI-TIERED SYSTEM (52) US. CL
CPC ... GO6F 3/0643 (2013.01); GOGF 3/0631
(71) Applicant: Microsoft Technology Licensing, LLC, (2013.01); GOG6F 3/0611 (2013.01); GO6F
Redmond, WA (US) 3/0644 (2013.01); GOGF 3/0685 (2013.01)
(72) Inventors: Karan MEHRA, Sammamish, WA
(US); Neal Robert CHRISTIANSEN, G7) ABSTRACT
Bellevue, WA (US); Andrew . . . .
HERRON, Anacortes, WA (US) A computing device has a tiered storage with at least two
’ ’ types of storage classes which further comprise storage tiers.
(21) Appl. No.: 15/979,371 A file system is instantiated that is configured to allocate
storage implemented as a plurality of storage classes, the
(22) Filed: May 14, 2018 storage classes each corresponding to a set of storage tiers
.. . . having performance and capacity characteristics. A content
Publication Classification item is pinned with a first one of the storage classes. Storage
51) Imt. CL 1n a storage tier is allocated to the content item in accordance
i ge tier is all d to th item i di
GO6F 3/06 (2006.01) with the pinned first storage class.
Storage
N N
Storage
2 Gb Tier |
210
L Storage
Class 1 250
Storage
2Gb Tier it
220 )
> {
96 Gb < Storage Tier 3
230
> 200 Gb
> Total Space
In Virtual Disk
_ Storage
Storage Tier 4 Class 2 260
240
100 Gb <
- J <




Patent Application Publication  Nov. 14,2019 Sheet 1 of 8 US 2019/0347027 A1

Remote

100
‘\ Source

142

Pin
Requests

Application 114 108
Registry 116 Librares 148 { /.
Stack / Operating System (0S) 112 e
138 , Network(s)
Drivers 110 144
APl 140
/ : ™~
Computing Device 102
Storage 104 .| Central Processing Unit
— (CPU) 122
First Partition 106(1)
| System Updates 108 ] Memory 124
l Drivers 110 ] | Registry 116 l RAM 126
| 0S112 || Libraries118 |
Application 114
l e = ] ROM 128
Second Partition 106(2)
— Boot Manager 130

o

o | G Controfier

¢ 132

N-th Partition 106(N) Network Interface
( 134
Bus 1 6)

FIG. 1



Patent Application Publication

2Gb <

2 Gb <

96 Gb <

100 Gb <

Y4

N

N/

Storage

Storage
Tier |
210

Storage
Tier ti
220

Storage Tier 3
230

Storage Tier 4
240

FIG. 2

Nov. 14,2019 Sheet 2 of 8

Storage
Class 1 250

Storage
Class 2 260

US 2019/0347027 Al

200 Gb
Total Space
In Virtual Disk



Patent Application Publication  Nov. 14,2019 Sheet 3 of 8 US 2019/0347027 A1

Storage

Storage
Tier |
210

Storage
Tier H
220

File
210

Storage Tier 3
230

Storage Tier 4
240

FIG. 3



Patent Application Publication Nov. 14,2019 Sheet 4 of 8 US 2019/0347027 A1

Storage

Storage
Tier |
210

Storage
Tier H
220

File
210

Storage Tier 3
230

Storage Tier 4
240

FIG. 4



Patent Application Publication  Nov. 14,2019 Sheet 5 of 8

\/_\

FIG. 5

500
FILE METADATA /’—J
CONTENTID 502
PIN TO CLASS 504
BEST EFFORT 506
MANDATORY 508
SOURCE D 510
METADATA 1 520
METADATA 2 522

US 2019/0347027 Al



Patent Application Publication  Nov. 14,2019 Sheet 6 of 8 US 2019/0347027 A1

600

start

602 exposing the tiered storage as
a single storage volume

l

604 receiving a request to associate
a first content item associated with
a first storage class

606 storing an indication that the
first content item is associated with
the first storage class

608 allocating a portion of storage
in the first storage class for the first
content item

FIG. 6



Patent Application Publication  Nov. 14,2019 Sheet 7 of 8 US 2019/0347027 A1

700
start

702 instantiate an application
programming interface (APl)
configured to receive electronic
messages that indicate requests to
allocate a portion of storage for a
first content item

704 based on a rule or the
electronic messages, pinning the
first content item with one of the

storage classes

706 allocating a portion of storage
in a storage tier of the first storage
class for the first content item

FIG. 7



Patent Application Publication  Nov. 14,2019 Sheet 8 of 8 US 2019/0347027 A1

802 instantiating a file system

configured to allocate storage

implemented as a plurality of
storage classes

804 pinning a content item with a
first one of the storage classes

806 allocating storage to the
content item in a storage tier of the
pinned first storage class

FIG. 8



US 2019/0347027 Al

PINNING IN A MULTI-TIERED SYSTEM

BACKGROUND

[0001] Computing systems typically utilize various types
of non-volatile data storage. For example, a computer sys-
tem may have multiple storage devices, such as one or more
hard drives, solid state drives, etc. When multiple storage
devices are used, they can be arranged in various ways to
provide certain levels of performance and capacity. For
example, physical disk drive components may be combined
into one or more logical units, and data may be distributed
across the drives depending on the desired level of redun-
dancy, performance, reliability, availability, and capacity.
[0002] Computing systems may also use storage hierar-
chies when storing applications and other files. One level of
a local storage hierarchy might be a disk, such as a mechani-
cal disk, optical disk and the like. Additional levels of a
storage hierarchy might include devices such as solid-state
disks or non-volatile memory and the like.

[0003] Computing systems may be configured to operate
most efficiently by locating higher demand blocks of data in
storage that provide faster read responses, while lesser
demanded blocks of data may be located in storage that
provides capacity and less in terms of read performance.
[0004] It is with respect to these and other considerations
that the disclosure made herein is presented.

SUMMARY

[0005] Invarious embodiments described herein, methods
and systems are disclosed for pinning various content items
to a particular class of storage. In some embodiments, a
number of storage classes may be defined in a storage
system, each of which have a characteristic performance and
capacity that may be implemented using a storage tier or a
combination of storage tiers. Each storage tier may be
implemented as a particular storage device type such as a
solid state drive (SSD). By implementing each storage class
with one or more tiers, a level of performance and capacity
may be defined for each storage class, which may be
implemented with storage tiers to provide the specified level
of performance and capacity while abstracting the specific
storage tiers that underlie the storage class. This is advan-
tageous because the specific details of the storage tiers may
change (for example, storage hardware may be replaced in
a computing device) and a requesting process or user need
not be concerned with such details.

[0006] In some embodiments, a storage class with faster
1/O performance may be referred to as a performance class,
and may be implemented primarily with faster response
storage tiers such as an SSD. In one embodiment, storage
with higher storage capacity but with slower random access
speeds may be referred to as a capacity class, and may be
implemented primarily with higher storage capacity tiers
such as a rotational drive.

[0007] The present disclosure provides a way to more
predictably obtain efficient I/O performance when using a
tiered storage system by pinning components that are known
to be consistently and deterministically accessed by known
processes. Pinning may, in some examples, refer to indicat-
ing, for a given component, a storage class of a multi-tiered
storage system. Pinning may be implemented via a setting in
metadata associated with the component, via settings in a file
allocation table, or any other means for associating the

Nov. 14, 2019

desired pinning with a component. In an embodiment, when
a component is pinned to a class, one or more memory
blocks in the physical address space of a tier in the pinned
class may be allocated for the component.

[0008] The efficiencies of consistently providing fastest
data access to what is deterministically known to be
accessed, or has a specified likelihood of being accessed, can
allow for improved efficiency and performance when
executing boot and other processes that require access to
stored data. A determination as to which of the classes to pin
a particular component may be based on a deterministic
assessment of the demand for a component. For example,
during a boot sequence, the directories and system files that
are known to be accessed based on historical data may be
identified as candidates for pinning to a particular class. It
should be noted that in some embodiments, requests can be
made to pin a component to a particular tier. However, in the
examples further described herein, requests are for pinning
a component to a particular class.

[0009] In one example, a computing system may have a
set of components that may be used for system launch such
as system binaries and drivers that are determined to be
consistently accessed by the boot loader as part of the boot
process. For such folders and files that are consistently
accessed on the boot path, it would be advantageous to pin
these folders and files to a performance class in order to have
the components loaded with a quick response time. Addi-
tionally, other directories and files that are deterministically
identified as being consistently accessed may be pinned to
the performance class to ensure faster boot performance.
[0010] An additional advantage of using a pinning mecha-
nism is that some files or directories may have portions of
the files or directories that can benefit from being allocated
to one tier or class, but other portions of the files or
directories that do not require the same type of tier or class.
For example, some portions of the files or directories may be
identified as requiring a performance tier or class, and other
portions may be identified as only requiring a capacity tier
or class. In some embodiments, portions of files, or subfiles,
may be allocated to different tiers or classes. In some
embodiments, an allocation mechanism may be provided
that allows specific files or portions of files to be pinned or
allocated to a selected tier. For example, some parts of a file
may have different usage profiles, as some parts may have
high usage and other parts may be rarely accessed. In one
embodiment, cluster-level granularity may be provided for
pinning to tiers or classes. For example, a range of clusters
may be pinned to a designated class or tier, where the range
may be a subset of a file or other component.

[0011] The decision as to which components are to be
pinned to each tier may be determined by the OEM or other
entity based on known and deterministic information, such
as information regarding the loading profile of an operating
system or other function. In some embodiments, the pinning
of a content item, once established, may not be modifiable.
An operating system typically has many files, executables,
DLLs, drivers, hives, event log files, scripts, data files,
settings, and the like. It may be determined that a subset of
these components, such as the executables, DLLs, and
drivers, are consistently and frequently accessed and there-
fore would benefit from being pinned to the performance
class. This determination may be based on actual observed
data that demonstrate a known usage profile for the com-
ponents. For example, boot profiles may be deterministic for



US 2019/0347027 Al

a given set of computing resources. The system provider
may analyze boot profiles and monitor data for which
components are accessed over time. Based on analysis of the
profiles over a number of boot cycles, a determination can
be made regarding which components are most frequently
accessed, or some other desired profile. Based on this
analysis, various components can be pinned to the perfor-
mance class, for example. By selecting components that are
known to be accessed in a deterministic and predictable
manner, the speed and efficiency of various functions such
as launching the operating system and launching applica-
tions can be improved.

[0012] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key or essential features of the claimed
subject matter, nor is it intended to be used as an aid in
determining the scope of the claimed subject matter. The
term “techniques,” for instance, may refer to system(s),
method(s), computer-readable instructions, module(s), algo-
rithms, hardware logic, and/or operation(s) as permitted by
the context described above and throughout the document.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The Detailed Description is described with refer-
ence to the accompanying figures. In the figures, the left-
most digit(s) of a reference number identifies the figure in
which the reference number first appears. The same refer-
ence numbers in different figures indicate similar or identical
items. References made to individual items of a plurality of
items can use a reference number with a letter or a sequence
of letters to refer to each individual item. Generic references
to the items may use the specific reference number without
the sequence of letters.

[0014] FIG. 1 an example computer architecture for a
computer capable of implementing a storage allocation
system as described herein.

[0015] FIG. 2 illustrates an example of storage allocation
in one embodiment.

[0016] FIG. 3 illustrates an example of storage allocation
in one embodiment.

[0017] FIG. 4 illustrates an example of storage allocation
in one embodiment.

[0018] FIG. 5 illustrates an example data structure in
accordance with the present disclosure.

[0019] FIG. 6 is a flow diagram of an illustrative process
for storage allocation in accordance with the present disclo-
sure.

[0020] FIG. 7 is a flow diagram of an illustrative process
for storage allocation in accordance with the present disclo-
sure.

[0021] FIG. 8 is a flow diagram of an illustrative process
for storage allocation in accordance with the present disclo-
sure.

DETAILED DESCRIPTION

[0022] A computing system may implement multiple stor-
age hierarchies or classes, and may further provide a virtu-
alized storage system that hides or abstracts the details of the
multiple storage classes. The storage classes may each
comprise one or more storage tiers that are implemented
with specific storage devices. For example, the file system
may view the virtualized storage in the form of a volume

Nov. 14, 2019

without visibility into the storage hierarchy. The volume
may be a single logical namespace visible to the file system.
The volume may be provisioned to be a specified size and
may correspond to the boundaries of one or more underlying
storage devices. For instance, a disk may be a single volume,
or perhaps be partitioned into multiple volumes. Further-
more, a volume may be made of multiple disks. The file
system may then structure directories within the volume,
and save files into the namespace, either at the root directory
of the namespace, or within one of the directories of the
namespaces.

[0023] In various embodiments described herein, methods
and systems are disclosed for pinning various content items
to a particular class or type of storage of storage system with
multiple tiers or hierarchies. A content item may be a
software component, file, executable, and the like. A com-
puting system may have multi-tiered storage, for example
having a combination of rotational drive storage and SSD
storage. The various storage tiers may be grouped into one
or more storage classes. Hach storage class may have a
characteristic performance and capacity. For example, an
SSD tier may provide fast response for random and serial
1/0O but with less storage capacity due to their cost, while a
rotational drive tier may provide adequate performance for
sequential access but lesser performance with respect to
random /O access. However, rotational drives may have
higher storage capacity due to their lower cost.

[0024] In some embodiments, a number of storage classes
may be defined, each of which have a characteristic perfor-
mance and capacity that may be implemented using a
storage tier or a combination of storage tiers. In some
embodiments, a storage class with faster I/O performance
may be referred to as a performance class, and may be
implemented primarily with faster response storage tiers
such as SSD. In one embodiment, a storage class with higher
storage capacity but with slower random access speeds may
be referred to as a capacity class, and may be implemented
primarily with high capacity tiers such as a rotational drive.
[0025] In some embodiments, a storage class may be
implemented, which in this disclosure may be implemented
as one or more tiers which each represent a particular storage
device or storage device type. A storage class may be
defined, for example, as providing a specified read access
speed or a minimum and maximum read access speed, and
may be implemented with one or more storage tiers that
provide the specified parameters. The storage class may, for
example, be a performance class or a capacity class. The
specific storage tier may not be specifically called out or
available for selection. The underlying storage tiers and their
abstraction within a storage class may be changed by the
system to deliver the requested class attributes. For example,
the performance class may be implemented using a combi-
nation of storage-class memory (SCM) and SSD. Other
classes may be implemented, such as a class that has higher
performance than the capacity class and with higher capacity
but with lesser performance than the performance class.
Accordingly, more than two classes may be implemented.
However, for the purposes of illustration, the present dis-
closure will describe two classes in many examples.
[0026] The use of classes and tiers may provide improve-
ments over other methods such as using a cache to locally
store data. While a cache may be used to provide quick
access to frequently used data, use of a cache typically
requires pre-fetching of data based on heuristics. Further-



US 2019/0347027 Al

more, the cache is a copy of the stored data, thus requiring
maintaining and synchronizing two copies of the data.
Finally, pre-fetching requires anticipation of what data
should be loaded via heuristics or other measurements that
are indicative of data likely to be requested by a user.
However, when other data is requested that is not available
in the cache, then the data must be retrieved from storage
which may result in a performance hit.

[0027] The present disclosure provides a way to more
predictably obtain efficient I/O performance when using a
tiered storage system by pinning components that are known
to be consistently and deterministically accessed by known
processes. As used herein, pinning, may refer to any process
that causes a particular storable component to be stored in a
designated storage tier or class. For example, pinning may
refer to indicating, for a given component, a class or tier of
a multi-tiered storage system. Pinning may be implemented
via a setting in metadata associated with the component, via
settings in a file allocation table, or any other means for
associating the desired pinning with a component. In an
embodiment, when a component is pinned to a class, one or
more memory blocks in the physical address space of a tier
in the pinned class may be allocated for the component. In
one embodiment, a rule or policy may be implemented that
defines storage classes and how storage tiers should be
allocated given a specified storage class. For example, a rule
may state that a component pinned to a performance class
should first be allocated to a first storage tier of the perfor-
mance class, and if space is not available, then to a second
storage tier of the performance class.

[0028] In some embodiments, a content item, which may
also be referred to herein as a component, may be pinned to
a particular tier of a storage class with one or more charac-
teristics, such as an SSD or rotational disk. In other embodi-
ments, a content item may be pinned to a storage class,
which may be a set of capabilities that may in turn be
implemented using a single storage tier or a combination of
tiers that meet the set of capabilities. A component may refer
to any data that can be loaded to a physical storage location,
such as data files, executables, DLLs, drivers, hives, event
log files, scripts, and the like. A component may also be a
subset of a greater whole, such as a subfile that can be
allocated to one or more physical addresses.

[0029] The efficiencies of consistently providing the fast-
est data access to what is deterministically known to be
accessed, or has a specified likelihood of being accessed, can
allow for improved efficiency and performance when
executing boot and other processes that require access to
stored data.

[0030] When a combination of storage classes is provided
as a virtualized volume, a common address space may be
implemented, while the underlying allocation of compo-
nents to specific memory blocks may be assigned to any of
the tiers within a specified storage class.

[0031] A determination as to which of the tiers or classes
to pin a particular component may be based on a determin-
istic assessment of the demand for a component. For
example, during a boot sequence, the directories and system
files that are known to be accessed based on historical data
may be identified as candidates for pinning to a particular
tier or class.

[0032] In one example, a computing system may have a
set of components that may be used for system launch such
as system binaries and drivers that are determined to be

Nov. 14, 2019

consistently accessed by the boot loader as part of the boot
process. For such folders and files that are consistently
accessed on the boot path, it would be advantageous to pin
these folders and files to a performance class in order to have
the components loaded with a quick response time. Addi-
tionally, other directories and files that are deterministically
identified as being consistently accessed may be pinned to
the performance class to ensure good boot performance.

[0033] An additional advantage of using a pinning mecha-
nism is that some files or directories may have portions of
the files or directories that can benefit from being allocated
to one tier or class, but other portions of the files or
directories that do not require the same type of tier or class.
For example, some portions of the files or directories may be
identified as requiring a performance class, and other por-
tions may be identified as only requiring a capacity class. In
some embodiments, portions of files, or subfiles, may be
allocated to different tiers or classes. In some embodiments,
an allocation mechanism may be provided that allows spe-
cific files or portions of files to be pinned or allocated to a
selected class. For example, some parts of a file may have
different usage profiles, as some parts may have high usage
and other parts may be rarely accessed. In one embodiment,
cluster-level granularity may be provided for pinning to tiers
or classes. For example, a range of clusters may be pinned
to a designated class or tier, where the range may be a subset
of a file or other component.

[0034] The decision as to which components are to be
pinned to each tier or class may be determined by the OEM
or other entity based on known and deterministic informa-
tion, such as information regarding an operating system. In
some embodiments, the pinning, once established, may not
be modifiable. An operating system typically has many files,
executables, DLLs, drivers, hives, event log files, scripts,
data files, settings, and the like. It may be determined that a
subset of these components, such as the executables, DLLs,
and drivers, are consistently and frequently accessed and
therefore would benefit from being pinned to the perfor-
mance class. This determination may be based on actual
observed data that demonstrate a known usage profile for the
components. For example, boot profiles may be determin-
istic for a given set of computing resources. The system
provider may analyze boot profiles and monitor data for
which components are accessed over time. Based on analy-
sis of the profiles over a number of boot cycles, a determi-
nation can be made regarding which components are most
frequently accessed, or some other desired profile. Based on
this analysis, various components can be pinned to the
performance class, for example. By selecting components
that are known to be accessed in a deterministic and pre-
dictable manner, the speed and efficiency of various func-
tions such as launching an operating system and launching
applications can be improved.

[0035] In some embodiments, when a component is
pinned, the metadata for the component may be updated to
include the designated tier or class. When storage allocations
are determined, the pinned tier or class for the component
may be read from metadata, and a location may be allocated
in the desired tier or class. In some cases, if there is no more
space available in the desired tier or class, then the next
available tier may be assigned. In some embodiments, a flag
may be provided for each component, indicating whether the
desired tier or class is mandatory or if a best effort may be
implemented. If the desired tier or class is mandatory, then



US 2019/0347027 Al

if the desired tier or class is not available, then an error may
be logged. For example, the file may be created but an
allocation error may be logged, or a prompt may be provided
for user intervention.

[0036] In some embodiments, directories can be pinned to
a tier or class. Additionally, in some embodiments the file
may inherit the pin designation of the directory that it is
associated with. For example, if a directory is pinned to a tier
or class, then a file that is created in that directory may
inherit the tier or class of the parent directory.

[0037] In an embodiment, if a file is created and pinned to
the capacity class, and if the file is then moved to the
performance class, the file may maintain the pin to the
capacity class. However, if the file is copied (renamed) in the
performance class, then the copy may inherit the pin to the
performance class. In some embodiments, where multiple
file names point to the same file, inheritance may be pro-
vided based on the most recent target directory (e.g., the last
designation prevails).

[0038] Insome embodiments, inheritance or persistence of
a pin designation may be enabled for multiple files or levels
of files where a directory is moved, assigned, or copied to a
class. In other words, when a directory is moved from one
area to another where the destination changes the class, then
the files within the directory may persist their current
pinning attributes. However, if a directory is copied to an
area that changes the class of the original copy, then the
copied directory may inherit the pin designation of the new
location. An override may be provided so that inheritance is
not attributed to subfolders in certain cases, such as when the
directory structure is large and the time to extend the
attributes to all subfolders and their contents would be
excessive or if there is insufficient capacity.

[0039] Additionally, in some embodiments each file may
be assigned a default pinning if one is not explicitly
assigned. For example, each file may be assigned a default
pin to the capacity class.

[0040] In some embodiments, a file system may operate
on an underlying volume that has multiple classes, each
class including a particular set of features or characteristics.
When creating a file system namespace (such as a directory
or file), or otherwise identifying a file system namespace
within a volume, a storage set of features or characteristics
set to be associated with the file system namespace is
identified. The file system namespace may then be caused to
be stored within the identified class in the volume. Thus, the
file system is provided with a volume that has multiple
classes (each having different sets of features or character-
istics) to choose from in storing files.

[0041] In the description that follows, embodiments are
described with reference to operations that are performed by
one or more computing systems. If such operations are
implemented in software, one or more processors of the
associated computing system that performs the operations
may direct the operation of the computing system in
response to having executed computer-executable instruc-
tions. For example, such computer-executable instructions
may be embodied on one or more computer-readable media
that form a computer program product. An example of such
an operation involves the manipulation of data. The com-
puter-executable instructions (and the manipulated data)
may be stored in the memory of the computing system.
[0042] Embodiments described herein may comprise or
utilize a special purpose or general-purpose computer

Nov. 14, 2019

including computer hardware, such as, for example, one or
more processors and system memory, as discussed in greater
detail below. Embodiments described herein also include
physical and other computer-readable media for carrying or
storing computer-executable instructions and/or data struc-
tures. Such computer-readable media can be any available
media that can be accessed by a general purpose or special
purpose computer system. Computer-readable media that
store computer-executable instructions are physical storage
media.

[0043] Computer storage media includes RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
tangible medium which can be used to store desired program
code means in the form of computer-executable instructions
or data structures and which can be accessed by a general
purpose or special purpose computer.

[0044] Computer-executable instructions comprise, for
example, instructions and data which, when executed at a
processor, cause a general-purpose computer, special pur-
pose computer, or special purpose processing device to
perform a certain function or group of functions. The
computer executable instructions may be, for example,
binaries, intermediate format instructions such as assembly
language, or even source code. Although the subject matter
has been described in language specific to structural features
and/or methodological acts, it is to be understood that the
subject matter defined in the appended claims is not neces-
sarily limited to the described features or acts described
above. Rather, the described features and acts are disclosed
as example forms of implementing the claims.

[0045] Those skilled in the art will appreciate that the
invention may be practiced in network computing environ-
ments with many types of computer system configurations,
including, personal computers, desktop computers, laptop
computers, message processors, hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers, mobile telephones, PDAs, pagers, routers,
switches, and the like. The invention may also be practiced
in distributed system environments where local and remote
computer systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both
perform tasks. In a distributed system environment, program
modules may be located in both local and remote memory
storage devices.

[0046] Inacomputing environment, a volume system may
use a volume exposure system to expose a volume to a file
system. The computing environment may be, for example,
implemented in the computing system.

[0047] The volume may include storage represented in the
form of contiguous logical addresses. In this description and
in the claims, a “volume” is defined as any group of one or
more logical address extents that is presented to a file system
in the form of a single namespace. When the file system
issues a read or write request to the volume system, the file
system request may include a logical address. The volume
system is configured to recognize the part of the volume that
is being addressed using the logical address provided by the
file system. Thus, from the file system point of view, the file
system has access to the entire volume logically addressable
throughout the entire extent of the volume.



US 2019/0347027 Al

[0048] Because not all storage locations in the volume
have the same sets of features or characteristics, the volume
may be viewed as a heterogenic volume, being composed of
portions that have different sets of features or characteristics.
A mapping system may map each of at least some of the
logical storage locations of the volume to a corresponding
physical storage location in underlying storage systems.

[0049] The term “physical” storage location or “physical”
address may reference a storage location or address, respec-
tively, in the underlying storage systems, thus distinguishing
the addressing scheme (i.e., “logical addressing scheme”)
used by the file system when addressing the heterogenic
volume from the addressing scheme (i.e., “physical address-
ing scheme”) used by the underlying storage system to
access storage offered by the corresponding underlying
storage system. For instance, the file system may use “logi-
cal” addresses to address the storage within the volume.
However, the storage systems may use “physical” addresses
to access the respective storage locations.

[0050] In some embodiments, there may be one or more
further levels of mapping abstraction that separate even the
underlying storage system from the actual physical storage
medium. For example, the underlying storage system might
be physical storage systems such as flash memory, solid-
state disks, mechanical disks and so forth. However, the
storage system might also comprise some type of consoli-
dated storage system that offers up addresses that are
mapped to further underlying storage systems. Furthermore,
there may be one or more transformations (such as encryp-
tion or compression) that the storage system applies to the
data prior to storing to a given storage location, and one or
more reverse transformations (such as decryption or decom-
pression) that the storage system applies to the data after
reading data from the given storage location.

[0051] In some embodiments, granularity of storage loca-
tions may be represented by a basic unit that the mapping
system works with in order to map storage locations. Each
unit may represent contiguous address locations (e.g., con-
tiguous logical blocks) in the logical addressing scheme
recognized by the file system. In order to simplify the
mapping, each unit may also represent contiguous address
locations in the physical addressing scheme.

[0052] Smaller units may have the advantage of having
more fine-grained control over the boundaries between
storage of different sets of features or characteristics in the
volume, but have the disadvantage of increasing the number
of mappings that the mapping system keeps track of.

[0053] In some embodiments, a tier may be defined as a
set of one or more regions having a common set of features
or characteristics.

[0054] The file system may include metadata about the
volume such as the size of the volume, and the size and
logical storage location(s) of each of the classes. The meta-
data might also include the sets of features or characteristics
of each of the classes. The metadata may, for example, be
persisted. The file system may use this metadata to make
decisions regarding where to place a file system namespace
(such as a directory or file), or a portion thereof, into the
volume. There may be different types of metadata, e.g.
system metadata and user metadata. System metadata refers
to information kept by the file system to facilitate basic
operations, including data allocation, ensuring system integ-

Nov. 14, 2019

rity, etc. User metadata refers to metadata that tracks file
names, directory structures, and other user generated infor-
mation

[0055] One example of a feature or characteristic may be
an actual tier or type of underlying storage system. For
instance, the type or tier might specify flash memory, disk
device, cloud storage, or any other type of storage system.
The type or tier might also specify broader categories such
as solid state storage that involves no mechanically inter-
acting pieces, or mechanism storage that has one or more
mechanically interacting pieces.

[0056] A storage class may have a performant character-
istic which relates to the performance of the storage. For
instance, a read/write performant characteristic relates to the
performance of the storage when performing read/write
operations. For instance, read/write performant classes
might be a function of latency (read and/or write), data
transfer speed (read and/or write), or the like.

[0057] A storage class may also specify a resiliency char-
acteristic that relates to a level of redundancy built into the
storage class. For instance, some storage might be 3-way
mirrored, which is offered to survive failure of a single
physical storage device. Some storage might have higher
levels of redundancy surviving failure of more than one
physical device, and the resiliency trait might specify a
minimum level of redundancy.

[0058] A characteristic set for a given storage class may
include any one or more of these enumerated characteristics
or additional characteristics not enumerated, or combina-
tions thereof.

[0059] A file system typically controls how data is stored
and retrieved from a storage device. For example, a file
system may enable data to be stored in files, which are
located in a directory structure. The file system tracks files
and directories with metadata, which is also stored on the
underlying storage device. Other types of metadata ensure
integrity of the file system in the event of an unexpected
error, provide for recovery of lost data, improve perfor-
mance by enabling optimizations, and the like.

[0060] The space capacity for the types of storage may
vary depending on the type of device (tablet, smartphone),
type of system (64 bit or 32 bit), operating system version,
the size of the device’s storage space, etc.

[0061] In some embodiments, spillover from one storage
tier or class to another may be allowed. Whether spillover is
allowed may be determined based on the storage class. For
example, the performance class may be characterized in that
there is no spillover allowed into this area.

[0062] The capacity storage class may be characterized in
that data that is pinned to the performance storage class may
be allowed to spillover to the capacity storage class. In this
case, even if an allocation to the performance storage class
requires more space than the amount available in the per-
formance storage class, the allocation may be successful if
the capacity storage class has sufficient space to take the
spillover.

[0063] Requests for pinning a component to a class or tier
may be generated by a process executing in the OS or from
an authorized user via the API. In one embodiment, the
ability to pin to a class or tier may only be available to the
operating system of the computing device, for example via
the file system. In some embodiments, applications and
other users may make requests for pinning specified com-
ponents to a specified class or tier. The operating system may



US 2019/0347027 Al

grant or deny requests based on whether the request pertains
to a performance class or a capacity class, and based on
current status or available space.

[0064] In some embodiments, when requests for pinning
to a class or tier are in conflict, then the OS can prioritize the
requests based on a predetermined priority, the current
available space, and other factors.

[0065] Turning now to FIG. 1, illustrated is an example
computing architecture 100 that receives pinning requests
108 on a computing device 102. The computing device 102
is configured to pin content items to accommodate the
pinning requests 108. For example, updates may be received
to update one or more system components. Example system
components include, but are not limited to, drivers 110, an
operating system (OS) 112, an application 114, a registry
116, and/or libraries 118.

[0066] As illustrated in FIG. 1, the computing device 102
may include one or more drive(s) 104 (hereinafter referred
to as the “drive”) having computer-readable media that
provides nonvolatile storage for the computing device 102.
Example drives include, but are not limited to, SATA-type
solid-state hard drives, SATA-type hard disks, PATA-type
solid-state hard drives, PATA-type hard disks, and/or any
other drive-type suitable for providing non-volatile com-
puter-readable media to a computing device. The storage
104 may include partitions 106 for logically separating one
or more system components and/or data objects. In the
illustrated example, the storage 104 is separated into a first
partition 106(1), a second partition 106(2), and an N-th
partition 106(N). In some embodiments, at least one of the
partitions 106 stores drivers 110 and an operating system
(OS) 112 to enable a boot manager 130 to initiate the drivers
110 and to load the OS 112 into a memory 124. In the
illustrated example, the memory 124 includes a random-
access memory (“RAM”) 126 and a read-only memory
(“ROM”) 128. As further illustrated, the computing device
102 includes a central processing unit (“CPU”) 122 that is
connected, via a bus 136, to the storage 104, the memory
124, and the boot manager 130. In some embodiments, the
bus 136 further connects an input/output (I/O) controller 132
and/or a network interface 134.

[0067] It can be appreciated that the system components
described herein (e.g., the drivers 110, the OS 112, and/or
the application 114) may, when loaded into the CPU 122 and
executed, transform the CPU 122 and the overall computing
device 102 from a general-purpose computing system into a
special-purpose computing system customized to facilitate
the functionality presented herein. The CPU 122 may be
constructed from any number of transistors or other discrete
circuit elements, which may individually or collectively
assume any number of states. More specifically, the CPU
122 may operate as a finite-state machine, in response to
executable instructions contained within the software mod-
ules disclosed herein. These computer-executable instruc-
tions may transform the CPU 122 by specifying how the
CPU 122 transitions between states, thereby transforming
the transistors or other discrete hardware elements consti-
tuting the CPU 122.

[0068] The storage 104 and associated computer-readable
media provide non-volatile storage for the computing device
102. Although the description of computer-readable media
contained herein refers to one or more storage devices, such
as a solid-state drive and/or a hard disk, it should be
appreciated by those skilled in the art that computer-read-

Nov. 14, 2019

able media can be any available computer storage media or
communication media that can be accessed by a computing
architecture such as, for example, the computing architec-
ture 100. Communication media includes computer-readable
instructions, data structures, program modules, and/or other
data in a modulated data signal such as a carrier wave or
other transport mechanism and includes any delivery media.
The term “modulated data signal” means a signal that has
one or more of its characteristics changed or set in a manner
so as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired con-
nection, and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of the any of the
above are also included within the scope of computer-
readable media.

[0069] By way of example, and not limitation, computer
storage media may include volatile and non-volatile, remov-
able and non-removable media implemented in any method
or technology for storage of information such as computer-
readable instructions, data structures, program modules or
other data. For example, computer storage media includes,
but is not limited to, RAM, ROM, EPROM, EEPROM,
SSD, SCM, flash memory or other solid-state memory
technology, CD-ROM, digital versatile disks (“DVD”), HD-
DVD, BLU-RAY, or other optical storage, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be
used to store the desired information and which can be
accessed by the computing device 102. For purposes of the
claims, the phrase “computer storage medium,” “computer-
readable storage medium,” and variations thereof, does not
include waves, signals, and/or other transitory and/or intan-
gible communication media, per se.

[0070] The boot manager 130 may access the OS 112 from
the storage 104 (or a partition thereof) and may load the OS
112 into the memory 124 for runtime execution by the
computing device 102 (e.g., by invoking an OS boot loader).
The I/O controller 132 may receive and process input from
a number of other devices, including a keyboard, mouse, or
electronic stylus (not shown in FIG. 1). Similarly, the I/O
controller 132 may provide output to a display screen, a
printer, or other type of output device (also not shown in
FIG. 1). The network interface 134 may enable the comput-
ing device 102 to connect to one or more network(s) 144
such as a local area network (LAN), a wide area network
(WAN), a wireless local area network (WLAN), or any other
suitable network for passing information between the com-
puting device 102 and a remote resource 142.

[0071] As described above, the storage 104 may include
multiple partitions 106 for logically separating one or more
system components and/or data objects. In the illustrated
example, the storage 104 includes the first partition 106(1)
which stores instances of the drivers 110, the OS 112, the
application 114, the registry 116, and the libraries 118. The
drivers 110 may include one or more programs for control-
ling one or more devices that are communicatively coupled
to the computing device 102 such as, for example, printers,
displays, cameras, soundcards, network cards, computer
storage devices, etc. The OS 112 may be any suitable system
software for managing computer hardware and/or software
resources and for providing services to the application 114
and/or other applications (not shown). An example OS 112
may include, but is not limited to, various versions of



US 2019/0347027 Al

MICROSOFT WINDOWS (e.g., WINDOWS 8.1 or 10,
WINDOWS EMBEDDED STANDARD 7, etc.), Mac OS
X, 108, etc.

[0072] The application 114 may be a computer program
that is configured to be run by the OS 112 to perform one or
more coordinated functions, tasks, activities. The registry
116 may correspond to a database containing information
usable to boot and/or configure the OS 112, system-wide
software settings that control the operation of the OS 112,
security databases, and/or user specific configuration set-
tings. The registry 116 may further contain information
associated with in-memory volatile data such as, for
example, a current hardware state of the OS 112 (e.g., which
drivers are currently loaded and in use by the OS 112).
[0073] The libraries 118 may include a collection of
non-volatile resources that are usable (e.g., callable) by the
application 114 and/or other applications (not shown).
Example resources include, but are not limited to, pre-
written code and/or subroutines, configuration data, and/or
classes (e.g., extensible program-code-templates for creat-
ing objects of various types). In various implementations,
the libraries 118 may enable the application 114 to call upon
various system services provided by the OS 112. For
example, the libraries 118 may include one or more subsys-
tem Dynamic Link Libraries (DLLs) configured for imple-
menting and/or exposing Application Programming Inter-
face (API) functionalities of the OS 112 to the application
114.

[0074] Inone embodiment, APIs 140 may be implemented
for receiving pinning requests and managing the requests. In
an embodiment, at least one API may be configured to query
information about one or more storage tiers or classes.
Returned information may include current state information
such as the amount of space used.

[0075] In an embodiment, at least one API may be con-
figured to send a request to the file system to calculate the
space used against one or more storage tiers or classes on a
volume, by locating all files and directories pinned to a
particular tier or class and adding up their total allocation.
The API may be configured to enumerate all files and
directories on a volume that are pinned to a specified tier or
class. In some embodiments, if a requested tier or class for
a component is not received, then when an allocation request
is made for the component, other ways to determine a
storage class or tier may be used. For example, a default
storage class or tier may be assigned. If the allocation
request is for a component that is being moved or copied, or
created within a directory that is already pinned, then a rule
or policy may be used to determine the storage class or tier.
The rule or policy for the determining which storage class or
tier to assign a moved or copied component, or a component
created within an existing directory may implement inheri-
tance as discussed elsewhere in this disclosure.

[0076] FIG. 2 illustrates different types of storage tiers and
classes. Storage class 1 250 illustrates a first storage class
that may provide a first set of features or characteristics.
Storage class 2 260 illustrates a second storage class that
may provide a second set of features or characteristics.
Storage class 1 250 may comprise storage tier 1 210 and
storage tier 2 220. Storage class 2 260 may comprise storage
tier 3 230 and storage tier 4 240. The two storage classes
may collectively be presented as a virtual disk with a total
storage capacity. Referring to FIG. 3, a file 270 may initially
be pinned to storage tier 210 with the first storage class 250.

Nov. 14, 2019

Metadata for file 270 may be updated to indicated that file
270 is pinned to the first storage class. An allocation may be
made for file 270 in an address range that is implemented in
storage tier 1 210 or storage tier 2 220. The specific storage
tier may be determined based on a rule or policy.

[0077] In an embodiment, under various conditions, files
and directories may automatically inherit the storage class or
tier of their parent. As illustrated in FIG. 4, file 270 that is
pinned to storage tier type 1 210 and is later moved to a
directory in storage tier type 3 230 may maintain its pinning
to storage tier type 1 210. If file 270 is copied to a new parent
in storage tier type 3 230, then file 270 may automatically
inherit storage tier type 3 230.

[0078] When a non-empty directory is moved to a new
parent, in some embodiments, if the new storage tier or class
is different, the class or tier of contents in the directory may
remain the same. When a non-empty directory is copied to
a new parent, in addition to inheritance on the directory
being moved, in some embodiments, if the new storage tier
or class is different, the class or tier of contents in the
directory may change to the storage tier or class of the new
parent. Copies may therefore take an unexpectedly long
time. To provide for cases where copy inheritance is not
desired, an opt-out flag may be provided.

[0079] FIG. 5 is a data structure diagram showing a
number of data elements stored in a metadata record 500
storing metadata for storage allocation in conjunction with a
tiered storage with at least two types of storage classes. It
will be appreciated by one skilled in the art that the data
structure shown in the figure may represent a data file, a
database table, an object stored in a computer storage, a
programmatic structure or any other data container com-
monly known in the art. Each data element included in the
data structure may represent one or more fields in a data file,
one or more columns of a database table, one or more
attributes of an object, one or more variables of a program-
matic structure or any other unit of data of a data structure
commonly known in the art.

[0080] Each reservation record 500 may contain a content
1D 502 identifying the particular content item for which a
pinning request is to be stored. According to one embodi-
ment, reservation record 500 may also contain a pin to class
indication 504 identifying the class with which the content
item is to be associated with. In one example, the pin to class
indication 504 may indicate, for example, a performance
class or a capacity class. The reservation record 500 may
also contain a best effort field 506 indicating, for example,
if the pinning request may be replaced with a best available
tier if the requested tier is not available.

[0081] The reservation record 500 may also contain infor-
mation regarding a mandatory field 508 which indicates
whether the requested class is mandatory. The reservation
record 500 may contain a source 1D field 510 indicating, for
example, the source of the request, which can indicate the
operating system, OEM, application, and the like. The
reservation record 500 may further contain information
regarding one or more metadata 520 and 522. It will be
appreciated that the reservation record 500 may contain
additional data elements beyond those shown in FIG. 5 and
described above that are utilized in conjunction with reserve
storage areas.

[0082] Turning now to FIG. 6, illustrated is an example
operational procedure for storage allocation in a computing
device communicatively coupled to a tiered storage with at



US 2019/0347027 Al

least two types of storage classes, the storage classes com-
prising one or more storage tiers, in accordance with the
present disclosure. In an embodiment, the example opera-
tional procedure may implement a method executing on one
or more computing devices. Such an operational procedure
may provide for implementing a storage reserve as described
herein and as illustrated in FIGS. 1-5.

[0083] Referring to FIG. 6, operation 602 illustrates
exposing the tiered storage as a single storage volume.
Operation 602 may be followed by operation 604. Operation
604 illustrates receiving a request to associate a first content
item with a first storage class.

[0084] Operation 604 may be followed by operation 606.
Operation 606 illustrates storing an indication that the first
content item is associated with the first storage class. In an
embodiment, the indication may be received via an appli-
cation programming interface (API).

[0085] Operation 606 may be followed by operation 608.
Operation 608 illustrates allocating a portion of storage in
the first storage class for the first content item.

[0086] In an embodiment, the first content item may be
stored in the allocated portion of storage in the first storage
class. Additionally and optionally, the first content item may
be stored in a second storage class when capacity in the first
storage class is insufficient.

[0087] Inan embodiment, a file system namespace may be
implemented that abstracts the at least two types of storage
classes. In some embodiments, a further indication may be
received that pinning to the indicated first storage class is
mandatory. An error may be generated when capacity in the
first storage class is insufficient

[0088] Turning now to FIG. 7, illustrated is an example
operational procedure for storage allocation in a computing
device communicatively coupled to a tiered storage with at
least two types of storage classes in accordance with the
present disclosure. Operation 702 illustrates instantiating an
application programming interface (API) configured to
receive electronic messages that indicate requests for a first
content item to be pinned to a storage class. Operation 702
may be followed by operation 704. Operation 704 illustrates
in response to one of the requests, reserving a first portion
of a total capacity of the storage of the computing device for
system update tasks.

[0089] Operation 704 may be followed by operation 706.
Operation 706 illustrates allocating a portion of storage in
the first storage class for the first content item.

[0090] In an embodiment, the first content item may be a
subfile. Additionally and optionally, storage for the subfile is
allocated as a range of storage blocks.

[0091] In an embodiment, the pinning comprises updating
metadata associated with the first content item to indicate
that the first content item is pinned to the first storage class.
In some embodiments, the pinning comprises updating a flag
associated with the first content item to indicate that the
requested storage class is mandatory.

[0092] In an embodiment, when the first content item is
moved to directory associated with a second storage class,
the first content item remains pinned to the first storage
class. Additionally and optionally, when the first content
item is copied to directory associated with a second storage
class, the copy of the first content item is pinned to the
second storage class.

Nov. 14, 2019

[0093] In an embodiment, content items may be pinned
with a default storage class for content items for which a
pinning request has not been received.

[0094] In an embodiment, the first content item may be
one or more of data files, executables, DLLs, drivers, hives,
event log files, scripts, or settings that are usable for a boot
process of the computing device.

[0095] In an embodiment, the first storage class may be a
performance class and a second storage class may be a
capacity class.

[0096] Turning now to FIG. 8, illustrated is an example
operational procedure for storage allocation in a computing
device communicatively coupled to a tiered storage with at
least two types of storage classes in accordance with the
present disclosure. Operation 802 illustrates instantiating a
file system configured to allocate storage implemented as a
plurality of storage classes. In an embodiment, the storage
classes each corresponding to a set of performance and
capacity characteristics. Operation 802 may be followed by
operation 804. Operation 804 illustrates pinning a content
item with a first one of the storage classes.

[0097] Operation 804 may be followed by operation 806.
Operation 806 illustrates allocating storage to the content
item in accordance with the pinned first storage class. In an
embodiment, the storage may be allocated to the content
item with cluster-level granularity. In some embodiments,
the content item may comprise a subfile.

[0098] In an embodiment, a selected set of content items
may be pinned that are loaded as part of a boot process.
[0099] Each of the processes, methods and algorithms
described in the preceding sections may be embodied in, and
fully or partially automated by, code modules executed by
one or more computers or computer processors. The code
modules may be stored on any type of non-transitory com-
puter-readable medium or computer storage device, such as
hard drives, solid state memory, optical disc and/or the like.
The processes and algorithms may be implemented partially
or wholly in application-specific circuitry. The results of the
disclosed processes and process steps may be stored, per-
sistently or otherwise, in any type of non-transitory com-
puter storage such as, e.g., volatile or non-volatile storage.
[0100] The various features and processes described
above may be used independently of one another, or may be
combined in various ways. All possible combinations and
subcombinations are intended to fall within the scope of this
disclosure. In addition, certain method or process blocks
may be omitted in some implementations. The methods and
processes described herein are also not limited to any
particular sequence, and the blocks or states relating thereto
can be performed in other sequences that are appropriate.
For example, described blocks or states may be performed
in an order other than that specifically disclosed, or multiple
blocks or states may be combined in a single block or state.
The example blocks or states may be performed in serial, in
parallel or in some other manner. Blocks or states may be
added to or removed from the disclosed example embodi-
ments. The example systems and components described
herein may be configured differently than described. For
example, elements may be added to, removed from or
rearranged compared to the disclosed example embodi-
ments.

[0101] It will also be appreciated that various items are
illustrated as being stored in memory or on storage while
being used, and that these items or portions of thereof may



US 2019/0347027 Al

be transferred between memory and other storage devices
for purposes of memory management and data integrity.
Alternatively, in other embodiments some or all of the
software modules and/or systems may execute in memory
on another device and communicate with the illustrated
computing systems via inter-computer communication. Fur-
thermore, in some embodiments, some or all of the systems
and/or modules may be implemented or provided in other
ways, such as at least partially in firmware and/or hardware,
including, but not limited to, one or more application-
specific integrated circuits (ASICs), standard integrated cir-
cuits, controllers (e.g., by executing appropriate instructions,
and including microcontrollers and/or embedded control-
lers), field-programmable gate arrays (FPGAs), complex
programmable logic devices (CPLDs), etc. Accordingly, the
present invention may be practiced with other computer
system configurations.

[0102] Conditional language used herein, such as, among
others, “can,” “could,” “might,” “may,” “e.g.” and the like,
unless specifically stated otherwise, or otherwise understood
within the context as used, is generally intended to convey
that certain embodiments include, while other embodiments
do not include, certain features, elements and/or steps. Thus,
such conditional language is not generally intended to imply
that features, elements and/or steps are in any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
author input or prompting, whether these features, elements
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having” and the like are synonymous and are used
inclusively, in an open-ended fashion, and do not exclude
additional elements, features, acts, operations and so forth.
Also, the term “or” is used in its inclusive sense (and not in
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or”” means one, some or
all of the elements in the list.

[0103] While certain example embodiments have been
described, these embodiments have been presented by way
of example only, and are not intended to limit the scope of
the inventions disclosed herein. Thus, nothing in the fore-
going description is intended to imply that any particular
feature, characteristic, step, module or block is necessary or
indispensable. Indeed, the novel methods and systems
described herein may be embodied in a variety of other
forms; furthermore, various omissions, substitutions and
changes in the form of the methods and systems described
herein may be made without departing from the spirit of the
inventions disclosed herein. The accompanying claims and
their equivalents are intended to cover such forms or modi-
fications as would fall within the scope and spirit of certain
of the inventions disclosed herein.

EXAMPLE CLAUSES

[0104] The disclosure presented herein may be considered
in view of the following clauses.
[0105] Example Clause A, a method for storage allocation
in a computing device communicatively coupled to a tiered
storage with at least two types of storage classes, the storage
classes comprising one or more storage tiers, the method
comprising: exposing the tiered storage as a single storage
volume;

[0106] receiving a request to associate a first content

item with a first storage class;

Nov. 14, 2019

[0107] storing an indication that the first content item is
associated with the first storage class; and
[0108] allocating a portion of storage in a storage tier of
the first storage class for the first content item.

[0109] Example Clause B, the method of Example Clause
A, further comprising storing the first content item in the
allocated portion of storage tier in the first storage class.
[0110] Example Clause C, the method of any of Example
Clauses A through B, further comprising storing the first
content item in a storage tier of a second storage class when
capacity in the first storage class is insufficient.
[0111] Example Clause D, the method of any of Example
Clauses A through C, further comprising implementing a file
system namespace that abstracts the at least two types of
storage classes.
[0112] Example Clause E, the method of any of Example
Clauses A through D, wherein the indication is received via
an application programming interface (API).
[0113] Example Clause F, the method of any of Example
Clauses A through E, further comprising receiving a further
indication that pinning to the indicated first storage class is
mandatory, wherein an error is generated when capacity in
the first storage class is insufficient.

[0114] Example Clause G, a computing device compris-
ing:

[0115] one or more processors; and

[0116] one or more storage devices in communication with

the one or more processors, the storage devices configured
with tiered storage with at least two types of storage classes,
the storage classes comprising one or more storage tiers, the
one or more storage devices further storing thereon com-
puter-readable instructions stored thereupon which, when
executed by the one or more processors, cause the comput-
ing device to:

[0117] instantiate an application programming interface
(API) configured to receive electronic messages that indicate
requests to allocate a portion of storage for a first content
item;

[0118] based on a rule or the electronic messages, pinning
the first content item with one of the storage classes; and
[0119] allocating a portion of storage in a storage tier of
the first storage class for the first content item.

[0120] Example Clause H, the computing device of
Example Clause G, wherein the first content item is a subfile.
[0121] Example Clause I, the computing device of any of
Example Clauses G through H, wherein storage for the
subfile is allocated as a range of storage blocks.

[0122] Example Clause J, the computing device of any of
Example Clauses G through I, wherein the pinning com-
prises updating metadata associated with the first content
item to indicate that the first content item is pinned to the
first storage class.

[0123] Example Clause K, the computing device of any of
Example Clauses G through J, wherein the pinning com-
prises updating a flag associated with the first content item
to indicate a request for a storage class, and that the request
storage class is mandatory.

[0124] Example Clause L, the computing device of any of
Example Clauses G through K, wherein when the first
content item is moved to directory associated with a second
storage class, the first content item remains pinned to the
first storage class.

[0125] Example Clause M, the computing device of any of
Example Clauses G through I, wherein when the first



US 2019/0347027 Al

content item is copied to directory associated with a second
storage class, the copy of the first content item is pinned to
the second storage class.

[0126] Example Clause N, the computing device of any of
Example Clauses G through M, further comprising pinning
content items with a default storage class for content items
for which a pinning request has not been received.

[0127] Example Clause O, the computing device of any of
Example Clauses G through N, wherein the first content item
is one or more of data files, executables, DLLs, drivers,
hives, event log files, scripts, or settings that are usable for
a boot process of the computing device.

[0128] Example Clause P, the computing device of any of
Example Clauses G through O, wherein the first storage
class is a performance class and a second storage class is a
capacity class.

[0129] Example Clause Q, a method comprising:

[0130] instantiating a file system configured to allocate
storage implemented as a plurality of storage classes, the
storage classes each corresponding to a set of storage tiers
having performance and capacity characteristics;

[0131] pinning a content item with a first one of the
storage classes; and

[0132] allocating storage to the content item in a storage
tier of the pinned first storage class.

[0133] Example Clause R, the method of Example Clause
Q, wherein the storage is allocated to the content item with
cluster-level granularity.

[0134] Example Clause S, the method of any of Example
Clauses Q through R, wherein the content item comprises a
subfile.

[0135] Example Clause T, the method of any of Example
Clauses Q through S, further comprising pinning a selected
set of content items that are loaded as part of a boot process.
[0136] While Example Clauses G through P are described
above with respect to a computing device, it is also under-
stood in the context of this disclosure that the subject matter
of Example Clauses G through P can additionally and/or
alternatively be implemented via a method, a system, and/or
computer storage media.

1. A method for storage allocation in a computing device
communicatively coupled to a tiered storage with at least
two types of storage classes, the storage classes comprising
one or more storage tiers, the method comprising:

exposing the tiered storage as a single storage volume;

receiving a request to associate a first content item with a

first storage class;

storing an indication that the first content item is associ-

ated with the first storage class; and

allocating a portion of storage in a storage tier of the first

storage class for the first content item.

2. The method of claim 1, further comprising storing the
first content item in the allocated portion of storage tier in
the first storage class.

3. The method of claim 1, further comprising storing the
first content item in a storage tier of a second storage class
when capacity in the first storage class is insufficient.

4. The method of claim 1, further comprising implement-
ing a file system namespace that abstracts the at least two
types of storage classes.

5. The method of claim 1, wherein the indication is
received via an application programming interface (API).

6. The method of claim 1, further comprising receiving a
further indication that pinning to the indicated first storage

Nov. 14, 2019

class is mandatory, wherein an error is generated when
capacity in the first storage class is insufficient.

7. A computing device comprising:

one or more processors; and

one or more storage devices in communication with the

one or more processors, the storage devices configured
with tiered storage with at least two types of storage
classes, the storage classes comprising one or more
storage tiers, the one or more storage devices further
storing thereon computer-readable instructions stored
thereupon which, when executed by the one or more
processors, cause the computing device to:

instantiate an application programming interface (API)

configured to receive electronic messages that indicate
requests to allocate a portion of storage for a first
content item;

based on a rule or the electronic messages, pinning the

first content item with one of the storage classes; and
allocating a portion of storage in a storage tier of the first
storage class for the first content item.
8. The computing device of claim 7, wherein the first
content item is a subfile.
9. The computing device of claim 8, wherein storage for
the subfile is allocated as a range of storage blocks.
10. The computing device of claim 7, wherein the pinning
comprises updating metadata associated with the first con-
tent item to indicate that the first content item is pinned to
the first storage class.
11. The computing device of claim 7, wherein the pinning
comprises updating a flag associated with the first content
item to indicate a request for a storage class, and that the
request storage class is mandatory.
12. The computing device of claim 7, wherein when the
first content item is moved to directory associated with a
second storage class, the first content item remains pinned to
the first storage class.
13. The computing device of claim 7, wherein when the
first content item is copied to directory associated with a
second storage class, the copy of the first content item is
pinned to the second storage class.
14. The computing device of claim 7, further comprising
pinning content items with a default storage class for content
items for which a pinning request has not been received.
15. The computing device of claim 7, wherein the first
content item is one or more of data files, executables, DLLs,
drivers, hives, event log files, scripts, or settings that are
usable for a boot process of the computing device.
16. The computing device of claim 7, wherein the first
storage class is a performance class and a second storage
class is a capacity class.
17. A method comprising:
instantiating a file system configured to allocate storage
implemented as a plurality of storage classes, the
storage classes each corresponding to a set of storage
tiers having performance and capacity characteristics;

pinning a content item with a first one of the storage
classes; and

allocating storage to the content item in a storage tier of

the pinned first storage class.

18. The method of claim 17, wherein the storage is
allocated to the content item with cluster-level granularity.

19. The method of claim 17, wherein the content item
comprises a subfile.



US 2019/0347027 Al
11

20. The method of claim 17, further comprising pinning
a selected set of content items that are loaded as part of a
boot process.

Nov. 14, 2019



