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A job scheduler system includes one or more hardware
processors, a memory including a job group queue stored in
the memory, and a job scheduler engine configured to create
a first job group in the job group queue, the first job group
includes a generation counter having an initial value, receive
a first request to steal the first job group, determine a state
of the first job group based at least in part on the generation
counter, the state indicating that the first job group is
available to steal, based on the determining the state of the
first job group, atomically increment the generation counter,
thereby making the first job group unavailable for stealing,
and alter an execution order of the first job group ahead of

9, 2015. at least one other job group in the job group queue.
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DETERMINING A JOB GROUP STATUS
BASED ON A RELATIONSHIP BETWEEN A
GENERATION COUNTER VALUE AND A
TICKET VALUE FOR SCHEDULING THE
JOB GROUP FOR EXECUTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of and claims the
benefit of priority under 35 U.S.C. §120 to U.S. patent
application Ser. No. 15/192,309, filed on Jun. 24, 2016,
which claims the benefit of priority to U.S. Provisional
Patent Application Ser. No. 62/252,897, filed Nov. 9, 2015,
each of which is herein incorporated by reference in its
entirety.

TECHNICAL FIELD

[0002] The present disclosure relates to the field of com-
puter operating systems and, more specifically, to job sched-
ulers.

BACKGROUND

[0003] In computer operating systems and related soft-
ware, a job scheduler (or “process scheduler”) is an appli-
cation that manages the distribution of work (e.g., in the
form of jobs or processes) to different computing resources
(e.g., processor cores). Current job schedulers have a per-
formance loss when using multiple core systems. The loss of
performance may be due to the use of operating system locks
(e.g., mutexes), which are used to manage multiple cores
accessing common data structures (e.g., concurrent data
structures) and which put waiting threads to sleep. One such
data structure is a job queue, which has producers of jobs
(e.g., usually applications) on the input side and consumers
of jobs (e.g., processor cores) on the output side of the
queue. Inefficiencies can occur when multiple entities (e.g.,
multiple processors, processor cores, applications, or
threads) try to simultaneously modify the shared queue data
structure (e.g., because the locks only allow one entity to
read/write to the structure at the same time, while all other
entities must wait for access).

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Further features and advantages of the present
disclosure will become apparent from the following detailed
description, taken in combination with the appended draw-
ings, in which:

[0005] FIG. 1 is a block diagram illustrating a conven-
tional computing device in which a conventional job sched-
uler implements software memory locks;

[0006] FIG. 2 is a diagram of an example computing
device that includes a job scheduler system (or just “job
scheduler”) as described herein;

[0007] FIG. 3A illustrates operations associated with
dequeuing job groups from the job group queue shown in
FIG. 2,

[0008] FIG. 3B illustrates operations associated with stack
operations associated with the execution stack shown in
FIG. 2,

[0009] FIG. 3C illustrates operations associated with recy-
cling job group containers from the job group queue shown
in FIG. 2;
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[0010] FIG. 4 is a flow chart of a method for job sched-
uling as performed by the job scheduler that includes job
stealing;

[0011] FIG. 5 is a diagram of the example device and job
scheduler in example scenarios during operation;

[0012] FIG. 6 illustrates the state of the job scheduler at a
later point in time, continuing the example of FIG. 5;
[0013] FIG. 7 illustrates a steal operation for group A
performed by the job scheduler, continuing the example of
FIGS. 5-6;

[0014] FIG. 8 illustrates a stealing of Group B operation,
as caused by the stealing of Group A operation, continuing
the example of FIGS. 5-7;

[0015] FIG. 9 illustrates the job scheduler after Group C is
finished on the stack, continuing the example of FIGS. 5-8;
[0016] FIG. 10 illustrates the finishing of Group A, con-
tinuing the example of FIGS. 5-9;

[0017] FIG. 11 is a block diagram illustrating an example
software architecture, which may be used in conjunction
with various hardware architectures herein described to
provide a job scheduler system, which may be similar to the
job scheduler shown in FIGS. 2 and 5-10; and

[0018] FIG. 12 is a block diagram illustrating components
of a machine, according to some example embodiments,
configured to read instructions from a machine-readable
medium (e.g., a machine-readable storage medium) and
perform any one or more of the methodologies discussed
herein.

[0019] It will be noted that throughout the appended
drawings, like features are identified by like reference
numerals.

DETAILED DESCRIPTION

[0020] The following description and drawings are illus-
trative of the disclosure and are not to be construed as
limiting the disclosure. Numerous specific details are
described to provide a thorough understanding of the present
disclosure. However, in certain instances, details well
known to those in the art are not described in order to avoid
obscuring the description of the present disclosure.

[0021] Some operating systems use memory locking to
prevent simultaneous access to a shared memory location
(e.g., a data structure such as a job queue). An operating
system memory lock (or just “lock™), such as a mutex or a
semaphore, is a synchronization mechanism that may be
used to manage access to the shared memory location for
multiple actors (e.g., multiple threads of execution that each
use the shared memory location). For example, a lock may
be given by the operating system (OS) to an application
thread (referred to herein simply as a thread) so that the
thread can have exclusive access to the shared memory
location (e.g., the data structure) until the thread is done
using that memory location. Other threads that need access
to this memory location may be denied access until the
location is unlocked. Conventional lock-based systems incur
performance loss since threads (e.g., processes, or applica-
tions) must wait and are often put to sleep until the memory
location is unlocked in order to complete their work.
[0022] Inaccordance with an embodiment, a job scheduler
system and method is described herein. The job scheduler
system uses wait-free concurrent data structures along with
atomic memory transactions to avoid or otherwise mitigate
synchronization issues that cause inefficient processor
activities such as waiting for memory locations to become
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unlocked (e.g., using thread sleeping). Sleeping a process is
relatively slow (e.g., on the order of milliseconds) as com-
pared to atomic locks (e.g., on the order of a number of CPU
cycles). The data structures include a job queue, an execu-
tion stack, and a job list stack. These data structures and
associated atomic memory transactions described herein can
render the processing of jobs more efficient, thereby improv-
ing the functioning of the computer itself.

[0023] FIG. 1 is a block diagram illustrating a conven-
tional computing device 100 in which a conventional job
scheduler 130 implements conventional operating system
memory locking for portions of a memory 120 (e.g., includ-
ing a data structure). The job scheduler 130 employs con-
ventional software memory locks (e.g., mutexes), for
example, to manage access by processors to a common
memory location, such as an execution queue 124 stored in
the memory 120. The job scheduler 130 is identified herein
by the data structure(s) used by the job scheduler for
purposes of convenience, and is not otherwise separately
identified.

[0024] The computing device 100 includes multiple cen-
tral processing units (CPUs) 110A, 110B, 110C, 110D
(collectively, CPUs 110) (e.g., each having a single “core™).
In other embodiments, the CPUs 110 may contain multiple
cores, where each core may be thought of as a distinct CPU
110 for purposes of this disclosure. A communications bus
112 (e.g., a front-side bus, a back-side bus) communicatively
couples the CPUs 110 to a memory 120 (e.g., random access
memory (RAM) or cache memory).

[0025] During operation, job data 126 for a job (e.g., a
running process) or a group of jobs from one of the CPUs
110 is added to an execution queue 124 to await execution.
Threads from the CPUs 110 extract job data 128 from the
queue 124 for execution. Worker cores of the CPUs 110
execute jobs sequentially off the end of the queue 124 until
all the jobs on the queue 124 are complete (e.g., until the
queue 124 is empty). With a conventional lock system (“OS
Lock Mechanism™) 122, a thread needing a particular job in
the queue 124 has to wait until that job comes to the end of
the queue 124 before dequeuing it. The memory locks force
CPUs 110 (and cores and threads) to wait for jobs to clear
the execution queue 124. For example, a thread may require
a value from a computation from a job within the queue 124,
but that thread would have to wait for that computation to be
pushed off the queue 124 and executed in a core in order to
access the value of the computation returned from the core.
In addition, conventional lock systems 122 may use locks
that lock the entire queue data structure such that only one
thread may have access at any given time and other threads
may be forced to sleep while waiting.

[0026] Operating systems often use conventional job
schedulers, such as the job scheduler 130, which are capable
of operating with jobs that do not explicitly expose depen-
dencies because the OS should be compatible with applica-
tions that do not express dependencies for the jobs they send
to the queue. These operating systems implement schedulers
that attempt to mitigate dependencies using various known
methodologies. These methodologies may be suitable for
less-time-sensitive applications that have many large jobs.
However, some software applications such as, for example,
a game engine, may need to handle many small jobs which
are time-sensitive (e.g., because the user is often waiting for
a game to respond to their input). Conventional job sched-
ulers may make working with many small, time-sensitive
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jobs less efficient because the latency of unlocking and
waking (e.g., from sleeping) a thread can be much larger
than the execution of the jobs within the thread. For
example, the latency of unlocking a lock is many thousands
of CPU cycles. As such, considerable processing power may
be lost due to the lock based scheduling system, particularly
when working with many small, time-sensitive jobs.
[0027] The job scheduler systems and methods described
herein uses atomic memory transactions to reduce the num-
ber of required cycles to start the execution of a thread (e.g.,
to a few hundred cycles) and avoid at least some of the above
identified technical problems with conventional job sched-
ulers that employ waiting locks, thereby improving the
functioning of the computer itself. For example, in some
embodiments, all steps are done atomically, and the only
waiting lock employed is a semaphore on which threads wait
when there is no more work to do (e.g., when all data
structures are empty). Unlike conventional schedulers that
use conventional system locks, the systems and methods
described herein allow threads to read/write to data struc-
tures at the same time (except for a few cycles during atomic
operations).

[0028] Some known job schedulers use a method known
as Farliest Deadline First (EDF). Under conventional EDF,
the job scheduler has deadlines associated with jobs (e.g.,
when the result of each job will be needed). However, under
some operational conditions such as with gaming engines,
the gaming engine may be controlled by a user script such
that the ordering of jobs is unpredictable and can change
dramatically (e.g., from frame to frame, depending on
behavior of the script). Known EDF schedulers are poorly
equipped to handle such situations. The job scheduler and
methods described herein are designed such that the order of
evaluation is under the control of the user (e.g., the devel-
oper, or a game player). This enables the job scheduler to
adapt itself dynamically (e.g., using job stealing).

[0029] Further, some known job schedulers use conven-
tional Priority Queues (e.g., to alter when some jobs get
executed over other jobs). One problem with conventional
Priority Queues is that, when changing the priority of jobs,
the job scheduler may need to lock the whole system (e.g.,
bringing everything to a stop) while reorganizing the queue
and then starting threads over. The job scheduler and meth-
ods described herein may dynamically change the priorities
(e.g., based on data usage) without having to freeze every-
thing while maintaining the data structure.

[0030] FIG. 2 is a diagram of an example computing
device 200 that includes a job scheduler system (or just “job
scheduler”) 230 as described herein. The computing device
200 includes multiple CPUs 2104, 210B, 210C, and 210D
(collectively, “CPUs 210”) communicatively coupled to a
memory 220 by a communications bus 212. The CPUs 210
may be similar to the CPUs 110, the bus 212 may be similar
to the bus 112, and the memory 220 may be similar to the
memory 120.

[0031] The job scheduler 230 includes several data struc-
tures stored and maintained in the memory 220, including a
job group queue 232, an execution stack 236, and a counter
system (not shown). For purposes of convenience, the job
scheduler 230 is identified herein by the collection of data
structures used by the job scheduler (e.g., the job group
queue 232 and the execution stack 236), and is not otherwise
separately identified. It should be understood that the job
scheduler 230 may also include other logical and physical
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components such as to enable the systems and methods
described herein, which may include, but are not limited to,
a separate processor or memory area, and a process or thread
that periodically executes on one or more of the CPUs 210.
[0032] The job group queue 232 may include one or more
job groups (or just “groups”) 242, such as “Group A”
through “Group N”. Each group 242 includes an associated
job list 244, where each job list 244 identifies one or more
jobs 246 of the associated group 242. The execution stack
(or just “stack™) 236 includes jobs from one or more of the
groups 242 (e.g., the jobs 246 from the job lists 244
associated with each group 242, with each group 242 having
one or more jobs 246).

[0033] Inthe example embodiment, the scheduling system
230 is implemented as a state machine, wherein the sched-
uling system 230 is in only one state at a time and can
transition between a finite number of states. In the example
embodiment, the job scheduler 230 implements a wait-free
(e.g., without traditional system locks that generate waiting
processes) job stealing mechanism wherein a client (e.g.,
processor, game engine, application, thread, and so forth)
can ‘steal’ jobs (e.g., job groups) from the queue 232. The
stolen job group 242 bypasses other jobs (e.g., other job
groups 242) ahead of it in the queue 232, directly placing
them on the execution stack 236 ahead of the jobs in the
other job groups 242. Further, the job scheduler 230 may
also resolve dependencies of the stolen job group (e.g.,
stealing another job group 242 upon which the initial stolen
job group 242 is dependent).

[0034] The term “stealing,” as used herein, refers to reor-
dering of a job or job group (e.g., the stolen job group) on
a queue (e.g., changing the position of the stolen job group
on the queue). In the example embodiment, stolen job
groups are moved to the front of a job group queue (e.g., in
front of any other pending job groups) and/or placed directly
onto an execution stack (e.g., preparing the jobs for execu-
tion). Stealing, as described herein, differs from priority
queues in multiple ways. For example, in some known
priority queues, each job has a priority setting (e.g., often an
integer), and the priority setting is used to identify a relative
importance of the job to other jobs in the queue. When a job
is picked to run off of the queue, the relative priority settings
of all of the jobs on the queue may influence which job gets
selected (e.g., the job with the highest priority setting on the
queue may be selected). In contrast, stealing identifies a
particular job and moves (e.g., reorders) that job within the
queue immediately (e.g., initially regardless of any relative
importance of the stolen job group to other job groups).
Further, the stealing methods described herein enable the
developer to in effect preempt the execution order of the
stolen job group over all others currently on the queue. In
contrast, under priority queues, the developer may change
the priority setting, but this does not necessarily ensure that
the prioritized job group moves immediately to the front of
the queue (e.g., there may still be other jobs with higher
priorities on the queue, or other jobs with the same priority
that are ahead of the prioritized job in the queue).

[0035] In the example embodiment, the job scheduler 230
is lock-free (e.g., wait-free) in certain respects. In other
words, the job scheduler 230 performs certain steps atomi-
cally, without the use of conventional waiting locks (e.g.,
locks, such as a semaphore, which block the execution of a
thread requesting the lock until it is allowed access to the
locked memory, usually by putting the thread to sleep).
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Particular operations are described herein as being executed
atomically, such as incrementing and decrementing of cer-
tain counters associated with job stealing. This particular
performance of steps atomically, as described herein, allows
the job scheduler 230 to avoid use of waiting locks as they
are commonly used by some conventional job schedulers.
As such, during operation, threads are allowed concurrent
access to key data structures (e.g., the job group queue 232).
[0036] Jobs from a client (e.g., a CPU 210, a game engine,
an application, or the like) are typically packaged into
groups (e.g., groups 242) prior to being sent to the job
scheduler 230. Groups 242 are formed by packaging
together multiple jobs (e.g., jobs 246 of the list 244) that can
run concurrently in any order (e.g., they have no dependen-
cies with each other). Job groups 242 include a header and
memory, including a job list structure (e.g., the associated
list 244). Each group 242 can be recycled using the header
and memory location (e.g., referring to the act of reusing the
same header and memory for a second set of jobs after a first
set of jobs is finished executing). Recycling a job group 242
improves the efficiency of the job scheduler 230 since the
creation (e.g., memory allocation) of a new job group would
require an OS system call, and would incur an associated
latency.

[0037] In some embodiments, the client can also add
information (e.g., metadata) regarding any explicit depen-
dencies for the packaged job group 242 (referred to herein
as “dependent job group™). The dependencies for a particular
job within a group specify which other job or jobs external
to the group must be completed before the particular job can
be executed (referred to herein as “dependency job” or
“dependency job group”). In the example embodiment, each
job group 242 may specify a single job- or job group-
dependency (e.g., one-to-one, in which one job 246 or job
group 242 must be executed before the referring group 242).
Multiple groups 242 may depend on the same group 242
(e.g., many-to-one). In other embodiments, each job group
242 may specify multiple dependencies (e.g., one-to-many).
The term “dependent job group” is used herein to refer to a
job group that is dependent upon another job or job group.
The term “dependency job” or “dependency group” is used
herein to refer to the job or job group upon which a
dependent job group depends.

[0038] When a job group 242 is received by the job
scheduler 230, it is placed in the job group queue 232. The
queue 232 is a first in/first out (FIFO) style queuing data
structure and algorithm (e.g., illustrated from left to right in
FIG. 2), although this queuing algorithm is modified as
described herein (e.g., with stealing). The job scheduler 230
removes job groups 242 from the output side of the queue
and resolves any dependencies before placing the jobs (e.g.,
from the associated job list 244) on the execution stack 236.
The stack 236 is a last in/first out (LIFO) style data structure
and algorithm, optionally modified as described herein. Jobs
246 are taken off the stack and executed by a processor 210,
after which they are marked as finished.

[0039] The counter system is used to help track the state
of jobs 246, including states such as queued, holding,
stacked, executing, and finished. In some embodiments, the
job scheduler 230 may use an atomic primitive called
“compare-and-exchange,” a memory transaction that will
only update memory if the content has a specific value. This
atomic primitive is subject to an issue distinguishing
between equal values being stored at different times (e.g.,
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the memory location starts with a first value written by a first
thread, has the first value changed to a second value by a
second thread, and then has the second value changed back
to the first value by the second thread, which fools the first
thread into thinking that nothing has changed when the first
thread does the comparison—a problem known as the ABA
problem in multithreading). To improve reliability, the job
scheduler 230 uses counters on critical memory locations to
distinguish between equal values being stored at different
times by different threads. For example, when a critical
memory location is successfully written to, the counter for
that location is incremented to indicate the successful
memory write. The counters may be used, for example, to
help determine the state of a job and distinguish between
equal values being stored at different times (e.g., the equal
values would have different counter values).

[0040] In the example embodiment, each job group 242
includes at least two associated counters (not separately
shown). A first counter is referred to herein as a “generation
counter,” storing a numerical value referred to herein as a
“generation count.” A second counter is referred to herein as
a “job counter,” storing a numerical value referred to herein
as a “job count.” The generation counter is used to track the
state of the associated job group, and to help identify when
the job group has been dequeued or stolen, is on the stack
236 or is waiting to get on the stack 236, is executing, or is
finished executing. The numerical value of the generation
counter and/or whether the generation counter is even or odd
may be used to distinguish between some of these different
states. Once the job group has been dequeued and put on the
stack, the job counter is used to track the number of jobs for
the job group that remain on the stack (e.g., not yet
executed).

[0041] When a job group container is first created (e.g.,
when memory is allocated for the container), the initial
generation counter is set at an even number (the “starting
generation count”). The exact numerical value of the starting
generation count can be any arbitrary integer. The job
scheduler is then free to place a received job group 242 (e.g.,
received from an application that wants the job group 242 to
be executed) in the container and place the container on the
job group queue 232. The job scheduler 230 creates and
transmits a ticket to the application that submitted the job
group 242. The ticket includes the memory location of the
job group 242 (e.g., the memory location of the container for
the job group 242) and a “ticket value” at which the group
will be considered finished (also referred to herein as the
“finished generation count”). The finished generation count
for a group may be, for example, the starting generation
count+2. The ticket and the generation count are used to
track the state of the job group 242 as it passes through the
job scheduler 230.

[0042] The state of a job group 242 and the value of the
generation counter for that job group 242 may be linked to
the ticket value for that job group. More specifically, when
the generation counter is two less than the ticket value (e.g.,
generation counter=ticket value-2), then the job group 242
is in the queued state (e.g., the job group 242 is in the job
group queue 232). When the generation counter is one less
than the ticket value (e.g., generation counter=ticket value—
1), then the job group 242 is in the pushed state (e.g., the job
group 242 has been dequeued or stolen and it is in one of
three places: on the stack, waiting to get on the stack, or
being executed by a CPU 210). When the generation counter
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is equal to the ticket value (e.g., generation counter=ticket
value), then the job group 242 is in the finished state (e.g.,
the job group 242 has left the stack and has been executed
by a CPU). Accordingly, since the initial value of the
generation counter is even, generation count values that are
even numbered refer to job groups that are in the queue or
finished executing, and generation count values that are odd
numbered refer to job groups whose jobs are being executed,
are in the stack, or are waiting to get onto the stack 236.
[0043] Some known job schedulers have memory leak
issues brought on by jobs that are scheduled but are never
properly executed. The memory for these unexecuted jobs is
never deallocated, and thus the amount of memory leaked
can increase over time. These job schedulers must track
pending jobs in order to avoid such memory leak issues.
Here, the job scheduler 230 avoids or reduces such issues by
reusing memory for jobs that come off the queue and are not
properly executed. As such, the job scheduler 230 may not
need to track job groups. If a job group 242 is incompletely
executed, the scheduling system 230 may wait on it or, since
job group containers are reused, a job group may be sched-
uled and then forgotten (e.g., not tracked).

[0044] In the example embodiment, there are several
actions taken by the job scheduler 230 that include changing
(e.g., incrementing) the generation counter. During a life
cycle of the job group 242 container, the generation counter
is incremented twice. First, it is incremented by one when
the job group 242 is dequeued or stolen. Second, it is
incremented by one when the job group 242 has completed
execution. As such, when a job group container is recycled,
the generation count for that container has been incremented
by two each time (e.g., returning to an even value to start
another cycle of use).

[0045] More specifically, when a job group is dequeued or
stolen, the generation count is incremented by one to indi-
cate that the associated job list 244 has been or will be put
on the execution stack 236 (e.g., the generation count
becomes odd after being dequeued or stolen, being used as
a toggle switch). Only one thread will successfully steal or
dequeue a job group 242 (e.g., the first thread to steal or
dequeue it). Other threads may fail at dequeuing and stealing
this job group 242 because they may detect that the genera-
tion count is not the expected value for a job group in the
queue 232, signaling that the job group 242 is no longer in
the queue 232 (e.g., because it has already been dequeued or
stolen). A job group 242 may only be stolen or dequeued if
it is in the queue 232 and, accordingly, the expected gen-
eration count for dequeuing or stealing a job group may be
the final generation count-2. If the generation count is not
the ticket value-2, then another thread must have already
dequeued or stolen the job group 242 and incremented the
generation counter (e.g., so that the generation count may be
the ticket value-1). An odd value of the generation counter
also signals that the job group 242 has already been removed
from the queue because of stealing or dequeuing and,
accordingly, an odd value of the generation counter blocks
a second thread from dequeing or stealing the job group 242.
[0046] When a job group 242 has cleared the stack 236
and all of the jobs from the job group 242 have been
completely executed, the job scheduler 230 increments the
generation counter of that job group 242 by one (e.g.,
making the generation count even again). As such, the
generation count has been incremented by two since the job
group was put on the queue (e.g., once when dequeued/
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stolen, and again when the group is finished). When the
group 242 is finished, the generation count is equal to the
ticket value of the group 242, and any thread waiting on this
particular group 242 (e.g., a dependent job group) will see
the job group 242 as finished (e.g., by checking the genera-
tion count). As soon as a job group 242 is finished, any
dependent jobs for that finished group 242 that were set to
be rescheduled (e.g., held waiting to get on the stack 236 or
put back on the queue 232 to be processed later) may then
be safely placed on the stack 236.

[0047] When an application thread needs the result from a
specific job group with high priority, the thread issues a
‘wait’ on the specific job group, indicating that the result is
required as soon as possible. If a wait is issued for a specific
job group 242, then the job scheduler 230 first checks the
state of the job group 242 by comparing the generation count
for the job group 242 with the ticket value for the same job
group 242. If the ticket value and the generation count are
equal, then the job group 242 is finished, and the thread will
take the output value of the executed job and return to the
application that spawned the thread. If the ticket value is one
greater than the generation count (e.g., the generation count
is odd), then the job list 244 of the job group 242 is either
on the execution stack 236 or waiting to be put on the stack
236 (e.g., “pushed”), or is currently being executed, and the
job scheduler 230 may pick jobs from the stack 236 and
execute them until the generation count of that job group 242
indicates that all of the jobs in the job list 244 for the job
group 242 are finished and the thread will take the output
value of the executed job and return to the application that
spawned the thread. If the generation count is two less than
the ticket value (e.g., the generation count is even and not
equal to the ticket value), then the job group 242 is still in
the queue, and the job scheduler 230 may go through the
entire stealing and dependency resolving process for that job
group 242 first, then pick jobs to execute from the execution
stack until the generation count of the job group 242
indicates that it is finished.

[0048] The job counter for the job group 242 keeps track
of the number of completed jobs within the group 242 (e.g.,
the associated job list 244). Each job group 242 includes one
or more jobs for execution, and the job counter is used to
determine when the last job is executed for the group 242.
The job counter is initialized to the number of jobs contained
within the job group 242 when the job group 242 is first
placed in a container, and gets atomically decremented every
time a job that belongs to the group 242 has finished
executing. When the job counter gets to zero, the group 242
is finished executing, and the generation counter is atomi-
cally incremented to tag the group as finished. Accordingly,
after the group 242 is finished, the dependent jobs of that
group 242 are added to the execution stack (e.g., if any
exist).

[0049] In some known lock-free systems, issues may
develop with respect to dependency chains. Jobs put on the
execution stack can execute concurrently (e.g., many threads
can pop jobs and execute then at the same time) and
therefore, in some situations, it is not possible for a thread
waiting on a specific ticket to execute anything from the
stack except for jobs from the current job groups on the
stack. As such, those systems can, in some situations, behave
as a one core system, with all cores waiting on a single core
to do all the work. Accordingly, the job scheduler 230
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described herein implements at least the counter system and
uses job lists to mitigate these scenarios.

[0050] Referring again to FIG. 2, the job lists 244 hold the
list of jobs that belong to a group 242 while the group 242
is in the queue 232 (e.g., when not stolen). Additionally,
when the group 242 moves to the stack 236 to be executed,
the job list 244 holds the list of jobs that are to be resched-
uled (e.g., the dependent jobs of the group 242) while the
group is executing.

[0051] The job scheduler 230 creates, uses, and recycles
job lists 244. For example, when the job group 242 is
removed from the queue 232 and put on the stack 236 for
execution, the associated job list 244 is used to hold sec-
ondary job groups (e.g., dependent jobs 246 from dependent
job groups 242 that are dependent on the removed job group)
from entering the stack while the removed job group
executes. Use and recycling of job lists 244 is described in
greater detail below. The efficient use of the job lists 244 is
made possible by the generation counter (e.g., as a toggle
switch). In the example embodiment, the generation counter
includes a numerical value (e.g., an integer). As used herein,
the term “generation counter” may be used, in some con-
texts, to refer to the numerical value. For example, when the
generation counter for a particular job group 242 is even, the
associated job list 244 contains jobs 246 that belong to a first
job group (e.g., the removed job group). When the genera-
tion counter is odd, the job list 244 contains dependent jobs
for that removed job group that will need to be put on the
stack 236 when the removed job group 242 is finished
executing. The combination of the job list 244 and the
generation counter allows the delayed insertion of a set of
jobs on the stack 236 on a per-group basis, which allows for
dependent jobs to be dealt with in a very efficient way.
[0052] The job scheduler 230 may “recycle” the memory
regions associated with job groups 242 in the queue 232, job
lists 244, and/or job groups 242 in the execution stack 236.
The jobs within the job lists 244 go on the stack for
execution. A job group 242 (e.g., a job group container) is
empty when it is recycled. During operation, memory
regions may be allocated and deallocated (e.g., “malloc( )”
and “free( )”, respectively, in C) by the job scheduler 230 for
various purposes (e.g., creating new job groups 242 or job
lists 244). As used herein, the term “recycling” refers to the
act of maintaining an already-allocated memory region after
it has been unassigned (e.g., after a first purpose has been
satisfied), then reassigning that memory region to a new
purpose. In other words, a “recycled” memory region is not
deallocated once its first purpose is satisfied and, thus,
recycling avoids calling the operating system for a new
memory allocation. For example, when a job group 242 is
dequeued, the memory region within the job group queue
232 may be recycled. Instead of deallocating the memory
region when the job group is dequeued, the memory region
is maintained and tracked by the job scheduler 230. When a
new job group 242 enters the queue 232, that already-
allocated memory region may be assigned to the new job
group. As such, with recycling of memory regions, the job
scheduler does not expend the computational resources to
deallocate and reallocate memory. Unused job groups are
tracked and maintained by the job scheduler 230 in a distinct
pool (e.g., a “recycling stack™).

[0053] In the example embodiment, generation counters
persist and stay with their job group containers through
recycling. The generation counter is recycled with the
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recycled container and maintains the same value through
recycling (e.g., an even integer equal to the previous group’s
ending generation count). Accordingly, the starting genera-
tion count for a group that is assigned to a recycled group
container is whatever number comes through recycling (i.e.,
the previous group’s ending generation count).

[0054] To facilitate memory recycling and speed of pro-
cessing, the job scheduler 230 may implement one or more
of the queue 232, the job lists 244, and the stack 236 as
linked lists. Linked lists enable the job scheduler 230 to
easily add and remove elements from the list dynamically,
either with newly allocated memory (e.g., when first creat-
ing the job groups 242) or with pre-allocated, recycled
memory regions. Memory may be added as needed, but once
allocated, the memory is maintained (e.g., not deallocated)
and may be recycled to reduce the computational burden for
managing the queue 232, job lists 244, and/or the stack 236.
Job groups 242, job lists 244, and the stack 236 may be
implemented as simple data structures (e.g., using “struct” in
C# or C++) containing data, along with a pointer to the next
structure, thereby establishing a linked list. For example, a
job group 242 may include a pointer to the next job group
242 in the queue 232, and may also include another pointer
to the associated job list 244.

[0055] During operation, in the example embodiment,
when the job scheduler system 230 starts, it creates a number
of worker threads (e.g., typically equal to the number of
cores) and leaves one core for the main application thread.
The worker threads loop in the following way: (1) check if
anything can be executed on the stack 236, and if so, execute
it; (2) if there is nothing to execute on the stack 236, then
check if anything is in the queue 232. If there is, then
dequeue the next group 242, resolve the group’s dependen-
cies, and check the stack again 236; and (3) if nothing is
available on the stack 236 or the queue 232, then the thread
goes to sleep. Threads are awoken when new jobs are
scheduled.

[0056] FIGS. 3A-3C each display sections of a flow chart
illustrating an example method 300 for job scheduling, as
performed by the job scheduler 230, that does not include
stealing. FIG. 3A illustrates operations associated with
dequeuing job groups 242 from the job group queue 232.
FIG. 3B illustrates operations associated with the execution
stack 236. FIG. 3C illustrates operations associated with
recycling job group containers from the job group queue
232.

[0057] Referring now to FIG. 3A, in the example embodi-
ment, at operation 310, the job scheduler 230 checks
whether there are jobs (e.g., job groups 242) in the job group
queue 232. If no job groups are available to be dequeued, the
job scheduler 230 sleeps at operation 312, cycling back to
test again later. If one or more job groups 242 are available
for dequeuing from the job group queue 232, the job
scheduler 230 dequeues a job group 242 from the job group
queue 232 at operation 314. If it is determined at operation
316 that the dequeued job group 242 is empty (e.g., because
the group contents were stolen while it was on the queue),
that job group 242 is flagged for recycling at operation 318.
Recycling of job group containers is described in greater
detail below (e.g., see FIG. 3C).

[0058] If, at operation 316, the job group 242 is not empty,
the job scheduler 230 atomically increments a generation
counter associated with the job group 242 at operation 320.
In the example embodiment, incrementing operations per-
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formed on the generation counter are performed atomically
(e.g., the dequeuing and incrementing happen as one),
thereby avoiding some concurrent operation situations (e.g.,
another thread trying to dequeue the same group, but prior
to the generation counter being incremented). The job sched-
uler 230 extracts the job list 244 associated with the job
group 242 at operation 322, as well as dependency infor-
mation for the dequeued job group 242 (e.g., whether the
dequeued job group depends upon any other job or job
group). If, at operation 324, the dequeued job group 242 is
not a dependent job group, then the jobs (e.g., from the
associated job list 244) for that job group 242 are pushed
onto the stack 236 for execution at operation 326, and the job
scheduler 230 loops back to operation 310 to check for
additional job groups.

[0059] If, at operation 324, the dequeued job group 242 is
a dependent job group (e.g., identifies one or more depen-
dency groups), then the job scheduler 230 checks the state
of the dependency group at operation 328 (e.g., by checking
the generation counter for the dependency group). In the
example embodiment, each job group 242 may identify at
most one dependency group. If, at operation 330, the depen-
dency group is finished (e.g., all jobs from that job group are
finished executing), then the jobs (e.g., from the associated
job list 244) for the dependent job group 242 are pushed onto
the stack 236 for execution (e.g., see operation 326), and the
job scheduler 230 loops back to operation 310 to check for
additional job groups. If, at operation 330, the dependency
group is not yet finished (e.g., has unexecuted jobs on the
stack 236, or is itself still in the job group queue 232 waiting
to get on the stack 236), then the job scheduler 230 holds the
dependent job group 242 at operation 332 (e.g., re-checks
again later, looping to operation 328) until the dependency
group is finished. Once the dependency group is found to be
finished at operation 330, the job scheduler 230 pushes the
jobs for the dependent job group 242 onto the stack 236 for
execution and the job scheduler 230 loops back to operation
310 to check for additional job groups.

[0060] Referring now to FIG. 3B, the job scheduler 230
manages the stack 236. More specifically, in the example
embodiment, the job scheduler 230 checks whether there are
jobs on the stack 236 ready for execution at operation 334.
If there are no jobs on the stack 236, the job scheduler
returns to the dequeuing process shown and described above
in reference to FIG. 3A (e.g., to operation 310). If there are
jobs on the stack 236, the job scheduler 230 pops a job from
the stack and sends the job for execution (e.g., to one of the
CPUs 210) at operation 336. On completion of the job, the
result is sent to the requesting client at operation 338 and the
job scheduler 230 atomically decrements a job counter 340
(e.g., atomically) at operation 340 for the job group 242
associated with that job. At operation 342, if the job counter
for that job group 242 is not zero (e.g., if there are still jobs
for that job group on the stack 236), then the job scheduler
cycles to pop another job from the stack 236 (e.g., at
operation 336). In the example embodiment, the job sched-
uler 230 does not have to wait (e.g., between operation 336
and operation 338) for the job to be executed and the result
returned. The job scheduler 230 may concurrently send
multiple jobs from the stack 236 for execution.

[0061] Ifthejob counter for the job group 242 is zero, then
the job scheduler 230 atomically increments a generation
counter for that job group 242 at operation 344 and notifies
the client that the job group 242 is finished at operation 346.
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If a dependent job group was waiting on the completed job
group 242 (e.g., if the completed job group is a dependency
group) at operation 348, then the jobs from the dependent
job group are loaded onto the stack 236 at operation 350 and
are processed (e.g., cycling to operation 336). If the com-
pleted job group 242 is not a dependency group, then the job
scheduler 230 cycles to check for more jobs on the stack 236
(e.g., cycling to operation 334).

[0062] Referring now to FIG. 3C, the job scheduler 230
recycles job group containers (e.g., the memory region of an
empty, completed job group 242). More specifically, in the
example embodiment, the job scheduler 230 checks the state
of the job group container at operation 352. If, at operation
354, the associated job group 242 is not finished, then the
container is held at operation 356, and the job scheduler
cycles to operation 352. If the job group is finished, then the
job scheduler 230 puts the job group container on a recycling
stack for later reuse at operation 358.

[0063] In the example embodiment, the processes
involved in dequeuing the jobs as shown in FIG. 3A, the
process involved in stack operations as shown in FIG. 3B,
and the process involved in recycling as shown in FIG. 3C
may occur concurrently, excepting the atomic operations
described above. In other words, the processes shown in
FIGS. 3A-3C may be interleaved such as to all be happening
at the same time.

[0064] FIG. 4 is a flowchart of a method 400 for job
scheduling as performed by the job scheduler 230 that
includes job stealing. Job stealing involves preempting the
order of the job groups 242 in the job group queue 232. At
operation 410, the job scheduler 230 receives a request
associated with Job X (e.g., a request for the value of a
calculation that results from the execution of Job X). The
request, for example, may originate from a software appli-
cation such as a game engine, perhaps in response to an
action from a user (e.g., via an application thread associated
with the game engine). As used herein, the term “client” is
used to refer to the requesting application (e.g., game
engine), process, thread, or CPU.

[0065] At operation 412, the job scheduler 230 determines
the state of Job X (e.g., of the job group 242 containing Job
X). In the example embodiment, the job scheduler 230
performs operation 412 using the generation counter for the
job group 242 and the finished generation count (e.g., from
the ticket). The states available for a job group 242 include:
“Queued” (e.g., in the queue 232), “Pushed” (e.g., being
executed by a CPU 210, on the stack 236, or waiting to get
on the stack 236), or “Finished” (e.g., execution completed).
Some of these states may be distinguished from others using
the generation counter and/or the job counter. If, at operation
413, the state of the job group 242 is Finished (e.g., if the
generation counter equals the finished generation count),
then the result of the job is available (e.g., because the job’s
execution is complete) and the result is returned to the client
via the client thread at operation 414. If, at operation 413, the
state of Job X is Pushed (e.g., if the generation counter is
odd, or if the generation counter equals one less than the
finished generation count), then Job X is already on the stack
236 or is waiting to get on the stack 236 and, as such, the job
scheduler 230, at operation 416, pops jobs off the stack and
executes those jobs until Job X is Finished. When Job X is
finished (e.g., finished executing within a core), the result of
the job is available, and the job scheduler 230 returns the
result to the client via the client thread at operation 414.
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[0066] If, at operation 413, the state of Job X is Queued
(e.g., if the generation counter is even and not equal to the
finished generation count, or if the generation counter is two
less than the finished generation count), then the job sched-
uler 230 extracts (“steals”) the job group 242 containing Job
X from the queue 232 at operation 420. Stealing a job
includes at least several steps. First, at operation 422, the job
scheduler 230 atomically increments the generation counter
for the job group 242 (e.g., making the generation counter
odd and making the generation counter equal to one less than
the finished generation count, signifying that the job group
has been stolen). In the example embodiment, operations
420 and 422 are performed atomically. In some embodi-
ments, operations 420 and 422 may be combined into a
single atomic operation. The job scheduler 230 then removes
the job list 244 of the job group 242 in the queue 232 at
operation 424, leaving the group container in the queue (e.g.,
with an empty job list 244 containing only a null pointer). At
operation 426, the job scheduler 230 extracts job list data
from the associated job list 244, leaving an empty job list
244 (e.g., a single element containing a null pointer).
[0067] The job scheduler 230 then analyzes the depen-
dency data for the job group 242 to determine all depen-
dencies for all the jobs in that job group 242 at operation
428. The dependency data specifies, or can be used to
determine, which secondary jobs (e.g., which other job
groups 242) must be executed prior to the execution of the
stolen job (e.g., the job group 242 including Job X).
[0068] If, at operation 429, no dependencies are specified
within the dependency data, or if there is no dependency
data, then the job scheduler 230 pushes all of the stolen jobs
(e.g., all of the jobs from the job list 244 associated with the
stolen job group 242) onto the stack 236 at operation 430.
Since there are no dependency conflicts prior to placement
of jobs 244 of the stolen job group 242 on the execution
stack, the jobs can safely be executed (e.g., in any order, and
thus can be processed by any thread with any core). In some
embodiments, each job group 242 is packaged such that the
jobs within the group 242 do not depend on each other (e.g.,
they can be executed in any order), and each group depends
on at most one other group. In other embodiments, each job
group can depend on multiple other job groups 242.
[0069] If, at operation 429, the stolen job group 242
includes one or more specified dependencies, then for each
dependency group (e.g., dependency group Y,, where i=1 .
. . N, and where N is the number dependencies), the job
scheduler 230 determines the state of the dependency Y, at
operation 432. In the example embodiment, each job group
242 includes at most one dependency group, Y. The depen-
dency group Y refers to a specific dependency job group 242
for the job group 242 containing Job X. The dependency
group Y may be in any state mentioned above (e.g., Queued,
Pushed, or Finished). The simplest case is if a dependency
group Y is already executed (e.g., “Finished”) at operation
433. In this case, the job scheduler 230 pushes the jobs from
the stolen job group 242 directly onto the execution stack
236 at operation 430 and ends, thereby completing the steal
of the job group 242.

[0070] If, at operation 433, the dependency group Y is in
the pushed state (e.g., is already on the stack 236), then the
job scheduler 230 holds the dependent job group, at opera-
tion 434, until the jobs clear the stack 236 prior to pushing
the stolen job group 242 containing Job X onto the stack 236
at operation 430. If, at operation 433, the dependency group
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Y is still in the queued state (e.g., in the job group queue
232), then the job scheduler 230 holds the stolen job group
242 from entering the stack 236 at operation 436 and
resolves the dependency group Y (e.g., recursively cycle to
operation 420, initiating a steal operation on the dependency
group Y) at operation 438. In other words, the initial stolen
job group 242 is not put on the execution stack 236 until the
job scheduler 230 steals the dependency group Y from the
queue 232, resolves any of its dependencies (e.g., recur-
sively), and then places them on the stack 236 so that they
can be executed. After the dependencies are executed on the
stack 236, then the job scheduler waits for those dependent
jobs to clear the stack at operation 434 before pushing the
jobs from the stolen job group 242 onto the stack 236 at
operation 430.

[0071] In some embodiments, the processes executing the
method 400 shown in FIG. 4 may execute concurrently with
the processes executing the method 300 shown in FIGS.
3A-3C, excepting the atomic operations described above. In
some embodiments, any or all of the operations shown in
methods 300, 400 are performed atomically. In some
embodiments, some operations are combined into a single
atomic operation. For example, in some embodiments,
operations 420 and 422 may be combined into a single
atomic operation. In other embodiments, operations 412/
413, 420, and 422 may be combined into a single atomic
operation. In some of these embodiments, operation 424
may also be included in the combined atomic operation.

[0072] In some scenarios, it may be possible for multiple
threads to attempt to steal the same job group from the queue
232. For example, a first thread and a second thread may
attempt to steal a job group, and may both test the state of
the job group (e.g., operations 412/413) at a time when the
job group is still available to steal (e.g., before either thread
executes atomic operation 420/422). In one example
embodiment, until one of the two threads actually performs
operations 420/422 (e.g., atomically), either of the two
threads may initiate operations 420/422. The first thread to
execute operations 420/422 effectively makes the job group
unavailable to steal to the other thread. For example, pre-
sume both threads test the state of the job group at operations
412/413, and both threads see the job group as available to
steal. Subsequently, both threads are going to attempt to steal
the job group, because both have tested and determined that
the job group is available to steal. The first thread is the first
to atomically execute operations 420/422, thereby succeed-
ing in the steal (e.g., moving the job list for the stolen job
group to the execution stack 236 and emptying the job
group). The second thread then attempts to steal the job
group and fails (e.g., at operation 420) because the job group
is no longer available to steal (e.g., because the job group is
now empty). As such, the first thread succeeds in the steal
and the second thread fails its steal attempt.

[0073] FIGS. 5 to 10 depict the example device 200 and
job scheduler 230 in example scenarios during operation. As
shown in the example scenario of FIG. 5, the job group
queue 232 includes multiple job groups 512 awaiting execu-
tion (e.g., “Group A” 512A, “Group N” 512N, “Group B”
512B, “Group C” 512C, and “Group D” 512D). Each job
group 512 in the job group queue 232 has an associated job
list 514 (e.g., “List A” 514A, “List N” 514N, “List B” 514B,
“List C” 514C, and “List D” 514D, respectively). For
example, in the context of graphics processing for a game
engine, Group D 514D may compute the position of many
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virtual characters, Group C 514C may perform collision
detection on those characters, Group B 514B may re-
compute new positions in response to collisions according to
a gaming physics, and Group A 514A may prepare the whole
scene for rendering on the GPU. As such, Group A 514A
may depend on Group B 514B, Group B 514B may depend
on Group C 514C, and Group C 514C may depend upon
Group D 514D.

[0074] In the example embodiment, another job group
5120, “Group O,” along with an associated job list 5140,
“List O,” is passed to the job scheduler 230 (e.g., from one
of the CPUs 210) for addition to the job group queue 232.
The job groups 512 may be similar to the job groups 242,
and the job lists 514 may be similar to the job lists 244.
While the job lists 244, 514 are shown in FIGS. 2 and 5-10
separately from the job groups 242, 512 for purposes of
illustration, in some embodiments, the job lists 244, 514 may
be integrated into or within the job groups 242, 512 them-
selves.

[0075] The execution stack 236 includes two groups,
“Group U” 512U and “Group Y 512Y, each having multiple
jobs 246 (e.g., jobs from their associated job lists 514,
illustrated in FIG. 5 as “Ul,” “U2,” and “Y1” through
“Yn”). It should be understood that the jobs 246 are illus-
trated on the execution stack 236 in FIGS. 2 and 5-10
grouped together for purposes of description, but, as men-
tioned above, the execution stack 236 is a LIFO structure
and, as such, the queue is an ordered set of jobs (e.g., each
of the jobs from the illustrated groups), where the top-most
group in the stack 236 represents the top-most jobs. The jobs
on the stack 236 are handled as individual jobs. In other
words, they may be picked up by different threads and may
be sent to different processors for execution. The job sched-
uler 230 may track the jobs of a particular job group 242
(e.g., with the job counter and generation counter).

[0076] In this example, though not illustrated in FIG. 5,
Group A 512A has 100 jobs, Group B 512B has 1 job, Group
C 512C has 50 jobs, and Group D 512D has 1 job. Further,
Groups A-D 512A-512D also include interdependencies.
More specifically, the dependencies of the four job groups
are as follows: Group A 512A depends on Group B 512B,
Group B 512B depends on Group C 512C, and Group C
512C depends on Group D 512D. The scheduling order is
illustrated from right to left within the job group queue 232
as shown in FIG. 5. As such, Group D 512D is scheduled,
followed by some unidentified groups, then Group C 512C,
followed by other unidentified groups, then Group B 512B,
Group N 512N, and Group A 512A. Each of these scheduled
groups will proceed according to the above order unless that
scheduling order is interrupted, for example, by a call to
steal one of the four groups (e.g., if there is a call or a ‘wait’
for a value resulting from the execution of one of these
groups which necessitates a steal).

[0077] Further, jobs for a “Group L” 512L are being sent
from the stack 236 to the bus 212 (e.g., for execution on one
of'the CPUs 210). It should be understood that jobs from the
stack 236 are sent to the bus 212 for execution individually,
and are illustrated as grouped in these examples for ease of
discussion.

[0078] Continuing the example, FIG. 6 illustrates the state
of the job scheduler 230 at a later point in time. Here,
“Group O 5120 has been added to the job group queue 232,
and an application (the client, e.g., the user script of a game)
requires the resulting value of the execution of Group A
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512A. The application signals the requirement by issuing a
“wait” on the A group 512A in the job scheduling system
(e.g., with the job scheduler 230).

[0079] At this point in time, Group A 512A and Group B
512B are in the queue 232 as shown, jobs from Group C
512C are on the execution stack 236, and Group D 512D is
finished. When Group C 512C was moved from the queue
232 to the execution stack 236, the group container 610 for
Group C 512C (e.g., the memory being used by Group C
512C while on the queue 232) was emptied, and may be
recycled once all associated jobs are completed. Further,
because the jobs 514C for Group C 512C were moved to the
stack 236, the associated job list 612 for Group C 512C is
emptied (e.g., jobs C1 to C50 have moved to the stack 236
and the job list 514C contains a null pointer), but the job
group container 610 is maintained and used while the jobs
514C for Group C 512C (e.g., jobs C1, C2, .. ., C50) are
on the stack 236. Once the jobs 514C are finished on the
stack 236, the job scheduler 230 will check the job list 612
for Group C 512C (e.g., until empty). If the job list 612
contains another list (e.g., one or more additional jobs, such
as from job groups dependent on Group C 512C, added as
described below), then this additional list of jobs 514C is
also placed on the stack 236 for execution. When the job list
612 is determined to be empty, then it will be recycled along
with the empty group container 610. In other words, the job
scheduler 230 maintains the job group container 610 (e.g.,
for Group C 512C) until it is determined that all jobs
associated with that group have completed (e.g., including
all dependent jobs).

[0080] FIG. 7 illustrates a steal operation 720 for group A
512A performed by the job scheduler 230. Continuing the
example, receipt of the “wait” on Group A 512A triggers the
steal operation 720 for Group A 512A. Presume that, at the
time the steal operation 720 is initiated, the generation
counter for group A is set to 100, the generation counter for
group B is set to 200, and the generation counter for C is set
to 301 (e.g., because it is on the stack). Accordingly, the
ticket value for group A is 102, the ticket value for group B
is 202, and the ticket value for group C is 302 since the ticket
value is equal to the initial generation counter value+2. The
steal operation 720 will proceed if Group A 512A is still in
the queue 232 and no other thread has stolen it, such as
shown in FIG. 7 (e.g., see also operation 412). In other
situations, the steal attempt would fail if, for example,
another thread has already stolen Group A 512A, or if Group
A 512A had moved off the job group queue 232 and onto the
execution stack 236 (e.g., if the generation counter for the
job group is odd, or not equal to the ticket value-2).

[0081] Returning to the example shown here, the stealing
operation 720 of Group A 512A starts with the removal of
the Group A 512A data from a Group A container 710 on the
queue 232, including the removal of the group A job list
514A data. If Group A 512A is stolen successfully, the job
scheduler 230 atomically increments the generation counter
for Group A 512A by one (e.g., from 100 to 101). Since, in
this example, Group A 512A depends on Group B 512B,
which is still in the queue 232 at the time Group A was
stolen, the job scheduler 230 cannot put the job list for
Group A 512A on the stack. As such, the job scheduler 230
attempts to steal Group B 512B in order to resolve the
dependency for Group A 512A. Since Group A 512A
depends on Group B 512B, the job list data for group A (e.g.,
List A 514A) is moved to the back of the job list for Group
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B 512B (e.g., List B 514B) after Group B has been stolen so
that the jobs of List A 514A can be executed after the jobs
in Group B 512B. Moving the job list for Group A 512A at
the back of the job list for Group B 512B (e.g., List B 514B,
as illustrated by broken line 722) may be implemented, for
example, by linking the tail of the linked list for List B 514B
to the head of the linked list for List A 514A.

[0082] At this point, a job list 712 for Group A 512A is
empty, and so is the job group container 710 for group A
512A in the queue 232. The job list 712 and the job group
container 710 may be recycled once the job group container
712 has dequeued and the associated job list has been
emptied of all dependent jobs and job lists.

[0083] Continuing the example, FIG. 8 illustrates a steal-
ing of Group B operation 820, in reaction to the stealing of
Group A operation 720. In this example, the stealing of
Group B 512B is successful and, as such, the system
increments the counter for Group B 512B by 1 (e.g., from
200 to 201). Since Group B 512B depends on Group C
512C, the job scheduler 230 tries to steal Group C 512C (not
depicted), which fails because the jobs from Group C 512C
are already on the execution stack 236 (e.g., see operation
416). More specifically, the steal of Group C 512C fails
because the Group C container 610 is empty, and the
generation counter for Group C 512C is odd (and the
generation counter=ticket value-1), signaling that it is in the
pushed state and is no longer on the queue. Group C 512C
was previously added to the stack 236 because Group C
512C depends on Group D 512D, and Group D 512D is
finished, thus making it safe to put Group C 512C on the
stack 236. It should be noted that the placement of Group C
512C on the stack 236 is not directly shown in a figure, but
occurred between the actions depicted in FIG. 5 and FIG. 6.
[0084] At this point, the execution of Group C 512C is not
yet complete. As such, the job scheduler 230 pushes Group
B 512B (e.g., the job list B 514B) to the back of the job list
for Group C (e.g., job list container 612, “Empty List C”),
as illustrated by the broken line 822. This is possible because
Group C 512C has not yet completed execution, and the job
list for Group C 512C (e.g., job list container 612) has not
been recycled.

[0085] During operation, one or more threads start to pop
jobs from the stack 236 (e.g., jobs 514C, “C1”-“C50”) and
execute them. The job counter for Group C 512C initially
starts at 50 (e.g., since Group C 512C has 50 jobs). For each
job executed from Group C 512C, the job counter is atomi-
cally decremented by 1. When all the jobs 514C on the stack
236 are complete for Group C 512C, the job counter for
Group C 512C reaches zero, and the generation count for
Group C is atomically incremented by 1 to 302.

[0086] FIG. 9 illustrates the job scheduler 230 after the
jobs for Group C 512C are finished on the stack 236.
Continuing the example, when the last of the Group C jobs
514C are finished (e.g., taken from the stack 236 and
executed by a CPU), Group C 512C is marked as done by
atomically incrementing the generation counter for Group C
512C by one, thereby making the generation counter match
the ticket value. The job scheduler 230 checks the job list for
Group C (e.g., the job list 612) for additional jobs and finds
the job list for Group B (e.g., List B 514B), as illustrated in
FIG. 8. List B 514B is put on the execution stack 236. The
job scheduler 230 determines that the job list 612 is now
empty and, as such, the job list 612 and job group container
610 for Group C 514C are recycled.
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[0087] In this example, the job list 514B for Group B
512B has a single job, “B1,” now at the head of the stack
236. As such, the first thread to execute that job will cause
the job scheduler 230 to atomically increment the generation
count for Group B 512B to 202 (e.g., marking it as finished
since the generation count=the ticket value).

[0088] FIG. 10 illustrates the finishing of Group A 512A.
Since all of the jobs in the job list 514B are now finished, the
job scheduler 230 then checks a job list 812 for Group B
514B for jobs that depend on Group B 512B and finds the
job list 514 A for Group A 512A, as illustrated in FIG. 9. The
job scheduler 230 then pushes the job list 514A onto the
stack 236 and recycles the job list 812 and a job container
810 for Group B 512B. Threads pop jobs from the job list
514A (e.g., from the stack 236) and, after each job is
completed, atomically decrement the job counter for Group
A 512A until all of the jobs in the job list 514A complete
execution and the job counter reaches zero. When Group A
512A is finished, the generation count for Group A is
atomically incremented by one (e.g., to 102), thereby mark-
ing Group A 512A as finished since the generation counter
is equal to the ticket value. The job scheduler 230 then
checks the job list 712 for Group A 514A, finds no additional
jobs, and subsequently recycles the job list 712 and job
group container 710.

[0089] At this point, the client thread that issued the wait
on Group A 512A detects that it has finished (e.g., because
the ticket value of 102 for Group A matches the generation
count of 102 for Group A 512A). As such, it will return to
the application with the value from the execution of Group
A 512A.

[0090] The example shown in FIGS. 5 to 10 illustrate a
simple dependency chain. In some embodiments, it is pos-
sible that another group or groups (e.g., Group E, not shown)
may also depend on Group B 512B, Group C 512C, or
Group D 512D. As such, the Group E job list may get added
to the job list for group B, group C, or group D to be
scheduled when their respective lists are finished. Accord-
ingly, the job scheduler 230 may scale to any number of jobs
and dependencies.

[0091] For example, consider the following example with
groups including job lists implemented as linked lists,
whereby two groups each depend upon a third group. In this
example, a Group G1 includes jobs X, Y, and Z (annotated
as G1(X-Y-Z), where dashes indicate the linked order with
the last job unlinked to another), a Group G2 includes jobs
D, E, F, G, and H (i.e., G2(D-E-F-G-H)), and a Group G3
includes jobs A, B, and C (i.e., G3(A-B-C)). Further, Groups
G2 and G3 both depend on G1. In this example, Group G1
is dequeued first, and its jobs are put on the stack 236. As
such, the G1 job list is empty, and its generation count is
odd. As part of this example, while the G1 job list is still on
the stack 236, Group G2 is then dequeued. Since G2’s
dependency (e.g., G1) is still on the stack 236, the G2 jobs
(D-E-F-G-H) are added to the G1 job list, which was
emptied when all of the G1 jobs were put on the stack 236).
Further, while the G1 job list is still on the stack 236, Group
(3 is then dequeued. As such, the G3 jobs (A-B-C) are also
added to G1’s job list (e.g., linked to the end), resulting in
the linked list (D-E-F-G-H-A-B-C). When the original G1
jobs are finished, the scheduler 230 retrieves the jobs (D-E-
F-G-H-A-B-C) from the G1 job list and places them on the
stack 236. Note that because each group has no internal
dependencies, and G2 does not depend on G3, the ordering
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of the list does not matter in this example, allowing the G2
list to be appended to the end of the G3 list, or vice versa.
In other words, once the G1 jobs are complete, any of the
jobs A, B, C, D, E, F, G, H may be safely executed in any
order.

[0092] Further, the job scheduler 230 and devices 200
described herein may include multiple cores adding jobs to
the queue 232 simultaneously, while at the same time there
may be multiple cores executing jobs simultaneously. The
combination of the queue 232, the stack 236, the counting
system, and the stealing mechanism described herein lead to
better performance and more reliability than existing lock-
free solutions, which constitutes an improvement to the
functioning of the computer itself.

[0093] The detailed examples of how to use a job sched-
uling system, according to the disclosure, are presented
herein for illustration of the disclosure and its benefits. Such
examples of use should not be construed to be limitations on
the logical process embodiments of the disclosure, nor
should variations of user interface methods from those
described herein be considered outside the scope of the
present disclosure.

[0094] Certain embodiments are described herein as
including logic or a number of components, modules, or
mechanisms. Modules may constitute either software mod-
ules (e.g., code embodied on a machine-readable medium or
in a transmission signal) or hardware modules. A “hardware
module” is a tangible unit capable of performing certain
operations and may be configured or arranged in a certain
physical manner. In various example embodiments, one or
more computer systems (e.g., a standalone computer system,
a client computer system, or a server computer system) or
one or more hardware modules of a computer system (e.g.,
a processor or a group of processors) may be configured by
software (e.g., an application or application portion) as a
hardware module that operates to perform certain operations
as described herein.

[0095] In some embodiments, a hardware module may be
implemented mechanically, electronically, or with any suit-
able combination thereof. For example, a hardware module
may include dedicated circuitry or logic that is permanently
configured to perform certain operations. For example, a
hardware module may be a special-purpose processor, such
as a field-programmable gate array (FPGA) or an Applica-
tion Specific Integrated Circuit (ASIC). A hardware module
may also include programmable logic or circuitry that is
temporarily configured by software to perform certain
operations. For example, a hardware module may include
software encompassed within a general-purpose processor
or other programmable processor. It will be appreciated that
the decision to implement a hardware module mechanically,
in dedicated and permanently configured circuitry, or in
temporarily configured circuitry (e.g., configured by soft-
ware) may be driven by cost and time considerations.

[0096] Accordingly, the phrase “hardware module” should
be understood to encompass a tangible entity, be that an
entity that is physically constructed, permanently configured
(e.g., hardwired), or temporarily configured (e.g., pro-
grammed) to operate in a certain manner or to perform
certain operations described herein. As used herein, “hard-
ware-implemented module” refers to a hardware module.
Considering embodiments in which hardware modules are
temporarily configured (e.g., programmed), each of the
hardware modules need not be configured or instantiated at
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any one instance in time. For example, where a hardware
module comprises a general-purpose processor configured
by software to become a special-purpose processor, the
general-purpose processor may be configured as respec-
tively different special-purpose processors (e.g., comprising
different hardware modules) at different times. Software
may accordingly configure a particular processor or proces-
sors, for example, to constitute a particular hardware module
at one instance of time and to constitute a different hardware
module at a different instance of time.

[0097] Hardware modules can provide information to, and
receive information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
hardware modules. In embodiments in which multiple hard-
ware modules are configured or instantiated at different
times, communications between such hardware modules
may be achieved, for example, through the storage and
retrieval of information in memory structures to which the
multiple hardware modules have access. For example, one
hardware module may perform an operation and store the
output of that operation in a memory device to which it is
communicatively coupled. A further hardware module may
then, at a later time, access the memory device to retrieve
and process the stored output. Hardware modules may also
initiate communications with input or output devices, and
can operate on a resource (e.g., a collection of information).
[0098] The various operations of example methods
described herein may be performed, at least partially, by one
or more processors that are temporarily configured (e.g., by
software) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions described herein. As used herein, “processor-
implemented module” refers to a hardware module imple-
mented using one or more processors.

[0099] Similarly, the methods described herein may be at
least partially processor-implemented, with a particular pro-
cessor or processors being an example of hardware. For
example, at least some of the operations of a method may be
performed by one or more processors or processor-imple-
mented modules. Moreover, the one or more processors may
also operate to support performance of the relevant opera-
tions in a “cloud computing” environment or as a “software
as a service” (SaaS). For example, at least some of the
operations may be performed by a group of computers (as
examples of machines including processors), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate interfaces (e.g., an appli-
cation program interface (API)).

[0100] The performance of certain of the operations may
be distributed among the processors, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the processors or
processor-implemented modules may be located in a single
geographic location (e.g., within a home environment, an
office environment, or a server farm). In other example
embodiments, the processors or processor-implemented
modules may be distributed across a number of geographic
locations.
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[0101] FIG. 11 is a block diagram 1100 illustrating an
example software architecture 1102, which may be used in
conjunction with various hardware architectures herein
described to provide a job scheduler system 1101, which
may be similar to the job scheduler 230 as described above.
FIG. 11 is a non-limiting example of a software architecture
and it will be appreciated that many other architectures may
be implemented to facilitate the functionality described
herein. The software architecture 1102 may execute on
hardware such as a machine 1200 of FIG. 12 that includes,
among other things, processors 1210, memory 1230, and
input/output (/O) components 1250. A representative hard-
ware layer 1104 is illustrated and can represent, for example,
the machine 1200 of FIG. 12. The representative hardware
layer 1104 includes a processing unit 1106 having associated
executable instructions 1108. The executable instructions
1108 represent the executable instructions of the software
architecture 1102, including implementation of the methods,
modules and so forth described herein. The hardware layer
1104 also includes memory/storage 1110, which also
includes the executable instructions 1108. The hardware
layer 1104 may also comprise other hardware 1112.

[0102] Inthe example architecture of FIG. 11, the software
architecture 1102 may be conceptualized as a stack of layers
where each layer provides particular functionality. For
example, the software architecture 1102 may include layers
such as an operating system 1114, libraries 1116, frame-
works or middleware 1118, applications 1120 and a presen-
tation layer 1144. Operationally, the applications 1120 and/
or other components within the layers may invoke API calls
1124 through the software stack and receive a response as
messages 1126. The layers illustrated are representative in
nature and not all software architectures have all layers. For
example, some mobile or special purpose operating systems
may not provide the frameworks/middleware 1118, while
others may provide such a layer. Other software architec-
tures may include additional or different layers.

[0103] The operating system 1114 may manage hardware
resources and provide common services. The operating
system 1114 may include, for example, a kernel 1128,
services 1130, and drivers 1132. The kernel 1128 may act as
an abstraction layer between the hardware and the other
software layers. For example, the kernel 1128 may be
responsible for memory management, processor manage-
ment (e.g., scheduling), component management, network-
ing, security settings, and so on. The services 1130 may
provide other common services for the other software layers.
The drivers 1132 may be responsible for controlling or
interfacing with the underlying hardware. For instance, the
drivers 1132 may include display drivers, camera drivers,
Bluetooth® drivers, flash memory drivers, serial communi-
cation drivers (e.g., Universal Serial Bus (USB) drivers),
Wi-Fi® drivers, audio drivers, power management drivers,
and so forth depending on the hardware configuration.

[0104] The libraries 1116 may provide a common infra-
structure that may be used by the applications 1120 and/or
other components and/or layers. The libraries 1116 typically
provide functionality that allows other software modules to
perform tasks in an easier fashion than to interface directly
with the underlying operating system 1114 functionality
(e.g., kernel 1128, services 1130 and/or drivers 1132). The
libraries 1116 may include system libraries 1134 (e.g., C
standard library) that may provide functions such as memory
allocation functions, string manipulation functions, math-
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ematic functions, and the like. In addition, the libraries 1116
may include API libraries 1136 such as media libraries (e.g.,
libraries to support presentation and manipulation of various
media format such as MPEG4, H.264, MP3, AAC, AMR,
JPG, PNG), graphics libraries (e.g., an OpenGL framework
that may be used to render 2D and 3D graphic content on a
display), database libraries (e.g., SQLite that may provide
various relational database functions), web libraries (e.g.,
WebKit that may provide web browsing functionality), and
the like. The libraries 1116 may also include a wide variety
of other libraries 1138 to provide many other APIs to the
applications 1120 and other software components/modules.

[0105] The frameworks 1118 (also sometimes referred to
as middleware) provide a higher-level common infrastruc-
ture that may be used by the applications 1120 and/or other
software components/modules. For example, the frame-
works/middleware 1118 may provide various graphic user
interface (GUI) functions, high-level resource management,
high-level location services, and so forth. The frameworks/
middleware 1118 may provide a broad spectrum of other
APIs that may be utilized by the applications 1120 and/or
other software components/modules, some of which may be
specific to a particular operating system or platform.

[0106] The applications 1120 include built-in applications
1140 and/or third-party applications 1142. Examples of
representative built-in applications 1140 may include, but
are not limited to, a contacts application, a browser appli-
cation, a book reader application, a location application, a
media application, a messaging application, and/or a game
application. Third-party applications 1142 may include any
an application developed using the Android™ or iOS™
software development kit (SDK) by an entity other than the
vendor of the particular platform, and may be mobile
software running on a mobile operating system such as
10S™ Android™, Windows® Phone, or other mobile oper-
ating systems. The third-party applications 1142 may invoke
the API calls 1124 provided by the mobile operating system
such as operating system 1114 to facilitate functionality
described herein.

[0107] The applications 1120 may use built-in operating
system functions (e.g., kernel 1128, services 1130 and/or
drivers 1132), libraries 1116, or frameworks/middleware
1118 to create user interfaces to interact with users of the
system. Alternatively, or additionally, in some systems,
interactions with a user may occur through a presentation
layer, such as the presentation layer 1144. In these systems,
the application/module “logic” can be separated from the
aspects of the application/module that interact with a user.

[0108] Some software architectures use virtual machines.
In the example of FIG. 11, this is illustrated by a virtual
machine 1148. The virtual machine 1148 creates a software
environment where applications/modules can execute as if
they were executing on a hardware machine (such as the
machine 1200 of FIG. 12, for example). The virtual machine
1148 is hosted by a host operating system (e.g., operating
system 1114) and typically, although not always, has a
virtual machine monitor 1146, which manages the operation
of the virtual machine 1148 as well as the interface with the
host operating system (i.e., operating system 1114). A soft-
ware architecture executes within the virtual machine 1148
such as an operating system 1150, libraries 1152, frame-
works 1154, applications 1156, and/or a presentation layer
1158. These layers of software architecture executing within
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the virtual machine 1148 can be the same as corresponding
layers previously described or may be different.

[0109] FIG. 12 is a block diagram illustrating components
of a machine 1200, according to some example embodi-
ments, configured to read instructions from a machine-
readable medium (e.g., a machine-readable storage medium)
and perform any one or more of the methodologies dis-
cussed herein. In some embodiments, the machine 110 is
similar to the computing device 200 shown in FIGS. 2-10.
Specifically, FIG. 12 shows a diagrammatic representation
of the machine 1200 in the example form of a computer
system, within which instructions 1216 (e.g., software, a
program, an application, an applet, an app, or other execut-
able code) for causing the machine 1200 to perform any one
or more of the methodologies discussed herein may be
executed. As such, the instructions 1216 may be used to
implement modules or components described herein. The
instructions transform the general, non-programmed
machine into a particular machine programmed to carry out
the described and illustrated functions in the manner
described. In alternative embodiments, the machine 1200
operates as a standalone device or may be coupled (e.g.,
networked) to other machines. In a networked deployment,
the machine 1200 may operate in the capacity of a server
machine or a client machine in a server-client network
environment, or as a peer machine in a peer-to-peer (or
distributed) network environment. The machine 1200 may
comprise, but not be limited to, a server computer, a client
computer, a personal computer (PC), a tablet computer, a
laptop computer, a netbook, a set-top box (STB), a personal
digital assistant (PDA), an entertainment media system, a
cellular telephone, a smart phone, a mobile device, a wear-
able device (e.g., a smart watch), a smart home device (e.g.,
a smart appliance), other smart devices, a web appliance, a
network router, a network switch, a network bridge, or any
machine capable of executing the instructions 1216, sequen-
tially or otherwise, that specify actions to be taken by the
machine 1200. Further, while only a single machine 1200 is
illustrated, the term “machine” shall also be taken to include
a collection of machines that individually or jointly execute
the instructions 1216 to perform any one or more of the
methodologies discussed herein.

[0110] The machine 1200 may include processors 1210,
memory 1230, and input/output (I/O) components 1250,
which may be configured to communicate with each other
such as via a bus 1202. In an example embodiment, the
processors 1210 (e.g., a Central Processing Unit (CPU), a
Reduced Instruction Set Computing (RISC) processor, a
Complex Instruction Set Computing (CISC) processor, a
Graphics Processing Unit (GPU), a Digital Signal Processor
(DSP), an ASIC, a Radio-Frequency Integrated Circuit
(RFIC), another processor, or any suitable combination
thereof) may include, for example, a processor 1212 and a
processor 1214 that may execute the instructions 1216. The
term “processor” is intended to include multi-core processor
that may comprise two or more independent processors
(sometimes referred to as “cores”) that may execute instruc-
tions contemporaneously. Although FIG. 12 shows multiple
processors, the machine 1200 may include a single proces-
sor with a single core, a single processor with multiple cores
(e.g., a multi-core processor), multiple processors with a
single core, multiple processors with multiples cores, or any
combination thereof.
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[0111] The memory/storage 1230 may include a memory,
such as a main memory 1232, a static memory 1234, or other
memory, and a storage unit 1236, all accessible to the
processors 1210 such as via the bus 1202. The storage unit
1236 and memory 1232, 1234 store the instructions 1216
embodying any one or more of the methodologies or func-
tions described herein. The instructions 1216 may also
reside, completely or partially, within the memory 1232,
1234, within the storage unit 1236, within at least one of the
processors 1210 (e.g., within the processor’s cache
memory), or any suitable combination thereof, during
execution thereof by the machine 1200. Accordingly, the
memory 1232, 1234, the storage unit 1236, and the memory
of processors 1210 are examples of machine-readable media
1238.

[0112] As wused herein, “machine-readable medium”
means a device able to store instructions and data tempo-
rarily or permanently and may include, but is not limited to,
random-access memory (RAM), read-only memory (ROM),
buffer memory, flash memory, optical media, magnetic
media, cache memory, other types of storage (e.g., Erasable
Programmable Read-Only Memory (EEPROM)) and/or any
suitable combination thereof. The term “machine-readable
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database, or
associated caches and servers) able to store the instructions
1216. The term “machine-readable medium” shall also be
taken to include any medium, or combination of multiple
media, that is capable of storing instructions (e.g., instruc-
tions 1216) for execution by a machine (e.g., machine 1200),
such that the instructions, when executed by one or more
processors of the machine 1200 (e.g., processors 1210),
cause the machine 1200 to perform any one or more of the
methodologies described herein. Accordingly, a “machine-
readable medium” refers to a single storage apparatus or
device, as well as “cloud-based” storage systems or storage
networks that include multiple storage apparatus or devices.
The term “machine-readable medium” excludes signals per
se.

[0113] The /O components 1250 may include a wide
variety of components to receive input, provide output,
produce output, transmit information, exchange informa-
tion, capture measurements, and so on. The specific I/O
components 1250 that are included in a particular machine
will depend on the type of machine. For example, portable
machines such as mobile phones will likely include a touch
input device or other such input mechanisms, while a
headless server machine will likely not include such a touch
input device. It will be appreciated that the /O components
1250 may include many other components that are not
shown in FIG. 12. The /O components 1250 are grouped
according to functionality merely for simplifying the fol-
lowing discussion and the grouping is in no way limiting. In
various example embodiments, the I/O components 1250
may include output components 1252 and input components
1254. The output components 1252 may include visual
components (e.g., a display such as a plasma display panel
(PDP), a light emitting diode (LED) display, a liquid crystal
display (LCD), a projector, or a cathode ray tube (CRT)),
acoustic components (e.g., speakers), haptic components
(e.g., a vibratory motor, resistance mechanisms), other sig-
nal generators, and so forth. The input components 1254
may include alphanumeric input components (e.g., a key-
board, a touch screen configured to receive alphanumeric
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input, a photo-optical keyboard, or other alphanumeric input
components), point based input components (e.g., a mouse,
a touchpad, a trackball, a joystick, a motion sensor, or
another pointing instrument), tactile input components (e.g.,
a physical button, a touch screen that provides location
and/or force of touches or touch gestures, or other tactile
input components), audio input components (e.g., a micro-
phone), and the like.

[0114] In further example embodiments, the /O compo-
nents 1250 may include biometric components 1256, motion
components 1258, environmental components 1260, or posi-
tion components 1262, among a wide array of other com-
ponents. For example, the biometric components 1256 may
include components to detect expressions (e.g., hand expres-
sions, facial expressions, vocal expressions, body gestures,
or eye tracking), measure biosignals (e.g., blood pressure,
heart rate, body temperature, perspiration, or brain waves),
identify a person (e.g., voice identification, retinal identifi-
cation, facial identification, fingerprint identification, or
electroencephalogram based identification), and the like.
The motion components 1258 may include acceleration
sensor components (e.g., accelerometer), gravitation sensor
components, rotation sensor components (e.g., gyroscope),
and so forth. The environmental components 1260 may
include, for example, illumination sensor components (e.g.,
photometer), temperature sensor components (e.g., one or
more thermometers that detect ambient temperature),
humidity sensor components, pressure sensor components
(e.g., barometer), acoustic sensor components (e.g., one or
more microphones that detect background noise), proximity
sensor components (e.g., infrared sensors that detect nearby
objects), gas sensors (e.g., gas detection sensors to detection
concentrations of hazardous gases for safety or to measure
pollutants in the atmosphere), or other components that may
provide indications, measurements, or signals corresponding
to a surrounding physical environment. The position com-
ponents 1262 may include location sensor components (e.g.,
a Global Position System (GPS) receiver component), alti-
tude sensor components (e.g., altimeters or barometers that
detect air pressure from which altitude may be derived),
orientation sensor components (e.g., magnetometers), and
the like.

[0115] Communication may be implemented using a wide
variety of technologies. The 1/O components 1250 may
include communication components 1264 operable to
couple the machine 1200 to a network 1280 or devices 1270
via a coupling 1282 and a coupling 1272 respectively. For
example, the communication components 1264 may include
a network interface component or other suitable device to
interface with the network 1280. In further examples, the
communication components 1264 may include wired com-
munication components, wireless communication compo-
nents, cellular communication components, Near Field
Communication (NFC) components, Bluetooth® compo-
nents (e.g., Bluetooth® Low Energy), Wi-Fi® components,
and other communication components to provide commu-
nication via other modalities. The devices 1270 may be
another machine or any of a wide variety of peripheral
devices (e.g., a peripheral device coupled via a USB).

[0116] Moreover, the communication components 1264
may detect identifiers or include components operable to
detect identifiers. For example, the communication compo-
nents 1264 may include Radio Frequency Identification
(RFID) tag reader components, NFC smart tag detection
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components, optical reader components (e.g., an optical
sensor to detect one-dimensional bar codes such as Univer-
sal Product Code (UPC) bar code, multi-dimensional bar
codes such as Quick Response (QR) code, Aztec code, Data
Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC
RSS-2D bar code, and other optical codes), or acoustic
detection components (e.g., microphones to identify tagged
audio signals). In addition, a variety of information may be
derived via the communication components 1262, such as,
location via Internet Protocol (IP) geo-location, location via
Wi-Fi® signal triangulation, location via detecting a NFC
beacon signal that may indicate a particular location, and so
forth.

[0117] Throughout this specification, plural instances may
implement components, operations, or structures described
as a single instance. Although individual operations of one
or more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed in the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

[0118] The embodiments illustrated herein are described
in sufficient detail to enable those skilled in the art to
practice the teachings disclosed. Other embodiments may be
used and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. The Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which
such claims are entitled.

[0119] As used herein, the term “or” may be construed in
either an inclusive or exclusive sense. Moreover, plural
instances may be provided for resources, operations, or
structures described herein as a single instance. Additionally,
boundaries between various resources, operations, modules,
engines, and data stores are somewhat arbitrary, and par-
ticular operations are illustrated in a context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within a scope of various
embodiments of the present disclosure. In general, structures
and functionality presented as separate resources in the
example configurations may be implemented as a combined
structure or resource. Similarly, structures and functionality
presented as a single resource may be implemented as
separate resources. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
embodiments of the present disclosure as represented by the
appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

What is claimed is:
1. A job scheduler system comprising:
one or more hardware processors;

a memory including a job group queue stored in the
memory, the job group queue configured to store a
plurality of job groups in the memory, each job group
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of the plurality of job groups identifies one or more jobs
for execution by the one or more hardware processors;

a job scheduler engine, executable by the one or more

hardware processors, configured to perform operations

comprising:

creating a first job group in the job group queue, the
first job group includes a generation counter having
an initial value;

receiving a first request to steal the first job group;

determining a state of the first job group based at least
in part on the generation counter, the state indicating
that the first job group is available to steal;

based on the determining the state of the first job group,
atomically incrementing the generation counter,
thereby making the first job group unavailable for
stealing; and

altering an execution order of the first job group ahead
of at least one other job group in the job group queue.

2. The job scheduler system of claim 1, wherein the first
job group includes a first job list identifying a first plurality
of jobs, wherein said altering further includes sending the
first plurality of jobs to an execution stack.

3. The job scheduler system of claim 2, wherein sending
the first plurality of jobs to the execution stack further
includes removing the first plurality of jobs from the first job
group, thereby making the first job list empty, wherein the
job scheduler engine is further configured to perform opera-
tions comprising:

receiving a second request to steal the first job group

approximately contemporaneously with the first
request;

based on receiving the second request, determining a state

of the first job group based at least in part on the
generation counter, the state indicating that the first job
group is available to steal; and

failing to steal the first job group for the second request

based on the first job list being empty.

4. The job scheduler system of claim 1, wherein the first
job group is dependent upon a second job group, wherein the
first job group includes a first job list and the second job
group includes a second job list, wherein the job scheduler
engine is further configured to perform operations compris-
ing:

determining that the first job group is dependent upon the

second job group; and

based on the determining that the first job group is

dependent upon the second job group:

adding the first job list to the end of the second job list;
and

initiating a steal operation for the second job group.

5. The job scheduler system of claim 1, wherein the
memory further includes an execution stack stored in the
memory, wherein the first job group occupies a first region
in the memory, wherein the first job group includes a first job
list, wherein the job scheduler engine is further configured
to perform operations comprising:

sending the first job list to the execution stack;

deleting the contents of the first job group; and

reusing the first job group for another job group without

deallocating the first region in the memory.

6. The job scheduler system of claim 1, wherein the job
scheduler engine is further configured to perform operations
comprising:
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determining that the first job group has been executed;

and

based on the determining that the first job group has been

executed, atomically incrementing the generation
counter.
7. The job scheduler system of claim 1, wherein process-
ing the first request to steal the first job group does not use
a waiting lock on the job group queue.
8. A computer-implemented method comprising:
creating a first job group in a job group queue, the job
group queue is stored in a memory, the job group queue
is configured to store a plurality of job groups in the
memory, each job group of the plurality of job groups
identifies one or more jobs for execution by the one or
more hardware processors, the first job group includes
a generation counter having an initial value;

receiving a first request to steal the first job group;

determining a state of the first job group based at least in
part on the generation counter, the state indicating that
the first job group is available to steal;

based on the determining the state of the first job group,

atomically incrementing the generation -counter,
thereby making the first job group unavailable for
stealing; and

altering an execution order of the first job group ahead of

at least one other job group in the job group queue.

9. The method of claim 8, wherein the first job group
includes a first job list, wherein altering further includes
sending the first job list to an execution stack.

10. The method of claim 9, wherein sending the first
plurality of jobs to the execution stack further includes
removing the first plurality of jobs from the first job group,
thereby making the first job list empty, the method further
comprising:

receiving a second request to steal the first job group

approximately contemporaneously with the first
request;

based on receiving the second request, determining a state

of the first job group based at least in part on the
generation counter, the state indicating that the first job
group is available to steal; and

failing to steal the first job group for the second request

based on the first job list being empty.

11. The method of claim 8, wherein the first job group is
dependent upon a second job group, wherein the first job
group includes a first job list and the second job group
includes a second job list, the method further comprising:

determining that the first job group is dependent upon the

second job group; and

based on the determining that the first job group is

dependent upon the second job group:

adding the first job list to the end of the second job list;
and

initiating a steal operation for the second job group.

12. The method of claim 8, wherein the memory further
includes an execution stack stored in the memory, wherein
the first job group occupies a first region in the memory,
wherein the first job group includes a first job list, the
method further comprising:

sending the first job list to an execution stack;

deleting the contents of the first job group; and

reusing the first job group for another job group without

deallocating the first region in the memory.
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13. The method of claim 8, further comprising:

determining that the first job group has been executed;

and

based on the determining that the first job group has been

executed, atomically incrementing the generation
counter.
14. The method of claim 8, wherein processing the first
request to steal the first job group does not use a waiting lock
on the job group queue.
15. A non-transitory machine-readable medium storing
processor-executable instructions which, when executed by
a processor, cause the processor to perform operations
comprising:
creating a first job group in a job group queue, the job
group queue is stored in a memory, the job group queue
is configured to store a plurality of job groups in the
memory, each job group of the plurality of job groups
identifies one or more jobs for execution by the one or
more hardware processors, the first job group includes
a generation counter having an initial value;

receiving a first request to steal the first job group;

determining a state of the first job group based at least in
part on the generation counter, the state indicating that
the first job group is available to steal;

based on the determining the state of the first job group,

atomically incrementing the generation counter,
thereby making the first job group unavailable for
stealing; and

altering an execution order of the first job group ahead of

at least one other job group in the job group queue.

16. The machine-readable medium of claim 15, wherein
the first job group includes a first job list, wherein altering
further includes sending the first job list to an execution
stack.

17. The machine-readable medium of claim 15, wherein
the first job group is dependent upon a second job group,
wherein the first job group includes a first job list and the
second job group includes a second job list, wherein the
processor-executable instructions further cause the proces-
sor to perform operations comprising:

determining that the first job group is dependent upon the

second job group; and

based on the determining that the first job group is

dependent upon the second job group:

adding the first job list to the end of the second job list;
and

initiating a steal operation for the second job group.

18. The machine-readable medium of claim 15, wherein
the memory further includes an execution stack stored in the
memory, wherein the first job group occupies a first region
in the memory, wherein the first job group includes a first job
list, wherein the processor-executable instructions further
cause the processor to perform operations comprising:

sending the first job list to an execution stack;

deleting the contents of the first job group; and

reusing the first job group for another job group without

deallocating the first region in the memory.

19. The machine-readable medium of claim 15, wherein
the processor-executable instructions further cause the pro-
cessor to perform operations comprising:

determining that the first job group has been executed;

and

based on the determining that the first job group has been

executed, atomically incrementing the generation
counter.
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20. The machine-readable medium of claim 15, wherein
processing the first request to steal the first job group does
not use a waiting lock on the job group queue.

#* #* #* #* #*
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