US 20200349486A1

a2y Patent Application Publication o) Pub. No.: US 2020/0349486 A1

a9y United States

Moolman et al. 43) Pub. Date: Nov. 5, 2020
(54) COLLABORATIVE DESIGN SYSTEMS, G06Q 10/10 (2006.01)
APPARATUSES, AND METHODS GOG6F 9/455 (2006.01)
GO6F 8/38 (2006.01)
(71) Applicant: SourceCode Technology Holdings, GUGF 8/34 (2006.01)
Inc., Bellevue, WA (US) GOGF 30/00 (2006.01)
(72) Inventors: Riaan Moolman, Roodepoort (ZA); (52) US. ClL
Wynand Coenraad Du Toit, CPC ... G06Q 10/06313 (2013.01); GOGF 16/958
Anderson, Roodepoort (ZA); Eric 2111/02 (2020.01); GO6F 8/38 (2013.01);
Johnson Schaffer, Bellevue, WA (US); GO6F 8/34 (2013.01); GO6F 30/00 (2020.01);
Grant Dickinson, Bellevue, WA (US); GOG6F 9/45529 (2013.01)
Jacobus Hendrik du Preez,
Snoqualmie, WA (US); Olaf Alexander
Wagner, Issaquah, WA (US); Adriaan (57) ABSTRACT
van Wyk, Snoqualmie, WA (US)
(73) Assignee: SourceCode Technology Holdings, A collaborative design system, method, and apparatus are
Inc., Bellevue, WA (US) disclosed. An example method includes receiving request
messages from a first client device and a second client
(21) Appl. No.: 16/876,849 deVicegrequesting a workflow project for design collabora-
(22) Filed: May 18, 2020 tion, creating an un-executable version of the workflow
project from an executable version of the workflow project,
Related U.S. Application Data and transmitting a copy of the un-executable version of the
(63) Continuation of application No. 15/899.891, filed on ;vlorkﬂow project to e.ac.h of the client deViC?S' The methOd
Feb. 20. 2018. now Pat. No. 10.657 474, rther includes receiving from the first client device, an
’ ’ T instruction that is indicative of a modification to the copy of
(60) Provisional application No. 62/461,617, filed on Feb. the un-executable version of the workflow project at the first
21, 2017. client device and transmitting the instruction to the second
L. . . client device causing the second client device to modify the
Publication Classification copy of the un-executable version of the workflow project at
(51) Imt. ClL the second client device. Additionally, the method includes
G06Q 10/06 (2006.01) modifying the executable version of the workflow project
GOG6F 16/958 (2006.01) based on the instruction.

! g

R ANCE-N
ing Ciphozrd Dilas

Typaiihep

FBE OB v o
n -
B2

oipens when e skl eraptef

w

302

Send el

P

o & &
Fictors Felds Smal® Wl

~ o B

Patent Application Publication Nov. 5, 2020 Sheet 1 of 22 US 2020/0349486 A1

CLIENT A

NETWORK

INTERMEDIARY PROCESSING ENGINE

PROCESSING
SERVER

Patent Application Publication

-]

<
e
Rl

Nov. 5,2020 Sheet 2 of 22

US 2020/0349486 Al

Ga.00M %

14
{

5

Tl

Vel WA eI DO

i

5

e westantng)i anpl

2020

e T EERX 1]

[owe]
g
L2 G
L
<
o
L3
=
] -
[oy
<%
£
J—
(=
L3
¥ e

@At

i

-ADD

FIEL

FIG. 2A

v 4@ EH 1B Ed

s W Bookmarks easalelrce comeaAdr

NGINE

FIELD-ADD
OCESSINGE

RMEDIARY PR

INTE

BEEEREXE

Hef v

d¢ 9l

US 2020/0349486 Al

Nov. 5,2020 Sheet 3 of 22

mom\@ IHOVD 77
40SSI00Nd 40833004
3N TR |
{ 3\
%7 0%z
e |
P ALNIANOD WEREANCD | \
errereereereereereeree] MOTIIHMOM NOLLOMY SN m
vl HAOYNY NOISSIS
¥
HOSS300Hd
NG N A ORAEININIOIETD e SOULOL
/
bz

<o

bl

Patent Application Publication

US 2020/0349486 Al

Nov. 5,2020 Sheet 4 of 22

Patent Application Publication

O¢ 9Ol

$04/401 Al
\

\
Wz

\§ §\ N T TR T

i s 28

mwu SOV H.." ot N/.m it i
\\ | SIS SE

v B SIALOTA

NOSP

Sroo

(5]
£

LdMOSYAYT

y 70000 S
60800 TH0N LOFFAONOS? swm%wﬁw
HAANIS 1SOH
105 8l (11190

m\\\\\\\\\\\\\\\\w SanH

A\\\\\\\\\\\\\\\l NOLLOMH SN Nu\w &

Meudis \\\\M\m 19951
] SEEERY

€ Old

-
«
o
R
g
(=)
T
e
(=]
S~
<
o
<
(g\]
5
| ettt iils\!s.s..!s..!i.ii.m
(o]
(g\]
S
=]
v, 7
= { g :
m L
7 JRse
<
S v
(g\] L4 sﬁ.‘
w) &
2 Dfg a 5 7
o J08) g)
z m 2 : = A
SRl
- T S0) e w" o & B
S m@?m&m% D0JB10 1 ok} 8 B M dopeaggon ® mmoma\\wv ©
=) 4 1 Y951 6 B Bl 4O} OO0 Yo B
2 g ¢ T h P
= ¥ i ¢
A TR B
g
8 S
- = fide ingge
p&

.

Patent Applica

US 2020/0349486 Al

Nov. 5,2020 Sheet 6 of 22

Patent Application Publication

=

{1suBisat) elBicn

&
l Yy Old

ani STEhay
Jueyiod, aluenAuadold e
ogenbiuoa . plleussiul i usie|ue Tz I, ISSpOu 100412798D} 6 | PIC-BRSE-ICE-OC A0S PO QOPS, goUBIBjeNI0Rl0
finu US| &
8ele} 1950751 e
(apory Wieubig usubisarzy aponsaines) oD & 4
R R AR AR ARG hwluonony wﬁnaz_w eI 1015817 808008 R RS AR RA K HRIONIIL gl

Patent Application Publication Nov. 5, 2020 Sheet 7 of 22 US 2020/0349486 A1

— £ £
» J—
&
<
= =
= =
oo S a5
[l Fe &
¥t A £ &4
a3 ity ez
iy pureey g
== =
o5 (e
3k = 2
<31 38 3] &
Sl = €2 :
2 O <3 i S
s G] e
g R <3 @« ara i e
e b =3 = 2 Pk P
ot 2 = o Bies
=i 2 = Figis
e o= =y i e
=5 SR
o o SRS Bl D
2 =g e R R
P ey Foal F = B
P9 <= [y P g B
= =5 = =]
=5 =5 (= p=rg =
= == el R]
(=21 == = | o o
= : &2
&= g ey ey
iy porl Bl B
= e B g
= S =3
¥
) &5
o :
== a3
=] ey
= =
PR b
= 4
= =
= 4
. =,
L= et
S
=
&85
P!
is]
=
&3
£
=
Lt
=
[=3
L
(5 :
=
35
PR =2
533 Ny i
c [R
& &
& 3 t g G
< <3 P Rk
fasiy &5 St en
=3 =% = &5
(X3 1e3 LT I RED
<5 <ks €i5 | ks
et R S [N N1
i L g] e
e SR § £ oS § oS
— Sore § T Py AN
=y =g R [Py p=
e [[
<2 AL E g
& = I o] e
e w2 | ob b
e i pr g ey fra)
s Far) = P
b4 P
<=5 &= o 7
=5 fa o2 =
[o5
o2 =
= P iy x>
Lit Py S =]
=3 == =)
= &=] ==
= 2 <D P=51
= S0y
o3 5 s
- x 2
= 5 =
fo <3 T,
e 3 L;c
& =
5 <> =
= Pl
= "} S
< ==
=% [Ty
2 &2
=
S_— s
Z =
» <§>‘
=
=

US 2020/0349486 Al

Nov. 5,2020 Sheet 8 of 22

Patent Application Publication

107
]
| ak D EE C EEREEE
7. A
< flo sl
)
]
70
| 19y el0g |
) £ Spelogpeus
m ;w ¢
¢
i
¢4 !
P soag

ETTRY:
™

Patent Application Publication Nov. 5, 2020

Sheet 9 of 22

US 2020/0349486 Al

&-{ } JSON
e[Jnodes
B-{}0
B {} 1
& [] children
B-1}0
- 13 wizardid : 3001

n
700

e

& {} configuration
showkFrom : true

——

702 N

L. Il ccmpfe ntld: 30006
- B3 gystemName ae% email’
B3 fitle : “Send Emaif’
-~ 3 internalld 1

- 3 componentld : 30004

1-{ }ul
3§} configuration
~ £ systemName: “Send Email’
- & ttv “Send Emal”

3 infernalld: 2
. componentEd:l%OOﬁO
3-f] finks
3-{ 3 configuration
7-{ } exiemalReferenceDefinitions
31 | trackedReferences
£ fitle: AT
compenentid : 50001

(- T o |

F"'ﬁi‘"ﬁi‘"ir;:’!

FIG. 7

Patent Application Publication

Nov. 5, 2020 Sheet 10 of 22

US 2020/0349486 Al

800

e

DefadtProcessHander s

ltemReferenceHander o3

&3

e namasgace SourosCode WebDesignen F

TC8 Coteben Mo w §} - SourceCode WeaDesioner Framenork CodGen Workiow Process,
£ S hoaod

ramework CodeGen Workhow. Procass KZProoes

b <summany Ths inferace reoresents e oo ec mdﬁ forthe Ema!waadi
{Gensralscods GenarateCodsAtfribute. Desh |
’Compw.rt(L,oakapfypes,tm‘i& i, S CCCDdF‘,WGu' G

=
g Ei
theBN R

)
|

£ Teferences fvander coalzes,

piablic inferface i

Ruthoring Types =new strng | Worklow Design

2028 agom,thor 2 thanges {4 work temsl £ revies
r: IEveniCenfiouration

IConfig

;TgpeScrfg;ng;fio’ra
eferences xender
bs*‘f“""w- rrcgef‘ stf)

coglzes, 2 gays agol 1 authers, 1 changes 2 work ftemsiZ reviews

ents EmalEveniitembiandier, Sou

recode webbe:

vl spess of e person sendng e el
fef ""ﬂcechcm aesd 0 auhors, B changes
grode. ”&E%Igﬂel rang vokvodeuen Gore ConfiguredSmartFieldsExprassion fom { gef sef }
b <summarys Listofreciients for e emall
;T{WSCFF’MG})?”O’E&

(reforences] Friz Tubbing] autors, 1"“] 1work itoms] 1 raviews

‘j f\
istSomseCods WehDestp: Frampwerk CoteBenCore, Configured Smartigeids Exprescion b { get set |
b 1 <summany Listofrecpies

thatul be covied on fe el
{TyeScriptOntiona]

(referencesd O changest O authors, changes
ListeSourceCode. WebDesioner Framework, CaceG*** Gore.Configured SmantFoeids. Expression> o {gef et}
VI <oummanys Listofrecipients hafwil el copiee on e el
;TypeScrr’ctOpﬁm

Crefe chﬂ ! { c"a"gesi { authors, § changes

smeinork CodeBen.

Uv

Gore Configurad SmartiRalds Expressions boe { et set

{authors, § changes
Sourcerode Weblesigner Framewor k.Code@en.Care.CenfiguredSmar%Fieidﬁf'Expfessfan subject{ et st}
b <summany Eral body kst et Al
(referencest changesd b authars, § changes
Suuzcecoce WebDesioner Framework | CoGenCore. ConfiguredSmartFicligExprassion
b <stmmang Listof liachments e omal
(referencesd§ changesd 0 authors, § changes
LiskSoxaceCoe Wb Cesigns Framesor "**

body 1

gelset |

UV\a

Gen Core ConfiguredSmartFigds Expression atiachments{ get set |

FIG. 8

Patent Application Publication

] K2Designerz(14 -
Hle Edt View
ORED
iEmailEvnmUi fs

Nov. 5,2020 Sheet 11 of 22 US 2020/0349486 A1
- Microsoft Visual Studio (Administrator)
Project Buld Debug Team Tools Test Analyze
«{{Debug s} Any CPU > [Fan

'EmaiiCcz“f'gur f

iE"nailConﬁaurationExtensio“ s _@

éﬂ-—-}C{}

@ jsonviewerstack hu

B Apps © Online JSON Viewer B8 K2 Designer BE K2 Designer - Powere B W

| Viewsr N Text |

= { 1JSON
& [nodec

h 100

Q.,{ 1
g+] Johildren

o '

{-}--{3 wizardld 3001

g Ui
£ conﬁgdra ion
g-{ Hrom
@[]1@

@..
:

----- o systemName ; “Send Emall
@ fite : "Send Email’

----- o internalld ;1

;o compenentld ; 30004

& L configuration

sv:,temName “Send Emall
“Send Email’

----- n irﬁe nalid: 2

----- &3 componentld : 40000

[Jinks

yeonfiguration

lextemaiReferenceDafinitions

LI raweﬁReferencec

g il AT

----- ez componentid ; 50001

ot
by
31
:L
gt

FIG. 9

Patent Application Publication

Nov. 5,2020 Sheet 12 of 22

US 2020/0349486 Al

¢ K2esignerd04 « Miorosott Visual Skucio [Adminshater)

Fle EGt View Proect Buld Debug Tean Tools Tt A“:yze 'mjow He
orolm-mBF 7ol Eewg Ao Feneio o
1% |

o {Desigrarditd b
Fle Edt Wi Tols Test Anayze Window Help
EE nyCF.J 4 Framengrioont S8 »§>Q

onfiurafionts €S

g8 oielteeew imBin lﬂiqﬂvﬂwﬂv'ﬂ[}v-masv '
EralbveniUisls Emal ﬁ Extension s FETACOTUEINS = »a CStannClassimplementaion

eALT 23 -] inmiu ﬂan«amﬁvmmam

EmaiConfiquaionss °

el il

Sy
RO I88] X0Gj00
™! d

SEOTOS B0 IR 89

bis s, éet
tis. el ggl

i

A
M

h* sme d:LC i
this, seane, ad"Buv
tis. scone browsel

sope.if oglestates’)

_soooe Ui ogglestates'] = his,_seane bnggleStates;

g 0855, M rocsss avets el EmalConfoueatorbiis s.*ope “‘rent 0 .m‘i
2 K Mcaclv 05888 K Progess svents emal)

1000

.,

V8 300 i8 *hou 1hanqesi Tougs 15wk fiems | 2 eviens |

FIG. 10

Patent Application Publication Nov. §,2020 Sheet 13 of 22

US 2020/0349486 Al

'\M /"%
it} \\J\

sy

L& | Quick Launch (01

()

i 2 cusitorﬂWéaards

4

B mtcmes S
B €3 processiizans
b £ seifnss
B
|4
-4

3 smarffoms
€3 b ka

» w“text va;er
b 3 confe

L ailetay

Emaifuentlhs Weboor = ® {Solbon Explorer S Ey
@em@vw%m@ 5
B Search Solilon Explorey (G} pel
S b EICORE <
< g il
b gaismProvider
11 dlentiizards

100

{ Solon Exdlorer]Team Ciplorer s View

FIG. 10 C@NTENUE@

Patent Application Publication Nov. 5,2020 Sheet 14 of 22 US 2020/0349486 A1

s K2Designer204 - Miorosoft Visud Studio ’Mmsta’w
Fie Edt View Project Buld Deug Team Toos Test qnalvz@ ndow
©-0lBEWBR 79 ﬁebuu»iiAn‘ (AU »Satesed JmBin aeuﬂawv;nmmv
& [EmaibventlLls EmaiConiqwalintrensonts eﬂenta u wa IEralConfquralioncs *
ez {8 K2Dssipertos! w4 |} souceCoce kel ConfigurafoniameSeace o oy
Elmm Search Solian biplore
= @ooe\modeiforée[ml wzad
= extends coiecthiodel workfow KZProosss ExventConfiourstion |
= field shouid b expanded on fre
= g The emall aderess of the person sending e el 100
i
fom: objectiodecore corfgredSmartfiels Fxgressin
,;a of e recivie
odelAray<ooechiods] core configureaSmaFields iEvpression
cihodel core configuradSmantFisids. Exorassion,
’L|; of the recipients that il e dlind copied o e eral
pgc?: thiestodetcore mode! ModelAmayobiecilodsl core configeredSmartrieles Bpvession, b B
I. - = .
Qubjcc objectiodet core configuredSmartFieids [Exoression;
‘waail oody richtext ! text f hir)
I
tody. objecthodel core.confiuradSmertFisls [Exprassion;
¢ i
1102
*Liat atiachments for bhe emal
| aliachmenis: otyeribock] sore model ModelAay<objecthindel core.configuredSmes Fields, Expression>;
L
7o% » e ander Coelzae, Zdavs acod 2 aulbors, 7 changesd S bugs 4 work femed 5 reviens 14] b
FnoResulist Er Ercakpomis Culpud Find Symbol Results
) 1.0) L0 1
G
S B4 || G || B4 | Be

FIG. 11

Patent Application Publication Nov. 5,2020 Sheet 15 of 22 US 2020/0349486 A1

Sinin

T & X
=
gevl &

&

. S Db]

& studoSenvce

» ooy

» £3UndoRedoSenice
» valideionSenice
» gz

¥

> n:ﬁC“"*wure Pides
|gnvﬁSrr giiFields
confguredSmartCojectResut
w S PO
o 50000858
o £ CPoess
« eFarfilies
s Fouent

5 ¢ ¥ ¥

. a?b iE"ﬁalMﬂf 1 ".“.:XYEHS@DMSS

» sy Emalfuenish

o o EmalEuenists

> ﬁ seilalaiglds
&3 Seffalio

> ﬁ Malt’\hzd

o Dyl Place s
Team Explorer Class View

i Lt Gl Ca N
%M
\ User Shereuts ™ & 3 Jlili,’gmw

FIG. 11 CONTINUED)

US 2020/0349486 Al

Nov. 5, 2020 Sheet 16 of 22

naaIng i 0T EpU0RID N m\ ' @
D
2%
%
¥l
g
T ol T g
S £ umv
Q 2 Sa 7\ A0 RIS
N K e@mm@ _,ﬁm B nu
0% /7 ,Dm
) l 0 g
Ty o
aeainog % A Y
RIS 7 SR AT 37y BIR0S
; _EC% 5 7 %¢
< ;gm_?n-,,_ g&? o) 4
?.>.Eow mw _numJ w, _m A..N L
S 7y EPIRG,
EA
S NI on S
somms{Jlo PR HBID OO G o svasefs

Patent Application Publication

m&mz.&mne

3

LRSI Sa00U 100 Z 080 G LERIG-BROG-1ERY- DESHO0EY BHRL OOPSS,

asje} b
19 RUBISsZy BRoNEsINog} X80

=
i

Kaion By

US 2020/0349486 Al

Nov. 5,2020 Sheet 17 of 22

Patent Application Publication

el 9l

[
[
[

i1 pews Hus

Emtaa_

o'z plewieyu fJsepou 1001 ZRY3YZIES0-PL6-C567-0960-PEZBOYIONL
£ PPZOPYIRL-0920- 9. y-paRE 10619518
9000¢ : P

JIPSPRR0OPE/-0F | 8-y Y- B0/ 19PYY mmm: Apog -

APi00BI(8P-8G68-8P07-/8Gk MEBOSIE, 08lans &

200 | H

2 | @

o[

HB0EPIZOPYGE-CHEE-000Y-€010-050i200p, ‘Lo &

NOSP {}

el m— BRI

0| Al

MO9S SMOPUIAL mm

sari 7y M Bubis O
aiamo - oubiseq mm aubisaq 2 mm

AMOANOST B0 @) Sddy gg2

nysoess ssmenuos! (D)

[a1ale}

U9 ¢

Patent Application Publication Nov. 5,2020 Sheet 18 of 22 US 2020/0349486 A1

g

M.
{53
(il

91005502
§
{4
§

E
Bl
%
)

o f
A

A

s

o
&2
Py

8

pace
<5

g

iy
g

4,
L
0

A
0404

o
DHieadbd

42

¢
N

i
FIG. 141

i

=
=
a3
=
=
=
= =y =
. = £
&3 £
2
= - - - =
= <3 b boge] ==
& = = = =
& s =% = =5
o’ [Ludd Lodd ke
&3 k= e = e =
= > <3 <3
f &5 =% Py
i [[LE2 >
X = = =
= = = =
g ey
P ; =3
23 Pt &5 &5
= s P

[
f2sd

,
W
-
&

4
4

A
v

0

:;L

T
504

!
.
V!

I

nr‘-
/ng% }
il
YR
MAEN
ial;
prem
J60ED
ke

|
;

.

¢

Eis
bg
A
LUV

e
JEOF
n
i
0

T
5
e

754

)
FERTIDAS

<

s 5
3 gy
=

aH
03

AnLE
L
§GiA

19
v
n
Y
M

{
{

MO

Patent Application Publication

Nov. 5, 2020 Sheet 19 of 22

US 2020/0349486 Al

s (e sxgnf'M- Micrazoft Vi

!"iie Bl View Prowl an s Tl Bralve Wiw Heb
w.nﬁwa&w S TG | LTI «{{Hramework Lonlg. 54 o Sle wolg i@ of
% "Emall onioralion s’ 3¢ Wehcondo Deplomentcs & DefaulProcessHandercs 1em«:‘erenc3ﬁ Alrcs
< 1030ok0em Noklow «§ =@ SoureeCoe Weblecioner Framework CodeGen Workiow Process KProces 44
T o
=1 et SourceCocta WebDesiner Framework. Codeen Worklow Process K2Process Evenls Enval
=5 ;\
SH1 & [T<immen 0 rence Beser 16 DNec Mok, O B Eral Wiz |
) (Genralelodel GenerateCodeAltiitute DestinelionFile_Prosess_KZPraosss)

SS0S e AU]

putl

e

Aoy .gTy:es e "!r'“-gi 150
VA
‘ $efn ey

or

v
oo
i tiwfeit

g [Emailonion =='anxn

{ Ty

wv\J‘Jd

ComponenltockugTyoes EmalventConfgur :ﬁm “Soueebode WeaDesiper Deploy

orkllow Desicn. Mall

Hailkventiter '>‘]
elerences Xandy Cosloas, ds's_ 90 iLﬁU’"\OfQ Zeh ;mquﬁE wrkAen.aizrewe\m
EveniConfguaton

I <summany> Indlea

caies el e From Tl shouic e expandedon e

Ui

TyoeSerciOptional

(‘V!Q

(9
SILALFTO0ES

s Evenis. gl EmailEve

st}

See ceh,ka wer Geeloes, 2days agod ! author, | change] 2 work dems | 1 reviews

bodl showtrom {gal: et}

| <sumemary> e emalk acthess of e person sendr e smal |

U refesencest 0 changes |0 auhar,) chemges

uouwwde‘nev\Deﬁg g F'ar“d\MC yien Core ConfiquradSemanPistch. Bxorssion fom [get o

L <sumpery> Lt ofveciplents for e amal i
[TyeSeriptoional]

Jrelerences] Fnlz Tuoting | 1 aubor, | chengal T workfem] 1 eview

tisteSouneCook WerDesigner Frameuork CudsGen Cors ConfigaredSmanFislds Expression» to{ gef seh |
4 <cirmery> Lis! of racinisas et wil be copledt on the emal |
TyoeSerciOnt ora]

{ refoences] G changss |0 o, D chengs

Lst<Souealore \!;ewcsxgrur.? ek, LCuﬂG .C e o g'edS narlFields Expression> o { gel oek }

i <Su' A L!S’ ﬂ‘r spins halwl

)-n

thania on the &

L (ol
LU

m*J' x,rJ ha..ge

H <strm ary>
i Ingortant

I <is iy
v|=::0 o]

{oen, Core CorfiguredSmanFicids. Bxore

entiemtander, SourceCok Webd

800

ureeemvc:%.\ann o
tsicSuelode e xueagx i ;’-'ammc oe0en Core ConfiredSmartFislds Ixoression alachments {get sef |

Nov. 5,2020 Sheet 20 of 22 US 2020/0349486 A1

Patent Application Publication

FTE# | Quick e C+0) 2 8 x
Sgnn BB
Bl A gz Dovmme v
+ {Solfon Erdorer 7 Bxi
Yol Neoalbrs @#nlo 2 =
'47;? Search Soiui' Em:enCim,; £el
20448 projecks) >
ment K2Prooess, Versi ’
fj CorkGen
& S _s%ﬂbfﬁiu:’ A
o ol CodeGen Cors
« 8 (odeloen, SmarfForms i
‘IRR CodsCenVionfow
] > 8,5 Propafies
» on Refoenies
» &3 (onfigurcRuies
&3 ConfiguredBmartFie
1

= £3 Gorfiguredima

« B3 Proness

o 13 Acfivifies

« 3 Fuens
L4 ﬂ C'c o
» 3 (lierd

11 iCorfiguration.cs / / /!
i SNLES

[Wiorklow

> 3 beUata lddc
o3 Seffolio
Smart""’izzfd

E o w o Hakafidd re
» 14 SolfionEsgioverd Team Exclorer Class View

O TN I NN e T TS \\‘”“/i‘
e St > o B 1,15,§P ’

5 ii'\’»’;“‘ﬂ"// L

FIG. 15 CONTINUED

Patent Application Publication Nov. 5,2020 Sheet 21 of 22 US 2020/0349486 A1

1600
(START)
1601
E} RECEIVE AREQUEST MESSAGE T0 OPENA
TS TR WORKFLOW PROJECT ™-1602

{

CREATE AN ONLINE COLLABORATIVE SESSION g

Y

CREATE AN UN-EXECUTABLE VERSION OF THE

WORKFLOW PROJECT FROM AN EXECUTABLE e
VERSION 1606
¥
TRANSHIT AN UN-EXECUTABLE VERSION OF THE 158
WORKFLOW PROJECT
; (o)
1609 -
Y \ew RECEIVE AN INSTRUCTION e
é 1510
STORE THE INSTRUCTION TO AN INSTRUCTION SET 1608
AND TRANSMIT THE INSTRUCTION TO OTHER DEVICES -/ oo
THAT ARE PART OF THE SESSION N7

'

UPDATE THE EXECUTABLE VERSION OF THE
WORKFLOW PROJECT BASED ON THE INSTRUCTION 1514

FIG. 16

Patent Application Publication

Nov. 5,2020 Sheet 22 of 22

<

N

US 2020/0349486 Al

1616
RECENE EXECUTE REQUEST MESSAGE? YES
5= O N0 1524
END SESSION REQUEST MESSAGE? HO
@YES
UPDATE THE EXECUTABLE VERSION OF THE \?’/
WORKFLOW PROJECT BASED ON UN-PROCESSED v
INSTRUCTION 1626
CLEARAN INSTRUCTION SET 1628
END THE SESSION 1630
C EHD)
UPDATE THE EXECUTABLE VERSION OF THE L~ 1618
WORKFLOW PROJECT BASED ON UN-PROCESSED. et
INSTRUCTION
EXECUTE THE WORKFLOW PROJECT USING THE 1620
EXECUTABLE VERSION
¥ 18
TRANSMIT RESULTS

O

FIG. 17

US 2020/0349486 Al

COLLABORATIVE DESIGN SYSTEMS,
APPARATUSES, AND METHODS

PRIORITY CLAIM

[0001] The present application is a continuation of, claims
priority to and the benefit of U.S. patent application Ser. No.
15/899,891, filed on Feb. 20, 2018, which claims priority to
and the benefit of U.S. Provisional Patent Application No.
62/461,617, filed on Feb. 21, 2017, the entirety of which are
incorporated herein by reference and relied upon.

BACKGROUND

[0002] Online project collaboration is oftentimes associ-
ated with unfriendly user interfaces, limited functionality,
cumbersome tools, and system freezes/lag. For instance,
known collaboration applications (e.g., circuit design appli-
cations and mechanical design applications) enable multiple
users to view and edit the same project. However, these
known software applications generally require that each user
have a copy of the software application installed on their
own device or workstation. The separate software applica-
tions enable each user to have access to a complete version
(or at least a basic version) of the project toolset and an
executable version of the project, which is oftentimes stored
in a single location on a host user’s workstation or on a
centrally located server. During collaboration, user devices
access the project located on the host workstation or at the
central server. Limited bandwidth at the host may create lag
during the collaboration, leading to increasingly frustrated
users. In addition, some features of a toolset may be
restricted from being used for online collaboration as a result
of complexities related to propagating project changes
(caused by the tool) to other devices. This is especially true
for viewer versions of an online collaboration application
that do not include complete toolsets.

[0003] Another issue with these known online collabora-
tion applications is that collaboration is limited to only those
devices that have a copy of the software application. This
may be acceptable within enterprises and closed domain
environments where all devices are under information tech-
nology (“IT”) management and can be updated with the
latest version of the online collaboration application. How-
ever, this is not acceptable for devices outside the enterprise
or closed domain that do not have the application installed.
As workforces become more mobile and some workforces
using more independent contractors, limiting online project
collaboration to devices with the appropriate project soft-
ware application is not feasible.

[0004] Some applications attempt to overcome these
known problems by being configured to provide online
collaboration for a single file or document type. For
instance, many cloud-based online collaboration tools are
provided only for a specific application, such as a word
processing application, a spreadsheet application, a presen-
tation application, or a database application. While such
applications are generally efficient, they limit collaboration
to a single document or file, thereby limiting functionality to
the capability of the document/file. These applications are
generally not useful for online collaboration for more
sophisticated uses, such as the creation of executable pro-
grams, workflows, or object-oriented programs.

Nov. 5, 2020

SUMMARY

[0005] The present disclosure provides a new and inno-
vative system, method, and apparatus for online collabora-
tion for the creation and modification of a workflow project
(e.g., a form, object-oriented program/process, connected
business objects, etc.). The example system, method, and
apparatus described herein provide online collaboration by
creating a separation between a runtime environment of a
workflow project and an un-executable version of the work-
flow project. The separation enables changes to the work-
flow project to be recorded (within instruction sets) during
a collaborative session and propagated in real-time among
client devices. The instruction sets enable client devices to
provide a current real-time view of a state of a project
without each device having to separately apply the changes
to an executable version of the project or transmit entire
copies of a project. Instead, only the modifications are
communicated and made at each device and reflected within
an editable, but non-executable version of the project. The
disclosed collaboration environment enables editing and
execution of a workflow project by any of the client devices
during a session.

[0006] In addition to modifying local un-executable ver-
sions of a workflow project at client devices, the instruction
sets disclosed herein are also used to modify an executable
version of the workflow project, which is generally located
at a centralized location or a client device. However, since
modification of the executable version is relatively more
computationally intensive than modification of a non-ex-
ecutable version of the workflow project, the modifications
are made in the background and generally unnoticed by
client devices. At any time, a client device may transmit an
execution request to a hosting device that contains the
executable version of the workflow project. The request
causes the workflow project to execute, with the result(s) of
the execution being transmitted to the client devices in the
collaborative session. The transmission of the results to the
client devices provides the appearance that each device has
an executable version of the workflow project when in fact
the executable version is located centrally or only at one
device.

[0007] The above-described collaborative configuration
uncouples an executable version of a workflow project from
client devices, thereby enabling the workflow project to be
displayed and edited in third-party programs and applica-
tions (e.g., web browsers) that are not specifically config-
ured for the executable version of a project. This uncoupling
accordingly permits collaboration of a workflow project
among users without the need to install project-specific
software on their devices. Further, third-party functionality
may be integrated with the un-executable version of the
workflow project since the un-executable version is gener-
ally in a format that is more prevalent in third-party appli-
cations. For example, an un-executable version of a work-
flow project may be integrated with a third-party messaging
or email application that is used to provide certain users
alerts or notification messages when approval or help is
needed by another user in the collaboration environment.
[0008] Inanembodiment, a collaborative design apparatus
includes a persistent memory configured to store an execut-
able version of a workflow project, the workflow project
including at least one executable version of an object-
orientated process having attributes and properties. The
collaborative design apparatus also includes a model pro-

US 2020/0349486 Al

cessing server configured to compile and execute the work-
flow project based on the attributes and properties of the
executable version of object-orientated process. The collab-
orative design apparatus further includes an abstraction
interface configured to define a mapping between (i) the
executable version of the object-orientated process and a
typescript version of the object-orientated process including
related attributes and properties, and (ii) the executable
version of the workflow project and a typescript version of
the workflow project, where the typescript version of the
object-orientated process and the typescript version of the
workflow project are compatible for display in a web
browser.

[0009] The collaborative design apparatus additionally
includes an intermediary processing engine configured to
transmit the typescript version of the object-orientated pro-
cess and the typescript version of the workflow project to a
first client device for display in the web browser of the first
client device and a second client device for display in the
web browser of the second client device and transmit a
toolset file to the first client device and the second client
device, the toolset file specifying a user interface to enable
modification of the typescript version of the object-orien-
tated process and the typescript version of the workflow
project. The intermediary processing engine is also config-
ured to receive, from the first client device, a modify
instruction to modify at least one of the attributes or prop-
erties of the typescript version of the object-orientated
process and store the modify instruction in conjunction with
the typescript version of the object-orientated process. The
intermediary processing engine is further configured to
transmit the modify instruction to the second client device
causing the user interface to modify the at least one of the
attributes or properties of the typescript version of the
object-orientated process displayed within the user interface
at the second client device. The typescript version of the
object-orientated process is concurrently displayed, at the
first client device and the second client device, with the
modification of the at least one of the attributes or properties.

[0010] In another embodiment, a collaborative design
method includes receiving, in a server, a first request mes-
sage from a first client device requesting a workflow project
and receiving, in the server, a second request message from
a second client device requesting the workflow project. The
method also includes creating, via the server, a typescript
version of the workflow project from an executable version
of the workflow project and transmitting, from the server, a
first copy of the typescript version of the workflow project
to the first client device and a second copy of the typescript
version of the workflow project to the second client device.
The example method further includes receiving, in the server
from the first client device, a modify instruction that is
indicative of a modification to the first copy of the typescript
version of the workflow project and transmitting, from the
server, the modify instruction to the second client device
causing the second client device to modify the second copy
of the typescript version of the workflow project. Moreover,
the example method includes modifying, via the server, the
executable version of the workflow project based on the
modify instruction.

[0011] Additional features and advantages of the disclosed
system, method, and apparatus are described in, and will be
apparent from, the following Detailed Description and the
Figures.

Nov. 5, 2020

BRIEF DESCRIPTION OF THE FIGURES

[0012] FIG. 1 shows a diagram of an example online
collaboration environment, according to an example
embodiment of the present disclosure.

[0013] FIG. 2A shows a diagram that is illustrative of an
online collaboration between client devices, according to an
example embodiment of the present disclosure.

[0014] FIG. 2B shows a diagram of an intermediary pro-
cessing engine of the online collaboration environment
shown in FIGS. 1 and 2A, according to an example embodi-
ment of the present disclosure.

[0015] FIG. 2C shows an example architecture of the
online collaboration environment of FIGS. 1, 2A, and 2B,
according to an example embodiment of the present disclo-
sure.

[0016] FIG. 3 shows an example of a second user at a
client device modifying a property or attribute of an email
object of a workflow project, according to an example
embodiment of the present disclosure.

[0017] FIG. 4A shows a diagram of a structure of an
instruction, according to an example embodiment of the
present disclosure.

[0018] FIG. 4B shows a diagram representing a schema of
a workflow project or object to which the instruction of FIG.
4 A can be applied to modify the workflow project or object,
according to an example embodiment of the present disclo-
sure.

[0019] FIG. 5 shows a table representative of a worktlow
project or object partitioned into granular sections represen-
tative of modifications by respective instructions, according
to an example embodiment of the present disclosure.
[0020] FIG. 6 shows a diagram of a canvas or editing
workspace for a workflow project, which includes an email
object (e.g., an object-orientated process having attributes
and properties), according to an example embodiment of the
present disclosure.

[0021] FIG. 7 shows a diagram of a JavaScript Object
Notation (“JSON”) object model of the email object of FIG.
6 at a client device, according to an example embodiment of
the present disclosure.

[0022] FIG. 8 shows a diagram of an interface that
includes code specified in an intermediate model (e.g., one
or more APIs) that defines how typescript (e.g., JSON) code
translates or converts to C # code for an executable version
of the email object of FIG. 6, according to an example
embodiment of the present disclosure.

[0023] FIG. 9 shows a diagram of the JSON model of the
email object of FIG. 6 being modified to include an ‘impor-
tant’ property, according to an example embodiment of the
present disclosure.

[0024] FIG. 10 shows a diagram of a code interface editor
for adding the ‘important’ property to the JSON model of the
email object of FIG. 6, according to an example embodiment
of the present disclosure.

[0025] FIG. 11 shows a diagram of typescript code of the
email object with the addition of the typescript code for the
‘important’ property, according to an example embodiment
of the present disclosure.

[0026] FIG. 12 shows a diagram of a table of instructions
including an instruction specifying the addition of the type-
script code for the ‘important” property discussed in con-
nection with FIGS. 10 and 11, according to an example
embodiment of the present disclosure.

US 2020/0349486 Al

[0027] FIG. 13 shows a diagram of the ‘important’ prop-
erty added to the JSON model of the email object at another
client device, according to an example embodiment of the
present disclosure.

[0028] FIG. 14 shows a diagram of a table illustrating
changes made to JSON model of the email object to add the
‘important’ property, according to an example embodiment
of the present disclosure.

[0029] FIG. 15 shows a diagram of the interface of FIG. 8
with the addition of the ‘important’ property, according to an
example embodiment of the present disclosure.

[0030] FIGS. 16 and 17 illustrate flow diagrams showing
an example procedure to propagate modifications among
executable and non-executable versions of a workflow proj-
ect, according to an example embodiment of the present
invention.

DETAILED DESCRIPTION

[0031] The present disclosure relates in general to a
method, apparatus, and system for online collaboration for
workflow projects. In particular, the example method, appa-
ratus, and system disclosed herein are configured to imple-
ment an interface that creates and maps an un-executable
version of a workflow project (and included objects/pro-
cesses) to an executable version. The un-executable version
of' a workflow project may include one or more un-execut-
able or typescript version of object-orientated processes.
The un-executable version is provided in a first program-
ming language that is configured to display web-based
information. For example, the un-executable version of the
workflow project (including representations of underlying
processes/methods/operations) may be specified in Type-
Script, eXtensible Markup Language (“XML”), HyperText
Markup Language (“HTML”), JavaScript, Cascading Style
Sheet (“CSS”), and/or other markup or script-based lan-
guage that is compatible with a web browser or other user
interface-centric application. The specification of the un-
executable version of the workflow project in a markup or
script-based language enables the project to be operated
(including all features and toolsets) on virtually any smart-
phone, tablet computer, smart-eyewear, smartwatch, laptop
computer, workstation, etc.

[0032] By comparison, the executable version of a work-
flow project (including objects/processes) are provided in a
second programming language that is configured to execute
one or more processes, methods, or procedures to generate
a result. The executable version of a workflow project may
include an executable version of an object-orientated pro-
cess. Additionally, the executable version of the workflow
project may be specified by, for example C # classes.
Further, the executable version of a workflow project is
configured to be located at a centralized server/workstation
or at a hosting client device. In some embodiments, the
executable version workflow project provides one or more
results when executed, with the results being transmitted to
the un-executable versions. Locating the executable version
of the workflow project at a single location reduces process-
ing requirements and specialization of the client devices.
Only the device executing the project has to include a
specialized software application capable of executing, for
example, C # classes in a runtime environment.

[0033] The example interface disclosed herein manages
the propagation of changes to the workflow project such that
they are updated in the un-executable version to enable

Nov. 5, 2020

subsequent editing by users of local copies of the workflow
project. At approximately the same time or shortly thereaf-
ter, the interface applies the changes to the executable
version of the project. Accordingly, the disclosed interface
synchronizes un-executable version changes made by mul-
tiple client devices among not only the client devices but
also the executable version of the workflow project. Further,
only the modifications to a workflow project are transmitted,
instead of copies of the workflow projects themselves,
thereby reducing bandwidth.

[0034] Reference is made through to instructions and
instruction sets that specify changes to a project. As
described herein, instructions and instruction sets capture
changes to a project made by client devices. The changes
specify, for example, an addition or removal of an object-
orientated process or business object to a project, a modi-
fication, addition, or removal of a property of an object-
orientated process or business object, a modification,
addition, or removal of an attribute of an object-orientated
process or business object, a modification, addition, or
removal of a field of an object-orientated process or business
object, and/or a modification, addition, or removal of a link
to an object-orientated process or business object. The
changes are defined within the instruction sets, which are
aggregated in a centralized location (e.g., a server interface
or hosting client device). The aggregated instruction sets are
compiled and transmitted to each client device that is part of
the online collaboration of the project. Each client device
applies the instruction sets to an appropriate portion of the
project, thereby updating the project to reflect changes made
by each of the users. The instruction sets may also be
converted into executable instructions for modifying the
executable version of the workflow project. The converted
instruction sets are propagated down and applied to the
executable version. Accordingly, the executable version of
the workflow project reflects changes made by users in
near-real time while being logically separated from the
non-executable versions being modified by the users.

[0035] Reference is also made throughout to worktlow
projects. As disclosed herein, a workflow project is pro-
grammatically defined by one or more computer-readable
instructions that specify certain methods or actions compart-
mentalized within discrete computing objects. Workflow
projects may be displayed or operated within an object-
orientated programming environment in which one or more
objects are interconnected to achieve a certain tangible result
or output. An object may be specified by attributes and/or
properties that define how certain data is to be acquired,
processed, and/or output. In addition to above, a workflow
project may also include a form with fields and properties.
Moreover, a workflow project may include a smartobject
that includes a nested workflow or process.

[0036] In contrast to the method, apparatus, and system
disclosed herein, known online collaboration of project
software is susceptible to freezing and pausing of a project.
For instance, known project software has a local version of
an executable version of a project at each client device
within the online session. This known software does not
have a non-executable version. Changes made to a project,
from any users, are applied directly to an executable version
of the project at each client device. This means that the
executable version of the project has to be recompiled after
each change (or at least before a run/view) command is
received at each client device. Recompiling can take time

US 2020/0349486 Al

and cause the project to freeze or pause at times during the
collaboration, which can be frustrating to users. This can be
especially frustrating when one user is compelled to re-
execute a project after every change. Further, execution of
the project may cause the respective software applications to
temporarily prevent (e.g., lock out) other users from making
changes until the project is recompiled and/or executed.

[0037] The example method, apparatus, and system are
configured to overcome issues with known project software
collaboration by separating an executable version of a
project workflow from an un-executable version, which is
formatted for display and interaction in a user interface. The
example method, apparatus, and system provide a level of
viewable and editable abstraction that enables the underly-
ing executable version of the project workflow to be dis-
tributed and changed (through the un-executable version)
without having to distribute a specific program designed to
execute the workflow project. In other words, the example
method, apparatus, and system provide a rendering of a
workflow project to users in a collaborative environment
that makes it appear the users are interacting with the
executable version.

[0038] In some embodiments, the example method, appa-
ratus, and system provide graphical editing of the un-
executable version of the workflow project. The client
devices provide a visualization of a declarative model of the
workflow project. This enables a visual editing environment
for workflow projects with a visual authoring canvas, which
can be plugged into many known third-party applications for
online collaboration or operated in conjunction with third-
party applications. Further, the authoring canvas of the
workflow project is free-flowing, where objects can be
placed and linked throughout. By comparison, known
graphical editing tools are limited to files, such as documents
and spreadsheets, which are locked by coordinates and/or
paragraphs.

[0039] As discussed herein, the example method, appara-
tus, and system enable objects in a workflow project to be
persisted and run while the online collaboration is ongoing.
Further, a workflow project may be simulated to view effects
of changes without making the changes live. The elements
of the workflow project (e.g., a visualization of a declarative
model) can be manipulated by any user of the collaboration
and made immediately available to the other users. Further,
the workflow project may be nested or layered to collab-
oratively build business objects (e.g., smartobjects), forms,
and/or higher order workflows.

1. Online Collaboration Environment Embodiment

[0040] The example method, apparatus, and system dis-
closed herein are embodied within an online collaboration
environment 100, illustrated in FIG. 1. The example envi-
ronment 100 includes a processing server 102 configured to
execute one or more workflow projects that are stored in a
memory 104. As provided in more detail below, workflow
projects define one or more actions, properties, fields, and/or
attributes that are executable within defined classes and/or
code. A workflow project may include a workflow having
one or more interconnected workflow objects that each
specify a method or action. The example processing server
102 includes one or more processors and/or applications
configured to execute the code specified by the objects
within a workflow project. For example, the processing

Nov. 5, 2020

server 102 may be configured to instantiate and/or execute
a workflow project in which objects are specified or defined
by C # classes.

[0041] The example environment 100 also includes an
intermediary processing engine 106 that is communicatively
coupled to the processing server 102. In some embodiments,
the intermediary processing engine 106 may be part of the
server 102. In other embodiments, the intermediary process-
ing engine 106 is separate from the server 102. For example,
the intermediary processing engine 106 may be imple-
mented within a cloud computing environment while the
server 102 is located at a central location. In an embodiment,
the intermediary processing engine 106 may be located in an
open domain while the server 102 is located behind a
firewall and/or secure gateway in a closed domain.

[0042] The example intermediary processing engine 106
is configured to map an executable version of a worktflow
project (stored at the memory 104) that is provided in a first
language to an un-executable version of the worktlow proj-
ect that is provided in a second language. For example, the
intermediary processing engine 106 is configured to map or
provide conversion of a C # based workflow project (includ-
ing objects) to a TypeScript workflow project. The mapping
includes defining a structure of properties and attributes of
a non-executable version of each object, form, and action in
a workflow that correlates or matches a structure of prop-
erties and attributes of an executable version of the corre-
sponding object, form, and action. The mapping also
includes providing a same set of available features, proper-
ties, and/or attributes between the executable and un-execut-
able version of the object, form, and/or action such that
modifications to the un-executable versions can be propa-
gated to the executable versions. The mapping may be coded
within one or more APIs (e.g., Authoring Framework APIs)
and/or intermediate models (e.g., an abstraction interface)
that correlate typescript (e.g., JSON) code to C # code. The
example intermediary processing engine 106 is configured
to store an un-executable version of a workflow project,
including objects, forms, and/or actions within a memory
108.

[0043] As illustrated in FIG. 1, the intermediary process-
ing engine 106 is communicatively coupled to client devices
110 via a network 112 (e.g., the Internet). The network 112
may include any local area network, wide area network,
private network, wired network, and/or wireless network
(e.g., a cellular and/or Wi-Fi network). The client devices
110 include any smartphone, tablet computer, smart-eye-
wear, smartwatch, laptop computer, desktop computer,
workstation, processor, server, etc. The client devices 110
are configured to operate an application 114 (e.g., a web
browser, document editing application, etc.) that displays an
un-executable version of a workflow project for online
collaboration. The client devices 110 may be configured to
operate in an open domain or a closed domain. For example,
the client devices 1106 and 110¢ may be part of a closed
domain 116 that may also include the processing server 102.
A closed domain may comprise an enterprise local area
network (“LLAN”), which is separated from the public Inter-
net via one or more gateways, firewalls, etc.

[0044] While FIG. 1 shows three client devices 110, it
should be appreciated that an online design collaboration
session may include any number of client devices 110 in an
open or closed domain. Further, while FIG. 1 shows a single
collaborative session, it should be appreciated that the

US 2020/0349486 Al

intermediary processing engine 106 and/or the processing
server 102 may concurrently host tens to hundreds of
collaboration sessions. In some embodiments, a client
device 110 may be part of more than one session at a time.
For example, a user may open multiple web browsers, with
each web browser displaying a separate workflow project.

A. Online Collaboration Implementation
Embodiment

[0045] FIG. 2A shows an example of an online collabo-
ration between the client device 110a and the client device
1105. In this example, during an online collaboration ses-
sion, the client device 110qa is displaying a web browser
application 114a and the client device 1104 is displaying
another web browser application 1145. The web browsers
114 display a workflow editing workspace 201 (shown as
respective workspaces 201a and 2015) that may be defined
by one or more toolset files (shown as toolset 2024 and
202b). The toolset files provide or define features that enable
users to edit workflow projects 204a and 204b within the
respective third-party web browser applications 114a and
1145b. The workflow projects 204a and 2045 are un-execut-
able versions of an executable workflow project 205 located
at the processing server 102.

[0046] In some embodiments, the example toolset file 202
defines or includes rules that specify different types of
workflow project data services for the design canvas 201
(e.g., a workspace for object-orientated programming). The
data services define calls that, when implemented in an
executable version of a workflow project, request access to
backend data or operations. Data services also define opera-
tions that a user can perform within the design canvas 201
to create and/or edit a workflow project. Data services can
include, for example:

[0047] Data Services including saving, loading, and a
caching of data from one or more data sources;

[0048] Popup Services that are responsible for control-
ling popups (including modals and non-modals);

[0049] Environment Services that contain defaults
needed for a design environment (e.g., query string
parameters), determine where a design environment is
hosted (e.g., SmartForms or SharePoint), and deter-
mine what design environment to display (e.g., Work-
flow designer or SmartObject designer, etc.);

[0050] Context Provider Services that store context
providers across a design environment, and are used to
access that providers;

[0051] Object Model Services that handles the saving
and the loading of the design environment items and
objects to and from a database;

Nov. 5, 2020

[0058] Context Browser Services that provide a context
browser with fields that can be used;

[0059] Context Menu Services that are responsible for
controlling right click context menus;

[0060] Drag Drop Services that are responsible for
controlling drag drop events;

[0061] Filter Panel Services that handle a third panel
showing when a filter control is set into complex mode;

[0062] Help Services that use a json config file to return
a help url based on a token specified;

[0063] Item Provider Services including a Context
Brower, which is linked to item providers for identi-
fying what needs to load in the context browser at what
stage (e.g., each tab in the context browser has it’s own
item provider);

[0064] Notification Services that are responsible for
handling notifications to the user, client-side logging,
suppression of specific messages and popping toasts for
the user;

[0065] Plugin Services that register user interface com-
ponents as plugins and handle which item providers
needs to load for the plugin, and handle collapse and
expansion of the user interface components;

[0066] Recents Services that are responsible for han-
dling areas needed to display recently used artifacts. It
handles the context and the number of items associated
with the context (e.g., recent search for users);

[0067] Recipients Panel Services that are responsible
for setting a context of a rich panel service;

[0068] SmartField Composer Services that handle a
display of the SmartField Composer for a specified
SmartField;

[0069] SmartField Plugin Service that work with a
SmartField Composer Service to load the correct con-
tent for the composer;

[0070] SmartWizard Services that are used by the Smart
Wizards that handle events raised by different Smart
Wizard controls;

[0071] Toolbox Services that provide functionality for
the hosting of plugins within the toolbox user interface
component;

[0072] Undo Redo Services that are responsible for
tracking changes to registered object models and ensure
changes can be reverted or reapplied;

[0073] Validation Services that perform validation
within a specified context. This is used to implement a
badging functionality and general workflow validation;
and

[0074] Workflow Settings Services that are used to
determine if certain settings are configured for smart

[0052] Process Services that handle process specific
actions such as creating new activities or events;

[0053] Canvas Services that are used to access canvas
specific items such as activities rendered in GolS;

[0054] Clipboard Services that are responsible for con-
trolling clipboard functions;
[0055] Collaboration Services that are responsible for
controlling SignalR instructions and collaboration;
[0056] Command Services that are used to notify other
services when a certain keyboard command is trig-
gered;

[0057] Configuration Panel Services that handle the
open and close of a config panel, as well as provide a
definition for each tab;

actions.
[0075] In some examples, the intermediary processing
engine 106 may transmit the toolset files when a user of the
device 110 requests to view/edit a certain workflow project.
The toolset files operate as a plug-in extension to the web
browser. In an embodiment, a user may receive a text
message or email containing a hyperlink to an Internet
Protocol (“IP”) address, web address, or other address at
which a workflow project is being hosted. The address may
be located at the intermediary processing engine 106, the
processing server 102, or a third-party server. A user causes
the client device 110 to navigate to the workflow project
upon selection of the hyperlink. A process at the destination
of the hyperlink may read plug-ins installed on the browser

US 2020/0349486 Al

of'the client device 110. If the toolset is not already installed,
the process transmits a toolset file to the client device to
install the toolset 202. If the toolset is already installed, the
process may activate or otherwise cause the toolset to be
displayed in the application 114.

[0076] In other embodiments, the toolsets 202 may
included or otherwise defined within a webpage at the
destination of a hyperlink to a workflow project. The web-
page includes code or plugins that define features for editing
a workflow project. A web site may be hosted by the
intermediary processing engine 106, the processing server
102, and/or a third-party server.

[0077] In the illustrated embodiment of FIG. 2A, a user of
client device 110a may first create workflow project 204a,
which is displayed within the workspace design canvas 201a
as an un-executable version. The workflow project 204a
defines an automated process for obtaining approval of a
business request. The project 204 includes a number of
different objects including a start object 250, which defines
a starting point for the workflow. The project 204 also
includes an approval object 252, which is logically linked to
the start object 250. The approval object 252 defines actions
or a form for receiving approval from one or more desig-
nated individuals. Downstream from the approval object 252
is an email object 206, which is configured to automatically
transmit an email upon approval being received through
object 252. In this embodiment, the user has specific domain
knowledge and is able to create objects 250, 252, and 206.
However, the user does not know how to define or specify
fields for the email object 206.

[0078] While the session is ongoing, the user of client
device 110a transmits a request message (e.g., a text or
email) to the user of client device 1105. The request message
includes, for example, a link to the workflow project 204.
The user operates the application 1145 on the client device
1105 to navigate or otherwise open the same workflow
project during the online collaboration session, which is
shown as workflow project 2045 in workspace 20156. The
workflow project 2045 shows the same canvas with the same
lines and shapes (e.g., the same workflow project 2045) as
the workflow project displayed by the client device 110a.
[0079] The user of client device 1105 creates the requested
fields for the object 2065, which is added to the workflow
project 204b. A message containing an indication of the
addition of the fields for the object 2065 (e.g., an instruction)
is transmitted to the intermediary processing engine 106,
which transmits the indication message to the client device
110a. Upon receiving the indication, the application 114a of
the client device 110a updates the workflow project 204a to
include the newly created fields for the email object 206. At
about the same time, the indication of the addition of the
newly added fields of the object 2065 is converted into
executable instructions and sent to the processing server 102
to update the executable version of the workflow project
205.

[0080] The following describes in more detail process
operations for propagating the addition of the fields of the
object 2065 at the workspace 2015 to (i) the un-executable
version of the project worktflow 204q at the workspace 201a
of client device 110a and (ii) the executable version of the
workflow project 205 at the processing server 102.

[0081] FIG. 3 shows an example of the second user at
client device 1105 creating one or more fields (in section
302) by modifying a property or attribute of the object 2065

Nov. 5, 2020

of the workflow project 2044. In the illustrated example, the
user of client device 110a does not known which fields
needed to construct the email object 206. However, the user
of'the client device 1105 (e.g., a domain expert) understands
what fields are needed for the email object 206. To create the
fields for the object 2065, the user at the client device 1105
defines a new data field at section 302 within the object 2065
(e.g., edits a property or attribute) with the understanding of
how that field will be populated and consumed. The inter-
mediary processing engine 106 receives, from the client
device 1105, an instruction indicative of the change to the
object 206, and propagates the instruction to the client
device 110a so that the user can use the newly added data
field of the object 206a.

[0082] FIG. 2A shows how the change to the object 206 is
propagated from the client device 1105 to the client device
110a. When the user at the client device 1105 modifies the
object 2065, a property of the object 2065 is modified to
reflect the newly added field. The object 2065 may contain,
for example, a list of available fields that may be selected by
a user. In other examples, values for the fields or properties
may be added or a link to data for population into the fields
or properties may be added. At the moment (reflected by
Event A, illustrated in FIG. 2A as a circled “A”) the object
2065 is modified, the object 2064 at client device 110a is still
reflective of the unmodified object. Shortly thereafter, at
Event B, an instruction 210 is generated and sent from the
client device 11056 to the intermediary processing engine
106. The instruction 210 specifies the field that was added
and identifies the object 206. In other embodiments where
additional modifications to the workflow project 204 are
made, the instruction 210 specifies these other modifica-
tions. Alternatively, an instruction may be generated for each
modification or an instruction may be generated for all
changes made to an object.

[0083] At Event C in FIG. 2, the instruction 210 is
received and queued at the intermediary processing engine
106. The intermediary processing engine 106 determines
that the client device 110aq is part of the same collaborative
session as the client device 1105. Accordingly, at Event D,
the intermediary processing engine 106 transmits the
instruction 210 to the client device 110a (and any other
client devices that are part of the same session). In some
instances, the instruction 210 may be transmitted as a
JavaScript Object Notation (“JSON”) payload. The work-
space 201a applies the instruction 210 to the object 206a
(the un-executable version) such that the object 206a now
mirrors the object 2065. The time between Events A and D
may be a few milliseconds to seconds such that the change
appears almost instantaneous.

[0084] At Event E, which is generally after Event D, the
example intermediary processing engine 106 transmits the
instruction 210 to the processing server 102. The example
processing server 102 applies the instruction 210 to the
executable version of the object 206. In some instances, the
processing server 102 may not apply the instruction 210
until a save or commit command is received from either of
the client devices 110. Additionally or alternatively, the
processing server 102 may apply the instruction 210 to an
executable version of the object 206 within a temporary
version of the executable version of the workflow project
205. The processing server 102 may only update a perma-
nent version of the workflow project 205 when a store or
commit message is received from either of the client devices

US 2020/0349486 Al

110 that are in the collaborative design session. In these
instances, the temporary version of the workflow project 205
enables on-demand execution or simulation without the
change necessarily being saved.

[0085] Prior to Event E, in some embodiments, the inter-
mediary processing engine 106 may convert the instruction
210 into a format for updating a version of the object 206
associated with the workflow project 205. The intermediary
processing engine 106 may convert the instruction 210 by
changing labels and/or data from typescript specifications or
properties into C # classes, functions, or code that modifies
corresponding executable code associated with the object at
the workflow project 205. In some embodiments, the pro-
cessing server 102, instead of the intermediary processing
engine 106, converts the instruction 210 after Event E.
[0086] As shown in the above-example, the intermediary
processing engine 106 of FIG. 2A propagates changes to the
workflow project 204 among the users while keeping sepa-
rate the executable version of the workflow project 205. This
enables a rendering or visualization of a declarative model
(an un-executable version of the workflow project 204) to be
modified at the user-level in a third-party application, such
as a web browser, while separately updating the executable
version of the workflow project 205 or declarative model,
thereby enabling the client devices 110 to modify the model
without having capability of locally executing the model.

B. Intermediary Processing Engine and Processing
Server Embodiment

[0087] FIG. 2B shows a diagram of the intermediary
processing engine 106 and processing server 102 of FIGS.
1 and 2A, according to an example embodiment of the
present disclosure. It should be appreciated that the opera-
tional blocks shown in FIG. 2B are representative of com-
puter-readable instructions or interface specifications stored
in a memory related to the intermediary processing engine
106 and/or the processing server 102, that when executed,
cause either or both of the intermediary processing engine
106 and/or the processing server 102 to perform certain
actions, routines, algorithms, operations, etc. Accordingly,
the operational blocks shown in FIG. 2B may be logically
combined, further partitioned, rearranged, etc. without devi-
ating from the disclosure herein.

[0088] The intermediary processing engine 106 includes a
client device interface 220 configured to communicate with
the client devices 110 of FIGS. 1 and 2A. The interface 220
may include an address, an address-prefix, a domain name,
etc. corresponding to a virtual location of the intermediary
processing engine 106 with respect to the network 112. The
example interface 220 is configured to receive information
from the client devices 110, including, for example, request
messages to view or open a workflow project, request
messages to provide a workflow project for collaboration,
request messages to execute a workflow project, and/or
instructions indicative of changes or modifications made to
one or more workflow projects. The example interface 220
is also configured to transmit information from the interme-
diary processing engine 106 to the client devices 110. The
transmitted information includes, for example, an un-ex-
ecutable version of a workflow project, execution results
from a workflow project, and instructions or instruction sets
indicative of changes made to a workflow project.

[0089] The example client device interface 220 operates in
connection with a session manager 222 to determine which

Nov. 5, 2020

client devices 110 are associated with which collaborative
sessions. Each session corresponds to a different workflow
project, of which an executable version may be stored in the
memory 108. The example session manager 222 maintains
separate session lists that each includes an identifier, link, or
address to an un-executable workflow project stored in the
memory 108 and addresses, usernames, and/or identifiers of
client devices 110 that are viewing or otherwise modifying
the respective un-executable workflow project. The example
client device interface 220 may also be configured to pro-
vide authentication to enable only certain user of client
devices 110 to access certain workflow projects.

[0090] To create a session, the example session manager
222 receives a request message from one of the client
devices 110 identifying a workflow project (or indicating
that a new workflow project is to be created). In some
embodiments, the request message may include a hyperlink,
address, and/or identifier of the workflow project. In other
embodiments, the request message may initiate a file brows-
ing interface with the session manager 222 to enable a user
to select a workflow project stored within a directory or
other file structure. The intermediary processing engine 106
may store un-executable versions of workflow projects
within the memory 108 for selection. Each of the un-
executable versions of the workflow project may include an
identifier, link, and/or address, which is used by the client
devices 110 and/or the intermediary processing engine 106
for identification and access. For example, users of client
devices 110 may share a link or address to a worktlow
project (or instruct the intermediary processing engine 106
to transmit an address or link to a workflow project) to
permit other users to access the workflow project during a
session.

[0091] In other examples, only an executable version of a
workflow project is available for selection. In these other
examples, the session manager 222 provides a file browser
to executable workflow projects stored, for example, in the
memory 104 of the processing server 102. After selection by
a user, a workflow converter 224 of the processing server
102 and/or the intermediary processing engine 106 creates
or generates an un-executable version of the selected work-
flow project. After conversion, the session manager 222
stores the un-executable version of the workflow project to
the memory 108 and separately transmits a copy of the
un-executable version of the workflow project to the
requesting client device 110.

[0092] After an un-executable version of a workflow proj-
ect is selected, in some embodiments, the session manager
222 is configured to store an identifier of the workflow
project to a session list. The session manager 222 also stores
an identifier and/or address of the requesting client device
110 to the session list. The session manager 222 uses the
client device interface 220 to transmit a copy of the un-
executable version of the workflow project (e.g., the work-
flow project 204 of FIG. 2A). Transmission includes, for
example, transmitting one or more internet protocol (“IP”)
packets that include typescript code for rendering a graphi-
cal display of the workflow project. As shown in FIGS. 2A
and 3, the graphical display includes icons or pictures
representative of objects, lines or similar graphics indicative
of connections between objects, and fields/tables prompting
user selection and/or entry of values. As such, the typescript
code may specify field options for each parameter and/or
attribute of an object.

US 2020/0349486 Al

[0093] In some embodiments, the session manager 222
transmits the copy of the un-executable version of the
workflow project for display within a web browser applica-
tion, a form, or other third-party application reader/viewer
(e.g., the application 114 of FIGS. 1 and 2A). In other
examples, the session manager 222 may record an image of
the workflow project, which is transmitted to the client
devices 110. In either embodiment, the example session
manager 222 is configured to transmit one or more toolset
files 202 to the client device 110 (if needed) to enable editing
of the workflow projects. The toolset files 202 may be stored
in the memory 108 or a separate memory and provide
features or operations that are generally not native to the web
browsing or other third-party viewing application (e.g., the
application 114). Instead, the toolset files 202 define actions
or operations a user may perform to add/remove objects,
create linkages or nests among objects, and/or create/define
fields/properties/attributes of objects. In some embodiments,
the toolset files 202 are unique per project type or the
workflow project itself.

[0094] The toolset files 202 may include plug-ins for an
application operating on the client device 110 that is ren-
dering the un-executable version of the workflow project. In
other instances, the toolset files 202 may include separate
applications that operate in connection with a viewer appli-
cation. The session manager 222 is configured to transmit
the toolset files 202 in connection with the selected work-
flow project. In examples where a client device 110 may
retain a toolset file 202, the session manager 222 may first
check whether a toolset file 202 is installed at the client
device 110 before determining if a toolset file 202 is to be
transmitted with the workflow project.

[0095] After a session is created, the example session
manager 222 is configured to operate in connection with an
instruction manager 226 to process the instructions (e.g.,
modify instructions or messages). As discussed above, client
devices 110, during a session, enable users to modify the
un-executable version of a worktflow project. Each modifi-
cation (or group of modifications) is documented and stored
as an instruction at the application (e.g., the application 114)
at the client device 110. The toolset file 202 may include
code that specifies how user-provided edits are stored to one
or more instructions, including the format of the instruc-
tions. The client device interface 220 is configured to receive
the instructions periodically (e.g., every 1 second, 5 seconds,
10 seconds, 30 seconds, etc.), after a user saves the changes,
or as the changes are made. The instructions may include an
identifier which identifies the worktflow project. The session
manager 222 uses either a source address identifier of the
client device 110 included with the IP packets for transmis-
sion of the instructions or the identifier within the instruc-
tions to determine a corresponding session.

[0096] The session manager 222 stores the instructions to
an instruction set for subsequent transmission to other client
devices 110 that are part of the collaborative session. In
some examples, the session manager 222 creates an instruc-
tion set for each client device 110 that is part of a session,
where instructions received from a first client device 110 are
added to instruction sets for other client devices of the same
session. This configuration prevents a client device 110 from
receiving instructions it has previously transmitted. In other
examples, all instructions received from all client devices
110 of the same session are stored to a single instruction set,
which is then transmitted periodically (e.g., every 0.5 sec-

Nov. 5, 2020

onds, 1 second, 5 seconds, 10 seconds, 30 seconds, etc.) to
all of the client devices 110 that are part of the session. In
yet other examples, the instructions are broadcast to the
client devices 110 after receipt by the client device interface
220. The toolset files 202 at the client devices 110 include
rules that are operated to apply the instructions to the
workflow project, where instructions that describe changes
already made locally become moot.

[0097] The example session manager 222 stores instruc-
tions received during a session to the memory 108 (e.g., an
Azure database, a SQL database, an in-memory database,
etc.). This enables the instructions to be stored in conjunc-
tion with the un-executable version of the workflow project.
Thus, when a new user joins a session, the session manager
222 transmits the un-executable version of the workflow
project in addition to the instructions, which define how the
project has changed during the session. This enables the new
user to view all changes during a session and ensures that
every client device has the latest ‘version’ of the workflow
project available for display.

[0098] The instructions are transmitted from the client
device interface 220 in batches as a JSON array. The
instruction manager 226 may shred the instructions into the
database temporary storage 108 as independent instructions.
The instructions are then transmitted by the interface 220 to
the client devices 110 via, for example, SignalR in batches,
again as a JSON array. This JSON configuration enables the
instructions to be played one-by-one on every client device
110 regardless of a size of the batch on either side of the
runtime execution. For example, there may be four messages
batched from the ‘source’ client device and sent to the
interface 220 for temporary storage and processing. The
session manager 220 already has three instructions in stor-
age when the batch comes in, bringing the total to seven
instructions for processing. Other client devices 110 may
have missed all seven instructions, and in the next batch the
devices receive all seven instructions from the interface 220.
This configuration allows for flexibility of latency and
network issues to be handled by the accordion style pro-
cessing of the instructions, thereby guaranteeing that every
instruction will be eventually ‘played’ on every client device
110.

[0099] In some embodiments, an algorithm operating on
the session manager 220 and/or the instruction manager 226
enables the collapsing of multiple related instructions into a
single ‘final’ instruction. For example, if an object is being
moved on a design canvas 201 on the ‘source’ client device
110, then each coordinate change will become part of the
instruction set that will be played on every client device.
Although this has the effect of each client device secing
exactly what the source user did, it can lead to a ‘jittery’
experience. The client devices 110 do not technically need to
play every coordinate move. Instead, the client devices 110
just need to know the starting and ending coordinates to
show the completed move of the object. The algorithm is
configured to enable for this ‘final” answer approach to the
instruction set, which may reduce any jitter or perceived lag
that may result from displaying intermediate movements.
This would be similar to the concept of closing the client
session for a period of time and then opening it back up. In
this case, the instructions are not played but instead the last
known ‘state’ of the canvas is simply opened on the client
device and then it starts participating in the instructions from
there on.

US 2020/0349486 Al

[0100] In some examples, the client device interface 220,
the session manager 222, and/or the instruction manager 226
are configured with SignalR to listen for messages/instruc-
tions from the client devices 110 and persist them to the
memory 108 and/or the session manager 222. SignalR is also
configured to transmit those same messages/instructions for
the client devices 110 that are part of the collaborative
session. The instruction messages are transmitted using, for
example, a JSON payload. The session manager 222 trans-
mits the instructions by hydrating the temporarily persisted
JSON instructions into a typescript un-executable version of
a workflow project. Interfaces of the toolset 202 at the client
device may include interfaces that apply the changes speci-
fied in the instructions to the workflow project. The SignalR
configuration enables client devices 110 to ‘replay’ the same
instruction set, which updates the user interface of the
application 114 via an Angular]S two-way binding
approach.

[0101] SignalR includes a library for ASPNET, which
enables the addition of real-time web functionality to appli-
cations (e.g, the applications 114). Real-time web function-
ality provides the ability to have server-side code push
content (e.g., the instructions) to the connected client
devices 110 as the instructions are received at the interface
220 and/or manager 226. SignalR, in some embodiments, is
operated by the manager 226 to send instructions to a
SignalR hub (such as the interface 220 or a downstream
router), which SignalR will process using a code linked to
the hub. The hub can then determine how to route the
instructions. The hub may take the instructions and save it or
broadcast it to the other connected client devices 110. The
hub handles clustered internet information services (“IIS™)
instances (e.g., websites). This enables, for example, instruc-
tions to be broadcasted to all connected client devices
simultaneously.

[0102] As provided above, an instruction (e.g., the instruc-
tion 210) records changes to an object, a workflow project,
or changes to workflow projects more generally. An object
defines one or more actions or methods that are performed.
The object may include one or more properties that define
aspects of the object. For example, a property or attribute
may define or specify who may access an object, how an
object is to be displayed, an input location from a data source
or another object, an output location to a data source or
another object, and/or a data type. Properties may also define
available fields for an object. For instance, an unmodified
object may be configured to have 20 different fields avail-
able. A user may select one or more of the fields (as shown
in section 302 of FIG. 3) for use with the object, thereby
activating the field for use. Values or references may be
populated into the fields to designate how data is to be
processed. The instructions accordingly specify how an
object or action is to be configured.

[0103] Other modifications to objects of an un-executable
version of a workflow project that results in the generation
of an instruction include (a) drawing an object or step at X/y
coordinates within design canvas 201, (b) configuring or
linking inputs/outputs to an object by drawing a line (includ-
ing coordinate values), (c) configuring objects field details
(e.g., To addresses, From addresses, and Body Text for the
email object 206), (d) drawing drop-down form controls at
x/y coordinates, (e) configuring drop-down control details
for a form or object data source/data value/data display

Nov. 5, 2020

bindings, (f) an identifier property for a smart-object, and (g)
a configuration of an identifier property as an auto-number
including a primary key.

[0104] The example instructions define changes at an
abstraction layer to enable processing of the same instruc-
tion by the instruction manager 226 (or at the client devices
110) for the un-executable version and by the instruction
converter 228 and/or processing server 102 for the execut-
able version. At the abstraction layer, objects and other items
of'a workflow project are represented generically via a set of
interfaces that include common framework attributes and
methods. The interfaces enable further translation to differ-
ent programming languages, thereby allowing for simulta-
neous processing of the same instruction for different pur-
poses.

[0105] Insome embodiments, the instruction manager 226
is configured to apply changes specified in the instructions
to the un-executable version of the workflow project just as
the client devices 110 also apply the instructions to local
copies of the workflow project. To apply changes specified
in instructions, the instruction manager 226 and/or the client
device 110 edits the workflow project using, for example,
JSON and QuickPath information specified within the
instructions. In other words, instructions specify changes
made to a typescript workflow project in JSON and Quick-
Path. The instructions at the destination client devices 110
and instruction manager 226 provide a typescript specifica-
tion at an abstraction layer defining how certain objects,
properties, attributes, fields, etc. are to be edited. For
example, an instruction that specifies a creation of an object
in JSON and QuickPath causes the instruction manager 226
to create the object within the un-executable version of the
workflow project. In another example, an instruction that
specifies a newly created field in an object and correspond-
ing property values causes the instruction manager 226 to
activate the specified field in the object and store the
property values.

[0106] Additionally or alternatively, the instructions are
used to update the executable version of the workflow
project stored in the memory 104 of the processing server
102. However, the instructions need to be converted because
they are specified in, for example, a JSON and QuickPath
format as an abstraction of the executable version of the
workflow project. The instruction manager 226 transmits the
instructions to, for example, an instruction converter 228,
which converts the instructions into a format for modifying
the executable version of the workflow project. The instruc-
tion converter 228 may be included with the intermediary
processing engine 106 and/or the processing server 102.
[0107] The example converters 224 and 228 provide an
abstraction of the instruction/processing layer with respect
to the executable version of workflow projects stored in the
memory 104. This level of abstraction corresponds to the
abstraction layer at which the instructions are provided. The
example converters 224 and 228 are configured to process
objects, including smart-objects (e.g., nested objects),
forms, workflow projects, etc. that have been described via
a set of interfaces. In other words, the converters 224 and
228 define interfaces between executable code of a work-
flow project and the corresponding typescript un-executable
version and corresponding instructions. The interfaces of the
converters 224 and 228 define, for example, a structure for
creating or modifying objects that is common among C #
classes and typescript classes. The interfaces may include an

US 2020/0349486 Al

intermediate model and/or Authoring Framework APIs (e.g.,
an abstraction interface). The instructions are layered on the
object structure as a set of generic interfaces. For example,
an arbitrary Object XYZ has properties A, B, C. The
converters 224 and 228 are configured to provide interpre-
tation of the properties for the processing server 102 via an
instruction.

[0108] To convert instructions, the example instruction
converter 228 includes different interfaces or a model com-
prising different interfaces. Each interface may correspond
to a different instruction type, object type, property, attri-
bute, etc. The instruction converter 228 pushes instructions
down to the executable version of the workflow project. In
an example, the instruction converter 228 hydrates tempo-
rarily persisted objects as the generated C # classes and maps
the instructions to the Authoring Framework APIs (e.g., an
intermediate model or abstraction interface). The instruction
converter 228 uses a typescript client object model to
generate an identical C # object model, which is used by an
executable processor 230 at the processing server 102 to
hydrate the executable version with the instructions.
[0109] Information within the instruction are used by the
converter 228 to select the interface. Information within
fields of the instruction are uses to populate fields of an
interface, which enable certain C # code or classes to be
generated or configured. For example, an instruction may
specify the creation of an email object. The type of the
instruction is used to select an interface for creating objects.
The interface includes fields that correspond to JSON and/or
QuickPath information in the instruction. Selection of the
interface and population of the fields causes an executable
processor 230 to locate a C # class for generating an object
of the type specified by the interface. The fields of the
interface are then used by the processor 230 to populate
certain variables, inputs/outputs, properties, and/or attri-
butes of the located C # class for the object.

[0110] In another example, an instruction may specify the
creation of a property for a designated object. The instruc-
tion includes an identifier of the object. The instruction
converter 228 selects an interface for property creation of an
object of the type specified. The object identifier is used by
the executable processor 230 to locate the corresponding
object in the C # code. The specification of the property in
the fields of the interface is used to locate and apply the
appropriate C # class property to the object. Values provided
with the property in the instruction are specified in one or
more fields of the interface and used to define variables
within the selected C # class property of the object.

[0111] In some examples, the instruction manager 226
operates in connection with the instruction converter 228 to
apply all instructions as received to the executable version.
In other examples, the instruction manager 226 operates in
connection with the instruction converter 228 to apply
instructions after a ‘save’ message is received from a client
device 110. In yet other examples, the processing server 102
may create one or more temporary copies of the executable
version of the workflow project, to which the instructions are
applied. This enables un-saved versions of the executable
workflow project to be operated. The executable processor
230 applies the instructions to the permanent copy after a
‘save’ message is received or the session is terminated.
[0112] As described above the instruction converter 228
provides a conversion of abstracted instructions to modify
an executable version of a workflow project. In contrast, the

Nov. 5, 2020

workflow converter 224 includes interfaces for converting
an executable workflow project into a typescript un-execut-
able project. To convert an un-executable version of a
workflow project from an executable version, the workflow
converter 224 operates an interface between, for example, C
and TypeScript classes. The workflow converter 224 may
include an Authoring API (e.g., application programming
interface) for each of the building blocks of a workflow
project including objects, smart-objects, forms, and work-
flows. The Authoring Framework API is a set of C #
interfaces that build, persist, and retrieve a declarative
representation of the object, artifact, or more generally,
workflow project. The API also enables developers to build
all the exact same artifacts directly via code. The workflow
converter 224 operates the APIs to create un-executable
versions of workflow projects that still specify how the
workflow projects are to be displayed and specify properties/
attributes of underlying objects, forms, etc.

[0113] In some examples, a logical model of a workflow
project may be created and stored to the memory 104 and/or
108. The logical model may be un-executable. However, the
logical model is not easily displayable in a web browser or
other third-party applications. In these examples, the work-
flow converter 224 is configured to create a typescript
version as an un-executable version displayable at the client
devices 110 and an executable C # model stored at the
processing server 102. The abstraction of the logical model
may be linked via interfaces at the workflow converter 224
into corresponding typescript classes for the un-executable
version and C # classes for the executable version.

[0114] In some examples, the instruction manager 226
may check for conflicting instructions, which comprise
instructions from two different client devices 110 that
describe a similar change to an object or the project more
generally. The instruction manager 226 may search for
conflicts by identifying an object identifier and/or field
associated with the instructions. A match indicates that
changes from two different users may include contradicting
or overriding edits. If a conflict is detected, the instruction
manager 226 may transmit a message to the respective client
devices 110 prompting a selection of one instruction.
[0115] As shown in FIG. 2B, the processing server 102
includes a cache 232 to store executable versions of a
workflow project (e.g., the workflow project 205) for modi-
fication and/or execution. The cache 232 may include any
volatile or non-volatile memory that enables reading/writing
of the executable version of the workflow project. During a
session, the executable processor 230 applies or hydrates
instructions to the executable version of the worktlow proj-
ect to reflect changes made by users. The changes may be
made to a temporary or permanent version of the workflow
project.

[0116] As described above, the executable version of a
workflow project is available at the processing server 102
while the non-executable versions of the workflow project
are provided at the client devices 110 and the intermediary
processing engine 106. The applications 114 at the client
devices 114 may include a feature that enables a user to
execute a workflow project to visualize data flow or results
of operating one or more objects specified within the project.
However, the client devices 110, including the viewer appli-
cation 114 cannot run the local version of the workflow
project because it is specified in, for example, typescript.
Instead, execution requests are transmitted from the client

US 2020/0349486 Al

device 110 to the interface 120 in an execution request
message. The execution request message is routed within the
intermediary processing engine 106 to an execution proces-
sor 234. The example execution processor 234 receives the
request message and transmits an execution call to a runtime
processor 236 at the processing server 102. In some
instances, the instruction converter 228 may convert the call
into an instruction that causes the runtime processor 236 to
execute a specified workflow project.

[0117] The example request message and/or the request
call may include an identifier of the workflow project. The
request message and/or request call may also identify an
object or action if instead a user only specified to execute a
portion of the workflow project. The example runtime
processor 236 is configured to locate the requested workflow
project within the cache 232 (or load the workflow project
from the memory 104) for execution. In some embodiments,
the runtime processor 236 sends an instruction to the execut-
able processor 230 to apply any pending or outstanding
instructions to the requested workflow project prior to
execution. To execute a workflow project, the example
runtime processor 236 compiles C # code of the project and
steps through the generated object code. Results from the
execution are stored and transmitted by the runtime proces-
sor 236 to the execution processor 234. The example execu-
tion processor 234 creates one or more messages for the
client devices 110 within the collaborative session. The
execution processor 234 may address the messages based on
the session list hosted by the session manager 222. The
message(s) include the results, which are displayed by the
applications 114 in conjunction with the displayed un-
executable version of the workflow project. In some
embodiments, the execution processor 234 transmits the
results only to the client device 110 that transmitted the
execution request. The execution processor 234 and the
runtime processor 236 accordingly provide the appearance
to client device(s) 110 within a collaborative session that
execution of a workflow project occurs locally when instead
the processing is offloaded centrally at the processing server
102.

C. Online Collaboration Architecture Embodiment

[0118] FIG. 2C shows an example architecture of the
online collaboration environment 100 of FIGS. 1, 2A, and
2B, according to an example embodiment of the present
disclosure. In this example, a client device 110 is operating
a web browser application 114 to display an un-executable
version of a workflow project 204. The un-executable ver-
sion of the workflow project is defined as a typescript JSON
object model and the executable version of the workflow
project is defined as a ‘kprx’ file. The kprx file may be
permanently stored in the memory 104 and loaded within a
SQL table during editing by a user. In other examples, the
executable version of the workflow project may be specified
in XML.

[0119] In an embodiment, a user requests to create a new
workflow project via the application 114. An instruction hub
(e.g., the interface 220 and/or the instruction manager 226 of
FIG. 2B) at the intermediary processing engine 106 (pow-
ered by signalR) transmits a call to a collaboration database,
which may include memory 104 and/or memory 108. In
addition, the application 114 creates a blank workflow
project.

Nov. 5, 2020

[0120] In another embodiment, a user may request to edit
an already created workflow project which is stored at the
collaboration database. The request from the user is received
in the intermediary processing engine 106 and transmitted to
the processing server 102 (e.g., a host server). In this
embodiment, the request causes the workflow converter 224
to convert the kprx file of the full declarative executable
workflow project to JSON using APIs, an intermediate
model, and/or an abstraction interface that specify how code
is converted into an object model. The object model corre-
sponds to the un-executable version of the workflow project,
which is transmitted from the intermediary processing
engine 106 to the application 114 of the client device 110.
[0121] At the client device 110, the browser application
114 uses, for example, Angular]S, golS, CSS, Javascript,
and HTML to display the JSON object model and provide
functionality for a corresponding toolset file 202. Regarding
the JSON object model of FIG. 2C, services are reusable
business logic independent of views. Directives are used to
build up the HTML the user sees in the web browser. The
directives are used to manipulate the output of Document
Object Model (“DOM”) elements based on user interaction.
A sample of a directive is a tooltip. This adds an entire piece
of HTML to render more extensive tooltips than what can be
done with the title tag, by using a single attribute added to
the element. The directives provide a user control over the
user interface and allow for the user interface that is created
to be reusable between pages (e.g., .aspx pages), by adding
the directive element or attribute. Another sample of direc-
tives is for controls, so that they can be reused everywhere
in the design environment.

[0122] Each change that is made to the workflow project
via the application 114 is posted through to SignalR as
instructions, stored in a SQL table within memory 108 at the
intermediary processing engine 106. If the browser is closed,
a certain amount of time goes by, or the workflow project is
deployed, a flush command is sent to SignalR. All the
instructions for that session are reassembled into process
JSON. This is then sent to the deployment code to update the
actual kprx executable project workflow. If instead a save
command is received from the user, the krpx and/or the
process JSON is saved to the SQL table so it can be loaded
later. If a deploy command is selected, the kprx file is
deployed to the processing server 102. Once this succeeds
and a workflow project is deployed, the instruction hub is
flushed of all instructions for that workflow project.
[0123] SignalR communicates directly with SQL where all
other calls go through the processing server 102. An iden-
tical object model on the user interface of the application 114
is provided JSON typescript exists in addition to the back-
end in C #. The workflow converter 224 is configured to
generate the backend code from the typescript object model,
to keep it in sync. When loading a workflow project, the
kprx file is retrieved from the SQL table and repopulates the
object model, serializes the object model to JSON and then
passes that to the application 114 for display. If the JSON is
generated on the user interface application 114 as instruc-
tions, the server side object model is hydrated directly with
the same JSON.

[0124] The intermediary processing engine 106 and/or the
user interface on the client device 110 may use caching to
limit calls. This may be implemented using Azure and is
handled by a Data Service. A REST call may be made to the
intermediary processing engine 106 to retrieve context

US 2020/0349486 Al

browser data where long term caching (cross sessions) is
enabled for that service. The next time a REST call is made
with the same signature, the data may be used from the cache
instead of the call actually going out to the intermediary
processing engine 106.

II. Instruction Embodiments

[0125] The following section provides examples regarding
how instructions are structured and managed by the toolset
files 202, the intermediary processing engine 106, and/or the
processing server 202 of FIGS. 1, 2A, 2B, and 2C. The code
below highlights different instruction types that may be
generated at the client device 110 based on actions being
performed by a user on a workflow project. The value
corresponding to the instruction types may be set in a header
of an instruction. The instruction types include instructions
for setting a simple property of an object or form, setting a
complex property of an object or form, adding an object,
removing an object, sending a message (such as to create or
join a collaborative session), lock an object from editing by
other users, and unlock an object for editing by other users.

public enum InstructionTypes

SetSimpleProperty = 1,
SetComplexProperty = 2,

12

Nov. 5, 2020

-continued

AddObjects = 3,
RemoveObjects = 4,
SendMessage = 5,
LockObject = 6,
UnlockLockObject = 7,

[0126] FIG. 4A shows a diagram of a structure of an
instruction 400 (e.g., the instruction 210 of FIG. 2A),
according to an example embodiment of the present disclo-
sure. The instruction 400 includes fields for context, listing,
JSON, an object reference (e.g., a QuickPath) to the object
being modified, a property/attribute name, and a value. The
object may include, for example, the email object 206 of
FIG. 2A or the email object 604 of FIG. 6. The value of the
instruction 400 corresponds to a value of the property/
attribute. In addition, the JSON field provides an object
value from a JSON tree. The instructions may have these
objects modified before they are committed to a table. The
instructions are programmed or otherwise configured to
specify which objects are modified based on their qp/json-
path column (e.g., a pointer). The QuickPath field is pro-
vided to update or inject properties at an exact point into the
JSON (similar to XPath in XML) to cause to a specific node
to update it. The QuickPath field identifies a code location
needed to apply the instruction to process the JSON. Below
are samples of a code for the QuickPath field:

sid001\8d980618-2c47-4487-b62e-

65ac3d320fe9\root.nodes[{*“internalld”:2}].children[{*“internalld”:1}].configurati
on.formConfiguration.url

sid001\8d980618-2c47-4487-b62e-

65ac3d320fe9\root.nodes[{“internalld”:3}].configuration.deadline.expressHours

{

“nodes™: [

{

Further, below is an example full object JSON

“isStartActivity”: true,
ssui”: {

PTSETS
N

56,

“topPorts™: [

b
{

}

“portld”: “topPorts_ 07,
“internalld”: 1,
“componentId”: 40012

“portld”: “topPorts__17,
“internalld”: 2,
“componentId”: 40012

“portld”: “topPorts_ 2",
“internalld”: 3,
“componentId”: 40012

I
“leftPorts™: [

b
{

b

“portld”: “leftPorts_ 07,
“internalld”: 1,
“componentId”: 40012

“portld”: “leftPorts_ 17,
“internalld”: 2,
“componentId”: 40012

“portld”: “leftPorts_ 27,

US 2020/0349486 Al

-continued

13

“internalld”: 3,
“componentId”: 40012
¥
1,
“bottomPorts™: [
{
“portld”: “bottomPorts_ 07,
“internalld”: 1,
“componentId”: 40012

“portld”: “bottomPorts_ 17,
“internalld”: 2,
“componentId”: 40012

“portld”: “bottomPorts_ 27,
“internalld”: 3,
“componentId”: 40012

¥
“rightPorts™: [

“portld”: “rightPorts_ 07,
“internalld”: 1,
“componentId”: 40012

“portld”: “rightPorts_ 17,
“internalld”: 2,
“componentId”: 40012

“portld”: “rightPorts_ 2”,
“internalld”: 3,
“componentId”: 40012
¥
1,
“template”: “StartStep”,
“componentId”: 40009

>
“systemName”: “Start”,
“title”: “Start”,
“internalld”: 1,
“componentId”: 40000

“ui”: {
“y”: 168,
“showLabel”: true,
“topPorts™: [
{
“portld”: “topPorts_ 07,
“internalld”: 1,
“componentId”: 40012

“portld”: “topPorts__17,
“internalld”: 2,
“componentId”: 40012

“portld”: “topPorts_ 2",
“internalld”: 3,
“componentId”: 40012
¥
1,
“leftPorts™: [

“portld”: “leftPorts_ 07,
“internalld”: 1,
“componentId”: 40012

b
{

“portld”: “leftPorts_ 17,
“internalld”: 2,

Nov. 5, 2020

US 2020/0349486 Al

-continued

14

“componentId”: 40012
b
{

“portld”: “leftPorts_ 27,
“internalld”: 3,
“componentId”: 40012
¥
1,
“bottomPorts™: [

“portld”: “bottomPorts_ 07,
“internalld”: 1,
“componentId”: 40012

~——

“portld”: “bottomPorts_ 17,
“internalld”: 2,
“componentId”: 40012

“portld”: “bottomPorts_ 27,
“internalld”: 3,
“componentId”: 40012

}

1,
“rightPorts™: [
{
“portld”: “rightPorts_ 07,
“internalld”: 1,
“componentId”: 40012

“portld”: “rightPorts_ 17,
“internalld”: 2,
“componentId”: 40012

“portld”: “rightPorts_ 2”,
“internalld”: 3,
“componentId”: 40012

}

emplate”: “PlaceholderStep”,
“componentId”: 40009

1

<

“configuration”: {
“deadline”: {
“actionType™: 3,

“specificDate™: { “componentId”: 10008 },
“expressDays”: { “componentId”: 10008 },
“expressHours™: { “componentId”: 10008 },
“expressMinutes™: { “componentId”: 10008 },
“expressSeconds”: { “componentId”: 10008 },

“noDeadline”: true,
“withinWorkingHoursOnly”: true,
“componentId”: 30025
3
“priority”: 1,
“decisionOptionType”: 1,
“componentld”: 40001

}

i,

ystemName™: “PlaceholderStep”,
“internalld”: 2,
“componentId”: 40000

¥
1

“links™: [
{
“fromInternalld”: 1,
“toInternalld”: 2,
“ui”: {
“fromPortId”: “bottomPorts__17,
“toPortId”: “topPorts_ 17,

“path”: “0,84,0,104,0,112,0,112,0,120,0,140",

“template”: “DefaultLine”

Nov. 5, 2020

US 2020/0349486 Al

-continued

15

Nov. 5, 2020

“configuration”: { “componentId”: 40013 },
“internalld”: 1,
“componentld”: 50002
¥
15
“configuration”: {
“processDefinitions™: [

“internalld”: 1,
“componentId”: 20000

“processPriority”: 1,
“exceptionSettings™: {
“logException™: true,
“componentId”: 50012

¥
I
“title™: “SaZ”,
“componentId”: 50001
¥
[0127] FIG. 4B shows a diagram representing a schema

450 of a workflow project or object to which the instruction
400 of FIG. 4A can be applied to modify the workflow
project or object, according to an example embodiment of
the present disclosure. The schema 450 is for a flattened
JSON model. A toolset file at a client device 110 uses the
schema 450 for applying instructions to the workflow proj-
ect or object. The schema 450 accordingly enables instruc-
tions to modify discrete sections of the workflow project or
object without affecting other sections.

[0128] The ID field of the schema 450 is a unique iden-
tifier that enables the session manager 222 to differentiate
multiple instructions/portions of code for modification. The
1D value may be based on a combination of a date/time value
with a device identifier to ensure instructions are unique
during a collaborative session. The SessionID field of FIG.
4B is configured to enable each collaborative session to be
unique to make sure the correct instructions are applied to
the appropriate session by the session manager 222. The
JSON field provides an object value from a JSON tree. The
instructions may have these objects modified before they are
committed to a table. The instructions are programmed or
otherwise configured to specify which objects are modified
based on their qp/jsonpath column (e.g., a pointer). As
discussed above, the QuickPath field is provided to update
or inject properties at an exact point into the JSON for
modification.

[0129] FIG. 5 shows a table 500 representative of a
workflow project or object partitioned into granular sections
for modification by respective instructions, according to an
example embodiment of the present disclosure. Each row in
the table 500 represents a node in an object model or
workflow project to which an instruction is to be applied. In
other words, each row includes a portion of JSON code that
is to undergo modification to reflect changes to an object or
workflow project at another location. The table 500 is
maintained at the client devices 110 during an online session
and at the intermediary processing engine 106 for updating
local un-executable versions of workflow projects. When an
instruction is received at a client device 110 and/or the
intermediary processing engine 106, a QuickPath specified
in the instruction is used to select the node or portion
typescript code of the object or workflow project. The

selected typescript code (e.g., JSON) is stored to the JSON
field in the table 500. The instruction is then applied to the
typescript code such that changes to the code are made. For
example, an instruction that includes the addition of a
property adds the property code to the code included in the
JSON column. In another example, a change of a property
or attribute value causes in an instruction causes the value
within the specified portion of the object code to be likewise
changed in the table 500. The modified code is then stored
in the JSON column of the table 500 and propagated back to
the object model, or more generally, the workflow project
using the QuickPath.

[0130] In some embodiments, the code modifications
specified in the instructions are converted into a format
compatible with an executable version of a workflow proj-
ect. The instructions may then be applied to the worktlow
project to modify the appropriate portions of code. In other
examples, the code specified within the JSON field in the
table 500 is converted using one or more APIs into execut-
able code. This converted executable code is then applied to
the appropriate portions of the executable version of the
workflow project. In yet other examples, the complete
modified typescript workflow project is converted into an
intermediate model using an Authoring Framework API,
which is then used to create an executable version of the
workflow project. The intermediate model is created or
operated at the intermediary processing engine 106 and
specifies, for example, interfaces that link JSON code to C
code via an Authoring Framework API. After an interme-
diate model and executable version is created, the instruc-
tions and/or the modified typescript code within the table
500 may be used instead to update the intermediate model.
The updates to the intermediate model are then propagated
to the executable version of the workflow project. Alterna-
tively, a new version of the executable version of the
workflow project may be generated from the intermediate
model.

1I1. Workflow Project Embodiments

[0131] The {following sections provide examples of
executable and un-executable versions of a workflow project
including underlying objects. FIG. 6 shows a diagram of an
example canvas or editing workspace 201 for a worktlow

US 2020/0349486 Al
16

project 602, which includes a mail events object 604. The
mail events object 604 specifies one or more processes that
are defined by properties and/or attributes to cause a server
or a computer to perform an operation. The properties and
attributes are editable in section 606 of the editing work-
space 201. In some embodiments, a toolset file determines
how the properties and attributes of the object 604 are to be
displayed within the section 606.

[0132] The example mail events object 604 causes one or
more email messages to be transmitted to one or more
recipients when executed within a workflow project that is
defined by the workflow project 602. The properties or
attributes of the email events object 604 define recipients
(and/or originators) or point to a database of recipients
and/or define contents of the email or link to a database (or
other object) with the contents. The properties or attributes
of the email events object 604 may also enable specification
of conditions and/or time(s) email messages are to be
transmitted. The section 606 enables users to graphically
define properties or attributes by providing information one
or more fields that are programmatically linked to the
properties or attributes.

[0133] FIG. 7 shows a diagram of a JSON object model
700 of the object 604 (including connected lines) of FIG. 6.
The object model 700 includes properties and attributes 702
that define how processes or actions are performed by the
email object 604. The JSON object model 700 includes
editable properties and/or attributes including, for example,
“from’, ‘to’, ‘cc’, ‘bee’, “subject’, and ‘body’ attributes. The
JSON model 700 also includes editable properties including
a system name, title, internal id, and component id. Each of
the properties and attributes may be edited by a user using

Nov. 5, 2020

through a graphical interface provided in the section 606,
which includes tools for modifying the JSON object 604.
Accordingly, edits provided by a user in section 606 are
coded into the underlying JSON model 700. It should be
appreciated that the JSON model 700 does not include
capability for the email object 702 to be executed.

[0134] FIG. 8 shows a diagram of an interface 800 that
includes code specified in an intermediate model (e.g., one
or more Authoring Framework APIs) that specifies how
typescript (e.g., JSON) code translates or converts to C #
code for an executable version of the email object 604. The
code specified in the interface 800 enables an executable
version of the JSON model 700 of FIG. 7 to be created. One
or more APIs specified within the interface 800 define
relations between the C # executable code and the JSON
model 700. For example, the ‘from’ attribute of the JSON
model 700 is linked via an API within the interface 800 to
executable C # code (managed by the processing server 102)
that is associated with the comment: “The email address of
the person sending the email”. Thus, the ‘from” attribute of
the JSON model 700 provides an editable and viewable
abstraction of the related executable code.

[0135] In some embodiments, templates may be used to
create and/or modify the intermediate code shown in FIG. 8,
the JSON model 700 of FIG. 7, and/or the C # class code.
The templates may be used when a workflow project is
newly created to provide an overall structure. Additionally
or alternatively, the templates may define a code structure to
enable correspondence to one or more APIs, shown for
example in the interface 800. An example C # code template
is provided below that is used to create an executable
workflow project file.

/¥

* Generated code

*/
using System;

using System.Reflection;

@USINGSECTIONSTART

using @USINGNAMESPACE; @USINGSECTIONEND

using SourceCode.WebDesigner.Framework.ObjectModel.Core;

using SourceCode.WebDesigner.Framework.ObjectModel.Core.Collections;
using SourceCode.WebDesigner.Framework.ObjectModel.Core.Deployment;
using Newtonsoft.Json;

using Newtonsoft.Json.Ling;

using System.Diagnostics.CodeAnalysis;

namespace @NAMESPACE

@CLASSDOC
[ComponentAttribute(@COMPONENTID)]

public

class @CLASSNAME@IFCLASSINHERITTENCE:

@CLASSINHERITTENCE@ENDIFCLASSINHERITTENCE
@WHERECLAUSESTART

where @GENERICNAME:

@ADDWHERECLASS

class, @ENDADDWHERECLASS @GENERICINTERFACE @ISGENERICNEW
new() @ENDISGENERICNEW
@WHERECLAUSEEND

@IFNOTBASECLASS
/// <summary>

/// Parent object for @SIMPLECLASSNAME

// </summary>
[JsonIgnore]

[SuppressMessage(“Microsoft.Naming”,

“CA1709:IdentifiersShouldBeCasedCorrectly”, Messageld = “parent™)]

public @INCLUDENEWOobject parent

get; set;

@ENDIFNOTBASECLASS

US 2020/0349486 Al Nov. 5, 2020
17

-continued

/// <summary>
/// Base constructor for @SIMPLECLASSNAME
/] </summary>
public @SIMPLECLASSNAME()
: base()

this.InitializeComponent();

/// <summary>
/// Override constructor for @SIMPLECLASSNAME
/] </summary>
public @ SIMPLECLASSNAME(ComponentController controller,
object parent, JObject jsonObject)
@IFBASECLASS: base(controller, parent,
JjsonObject) @ENDIFBASECLASS
{

@IFNOTBASECLASS
this.parent = parent;
@ENDIFNOTBASECLASS
@INCLUDECOMPLEXTYPECDI
int cid;
@ENDINCLUDECOMPLEXTYPECDI
if (jsonObject != null) {
@CLASSINITIALIZESTART@IFSIMPLETYPE
this. @I TEMNAME =
((dynamic)jsonObject). @I TEMNAME 1= null ?
((dynamic)jsonObject). @ITEMNAME : this.GetDefaultValue(“@ITEMNAME”);
@ENDIFSIMPLETYPE@IFDICTIONARYTYPE
this. @I TEMNAME =
controller.CreateVariantDictionary<@VARIANTDICTIONARYITEMTYPE>(this,
((dynamic)jsonObject). @I TEMNAME);
@ENDIFDICTIONARYYPE@IFCOMPLEXENUMERABLETYPE
this. @I TEMNAME
controller.CreateVariantList<@VARIANTLISTITEMTYPE>(this,
((dynamic)jsonObject). @I TEMNAME);
@ENDIFCOMPLEXENUMERABLETYPE@IFSIMPLEENUMERABLETYPE
this. @I TEMNAME =
((dynamic)jsonObject). @I TEMNAME 1= null ?
((JArray)((dynamic)jsonObject). @[TEMNAME). ToObject<@ITEMTYPE>() : new
@ITEMTYPE();
@ENDIFSIMPLEENUMERABLETYPE@IFGENERICTYPE
this. @I TEMNAME =
((dynamic)jsonObject). @I TEMNAME 1= null ?
controller.GetObject<@ITEMTYPE>(this, ((dynamic)jsonObject). @I TEMNAME) :
new @ITEMTYPE();
@ENDIFGENERICTYPE@IFCOMPLEXTYPE
cid =
controller.GetComponentld(((dynamic)jsonObject). @ITEMNAME,
typeof{ @ITEMTYPE));
if (cid > 0) {
this. @I TEMNAME =
controller.GetObject<@ITEMTYPE>(this, ((dynamic)jsonObject). @I TEMNAME,

cid);
}else {
this. @I TEMNAME = new
@ITEMTYPE(controller, this, ((dynamic)jsonObject). @I TEMNAME);

@ENDIFCOMPLEXTYPE@CLASSINITIALIZEEND
(@ENSURECOMPONENTID

ComponentAttribute cmpAtt =
this.GetType().GetCustomAttribute<ComponentAttribute>();

if (cmpAtt != null)

{

this.componentld = cmpAtt.ComponentId;

@ENDENSURECOMPONENTID
}else {

this.InitializeComponent();
¥

¥
private void InitializeComponent() {
@CLASSINITIALIZESTART@IFSIMPLETYPEINIT
this. @I TEMNAME = @ITEMDEFAULTVALUE;
@ENDIFSIMPLETYPEINIT@IFCOMPLEXTYPEINIT
this. @I TEMNAME = new @ITEMTYPE();
@ENDIFCOMPLEXTYPEINIT@CLASSINITIALIZEEND

Nov. 5, 2020

US 2020/0349486 Al
18
-continued
@ENSURECOMPONENTID
ComponentAttribute cmpAtt =

this.GetType().GetCustomAttribute<ComponentAttribute>();
if (cmpAtt != null)

this.componentld = cmpAtt.ComponentId;

b
@FENDENSURECOMPONENTID
¥

private dynamic GetDefaultValue(string propName)

Type t = this.GetType().GetProperty(propName).Property Type;
if (t.IsValueType) return Activator.Createlnstance(t);
return null;

¥
@CLASSITEMSTART
@CLASSITEMDOC

@CONTAINSUPPERCASE[SuppressMessage(“Microsoft. Naming”,

“CA1709:IdentifiersShouldBeCasedCorrectly”, Messageld
“@SECTIONITEM™)|@ENDCONTAINSUPPERCASE
@ISITEMTYPELIST[SuppressMessage(“Microsoft.Usage”,

“CA2227:CollectionPropertiesShouldBeReadOnly”)|@ENDISITEMTYPELIST
@IFDEFAULTVALUEHANDLING([JsonProperty (“@SECTIONITEM”,

DefaultValueHandling
DefaultValueHandling.Include)] @ ENDIFDEFAULTVALUEHANDLIN!
public @I TEMTYPE @ITEMNAME

{

@IFSIMPLETYPE

get;
@ENDIFSIMPLETYPE
@IFCOMPLEXTYPE

get;
@ENDIFCOMPLEXTYPE
@IFSIMPLETYPE

set;
@ENDIFSIMPLETYPE
@IFCOMPLEXTYPE

set;
@ENDIFCOMPLEXTYPE

¥
@CLASSITEMEND
¥
¥

[0136] An example typescript template is provided below
that is used to create an un-executable workflow project file.
The typescript template defines properties and attributes
similar to the C # template that enables an object to be edited
in a canvas. However, the typescript template does not
provide code that is executable. In some embodiments, the
example workflow converter 224 is configured to convert,

for example, the above-C # template into the below type-
script template using APIs that abstract the functional code
into a graphical representation with editable properties. This
enables an executable version of a workflow project to be
created at the processing server 102 and converted into an
un-executable version for editing at the client devices 110.

namespace @NAMESPACE {

“use strict”;
export var @INTERFACESIMPLENAMENameSpace:

string

“@NAMESPACE. @INTERFACESIMPLENAME”;

export var @INTERFACESIMPLENAMEImplementorName: —string =
“@NAMESPACE. @STATICCLASSNAME.implementor™;
export var @INTERFACESIMPLENAMEExporterName: ?string =

“@NAMESPACE. @STATICCLASSNAME.exporter”;
@INTERFACEDOC

export interface @INTERFACENAME extends

@EXTENDSINTERFACE {
@INTERFACEITEMSTART
@INTERFACEITEMDOC

@ITEMNAME: @ITEMTYPE;

@INTERFACEITEMEND

[L

}

var implementorExtenders: objectModel.core.model.IModelExtender|]

var exporterExtenders: objectModel.core.model.IModelExtender[] = [];
function @INTERFACESIMPLENAMEImplementor(

US 2020/0349486 Al
19

-continued

object: objectModel.core.model.ModelObject,
objectPropName: string,
genericsImplementors: { [name: string]: any }[],
genericsExporters: { [name: string]: any }[],
dataObject: any,
parameter: any
) any {
@IMPLEMENTERITEMSTART
@IFARRAY
object.createPublicArray Property (“@IMPLEMENTEDITEMNAME”, {
object: object,
propName: “@IMPLEMENTEDITEMNAME”

genericsImplementors.concat{ @NAMESPACE. @STATICCLASSNAME
.implementors),
genericsExporters.concat(@NAMESPACE.@STATICCLASSNAME.exp

orters),
“@IMPLEMENTEDITEMTYPE”,
@CUSTOMARRAYRESOLVERPROPERTY,
@CUSTOMARRAYRESOLVERLOOKUP,
@ISREFERENCETRACKINGARRAYSTART,
@ISEXTERNALDEFINITIONSCONTAINER,
@IGNOREEVENTS);

@ENDARRAY

@IFDICTIONARY

object.createPublicDictionaryProperty(“@IMPLEMENTEDITEMNAME”
A

object: object,
propName: “@IMPLEMENTEDITEMNAME”

genericsImplementors.concat{ @NAMESPACE. @STATICCLASSNAME
.implementors),
genericsExporters.concat(@NAMESPACE.@STATICCLASSNAME.exp

orters),
“@IMPLEMENTEDITEMTYPE”,
@CUSTOMARRAYRESOLVERPROPERTY,
@CUSTOMARRAYRESOLVERLOOKUP,
@IGNOREEVENTS);

@ENDDICTIONARY

@IFOBJECT

object.createPublicObjectProperty (“@IMPLEMENTEDITEMNAME”, {
object: object,
propName: “@IMPLEMENTEDITEMNAME”

genericsImplementors.concat{ @NAMESPACE. @STATICCLASSNAME
.implementors),
genericsExporters.concat(@NAMESPACE.@STATICCLASSNAME.exp
orters),
“@IMPLEMENTEDITEMTYPE”,
dataObject ?

(dataObject[“@IMPLEMENTEDITEMNAME™] || { P[“___customImplementor™] :

null,
dataObject ?
(dataObject[“@IMPLEMENTEDITEMNAME™] || { })[“___customExporter”] :
null,
@IGNOREEVENTS);
@ENDOBIECT
@IFENUMLOOKUP
object.createPublicLookupProperty (“@IMPLEMENTEDITEMNAME”,
genericsImplementors.concat(@NAMESPACE.@STATICCLASSNAME.imple
mentors), “@IMPLEMENTEDITEMENUMTYPE”);
@ENDENUMLOOKUP
@BINDERPROPERTY
object.createPublicBinderProperty(“@IMPLEMENTERLOCALITEMNA
ME”, “@IMPLEMENTEDITEMNAME”, “@RESOLVER”,
@ISPROPREFERENCE, @CREATESETTER);
(@ENDBINDERPROPERTY
@IFTRACKINGREFERENCE
object.createPublicTrackingReferenceProperty (“@IMPLEMENTEDITE
MNAME™);
@ENDTRACKINGREFERENCE
@IFVALUE
object.createPublicSimpleProperty(“@IMPLEMENTEDITEMNAME”,
@IGNOREEVENTS);
@ENDVALUE
@IMPLEMENTERITEMEND

Nov. 5, 2020

US 2020/0349486 Al Nov. 5, 2020
20

-continued

@IMPLEMENTERINTERFACEITEMSTART
@INTERFACECALLER.implementor(

object,

objectPropName,

[@INTERFACESIMPLENAMEImplementors
].concat(genericsImplementors),

[@INTERFACESIMPLENAMEExporters
].concat(genericsExporters),

dataObject,

parameter

);
@IMPLEMENTERINTERFACEITEMEND
if (implementorExtenders && implementorExtenders.length) {
for (var i: number = 0; i < implementorExtenders.length;

i++) {
implementorExtenders[i](object, dataObject,
parameter);
¥

)
@COMPONENTIDSTART

object[“componentld”] = @COMPONENTIDVALUE;
@COMPONENTIDEND

return object;

function @INTERFACESIMPLENAMEExporter(output: any, input: any,
genericsExpoters: { [name: string]: any }[], parameter: any): void {
@EXPORTERITEMSTART
@IFARRAY
if (input. @EXPORTEDITEMNAME&&
input. @EXPORTEDITEMNAME length) {
output. @EXPORTEDITEMNAME =
input. @EXPORTEDITEMNAME .getJson();

@ENDARRAY
@IFDICTIONARY
if (input. @EXPORTEDITEMNAME&&
input. @EXPORTEDITEMNAME . length) {
output. @EXPORTEDITEMNAME =
input. @EXPORTEDITEMNAME .getJson();

}
@ENDDICTIONARY
@IFOBIECT
if (input.@EXPORTEDITEMNAME) {
var tmp =
input. @EXPORTEDITEMNAME .getIson(genericsExpoters.concat(@NAMESP
ACE.@STATICCLASSNAME .exporters), “@EXPORTEDITEMTYPE”);
if (tmp && Object.keys(tmp).length) {
output. @EXPORTEDITEMNAME = tmp;
¥

}
@ENDOBIECT
@IFENUMLOOKUP
if (input.@EXPORTEDITEMNAME) {
output. @EXPORTEDITEMNAME -
input. @EXPORTEDITEMNAME;

@ENDENUMLOOKUP
@IFTRACKINGREFERENCE
if (input.@EXPORTEDITEMNAME) {
output. @EXPORTEDITEMNAME -
input. @EXPORTEDITEMNAME;

@ENDTRACKINGREFERENCE

@IFVALUE

if (input. @EXPORTEDITEMNAME&&
Object.getOwnPropertyDescriptor(input, “@EXPORTEDITEMNAME”).set ==
undefined) {

output. @EXPORTEDITEMNAME =
input. @EXPORTEDITEMNAME;

@ENDVALUE

@EXPORTERITEMEND

@EXPORTERINTERFACEITEMSTART
@EXPORTCALLER.exporter(output, input, [

@STATICCLASSNAME.exporters].concat(genericsExpoters), parameter);

@EXPORTERINTERFACEITEMEND

US 2020/0349486 Al
21

-continued

if (exporterExtenders && exporterExtenders.length) {
for (var i: number = 0; i < exporterExtenderslength; i++) {
exporterExtenders[i](output, input, parameter);

¥
if (input[*___customImplementor”]) output[“__customImplementor”] =
input[“___customImplementor”];

if (input[*___customExporter”]) output[“___ customExportee”] =
input[“___customExporter”];
sourceCode.k2Designer.objectModel.core.model.isRequiredPropsValid(o
utput, input, [
@EXPORTERREQUIREDPROPERTIES
], false)

export class @STATICCLASSNAME {
constructor() {
return @STATICCLASSNAME .createInstance();

public static get implementor():
objectModel.core.model.IImplementorFunction {
return @INTERFACESIMPLENAMEImplementor;

public static get exporter(): objectModel.core.model.IExporterFunction {
return @INTERFACESIMPLENAMEExporter;

public static get implementors(): { [name: string]:
objectModel.core.model.IImplementorFunction } {
return @INTERFACESIMPLENAMEImplementors;

public static get exporters(): { [name: string]:
objectModel.core.model.IExporterFunction } {
return @INTERFACESIMPLENAMEExporters;

public static extend(implementorExtender:
objectModel.core.model.IModelExtender, exporterExtender:
objectModel.core.model.IModel Extender): void {
if (implementorExtender) {
implementorExtenders = implementorExtenders || [];
implementorExtenders.push(implementorExtender);

if (exporterExtender) {
exporterExtenders = exporterExtenders || [];
exporterExtenders.push(exporterExtender);

}

public static createInstance(config: @NEWINSTANCEINTERFACE = null,
parent: objectModel.core.model.IModelObjectParent = null, parameter: any =
null): @NEWINSTANCEINTERFACE({
return
objectModel.core.model.ModelObject.createFrom<@NEWINSTANCEINTERF
ACE>(
@INTERFACESIMPLENAMEImplementor,
@INTERFACESIMPLENAMEExporter, parent, config, parameter);
¥
¥
export var @INTERFACESIMPLENAMEImplementors: { [name: string]:

any } = {
@IFNOTBASECLASSE

“ModelBase”: @IMPORTERMODELBASE.implementor,
@ENDIFNOTBASECLASSE
@IMPLEMENTORSSTART

“@IMPORTEROREXPORTERNAME":
@IMPORTEROREXPORTERFUNCTION.implementor,
@IMPLEMENTOREND

¥
export var @INTERFACESIMPLENAMEExporters : { [name: string]:

any } = {
@EXPORTERS START

“@IMPORTEROREXPORTERNAME":
@IMPORTEROREXPORTERFUNCTION.exporter,
@EXPORTERSEND

¥
objectModel.core.model.addImplementorExporterNameLookup(
@INTERFACESIMPLENAMENameSpace,
@INTERFACESIMPLENAMEImplementor,
@INTERFACESIMPLENAMEExporter,

Nov. 5, 2020

US 2020/0349486 Al

-continued

Nov. 5, 2020

implementorExtenders,
exporterExtenders

);
@IFISCOMPONENTOBIECT

objectModel.core.model.componentLookup[@COMPONENTIDVALUE]

-

implementor: @INTERFACESIMPLENAMEImplementor,

exporter: @INTERFACESIMPLENAMEExporter,
implementorExtenders,
exporterExtenders

1
(@ENDIFISCOMPONENTOBJECT
}

[0137] FIGS. 9 to 15 below illustrate a manner in which
the email object 604 of workflow project 602 is modified at
a first client device 110a, with the modification being
propagated to other client devices 110 and the processing
server 102. FIG. 9 shows a diagram of the JSON model 700
of the email object 604 of FIG. 6 being modified to include
an ‘important’ property. To add the property, a user of a first
client device 110a selects an ‘important’ field within the
section 606 of editing workspace 201. Alternatively, the user
may select from a drop-down list of available properties/
attributes to add the ‘important’ flag. Once the ‘important’
flag has been added as a property to the email object 604, a
user may specify the value of the property to ‘true’ or ‘false’.
The value is dependant upon if the email message generated
by the email object 604 is to have a graphical icon indicative
of the email’s importance.

[0138] In some other alternative embodiments, a user adds
the ‘important’ property by opening a JSON editor. FIG. 10
shows a diagram of a code interface editor 1000 that is
related to the editing workspace 201. In some examples, a
toolset may provide a feature that shows typescript code that
specifies the properties/attributes of objects of the workflow
project 602. A user may access the editor 1000 to add new
properties or attributes to an object. In the illustrated
example, a user activates the ‘important’ property by open-
ing a configuration panel 1002 and selecting a template or
function of an email controller, as shown in box 1004.
Selection of the template or function causes the code within
the editor 1000 to be displayed, which corresponds to code
for the email controller (e.g., code defining properties/
attributes of the JSON model 700 of the email object 604).
A user changes the typescript code shown in box 1006 to
change from ‘false’ to “true’, which activates the ‘important’
property within the object. Programmatically, this may
include the addition of typescript code for the ‘important’
property to the typescript code for the email object 604. FIG.
11 shows a diagram of the typescript code 1100 of the email
object 604 with the addition of the typescript code for the
‘important’ property, as shown in box 1102. The displayed
typescript code 1100 corresponds to an email configuration,
shown in box 1104, of the email object 604. The ‘important’
property may be shown as a selectable field within the
section 606 of FIG. 6. A user may then set the value of the
‘important’ property of the JSON model 700 of the email
object 604 to be set from ‘false’ to ‘true’.

[0139] At this point, the ‘important’ property and selected
value is included within the email object 604 at the client
device 110. The modification has not yet been made at other
client devices 110 that are part of the same collaborative

design session. In addition, the modification has not yet been
made to an executable version of the workflow project 201
located at, for example, the processing server 102 and/or the
memory 104. The propagation of the modification is made
using at least one modification instruction. For example,
after a user creates the ‘important’ property at the first client
device 110a, the creation of the ‘important’ property is
recorded in an instruction. As discussed in connection with
FIGS. 4A and 4B, the instruction may include a QuickPath
information, JSON information, a property/attribute name,
and/or a property/attribute value that are indicative of the
creation of the ‘important’ property. The instructions may be
created by, for example, an operation of the toolset (e.g., the
toolset 202) of the client device that codes typescript
changes as instructions.

[0140] The modify instruction is transmitted by the first
client device 110q to the intermediary processing engine 106
and/or any other device that includes a SignalR feature. As
illustrated in FIG. 12, the intermediary processing engine
106 stores the instruction (shown as instruction 1202) to a
queue of instructions (e.g., an instruction set), shown in table
1204. The table 1204 may include a SQL table stored in the
memory 108. At a predetermined time (e.g., every 0.5
seconds, 1 second, 5 seconds, etc.), the instructions within
the table 1204 are transmitted to the other client devices 110
that are part of the collaborative session.

[0141] In other instances, the instructions may be trans-
mitted as soon as they are stored to the table 1204. In these
other instances, the instructions (e.g., instructions 0 to 9)
may have already been transmitted to the other client
devices 110. Accordingly, the instruction 1202 is transmitted
to the other client devices 110 after it is received by the
intermediary processing engine 106 and/or stored to the
table 1204 using, for example, SignalR. The toolsets at the
other client devices 110 receive the instruction 1202, which
is then applied to the typescript code of the local copy of the
un-executable version of the workflow project 201, as
described above in connection with FIGS. 4B and 5. FIG. 13
shows a diagram of the ‘important’ property added to the
JSON model 700 of the email object 604 at one of the other
client devices 110. A user of this client device 110 now has
the ability to see that the email object 604 has an ‘important’
property, and the property is set to a value of ‘true’.
Accordingly, only changes made to an object model of a
workflow project are transmitted among client devices
instead of complete copies of the project. Further, the
modification to the email object 604 is made without an
explicit save command from a user, thereby enabling real-
time collaboration among a plurality of devices.

US 2020/0349486 Al

[0142] In addition to the updating of the email object 604
at the client devices 110, the email object 604 is also updated
at the intermediary processing server 102. This may include
updating the executable version of the workflow project 602
and/or the un-executable version of the workflow project. In
some embodiments, the intermediary processing engine 106
maintains a copy of the un-executable typescript version of
the workflow project 602 within the memory 108. In addi-
tion, the intermediary processing engine 602 stores a copy of
received instructions in the memory 108. Thus, when a new
client device joins a collaborative session, the intermediary
processing device 106 can transmit the un-executable ver-
sion of the workflow project in addition to instructions to
modify the project to reflect changes made during the
collaborative design session.

[0143] In other embodiments, the intermediary processing
engine 106 periodically updates a copy of the un-executable
version of the workflow project by applying the stored
instructions. For example, the intermediary processing
engine 106 uses a QuickPath of each instruction to identify
a granular portion of typescript code of an object to be
modified. The code, including the applied modification is
stored to the table 1400, as shown in FIG. 14. Box 1402
shows the modification of the typescript code for the portion
of'the JSON model 700 of the email object 604 and box 1404
shows the corresponding QuickPath to add the ‘important’
property to the email object 604.

[0144] The example intermediary processing engine 106
is configured to communicate with the processing server 102
to update or generate a new version of the executable
workflow project 602. In an embodiment, the modifications
reflected in table 1400 are applied to an intermediate model
or Authoring Framework API that specifies how JSON code
is converted into C # code. FIG. 15 shows a diagram of the
interface 800 of FIG. 8 with the addition of the ‘important’
property at box 1502. In this illustrated example, the inter-
mediary processing engine 106 applies the code from box
1402 in table 1400 to the intermediate model shown in the
interface 800. The intermediate model defines how, for
example, JSON code is to be converted into an intermediate
code or structure. The code within the box 1502 references
the executable workflow project, such that a change or
modification to the intermediate model causes a change at
the executable workflow project. In other embodiments, the
intermediary processing engine 106 generates a new execut-
able workflow project from the modified intermediate
model, with the APIs within the interface 800 being used
with, for example one or more C # templates to define the
C # code for the executable version of the workflow project
602. Once generated or updated, the executable version of
the workflow project may then be executed at the processing
server 102.

IV. Flowchart of the Example Process

[0145] FIGS. 16 and 17 are flow diagrams showing an
example procedure 1600, to propagate modifications among
executable and non-executable versions of a workflow proj-
ect, according to an example embodiment of the present
invention. Although the procedure 1600 is described with
reference to the flow diagram illustrated in FIGS. 16 and 17,
it will be appreciated that many other methods of performing
the acts associated with the procedure 1600 may be used.
For example, the order of many of the blocks may be
changed, certain blocks may be combined with other blocks,

Nov. 5, 2020

and many of the blocks described are optional. For example,
additional blocks may be executed in embodiments where a
user creates a new workflow project. Moreover, it should be
appreciated that the example procedure 1600 is executed for
each separate session hosted by the intermediary processing
engine 106 and/or the processing server 102.

[0146] The example procedure 1600 operates on, for
example, the intermediary processing engine 106 and/or the
processing server 102 of FIGS. 1, 2A, 2B, and 2C. The
procedure 1600 begins when the intermediary processing
engine 106 receives a request message 1601 from a client
device 110 requesting to view/edit a workflow project (block
1602). The request message 1601 may include a destination
address, file name, identifier, and/or hyperlink to the work-
flow project. In some embodiments, the request message
1601 may include a selection made by a user operating a file
browsing application on the client device 110. After the
request message is received 1601, the example intermediary
processing engine 106 creates an online collaborative design
session (block 1604). The intermediary processing engine
106 may generate a session identifier and designate the
requested workflow project as being part of the session. The
intermediary processing engine 106 also identifies or creates
an un-executable version of the workflow project for the
client device (block 1606). In some embodiments, the inter-
mediary processing engine 106 uses an intermediate model
and/or Authoring Framework APIs to create the un-execut-
able version of the workflow project from the executable
version. As discussed above in connection with FIGS. 8 and
15, the intermediate model may specify how C # code is
converted into JSON typescript code. In other embodiments,
the intermediary processing engine 106 may instead access
the memory 108 to retrieve the un-executable version of the
workflow project stored from a previous session. After
acquiring the un-executable version of the workflow project,
the intermediary processing engine 106 transmits one or
more messages 1607 to the client device 110 that comprise
a copy of the un-executable version of the workflow project
(block 1608). The intermediary processing engine 106 may
also send one or more toolset files to enable editing of the
workflow project.

[0147] During the online collaboration session, the client
device 110 displays the un-executable version of the work-
flow project within an application, such as a web browser.
Modifications to the workflow project are recorded in one or
more instruction 1609 (e.g., the instruction 210 of FIG. 2A
and/or the instruction 400 of FIG. 4A), which is received at
the intermediary processing engine 106 (block 1610). The
example intermediary processing engine 106 stores the
received instruction(s) 1609 to an instruction set (block
1612) within, for example, the memory 108. The interme-
diary processing engine 106 also transmits the instruction
1609 and/or the instruction set to other client devices 110
that are part of the collaborative design session. Transmis-
sion of the instruction(s) 1609 may temporarily cause the
client device 110 to prevent users from editing the same
object until editing is complete by the originator of the
instruction. In some examples, the intermediary processing
engine 106 applies the instruction(s) 1609 to a local copy of
the un-executable version of the workflow project, as dis-
cussed in connection with FIGS. 4B, 5, and 14. Further, the
intermediary processing engine 106 applies the instruction
(s) 1609 to the executable version of the workflow project

US 2020/0349486 Al

using, for example, an intermediate model and/or Authoring
Framework APIs (block 1614).

[0148] The example procedure 1600 continues in FIG. 17
where the intermediary processing engine 106 determines if
an execute request message 1615 has been received from
one of the client devices 110 within the session (block 1616).
If the message 1615 has been received, the intermediary
processing engine 106 applies any un-processed instructions
to the executable version of the workflow project (block
1618). This action causes the executable version of the
workflow project to reflect the current status of the workflow
project as viewed by the users. The processing server 102
then executes the workflow project using the executable
version (block 1620). The processing server 102 records
results from the execution, which are then transmitted in one
or more messages 1621 to the client devices 110 of the
session via the intermediary processing engine 106 (block
1622). The results may comprise loading of data from one or
more databases, outcomes from actions performed on data,
a generation of new data, a generation of a new form, etc.
The result contents of the messages 1621 are displayed in
conjunction with the un-executable version of the workflow
project at the client devices 110 to provide an appearance of
a local execution of the workflow project. In some embodi-
ments, the results are only transmitted to the client device
110 that requested the results.

[0149] After the results are transmitted, or if an execute
request message is not received in block 1616, the interme-
diary processing engine 106 determines if a request message
1623 is received specifying that the session is to terminate
(block 1624). The request message 1623 may be an explicit
message from the client devices 110 or determined as client
devices 110 leave a session. The intermediary processing
engine 106 may internally generate the message 1623 after
all client devices 110 have left the collaborative session.

[0150] After the message 1623 is received or generated,
the intermediary processing engine 106 applies any un-
processed instructions to the executable version of the
workflow project (block 1626). The intermediary processing
engine 106 may also apply any un-processed instructions to
the local copy of the un-executable version of the workflow
project stored in the memory 108. The intermediary pro-
cessing engine 106 may then clear the instruction set or a
table comprising instructions created during the session
(block 1628). The intermediary processing engine 106 ends
the session by discarding the session identifier and/or pre-
venting modifications from being made to the workflow
project (block 1630). The example procedure 1600 then
ends.

V. Additional Features of the Example
Collaboration Environment

[0151] In addition to the above-discussed features, the
example intermediary processing engine 106 and/or the
processing server 102 may be configured to perform the
following features related to runtime processing of instruc-
tions, locking, security trimming, extensibility, and/or audit-
ing. Regarding runtime, objects that are visually represented
on a design canvas 201 are processed by an Authoring
Framework API of the intermediary processing engine 106
and/or the processing server 102. This allows a collaborative
process to not only result in visual representation that each
client device ‘sees’ but also a declarative model that is fully

Nov. 5, 2020

able to be executed as a runtime. Workflows can be run,
SmartObjects can be executed, and forms can be displayed.
[0152] Regarding locking, a user may select a property or
attribute that locks certain portions (or locks completely) of
an object or action from editing or viewing of one or more
users. For example, an object may have seven properties
locked, where the other remaining properties may be
changed. In these situations, locked portions of an object, or
more generally a workflow project, cannot be modified. The
example intermediary processing engine 106 may lock a
root object with inherited locked properties from other
objects, etc. Locking may be recorded in instructions, which
are sent to other client devices 110 to lock the corresponding
object (e.g., ‘this object is locked’). In an example regarding
an email object, a client device can lock the email object
down such that other client devices cannot change tabs.
Other client devices can see the object but cannot interact
with it.

[0153] Some instructions may allow for ‘locking” down a
dependency tree. For instance, a client device may configure
a Step or Action within a workflow project. The Step
implements a ‘locking’ interface and defines it at a ‘Step’
level. This ensures that only one client device can manipu-
late the object. The other client devices still process instruc-
tions for the object when they are received, but they cannot
manipulate the same object. In another example, locking
may be provided at more granularly for a single configura-
tion page/tab on a Step on the process. It should be appre-
ciated that locking can be done by either a separate instruc-
tion or via properties of the objects themselves. For
example, a client device may receive an instruction to show
a tab “visible=true” but the instruction is processed to ‘lock’
the tab so a user cannot make any changes. In this example,
the client device receives the instruction to show a tab
“visible=true” and ‘locks’ it because “lock=true”.

[0154] The example intermediary processing engine 106
may also provide security locking where the instructions can
specify security information. For instance, in addition to
locking defined by the object interface on a client device
110, the intermediary processing engine 106 could imple-
ment a Security Trimmed locking as well. In an example, a
client device possesses information indicative that a changed
object is security trimmed and the current user does not have
rights to the object. In this case the object would then be
locked. Additionally, user interface obfuscation techniques
can be applied to the objects that have been secured. This
would allow a client device to show the objects on the
canvas but ‘blur’ or ‘dim’ the attributes of those objects so
any details about the object metadata, including the name,
would not be known without a proper security level. Sub-
process design patterns can be expanded with this function-
ality. A sub-process is typically used to ‘hide’ the ‘secure’
portions of the workflow design. Utilizing the obfuscation
approach, this may not be necessary. The portions that need
to be hidden can instead be marked as such and remain in the
same processes layer.

[0155] Regarding extensibility, the example intermediary
processing engine 106 abstracts instruction interfaces from
the functionality of objects within a declarative model
corresponding to an executable version of the objects. This
enables other client devices to easily process the visualiza-
tion of the objects, with editing provided through instruc-
tions. This configuration enables third-party applications to
be integrated with or interact with the visualization of the

US 2020/0349486 Al

workflow project. For example, a Skype® ‘client applica-
tion’ could be built to notify a Skype user when a change is
made via a designer—new step added, SmartObject property
changed, etc. Additionally, although the intermediary pro-
cessing engine 106 and/or the processing server 102 produce
typescript and C # classes, the engine 106 and/or the server
102 can extend the types of generated objects to other
languages, such as, Ruby or Python, thereby allowing for
even greater extensibility with zero effort on the consuming
client application. In these instances, the example interme-
diary processing engine 106 is configured to describe the
objects via interfaces as before and a generator automati-
cally creates the appropriate classes. These ‘external’ or
third-party client applications can not only respond to the
instructions but can also create their own instructions. For
example, an Annotation block may be added to a design
environment. This instruction is processed by a Skype®
client application, which transmits a message to a user:
“Please Provide Annotation for Mail Step”. The user pro-
vides the annotation details via Skype®, which sends the
instruction to be processed at the client devices 110 and/or
the intermediary processing engine 106. For example, the
designer canvas at a client device receives the instruction
and the Annotation is updated on the screen. External client
devices 110 and/or third-party applications will typically
include a SignalR feature that is listening for an Instruction
Type of Send Message. An additional filter can be applied to
ensure a user only responds to certain or needed messages.

[0156] Regarding auditing, instructions are logged to tem-
porary storage 108 (e.g., memory) for processing by the
listening client devices—both designers as well as the
declarative processing engines at the server 102. By default,
not every instruction will result in permanent storage to a
database, only those instructions necessary to rebuild the
declarative model. Depending on capacity and load, the
intermediary processing engine 106 may just transmit the
messages through the instruction hub to the other client
devices. The engine 106, the server 102, and/or another
device may implement an auditing ‘client’ configured to log
the details of every instruction to permanent storage allow-
ing auditors to know exactly what steps were taken to build
the resulting model. This can be interesting not only for
auditors, but also for both usability and productivity
improvements. For example, a simulator can be built to
replay the instructions of multiple design sessions to under-
stand how users use the tools to design their artifacts
(Workflow, SmartObjects, Forms) to help build better train-
ing and potentially change how options are presented to the
user. For example, the intermediary processing engine 106
or another server may determine through instruction data
mining that every user incorrectly clicks three different tabs
to find the text box that allows them to enter the Body for an
email. The design expected the user to click on the From and
To addresses first but the data shows that >80% start with the
Body first so the toolset should be changed to highlight this
more intuitively. The intermediary processing engine 106
may be configured to ensure data exchange sizes, latency,
storage sizes, etc. could all be tweaked.

[0157] The example intermediary processing engine 106
may also be configured to provide support processes. For
example, the engine 106 may provide multiple ways to share
a link to a collaborative session: copy/paste in a chat
window, send email to user or multiple users, click a Request
Collaboration button and have the system transmit the link

Nov. 5, 2020

to another client device, etc. This enables a support person
to join the same collaborative session as the customer/
partner who is struggling and get real-time support building
the same process.

Aspects of the Example Collaborative Design
Systems, Apparatuses, and Methods

[0158] Aspects of the subject matter described herein may
be useful alone or in combination with one or more other
aspect described herein. Without limiting the foregoing
description, in a first aspect of the present disclosure, a
collaborative design apparatus comprises a persistent
memory configured to store an executable version of a
workflow project, the workflow project including at least
one executable version of an object-orientated process hav-
ing attributes and properties. The collaborative design appa-
ratus also includes a model processing server configured to
compile and execute the workflow project based on the
attributes and properties of the executable version of object-
orientated process. The collaborative design apparatus fur-
ther includes an abstraction interface configured to define a
mapping between (i) the executable version of the object-
orientated process and a typescript version of the object-
orientated process including related attributes and proper-
ties, and (ii) the executable version of the workflow project
and a typescript version of the workflow project. The
typescript version of the object-orientated process and the
typescript version of the workflow project being compatible
to be displayed in a web browser. The collaborative design
apparatus additionally includes an intermediary processing
engine configured to transmit the typescript version of the
object-orientated process and the typescript version of the
workflow project to a first client device for display in the
web browser of the first client device and a second client
device for display in the web browser of the second client
device, transmit a toolset file to the first client device and the
second client device, the toolset file specifying a user
interface to enable modification of the typescript version of
the object-orientated process and the typescript version of
the workflow project, receive, from the first client device, a
modify instruction to modify at least one of the attributes or
properties of the typescript version of the object-orientated
process, store the modify instruction in conjunction with the
typescript version of the object-orientated process, and
transmit the modify instruction to the second client device
causing the user interface to modify the at least one of the
attributes or properties of the typescript version of the
object-orientated process displayed within the user interface
at the second client device. Wherein, the typescript version
of the object-orientated process is concurrently displayed, at
the first client device and the second client device, with the
modification of the at least one of the attributes or properties.
[0159] In accordance with a second aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the model
processing server is configured to receive the modify
instruction and update the executable version of the object-
orientated process based on the modify instruction.

[0160] In accordance with a third aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the model
processing server is configured to receive an execution
instruction to execute the workflow project, execute the
updated executable version of the object-orientated process

US 2020/0349486 Al

within the executable version of the workflow project to
generate a result of the workflow project, and transmit the
result concurrently to the first client device and the second
client device for display within the respective user interface.
[0161] In accordance with a fourth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the
instruction to execute the workflow project is received from
at least one of the first client device, the second client device,
and a third client device.

[0162] In accordance with a fifth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the modi-
fication of at least one of the attributes or properties of the
typescript version of the object-orientated process includes
at least one of a property to enable, a property to disable, a
value of a property, a value of an attribute, a field to be
added, an activity to be added, an activity to be edited, a
creation of a link to another object-orientated process, and a
modification of a link to another object-orientated process.
[0163] In accordance with a sixth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the toolset
file specifies options of modifying the object-orientated
process and options for creating additional object-orientated
process within the workflow project.

[0164] In accordance with a seventh aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the toolset
file specifies plug-in operations for the web browser of the
first client device and the second client device.

[0165] In accordance with an eighth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the inter-
mediary processing engine is configured to store the modify
instruction to the persistent memory.

[0166] In accordance with a ninth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the object-
orientated process includes at least one of (i) attributes and
properties related to defined data, and (ii) one or more
actions or methods with regard to the defined data.

[0167] In accordance with a tenth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the object-
orientated process includes at least one of a business object,
a business process, a rule, a form, and a workflow.

[0168] In accordance with an eleventh aspect of the pres-
ent disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the modify
instruction is transmitted to the second client device within
a JSON payload.

[0169] In accordance with a twelfth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the type-
script version of the object-orientated process includes a
JSON model object.

[0170] In accordance with a thirteenth aspect of the pres-
ent disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, a collab-
orative design method includes receiving, in a server, a first
request message from a first client device requesting a
workflow project, receiving, in the server, a second request
message from a second client device requesting the work-

Nov. 5, 2020

flow project, and creating, via the server, a typescript version
of the workflow project from an executable version of the
workflow project. The example method also includes trans-
mitting, from the server, a first copy of the typescript version
of'the workflow project to the first client device and a second
copy of the typescript version of the workflow project to the
second client device, receiving, in the server from the first
client device, a modify instruction that is indicative of a
modification to the first copy of the typescript version of the
workflow project, and transmitting, from the server, the
modify instruction to the second client device causing the
second client device to modify the second copy of the
typescript version of the workflow project. The example
method further includes modifying, via the server, the
executable version of the workflow project based on the
modify instruction.

[0171] In accordance with a fourteenth aspect of the
present disclosure, which may be used in combination with
any other aspect listed herein unless stated otherwise, the
first request message and the second request message
include at least one of an address, a hyperlink, or a file name
of the workflow project.

[0172] In accordance with a fifteenth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the
method further comprises receiving, in the server from the
first client device, an execution message requesting an
execution of the workflow project, executing, via the server,
the modified executable version of the workflow project to
generate a result, and transmitting, from the server, the result
to the first client device for display in connection with the
first copy of the typescript version of the workflow project.

[0173] Inaccordance with a sixteenth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the
method further comprises transmitting, from the server, the
result concurrently to the second client device for display in
connection with the second copy of the typescript version of
the workflow project.

[0174] In accordance with a seventeenth aspect of the
present disclosure, which may be used in combination with
any other aspect listed herein unless stated otherwise, the
workflow project includes an executable version of an
object-orientated process having attributes and properties,
and the typescript version of the workflow project includes
an un-executable version of the object-orientated process
with editable attributes and properties.

[0175] In accordance with an eighteenth aspect of the
present disclosure, which may be used in combination with
any other aspect listed herein unless stated otherwise, cre-
ating the typescript version of the workflow project from the
executable version of the workflow project includes apply-
ing at least one abstraction interface to that defines a
mapping between the object-orientated process, including
the attributes and properties to the typescript version of the
object-orientated process including the editable attributes
and properties.

[0176] In accordance with a nineteenth aspect of the
present disclosure, which may be used in combination with
any other aspect listed herein unless stated otherwise, the
first copy of the typescript version of the workflow project
is transmitted for display within a first web browser of the
first client device and the first copy of the typescript version

US 2020/0349486 Al

of the workflow project is transmitted for display within a
second web browser of the second client device.

[0177] Inaccordance with a twentieth aspect of the present
disclosure, which may be used in combination with any
other aspect listed herein unless stated otherwise, the
method further comprises transmitting, from the server, a
toolset file to the first client device and the second client
device, the toolset file specifying a user interface to enable
modification of the typescript version of the workflow
project.

[0178] In accordance with a twenty-first aspect of the
present disclosure, any of the structure and functionality
illustrated and described in connection with FIGS. 1 to 17
may be used in combination with any of the structure and
functionality illustrated and described in connection with
any of the other of FIGS. 1 to 17 and with any one or more
of the preceding aspects.

CONCLUSION

[0179] It will be appreciated that all of the disclosed
methods and procedures described herein can be imple-
mented using one or more computer programs or compo-
nents. These components may be provided as a series of
computer instructions on any computer-readable medium,
including RAM, ROM, flash memory, magnetic or optical
disks, optical memory, or other storage media. The instruc-
tions may be configured to be executed by a processor,
which when executing the series of computer instructions
performs or facilitates the performance of all or part of the
disclosed methods and procedures.
[0180] It should be understood that various changes and
modifications to the example embodiments described herein
will be apparent to those skilled in the art. Such changes and
modifications can be made without departing from the spirit
and scope of the present subject matter and without dimin-
ishing its intended advantages. It is therefore intended that
such changes and modifications be covered by the appended
claims.
The invention is claimed as follows:
1. A collaborative design apparatus comprising:
a persistent memory configured to store an executable
version of an object-orientated process having attri-
butes and properties,
a model processing server configured to compile and
execute a workflow project based on the attributes and
properties of the executable version of the object-
orientated process;
an abstraction interface configured to define a mapping
between the executable version of the object-orientated
process and an un-executable version of the object-
orientated process including related attributes and
properties, wherein the un-executable version of the
object-orientated process is compatible to be displayed
in a web browser; and
an intermediary processing engine configured to:
transmit the un-executable version of the object-orien-
tated process to a first client device for display in the
web browser of the first client device and a second
client device for display in the web browser of the
second client device,

transmit a toolset file to the first client device and the
second client device, the toolset file specifying a user

Nov. 5, 2020

interface to enable modification of the un-executable
version of the object-orientated process,

receive, from the first client device, a modify instruc-
tion to modify at least one of the attributes or
properties of the un-executable version of the object-
orientated process, and

store the modify instruction in conjunction with the
un-executable version of the object-orientated pro-
cess,

wherein the model processing server is configured to

update the executable version of the object-orientated
process based on the modify instruction.

2. The collaborative design apparatus of claim 1, wherein
the intermediary processing engine is configured to transmit
the modify instruction to the second client device causing
the user interface to modify the at least one of the attributes
or properties of the un-executable version of the object-
orientated process displayed within the user interface at the
second client device,

wherein the un-executable version of the object-orien-

tated process is concurrently displayed, at the first
client device and the second client device, with the
modification of the at least one of the attributes or
properties.

3. The collaborative design apparatus of claim 2, wherein
the modify instruction is transmitted to the second client
device within a JSON payload.

4. The collaborative design apparatus of claim 1, wherein
the model processing server is configured to:

receive an execution instruction to execute the workflow

project;

execute the updated executable version of the object-

orientated process to generate a result of the workflow
project; and

transmit the result concurrently to the first client device

and the second client device for display within the
respective user interface.

5. The collaborative design apparatus of claim 1, wherein
the modification of at least one of the attributes or properties
of'the un-executable version of the object-orientated process
includes at least one of a property to enable, a property to
disable, a value of a property, a value of an attribute, a field
to be added, an activity to be added, an activity to be edited,
a creation of a link to another object-orientated process, and
a modification of a link to another object-orientated process.

6. The collaborative design apparatus of claim 1, wherein
the toolset file specifies options of modifying the object-
orientated process and options for creating additional object-
orientated process within the workflow project.

7. The collaborative design apparatus of claim 1, wherein
the toolset file specifies plug-in operations for the web
browser of the first client device and the second client
device.

8. The collaborative design apparatus of claim 1, wherein
the object-orientated process includes at least one of a
business object, a business process, a rule, a form, and a
workflow.

9. The collaborative design apparatus of claim 1, wherein
the un-executable version of the object-orientated process is
provided in at least one of TypeScript, eXtensible Markup
Language (“XML”), HyperText Markup Language
(“HTML”), JavaScript, or a Cascading Style Sheet (“CSS”).

#* #* #* #* #*

