US 20160373486A1

a2y Patent Application Publication o) Pub. No.: US 2016/0373486 A1

a9y United States

Kraemer

43) Pub. Date: Dec. 22, 2016

(54) SECURITY POLICY DEPLOYMENT AND
ENFORCEMENT SYSTEM FOR THE
DETECTION AND CONTROL OF
POLYMORPHIC AND TARGETED
MALWARE

(71) Applicant: Confer Technologies, Inc.,
Southborough, MA (US)

(72) Inventor: Jeffrey Albin Kraemer, Wellesley, MA

(Us)
(21) Appl. No.: 15/255,374

(22) Filed: Sep. 2, 2016

Related U.S. Application Data

(62) Division of application No. 14/824,847, filed on Aug.
12, 2015, now Pat. No. 9,460,285, which is a division
of application No. 13/662,036, filed on Oct. 26, 2012,
now Pat. No. 9,223,978.

(60) Provisional application No. 61/552,654, filed on Oct.
28, 2011.

Publication Classification

(51) Int. CL

HO4L 29/06 (2006.01)
GOGF 21/55 (2006.01)
GOGF 21/56 (2006.01)
(52) US.CL
CPC oo HO4L 63/20 (2013.01); GOGF 21/566

(2013.01); GOGF 21/552 (2013.01); GO6F
2221/034 (2013.01); GOGF 2221/2101
(2013.01)

(57) ABSTRACT

The present system and method pertain to the detection of
malicious software and processes such as malware. A cloud
security policy system receives hashes and behavioral infor-
mation about applications and/or processes executing on
user devices. The cloud security policy system records this
information and then evaluates the trustworthiness of the
hashes based on the information received from the user
devices to provide a security policy for the applications
and/or processes. The security policy is sent from the cloud
security policy system to user devices to be applied by the
user devices.

1002 "(\ User device sends reputation
request to cloud security policy
system

1004
\ Reputation request received by
Web services

1008
_K Web services forwards request to
policy engine

1008
\ Policy engine searches for hash in
reputation database

1012
‘\ 1010

Policy engine instructs
analysis engine to create
new entry in reputation
database

Analysis engine searches 1014
whitelistibiackiist database /

and behavioral history
database for Information
about hash

I

016
Analysis engine calculates ;
trust score

l

1018
Analysis engine updates /l“
entry in reputation database

l)f‘ 1020

Poiicy engine refrieves entry

Does entry exist in
(eputation database?,

1028
Policy engine T6oks up

user device in
configuration and security

policy database

1028 _1 Policy engine identifies
user device (custumer)

v

1030 Rl Policy engine retrieves
security policy for user
device.

1032 "

Customer specific mapping
of trust scores checked to
determine security policy

1034 Reputation and security

poiicy sent to web services

Reputation and security
policy sent to user device

1036

from reputation database

1038
_k User device stores security
policy agent Incal database

US 2016/0373486 Al

Dec. 22,2016 Sheet 1 of 16

Patent Application Publication

i Bid

Zit

aseqeiep
Angod Ainoas
pue "Byuon
S5BGRIED 1SIDORG BT
pue 1SH23UAA SSEQRIBD e W o, G
uogendsy b T Ot s

aubus Aotiod o
Gl

1 BRI e
- .
gl .
s5egelEp FIT o
MOISIY (2I0ARYDE g BUIDUB (e o :
siSAjBUY SEOINIBS GOAA
et N

|

00

Patent Application Publication Dec. 22,2016 Sheet 2 of 16 US 2016/0373486 A1

o
N
<
=

102-n

Cloud security policy system

102-3

Fig. 1B

w {

O
2 =
-~ -~

US 2016/0373486 Al

Dec. 22,2016 Sheet 3 of 16

Patent Application Publication

z Bid
(744
“mmmm_u F.:WNM {s3800E G2
LA AUOHE] YICAIOU) ayoeo by
yicameu Juehy Bueld A0
el
&
¥
~ To7 (550008 o)) WSISAS a4 TAE..E
g0

M
M 077 seBeuep Jeli4

.

1ol ol Juaby

OIS

B (sHeo wasks) s Welsis

Z1Z oA Idy Wby

a1e
uoneoiddy UMOoUy

¥
uoiteoddy
DRIONUORDSHONUOT

[<hi%4
ISEQEIED
{200} wely

JeBeury voneindad wedy

goedg Josf)

a7
waishs Aoyod
ALnnas pnoln

3

Patent Application Publication

Dec. 22, 2016

302 “l\

Application executing on
user device makes
request to apen file via
systemn DLL (AP},

A\

file filter of request

¥

0877]

Agent file filter looks up
filename in agent cache

312-\

Sean contents of file
and calculate hash

Update agent
cache by agging

“Filenarme mapped to™
hash in agent cache?

Sheet 4 of 16

wFiﬁef manager notifies agentk/f" 304

316“\

Agent file filter looks
up security policy for
hash in agent cache

filename/hash
mapping

322 "':\

Message sent via user/
kernel communication
channel to agent reputation
manager requesting
security palicy for hash

v

Agent file filter
stalis request

/j‘ 323

324 -
irrfely responm

agent reputation
manager?

NO
¥

Agent file filter enforces
defauli security policy
{e.g. ‘Fail Open™)

g—NO

------- YES-—4»)

318

7 Security policy found™
in agent cache? -

328 “‘K

320
[

US 2016/0373486 Al

Agent file filter
enforces specified
restrictions of
secuirity policy

&

Agent cache updated with
security policy from agent
reputation manager

Fig. 3A

Patent Application Publication Dec. 22,2016 Sheet S of 16 US 2016/0373486 A1

332 K

YES—Bd Deny file access

o Does security poiic .
~. deny file access? 7

NO

.

334 ‘\
Allow file access

Fig. 3B

Patent Application Publication

322 'g

340 "i\

Agent repuiation
manager receives policy
request from agent file
filter

y

341 "K

Agent reputation
manager searches
agent local database for
secuiity policy

348 (

Message sent o cloud

security policy system

requesting trust score
for hash

g-NO

342

Security policy™
found in agent
“ocal database?-

Dec. 22,2016 Sheet 6 of 16

US 2016/0373486 Al

344 \

Response sent to agent
file filter

348

security policy
systemwithin
determined time”™?

YES
¥

Map received trust score to
security policy

Agent local database
updates security policy

NO-—3

; 350

/;— 352

Agent file filter
enforces default
security policy

/r 356

¥
Agent file filter
stores record of no
response from
cloud security
policy system

/) 358

¥

/ 3860

Wait predetermined
length of time and
resend request fo

cloud sscunty policy

system

A

Fig. 3C

Patent Application Publication Dec. 22,2016 Sheet 7 of 16 US 2016/0373486 A1

1002 \ User device sends reputation
request 1o cloud security policy
system

.

1004
‘k\ Reputation reguest receivad by
V¥eb services

!

1008
1\ Web services forwards request 1o
policy engine

.

1008
—\\ FPolicy engine searches for hash in
reputation database

1012
\ 1010 —

Policy engine instructs
analysis engine to create
new ertry in reputation

1026

Policy engine tooks up
user device in
configuration and security
policy database

Does entry exist in

—NO—< reputation database?..

database
1028 _\E\ Policy engine identifies
4 user device {custumer)
Analysis engine searches — 1014 ‘é’

whitelist/blackiist database /J
and behavioral history

1030 —1 Policy engine retrieves
database for information

security policy for user

about hash device.
1032 Y é'
y Customer specific mapping
. . ,)’ 1018 of trust scores checked o
Analysis engine calculates determine security policy
trust score é’
1034 “(Reputation and security
¥ poficy sent to web services
1018 poliey sent

Analysis engine updaies
entry in reputation database

1038 “L Reputation and security
$ policy sent to user device

/r‘" 1020

Policy engine retrieves eniry
from reputation database

1038 ,))
User device stores security
policy agent local database

Fig. 4

Patent Application Publication Dec. 22,2016 Sheet 8 of 16 US 2016/0373486 A1

404 v& 402 K

Unknown Application/Hash Behavior Security Policy Enforcement Action
Tum on microphone Terminate application
Manitor keystrokes Terminate application
Read user documenis Prevent network access
Read user contact information No restrictions
Fig. 5A

408 k 406 ﬂ&

User Specific Mapping of Trust Score | Security Policy Enforcement Action
Trust score: 0.0- 3.0 Terminate application

Trust score: 3.1 ~4.9 Prevent network access
Trust score: > 8.0 Mo restriclions

Fig. 5B

US 2016/0373486 Al

Dec. 22,2016 Sheet 9 of 16

Patent Application Publication

w9 Bl

SUOROBUUOD A | H \\\\\\\\N\\\\w\

LMOPUIM BIGISIA \\\\\\\\\\\N\

02§
A

LpasnABpia

£ POOSUMSUY

2I00S [V

Patent Application Publication Dec. 22,2016 Sheet 10 of 16 US 2016/0373486 Al

Learnin

Variance

Fig. 6B

“Control”

Patent Application Publication

602

< Files deleted

NO
606

“Files created or™

814 \

Return

Fig. 7

modified? 7

Dec. 22,2016 Sheet 11 of 16

804 \

Entries removed
from agent cache

608 “\

Files scanned/rescanned

3

Create/Update cache entry
mapping filename to hash

Agent reputation manager
forwards static information for
files to cloud security policy
system, e.¢., size, packed,
signed

US 2016/0373486 Al

Patent Application Publication Dec. 22,2016 Sheet 12 of 16 US 2016/0373486 Al

704
_\ Agent file filter notified by

underlying OS that new
process was created

v

706
Agent reputation manager
informed of new process

708 L
‘K Agent reputation manager

identifies filename of
process by making AP
calls

'

Agent reputation manager
sends request to agent file
filter for hash of filename

710

713 '}\

Agent reputation manager
scans file to calculate hash

712 "(\

Hash information about
process retrieved from [4-YES
agent cache

NO-

Hash located? >

714 N

Agent repuiation manager
searches agent iocal
database for security policy 4
corresponding to hash
{retrieved from agent cache)

728
718 \ e \

Agent reputation manager
informs agent file filier and
agent network filter to
enforce securily policy

7

Defauli security
policy enforced

.

20 Request for securily
policy sent {o cloud

security policy

systemn 724 -\ 726

g NO " found in agent

acal database?

722 UpdEE agent locs!
database if cloud Update agent Update agent file
security policy system cache with security B filter and agent
responds with security policy netwaork filter Fig. 8
policy

Patent Application Publication

802

P

Agent API detour
loaded as DLL into
process

.

804

Dec. 22,2016 Sheet 13 of 16

Agent AP detour sends
message to agent fils filter for
sacurity policy associated

US 2016/0373486 Al

with process

808 ﬁ\

Agent APt Detour does
not intercept or modify
process behavior

Agent AP delour DLL
unicaded from procass

Is process
monitored or
controlied?

818

Log requested AP
calls 1o agent
reputation manager

¥

Muonitored
information stored
to agent local
database

f 826

A

Agent reputation
manager sends
monitored

//f_ 828

812 “\

Agent APi Detour
intercepts API calls

:

Agent API Detour
infercepts resource
requests

Q___

Is process
monitored?

NO

is process being

information to
cloud security
policy system

Fig. 9

controlied based on
security policy?

Y

Specifiad security
policy applied o

NO—

reaource requesls

Patent Application Publication

N

CheckForPolicy

s CheckForPolicy™
. 8qual to TRUE?

Dec. 22,2016 Sheet 14 of 16

NC

!

(™ 806

Wait predetermined length of

&

time

predetermined timeout -

903

imeSincelasiChet
greater than

period?

& YES

N

Set CheckForPolicy to TRUE

—

US 2016/0373486 Al

912 —\

Agent reputation manager sends
request for security policy to

514
Web services receives request

916 — Wveb services forwards request

v22 ““(

926
\ Set CheckForPolicy to FALSE
and updates
TimeSincelasiCheck

cloud security policy system

¥

for security policy from user
device

ki

o policy engine

¥
Policy engine looks up user
davice in configuration & security
policy database

¥

Policy engine retrieves defauii
secuiity policy for user device

¥

Security policy sent {o agent

924

1
AGENT rEpuaiation manager siores

security policy in agent ocal

Fig. 10A

database

Patent Application Publication

850 \

Agent reputation manager
sends message to cloud
security policy system

4

852 ‘\

Agent reputation manager
receives response from cloud
security policy system

Dec. 22,2016 Sheet 15 of 16

958 ‘\

A Does response ™
indicate security
~Gpolicy changed?,”

Set CheckForPglicy = TRUE

NG

¥

958 '2\

Reputation manager processes

)’" 068

response from cloud security i

policy system

960

s CheckForPolicy™.
equatto TRUE?
NG

/}' 862
¥

Wait predetermined length of
time

- NO

.. predetermined timeout

984

“TimeSinceLastChedts
greater than

period?

YES
¥

966 "{\

Set CheckForPolicy 1o TRUE

e

982 RS

Set CheckForPolicy to FALSE
and save TimeSincelastCheck

%

Agent reputation manager sends
request for security policy to
cloud security policy system

¥

970 ““{\
Web services receives request
for security policy from user
device
¥
g79 —| Web services forwards request

io policy engine

¥

Folicy enging looks up user
device in configuration & security
policy database

Policy engine retrieves default
security policy for user device

978 ™

¥

Security policy sent {0 agent

880 ‘\
¥

Fig. 108

Agent stores security polioy in
agent local database

US 2016/0373486 Al

Patent Application Publication Dec. 22,2016 Sheet 16 of 16

‘HOZ\

User device sends report log about hash
to cloud security policy system

1104\

Web services receives report message

1166“\

Web services forwards report messages
to analysis engine

¥

1108‘\

Analysis engine stores report message
information in behavioral history
database

%

1110\\

Analysis engine searches whitelis/
biacklisi database and behavioral hisiory
database for other information about
hash

1112‘\\\

Analysis engine calculates trust score

¥

1114‘\\\

Analysis engine updates reputation
database

Fig. 11

US 2016/0373486 Al

US 2016/0373486 Al

SECURITY POLICY DEPLOYMENT AND
ENFORCEMENT SYSTEM FOR THE
DETECTION AND CONTROL OF
POLYMORPHIC AND TARGETED
MALWARE

RELATED APPLICATIONS

[0001] This application is a Division of U.S. application
Ser. No. 14/824,847, filed on Aug. 12, 2015, which is a
Division of U.S. application Ser. No. 13/662,036, filed on
Oct. 26, 2012, which application claims the benefit under 35
U.S.C. §119(e) of U.S. Provisional Application No. 61/552,
654, filed on Oct. 28, 2011, all of which are incorporated
herein by reference in their entirety.

BACKGROUND OF THE INVENTION

[0002] Malware (or malicious software) is a computer
program that is often designed to disrupt network commu-
nications, gain control over computers or networks, or
secretly gather personal information about users. Malware
typically includes viruses, trojans, adware, and spyware, to
list a few examples.

[0003] Malware is created for a variety of reasons such as
to achieve wide-spread notoriety or for personal gratifica-
tion. Alternatively, malware is created to secretly access
financial information such as banking records, credit card
numbers, and/or social security numbers of individuals.
While these exploits are frustrating and possibly destructive,
they are also fairly simple.

[0004] Currently, signature based anti-malware software
combats malware by using hashes (i.e., unique signatures of
the malware) to identify and quarantine (or remove) the
malware. Typically, the anti-malware software utilizes data-
bases containing records of hashes for known malware. If a
program’s hash matches a hash of known malware, then the
program is quarantined or removed.

SUMMARY OF THE INVENTION

[0005] One problem with current anti-malware software is
that the software is not able to detect new malware threats
(often referred to as zero-day or day-zero malware) because
hashes for these new threats do not exist in any databases of
known malware. Additionally, in some cases, the new mal-
ware is able to evade signature based anti-malware software
for weeks or even months.

[0006] Additionally, as malware evolves, the complexity
and purpose of the malware evolves as well. For example,
two recent trends in the creation of malware are making
existing anti-malware software less effective.

[0007] The first trend is that a large percentage of new
malware is polymorphic. That is, when the malware repli-
cates, it also mutates to change the contents of the file
containing the virus and possibly the behavior of the mal-
ware. Thus, each mutation creates a new version of the
malware with a new and unique hash. The polymorphic
nature of the malware renders traditional signature based
solutions ineffective because the newly created hashes do
not exist in any databases of known malware.

[0008] The second trend is the emergence of advanced
persistent threats, which are often implemented by orga-
nized crime groups or state-sponsored by foreign entities.
The advanced persistent threats are uniquely customized
attacks that target individuals or specific companies. The

Dec. 22,2016

goal of the attack is often the undetected theft of sensitive
data, financial information of individuals or companies, or
incapacitation of a victim’s computer or network. Because
the advanced persistent threats are customized to the victims
and are designed to be undetected, the signatures of the
advanced persistent threats are rarely added to the databases
of known malware.

[0009] Currently, there are no solutions that adequately
address day-zero malware or advanced persistent threat
problems in addition to more traditional malware versions.
The present invention concerns a method and system that
can detect new or polymorphic computer viruses, persistent
day-zero exploits, advanced persistent threats, and other
malicious software. Additionally, the present invention can
be directed to applying monitors and controls to user
devices, which are able to protect against these exploits.
[0010] In more detail, in a proposed system, a cloud
security policy system receives hashes and behavioral infor-
mation about applications and/or process from different user
devices. The cloud security policy system records this
information along with a time-stamp to track when an event
(e.g., file accessed, created, or loaded) occurred. The cloud
security policy system then evaluates the trustworthiness of
the hashes based on the information received from the
different user devices to provide (or update) a security policy
for the applications and/or processes. The security policy is
then sent from the cloud security policy system to user
devices to be applied by the user devices.

[0011] In general, according to one aspect, the invention
features a system for detecting malware. The system
includes user devices that monitor executing applications
and a security policy system that receives requests from the
user devices for security policies associated with the appli-
cations and sends the security policies to the user devices
from which the requests originated.

[0012] In general, according to another aspect, the inven-
tion features a method for providing security policies. The
method includes receiving behavioral information about
processes executing on different user devices, determining
trustworthiness for each of the processes based on the
behavioral information received from each of the different
user devices, and providing security policies for the pro-
cesses to the different user devices based on the determined
trustworthiness.

[0013] In general, according to still another aspect, the
invention features a security policy system. The system
includes a web services component of the security policy
system that receives behavioral information about processes
executing on different user devices. The system further
includes an analysis engine of the security policy system that
determines trustworthiness for each of the processes based
on the behavioral information received from each of the
different user devices. Lastly, the system also includes a
policy engine of the security policy system that provides
security policies for the processes to the different user
devices based on the determined trustworthiness.

[0014] In general, according to still another aspect, the
invention features a method for implementing security poli-
cies on user devices. The method includes monitoring pro-
cesses executing on user devices and searching for security
policies associated with the processes. The method further
includes upon locating security policies, applying the secu-
rity policies to the processes, and upon failing to locate
security policies on the user devices, sending requests to a

US 2016/0373486 Al

security policy system. Lastly, upon receiving security poli-
cies from the centralized security system, applying the
security policies to the processes.

[0015] In general, according to still another aspect, the
invention features a method for monitoring applications on
user devices. The method includes monitoring applications
requesting to open files using system dynamic-link libraries
and searching for hashes corresponding to filenames of the
files requested by the application in caches of the user
devices. The method includes that upon locating hashes in
the caches of the user devices, searching for security policies
associated with the hashes. Additionally, upon locating the
security policies associated with the hashes, enforcing
restrictions of the security policies,

[0016] In general, according to still another aspect, the
invention features a method for monitoring processes
executing on user devices. The method includes intercepting
application program interface calls to monitor resource
requests of executing processes. The method further
includes maintaining a log of the resource requests in a
database if the processes are being monitored. The method
further includes applying security policies to the processes if
the processes are controlled by security policies and sending
the log of resource requests to a security policy system.
[0017] In general, according to another aspect, the inven-
tion features a distributed security system for monitoring
processes executing on user devices. The system includes an
application program interface detour that intercepts appli-
cation program interface calls and monitors resource
requests of executing processes. The system further includes
a reputation manager that applies security policies to the
processes if the processes are controlled by the security
policies. The system further includes a database of a user
system that stores logs of resource requests if the processes
are being monitored by the reputation manager and a repu-
tation database of a security policy system that stores logs of
resource requests from multiple user devices.

[0018] The above and other features of the invention
including various novel details of construction and combi-
nations of parts, and other advantages, will now be more
particularly described with reference to the accompanying
drawings and pointed out in the claims. It will be understood
that the particular method and device embodying the inven-
tion are shown by way of illustration and not as a limitation
of the invention. The principles and features of this inven-
tion may be employed in various and numerous embodi-
ments without departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] In the accompanying drawings, reference charac-
ters refer to the same parts throughout the different views.
The drawings are not necessarily to scale; emphasis has
instead been placed upon illustrating the principles of the
invention. Of the drawings:

[0020] FIG. 1Ais ablock diagram illustrating a distributed
security system for the detection and control of malware.
[0021] FIG. 1B is a block diagram illustrating the different
user devices sending information to a cloud security policy
system.

[0022] FIG. 2 is a block diagram of the agent security
software architecture implemented on user devices.

[0023] FIG. 3A is a flow diagram illustrating the steps
performed by the agent file filters of the user devices to
monitor applications executing on user devices.

Dec. 22,2016

[0024] FIG. 3B is a flow diagram illustrating how security
policies are enforced on the user devices by the agent file
filter.

[0025] FIG. 3C is a flow diagram illustrating the steps
performed by an agent reputation manager to locate and
enforce security policies for the user devices.

[0026] FIG. 4 is a flow diagram illustrating the steps
performed by the cloud security policy system to handle
reputation requests from the user devices.

[0027] FIG. 5A is a table illustrating an example of
mapping between unknown applications/hash behaviors and
security policy enforcement actions.

[0028] FIG. 5B is a table illustrating an example of
mapping between user specific trust scores and security
policy enforcement actions.

[0029] FIG. 6A is a flow diagram illustrating an example
of how trust scores are calculated for unknown applications.
[0030] FIG. 6B is a table illustrating how actions of
unknown applications are compared to actions performed by
malware and trusted applications to determine the trustwor-
thiness of the unknown applications.

[0031] FIG. 7 is a flow diagram illustrating the steps
performed by the agent file filter during scans of the user
devices to determine if files has been created, deleted, or
modified.

[0032] FIG. 8 is a flow diagram illustrating the steps
performed by the agent reputation manager to monitor
processes executing on the user devices.

[0033] FIG. 9is a flow diagram illustrating how processes
are monitored and/or controlled by the reputation manager.
[0034] FIG. 10A is a flowchart illustrating the steps per-
formed by the user devices to check for security policies
from the cloud security policy system at predefined inter-
vals.

[0035] FIG. 10B is a flowchart illustrating the steps per-
formed by the user devices to check for security policies
from the cloud security policy system based on messages
received from cloud security policy system.

[0036] FIG. 11 is a flow diagram illustrating the steps
performed by the user devices to send information to the
cloud security policy system.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0037] The invention now will be described more fully
hereinafter with reference to the accompanying drawings, in
which illustrative embodiments of the invention are shown.
This invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein; rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art.

[0038] As used herein, the term “and/or” includes any and
all combinations of one or more of the associated listed
items. Further, the singular forms of nouns and the articles
“a”, an and “the” are intended to include the plural forms as
well, unless expressly stated otherwise. It will be further
understood that the terms: includes, comprises, including
and/or comprising, and the like, when used in this specifi-
cation, specify the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,

US 2016/0373486 Al

and/or groups thereof. Further, it will be understood that
when an element, including component or subsystem, is
referred to and/or shown as being connected or coupled to
another element, it can be directly connected or coupled to
the other element or intervening elements may be present.

[0039] Unless otherwise defined, all terms (including tech-
nical and scientific terms) used herein have the same mean-
ing as commonly understood by one of ordinary skill in the
art to which this invention belongs. It be further understood
that terms, such as those defined in commonly used diction-
aries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant
art and will not be interpreted in an idealized or overly
formal sense unless expressly so defined herein.

[0040] FIG. 1Ais ablock diagram illustrating a distributed
security system 100 for the detection and control of mal-
ware, which has been constructed according to the principles
of the present invention.

[0041] In general, the distributed security system 100
includes user devices 102-1 to 102-z in communication with
a cloud security policy system 107 via a private and/or
public data network such as the Internet 106. The user
devices 102-1 to 102-» monitor applications and. send
information and security requests to the cloud security
policy system 107. The cloud security policy system 107
determines the trustworthiness for the applications, pro-
cesses, and files, for example, and provides security policies
to the user devices 102-1 to 102-n.

[0042] In a typical implementation, each user device
102-1 to 102-# runs agent security software, which monitors
applications and/or processes executing on the user devices
102-1 to 102-z along with access files from storage media
and/or via network interfaces. The user devices 102-1 to
102-7 include desktop and laptop computers running Win-
dows by Microsoft Corp., Mac OS X by Apple Inc., Linux),
tablets or slate computing devices, and mobile computing
devices (e.g., smartphones running iOS by Apple Inc. or
Android by Google Inc.), to list a few examples.

[0043] In a typical implementation, if the agent security
software detects an application accessing files on the user
device (e.g., 102-1), the agent security software attempts to
locate a security policy for the application on that user
device. If the agent security software is unable to locate
security policy on the user device, then the agent security
software sends a request for a security policy to the cloud
security policy system 107 via the Internet 106.

[0044] The cloud security policy system 107 receives
security policy requests from all the user devices 102-1 to
102-#, calculates trustworthiness of applications and/or files
based on information received from the user devices 102-1
to 102-r, and provides customized security policies to the
user devices 102-1 to 102-» from which the requests origi-
nated.

[0045] In the illustrated embodiment, the cloud security
policy system 107 includes a web services component 108,
a policy engine 110, and an analysis engine 114.

[0046] The web services component 108 receives security
policies request from user devices 102-1 to 102-» and
forwards the requests to the policy engine 110.

[0047] The policy engine searches for security policies in
the configuration and security policy database 112 and
reputation database 116.

Dec. 22,2016

[0048] The analysis engine 114 calculates trust (or repu-
tation)scores to determine the trustworthiness of the appli-
cations and whether the applications are malicious or
benign.

[0049] In the illustrated example, the cloud security policy
system 107 also includes a behavioral information database
118 that stores behavioral information about applications
received from user devices 102-1 to 102-» and a whitelist/
blacklist database 120 that stores records of whitelisted and
blacklisted applications. In atypical implementation, the
databases of the cloud security policy system 107 (e.g.,
reference numerals 112, 116, 118, and 120) are a SQL
(Structured Query Language) databases.

[0050] FIG. 1B is a block diagram illustrating user devices
102-1 to 102-» sending information to a cloud security
policy system.

[0051] In a typical implementation, the cloud security
policy system 107 utilizes crowd-sourcing to collect and
analyze information about applications and/or files. That is,
information received from all the user devices 102-1 to
102-7 is used to determine the security policies for the
applications and/or files. In the preferred embodiment, the
user devices 102-1 to 102-» communicate with the cloud
security policy system 107 via a networking protocol such as
TCP/IP (Transmission Control Protocol/Internet Protocol).
[0052] in an alternative embodiment, individual messages
e.g. security policy requests and/or response messages) are
sent using a stateless communication protocol such as UDP
(or User Datagram Protocol), according to one implemen-
tation.

[0053] In a preferred implementation, the data transmitted
between the user devices 102-1 to 102-» and the cloud
security policy system 107 are encrypted and authenticated
using common protocols such as SSL (Secure Socket Layer)
or TLS (Transport Layer Security). In the case where UDP
is used as the network transport, a correspondingly appro-
priate security protocol such as DTLS (Datagram Transport
Layer Security) is used to secure the communications.
[0054] FIG. 2 is a block diagram of the agent security
software architecture that is implemented on the user
devices 102-1 to 102-n.

[0055] The user devices 102-1 to 102-x operating system
is usually divided between a user space and a kernel.
Generally, the user space is reserved for user applications
and the kernel manages processes, system memory, and
hardware components of the user devices 102-1 to 102-n.
[0056] The illustrated example is for a Windows-based
operating system sold by Microsoft Corp. Different operat-
ing systems generally have different kernels and different
user spaces. Moreover, even different versions of the same
operating system typically have different kernels. Thus, the
way in which the kernel interacts with software of the user
space and hardware of the user devices 102-1 to 102-% is
different. These differences must be factored by the cloud
security policy system 107 because different operating sys-
tems, kernels, and user spaces will have different vulner-
abilities and malware programs that are dangerous for one
may be harmless to another.

[0057] In the illustrated example, the user space includes
the agent reputation manager 204 and agent local database
206, which manage and store security policies received from
the cloud security policy system 107. The user space also
includes an agent API (application program interface) detour
212, that intercepts API calls and resource requests made by

US 2016/0373486 Al

applications being monitored (e.g., controlled monitored
application 214). The agent API detour typically does not
intercept application applications that are known (e.g.,
known application 216).

[0058] In the illustrated example, the kernel includes an
agent file filter 208 and an agent cache 210, which are used
to map filenames of applications to corresponding hashes
and enforces security policies for applications and pro-
cesses.

[0059] The kernel further includes device drivers, which
enable software programs to interact with hardware of the
user devices 102-1 to 102-n. For example, a filter manager
220 provides functionality required by filter drivers to
monitor and control resource requests made to the file
system. The file system 222 manages and organizes how
data are used by the operating system. Some examples of file
systems for Windows operating systems include File Allo-
cating Table (FAT32) and New Technology File System
(NTES), to list some examples. Filter drivers are often
optional drivers that are able to modify the behavior of a
device. On user devices running an operating system such as
Windows 7, filter drivers can be implemented for both file
and network access. In the case where access control or
content filtering needs to be performed on a file, the filter
driver sits between an application and the underlying file
system and has the ability to scan or restrict access to files
based upon enforced security policy. For example, the file
filter driver prevents an application (or executable) from
being read, loaded into memory or executed if the file hash
been identified as being malware in one example. This is
accomplished by returning an “Access Denied” status code
to the calling application when an attempt was made to
access the resource, in one example.

[0060] In one specific example, Microsoft Corp. has pro-
vided sample code (via the MSDN and the WDK documen-
tation), which implements a variety of File System Minifilter
Drivers. One such example, the SCANNER minifilter
explains how a filter driver can detect a file access or file
creation, scan the contents of the data looking for a “sample
virus pattern” and report relevant information to a user level
service daemon. This example shows how anti-virus/mal-
ware software can detect file access and scan the contents for
virus signatures.

[0061] TCP/IP driver 224 enables the user devices 102-1
to 102-» to have network access. The kernel further includes
a filtering platform 226, which is a set of API and system
services that provide features that can be used by packet
processing or other connection monitoring services (e.g.,
firewalls). The kernel also includes an agent network filter
228, which is able to monitor and track all network connec-
tions made on a per process basis. If the application file’s
hash was flagged by a security policy, network connections
may be denied or terminated on a per process basis by
returning a failure code to a caller indicating the request to
access the resource (in this case the network) is denied (or
blocked).

[0062] In one embodiment, content filtering on the net-
work is used to block or filter spam, inappropriate web-sites
or content, and malware being downloaded. Generally, anti-
virus software is a form of content filtering because the
software scans binary attachments in mail or files down-
loaded via the web and tries to find known virus signatures.
Additionally, content filters may be implemented via soft-
ware on individual computers or at a central point on the

Dec. 22,2016

network, such as a firewall, internet router, or proxy server.
Apache (by the Apache Software Foundation) is a com-
monly used, open sourced web server which may act as a
proxy server and supports filtering. As data passes through
a filter, a cryptographic hash is calculated for the data stream
or attached file.

[0063] FIG. 3A is a flow diagram illustrating the steps
performed by the agent file filters 208 of the user devices
102-1 to 102-7 to monitor applications executing on the user
devices 102-1 to 102-n.

[0064] In general, the agent security software is respon-
sible for detecting new files being created or accessed on the
user devices 102-1 to 102-x. In a preferred embodiment, the
agent security software implements utilizes the filter man-
ager 220, which is capable of detecting a new file being
created or files being accessed. The filter manager notifies
the agent file filter, which reads the file and calculates a hash
to uniquely identify the file. There are several well known
cryptographic hashes such as MD5, SHA-1, and SHA-256,
which are known in the art. Abash (or cryptographic) hash
is a one-way deterministic function that takes an arbitrary
stream of data (or message) and returns a fixed-sized string
(a message digest or hash). Different streams of data always
result in different and unique hashes, but the same stream or
message always yields the same hash. This is important
because filenames cannot always be relied upon to accu-
rately identify a file.

[0065] Hash functions are often used for information
security, providing integrity checks of data/information and
providing digital signatures of the data, to list a few
examples. Hashes have several useful characteristics such as
it is not feasible to modify a message without changing the
hash, it is impossible or at least very improbable to find two
different messages with the same hash, and it is generally not
possible derive the original message from the hash.

[0066] Additionally, reference implementations or bina-
ries are also available to uniquely identify applications.
[0067] In the first step 302, an application executing on a
user device (e.g. 102-1) makes a request to open a file via the
system DLL (API). In the next step 304, the filter manager
220 notifies the agent file filter 208 of the request to open the
file. Next, the agent file filter 208 looks up the filename of
the file in the agent cache 210 in step 308.

[0068] Ifthe filename is not mapped to a hash stored in the
agent cache 210, then the agent file filter 208 scans the
contents of the file and calculates a hash for the file in step
312. In the next step 314, the agent file filter 208 updates the
agent cache 210 by adding the filename/hash to agent cache
210.

[0069] If the filename of the file is mapped to a hash in the
agent cache 210 or the agent file filter 208 updated the cache
by adding the filename to the hash, then the agent file filter
208 looks up a security policy for the hash in the agent cache
210 in step 316.

[0070] In the next step 318, the agent file filter 208
determines if the security policy is in the agent cache 210.
If the security policy is in the agent cache 210, then the agent
file filter 208 enforces the specified restrictions of the
security policy in step 320.

[0071] If the security policy is not in the agent cache 210,
then the agent file filter 208 sends a message via a user/
kernel communication channel to the agent reputation man-
ager 204 requesting the security policy for the hash in step

US 2016/0373486 Al

322. In the next step 323, the agent file filter 208 stalls while
waiting for a response from the agent reputation manager
204.

[0072] In the next step 324, the agent file filter 208
determines if the response from the agent reputation man-
ager is timely. If the response from the agent reputation
manager 204 is not timely, then the agent file filter 208
enforces a default security policy (e.g., “Fail Open”) in step
326. If the response from the agent reputation manager 204
is timely, then the agent cache 210 is updated with the
security policy from the agent reputation manager 204 in
step 328. In the next step 320, the agent file filter 208
enforces the security policy enforcement actions of the
security policy.

[0073] FIG. 3B is a flow diagram illustrating how security
policies are enforced on the user devices by the agent file
filter 208 (step 320 of FIG. 3A).

[0074] In the first step 330, the file filter 208 determines if
the security policy denies file access. If the security policy
denies file access, then the agent file filter 208 denies the
application file access in step 332. If the security policy does
not deny file access, then the agent file filter 208 allows file
access in step 334.

[0075] FIG. 3C is a flow diagram illustrating the steps
performed by an agent reputation manager 204 to locate and
enforce a security policy for an application executing on one
of the user devices (step 322 of FIG. 3A).

[0076] In the first step 340, the agent reputation manager
204 receives security policy requests from the agent file
filter 208. In the next step 341, the agent reputation manager
204 searches the agent local database 206 for the requested
security policy of the hash. In the next step 342, the
reputation manager determines if the security policy is in the
agent local database 206. If the security policy is in the agent
local database 206, then the reputation manager sends the
security policy for the hash to the agent file filter 208 in step
344.

[0077] Ifthe security policy is not found in the agent local
database 206, then the reputation manager 204 sends a
message to the cloud security policy system 107 requesting
a trust score (or reputation score) for the hash of application
in step 346. In the next step 348, the reputation manager 204
determines if a response from the cloud security policy
system 107 is received within a predetermined length of
time. If there is no response from the cloud security policy
system 107 within a predetermined length of time, then the
agent file filter 208 enforces a default security policy for the
application in step 356. The default security policy provides
enforcement actions and application restrictions for moni-
tored applications.

[0078] In the next step 358, the agent file filter 208 stores
a record of the failed response from the cloud security policy
system 107. Next, in step 360, the agent reputation manager
204 waits a predetermined length of time and resends the
request to the cloud security policy system 107.

[0079] If the response from the cloud security policy
system 107 is received within the predetermined length of
time, then the agent reputation manager 204 maps the
received trust score to the security policy in step 350. In the
next step 352, the agent local database 206 is updated with
the security policy. In the final step 344, the response is sent
to the agent file filter 210, which updates the agent cache 210
and enforces the security policy.

Dec. 22,2016

[0080] FIG. 4 is a flow diagram illustrating the steps
performed by the cloud security policy system 107 to handle
requests from the user devices 102-1 to 102-r.

[0081] In the first step 1002, the user devices 102-1 to
102-# send reputation requests for hashes to the cloud
security policy system 107. In the next step 1004, the
reputation requests are received by the web services com-
ponent 108. The web services component 108 forwards the
reputation requests to the policy engine 110 in step 1006. In
the next step 1008, the policy engine 110 searches for the
hashes in the reputation database 116.

[0082] In the next step 1010, the policy engine 110 deter-
mines if entries for the hashes exist in the reputation
database 116. If the entries do not exist in the reputation
database 116, then the policy engine 110 instructs the
analysis engine 114 to create new entries in step 1012. Next,
in step 1014, the analysis engine 114 searches the whitelist
and blacklist database 120 and behavioral history database
118 for additional information about hashes for additional
information that can be used to calculate trust scores for the
hashes.

[0083] In the next step 1016, the analysis engine 114
calculates the trust scores for the hashes. In the next step
1018, the analysis engine updates the entries in the reputa-
tion database 116 with the trust scores. In the next step 1020,
the policy engine 110 retrieves the entries from the reputa-
tion database 116.

[0084] If the entries exist in the reputation database 116
(or after the policy engine 110 retrieves the entries from the
reputation database in step 1020), the policy engine 110
searches for the user devices 102-1 to 102-# in the configu-
ration and security policy database 112 in step 1026. In the
next step 1028, the policy engine 110 identifies the user
devices 102-1 to 102-z and a customer associated with each
user device. In the next step 1030, the policy engine 110
retrieves the security policies for each user device. Next, in
step 1032, customer specific mapping of the trust scores are
checked to determine the security policy enforcement
actions of the security policies. In a typical implementation,
the enforcement actions of the security policies are user
device (or customer) specific. Thus, identical trust scores
result in different enforcement actions for different user
devices 102-1 to 102-7, in one implementation.

[0085] In the next step 1034, the trust scores and security
policies are sent to the web services component 108. In the
next step 1036, the trust scores and security policies are sent
back to the user devices 102-1 to 102-z. Lastly, the user
devices 102-1 to 102-r store the user specific security
policies and trust scores in the agent local databases 206 and
the agent caches 210 in step 1038 and then enforce those
security policies.

[0086] FIG. 5A is a table illustrating an example of
mapping between unknown applications/hash behaviors and
default security policy enforcement actions.

[0087] In the illustrated example, security policy enforce-
ment actions 402 are mapped to behaviors of unknown
applications/hashes 404. In a typical implementation, the
behaviors and corresponding enforcement actions are cus-
tomizable for different user devices. For example, if an
unknown application turns on a microphone or monitors
keystrokes of user devices 102-1 to 102-7, then the corre-
sponding enforcement action implemented by the agent
security software is to terminate the application. This is

US 2016/0373486 Al

because the unknown application is performing actions that
are typically performed by malicious software or malware.
[0088] In another example, if an unknown application
attempts to read user documents (which could be malicious
or benign), then the corresponding enforcement action is to
prevent network access for the unknown application. Lastly,
other actions such as reading user contact information are
not restricted in any way.

[0089] FIG. 5B is a table illustrating an example of
mapping between user specific trust scores and security
policy enforcement actions.

[0090] In the illustrated embodiment, default security
policy enforcement actions 406 are based on trust scores 408
of the applications/hashes. Rather than having security
policy enforcement actions for specific behaviors, the secu-
rity policy enforcement actions correspond to calculated
trust scores of the applications/hashes.

[0091] For example, trust scores between 0.0 and 3.0
result in termination of the application. Trust scores between
3.1 and 4.9 result in prevention of network access for the
unknown application. And trust scores greater than 9.0 result
in no restrictions for the unknown application.

[0092] In a typical embodiment, security policy enforce-
ment actions are also based on crowdsourcing, which helps
reduce false positives by collecting and analyzing behavioral
information from a large number of user devices (or com-
panies). The cloud security policy system is able to identify
unknown and/uncommon applications (based upon crowd-
sourcing as well as a centralized list of known applications).
This allows it to reduce False Positives when analyzing
behaviors and in applying security. Using this approach, the
system can identify the good applications and focus on the
unknown or bad ones.

[0093] For example, if only one company is reporting (or
requesting trust scores) about an unknown application, the
security policy enforcement action is to terminate the appli-
cation. In another example, if the total number of companies
reporting about an unknown application is 3 or less, then the
application associated is not permitted to access user docu-
ments or sensitive data (e.g. database files or financial
records). In another example, if unknown applications are
not widely used (e.g. on fewer than 1000 user devices)
across all companies, the applications are prevented from
accessing the network according to one policy example. In
another example, if the age of the unknown application is
less than 1 week, then the application is not able to access
any networks or make any network connection. Addition-
ally, this crowdsourcing information is also used to calculate
the trust scores for the applications.

[0094] FIG. 6A is a flow diagram illustrating an example
of how trust scores are calculated for unknown applications/
hashes.

[0095] Trust scores are numeric representations used to
determine the trustworthiness of unknown applications. In a
current implementation, the higher the trust score, the more
trustworthy an application is considered. Conversely, lower
trust scores indicate a greater chance that the application is
malware. In the illustrated example, the scale is from 0-10
(with one decimal place). Alternate embodiments, however,
could implement different scales with greater or finer incre-
ments and/or utilize a larger or smaller scale.

[0096] In the illustrated example, combinations of
observed behaviors and/or the absence of expected behav-
iors are used to calculate the trust score for unknown

Dec. 22,2016

applications. For example, in the first step 502, the unknown
application (or its hash) is assigned an initial score 0f 0.0. In
the next step 504, the analysis engine 114 determines if the
unknown application is known/good. If the application is a
known/good application, then the analysis engine 114 deter-
mines if the application is widely used in step 506. Addi-
tionally, if the application is known/good, then the applica-
tion is no longer “unknown”, but the application could still
be malware. Thus, if the application is not widely used, then
the unknown analysis engine 114 assigns the application a
score of 5.0 in step 510.

[0097] Alternatively, if the application is widely used, then
the analysis engine 114 assigns the application a score of 9.0
in step 508. The discrepancy in trust scores for known
applications that are widely used versus known applications
that are not widely used is because it is possible for malware
to be added onto a Whitelist (e.g. “gaming” the system and
compromising the whitelist database). The different scores
for how widely used the application is provides a greater
chance of detecting whether the application is malware.
[0098] If the unknown application is not known/good,
then the analysis engine 114 determines if the unknown
application reads user data in step 512, lithe unknown
application did not read user data, then the analysis engine
114 assigns a score of 6.0 in step 514. If the unknown
application reads user data, then the analysis engine 114
determines if an HTTP (Hypertext Transfer Protocol) con-
nection was made in step 516. If the unknown application
did not make an HTTP connection, then the analysis engine
114 assigns a score of 6.0 in step 518. If the unknown
application makes an HTTP connection, then the analysis
engine 114 determines if a visible window is displayed in
step 520.

[0099] If the unknown application did display a visible
window, then the analysis engine 114 assigns a score of 4.5
in step 524. If the unknown application did not display a
visible window, then the analysis engine 114 assigns a score
0f'2.0 in step 522. This is an example of how the absence of
an expected behavior causes the trust score to be affected
(e.g., lowered).

[0100] In an alternative embodiment, the analysis engine
114 could also check to see if the application performed
other actions such as turning on microphones, turning on
webcams, accessed databases, or recorded keystrokes, to list
a few examples.

[0101] Additionally, points may be added to the trust
scores based on other factors such as the age of the appli-
cation (how long the application has existed), the number of
devices and/or companies reporting on the application, static
information about the file or code (e.g. filename, publisher,
and whether the application is signed), to list a few
examples. Additionally, contextual information about the
application file can also affect the trust score. For example,
what the application created or downloaded the file, where
the file was downloaded from (e.g., from USB, from a
remote network peer, or overseas website), and the behavior
exhibited by the code of the application as it executes on the
user devices 102-1 to 102-z (e.g. network connections,
system API calls, files accessed, and user inputs monitored),
to list some examples.

[0102] Other methods may be used to calculate the trust
score. By way of a simple example, if there is only one
company reporting on the application, then zero points are
added to the trust score. If the number of companies report-

US 2016/0373486 Al

ing an application is 10 or less, then add 2.5 points to the
trust score. If the number of companies reporting on the
application is greater than 10, then add 5.0 points to the trust
score.

[0103] In another example, if the application’s age is less
than 1 day, then add zero points to the trust score. If the
application’s age is less than 1 week, then add 0.5 points to
the trust score. If the application’s age is less than 1 month,
then add 1.0 points to the trust score. If the application’s age
is greater than a month, then add 3.0 points to the trust score.
[0104] In yet another example, if there is only one user
device reporting the application, then add zero points to the
trust score. if the number of user devices 102-1 to 102-z
reporting the application is 1000 or less, then add 1.0 points
to the trust score. lithe number of user devices 102-1 to
102-n reporting the application is greater than 1000, then
add 2.0 points to the trust score.

[0105] In an alternative embodiment, other methods to
calculate the trust score are implemented. In one example,
the trust score is statically assigned by a data flow terminator
or incrementally modified as each node is evaluated in a
decision tree. In this embodiment, the trust scores may be a
fixed value, variable value, dependent upon the current node
in the data flow, dependent upon the behavior being evalu-
ated at that point in the decision process, or dependent upon
the probability that the intent is malicious or not (e.g., via a
Bayesian Network).

[0106] In the preferred embodiment, observed behaviors
of the applications are run through multiple and possibly
different behavioral models designed to search for different
behaviors. The different behavioral models search for behav-
iors such as the “intent” of the applications, data theft by the
applications, or indicators that the application operating as
part of a botnet, to list a few examples. If multiple trust
scores are calculated for the application, then the analysis
engine 114 is able to choose which trust score to use when
selecting a security policy for an application. Typically, the
analysis engine 114 selects the lowest calculated trust score.
[0107] For example, when the behaviors of the applica-
tions are modeled against botnet behaviors, the behaviors of
the applications may not exhibit the behaviors of a botnet
and thus receive a higher trust score. When the behaviors of
the applications are modeled against behaviors of data theft,
the behaviors may match the behaviors of data theft and thus
receive a lower score. Thus, the analysis engine 114 selects
the lower score to indicate a higher possibility of malware
directed to data theft.

[0108] In the preferred embodiment, trust scores score are
generated for specific behaviors on a single user device or
for behaviors on an aggregate set of user devices (i.e. where
an application running on multiple user devices exhibits a
specific type of behavior). If the trust score is generated for
the aggregate set of user devices, then the behaviors do not
need to occur on every user device. The behaviors only need
to occur on enough user devices for the cloud security policy
system 107 to determine that the behavior is representative.
This results in both an “incident” score for the specific
devices and well as a “collective” trust score based on
aggregated data. To provide an example, the analysis engine
114 typically selects the lower score for policy enforcement.
In another embodiment, both the “incident” and “collective”
scores are available for use in enforcing security policies.
Typically, multiple sets of different user devices 102-1 to
102-7 are used in calculating more than one aggregate or

Dec. 22,2016

“collective” trust score. The user devices 102-1 to 102-z,
which are evaluated in a specific aggregation of data,
typically include a single company, a vertical or companies
in a similar business, an arbitrary collection of users or
companies, a geographic collection of user devices, or a
global collection of user devices, to list a few examples.
[0109] In the preferred embodiment, the trust scores for
the applications running on the user devices 102-1 to 102-»
help calculate the trust score for the user device itself. This
score represents the “trustworthiness” of the device itself (in
totality). Additionally, this score may be used in controlling
access to cloud or network based services, admission to
specific networks, compliance enforcement, or risk rating, to
list a few examples.

[0110] FIG. 6B is a table illustrating how actions of
unknown applications are compared to actions performed by
malware and trusted applications to determine the trustwor-
thiness of the unknown applications.

[0111] In some embodiments, the cloud security policy
system 107 uses statistical analysis to identify behavior
exhibited by malware. In the illustrated example, a set of
“control” data is identified, which may be common to both
a trusted applications and malware. In this case, both appli-
cations may, for example, “read user data” (e.g. a word
document) and make a network connection using HTTP.
[0112] Another set of data (the “variance” data set) iden-
tifies behavior of the applications, which statistically vary
(or are measurably different) between trusted applications
and malware. The behavior is typically a combination of
observed behaviors as well as the absence of expected
behaviors. In the illustrated example, the behavior is
whether or not the application displayed a “visible window.”
For trusted applications, a “visible window” was displayed
98% of the time. In the case of malware, a “visible window”
was displayed only 15% of the time.

[0113] Examining “Unknown App 17, the behaviors of the
unknown application match the behavior of the control data.
Looking at the variance behavior, a “visible window” was
not displayed. And given the statistical divergence between
the trusted applications and malware, the “unknown app 17
is more likely to be “Malware” than a trusted application
because its behavioral profile is similar to malware.

[0114] In addition to the “control” and “variance” data
sets, the behavior model also collects additional “unmod-
eled” data about the applications. The additional “unmod-
eled” data includes network connections, types of file access
and/or creation, changes to the system configurations (e.g.
Windows registries), and system or application API calls, to
list a few examples. While these behaviors may or may not
be malicious, monitoring which applications exhibit these
behaviors help the model to evolve over time with the
malware. In one embodiment, new malware behavior is
learned and malware applications are identified based upon
the “variance”. The “unmodeled” behavior which has also
been collected may then be compared between Trusted
applications and known malware to detect other behavioral
outliers. For example, calls to a specific system API (e.g.,
SysAPI call Y) are statistically similar with malware and the
trusted application. Thus, there is nothing to distinguish a
trusted application from malware (using that control set).
Therefore. whether the application makes SysAPI call Y will
not factor into trust scores, in one example. Conversely,
modifications to a specific Registry Key Value (Key X), are
more likely in Malware than in a trusted application. This

US 2016/0373486 Al

learned behavior may transition and be included as a known
“variance” to identify Malware (using this control set) in
future analysis. Thus, the model is able to evolve over time
with evolving malware.

[0115] Examining “Unknown App 27, the behaviors of the
unknown application match the behavior of the control set.
Looking at the variance, a “visible window” was displayed.
Thus, the application initially appears to be a trusted appli-
cation. However, if the “learned” behavior (modification of
the “Registry Key X”) is factored in as a “variance”, then the
analysis may indicate that the “Unknown App 2” is more
likely to be malware.

[0116] In some cases the mere presence of variance data
(irrespective of the control set) may be indicative of mal-
ware. For example, the modification of Registry Key X
combined with an HTTP connection typically indicates
malware. Thus, regardless of other behaviors, if an unknown
application performs these behaviors it is determined to be
malware.

[0117] Alternatively, the combination of control and vari-
ance behavior could be viewed as a new behavioral model,
where both behaviors are considered the “control” set of
data indicating malware.

[0118] In an alternative embodiment, a set (or a subset) of
behaviors exhibited by a specific instance of malware are
used to identify polymorphic variations of the specific
instance malware. That is, observed behavior of malware is
able to be used as a fingerprint to identify the malware. In
the case of polymorphic viruses, files that appear to be
different (based upon a hash of the file) will exhibit the same
set of observed behaviors as the malware. Thus, the set (or
subset) of behaviors is able to identify the polymorphic
virus. Additionally, behavioral fingerprints are also able to
identify unique applications (e.g. applications that only
occur on a single device) which exhibit the same behavior
and are likely malware.

[0119] FIG. 7 is a flow diagram illustrating the steps
performed by the agent file filter 208 during background
scans of the user devices 102-1 to 102-» to determine if files
have been created, deleted, or modified.

[0120] If files have been created or modified, then it is
likely that their corresponding filenames and hashes have
also changed. Additionally, the agent cache 210 (possibly
the agent local database 206) needs to he updated to reflect
these changes.

[0121] in the first step 602, the agent file filter 208
determines if files have been deleted. If the files have been
deleted, then corresponding entries are removed from the
agent cache 210 in step 604. If files have not been deleted,
then the agent file filter 208 determines if any files have been
created or modified in step 606.

[0122] If any files have been created or modified, then the
agent file filter 208 scans (or rescans) the created or updated
files in step 608. In the next step 610, the agent file filter 208
updates the entries in the agent cache 210 and maps the
filename of the updated files to the hash in the agent cache
210. In the next step 612, the agent reputation manager 204
forwards static information about the files to the cloud
security policy system 107. Static information often includes
the size of the file, whether the file/executable is “packed”,
or whether the file/executable is “signed” (and by what
certificate authority), to list a few examples.

[0123] In alternative embodiments, other methods for
detecting new (or updated) files on user devices 102-1 to

Dec. 22,2016

102-n are implemented, For example, application plugins,
which are often present in web browsers, are able to detect
when a file is being downloaded. Alternatively, another
method includes using a service daemon, which performs a
background, scan of the disk, to search for files which have
modified time-stamps or file sizes.

[0124] FIG. 8 is a flow diagram illustrating the steps
performed by the agent reputation manager 204 to monitor
processes executing on the user devices 102-1 to 102-».
[0125] In the first step 704, the agent file filter 208 is
notified by the operating system that a new process was
created. In the next step 706, the agent reputation manager
204 is informed by the agent file filter 210 of the new
process. In the next step 708, the agent reputation manager
204 identifies the filename of the process by making API
calls. Next, in step 710, the agent reputation manager 204
sends a request to the agent file filter 210 for the hash of the
filename of the created process. In the next step 711, the
agent file filter 208 searches for the hash in the agent cache
210. If the agent file filter 208 is not able to locate the hash
in the agent cache 210, then the agent reputation manager
204 scans the file to calculate a hash in step 713. If the agent
file filter 208 is able to locate the hash in the agent cache,
then the agent reputation manager 204 retrieves the hash
information from the agent cache 210 in step 712.

[0126] In the next step 714, the agent reputation manager
204 searches the agent local database 206 for a security
policy corresponding to the hash, which is retrieved from the
agent cache 210. In the next step 716, the agent reputation
manager 204 determines if the security policy was found in
the agent local database 206. If the agent reputation manager
204 locates the security policy in the agent local database
206, then the agent reputation manager 204 informs the
agent file filter 208 and the agent network filter 228 to
enforce the security policy in step 728.

[0127] If the agent reputation manager 204 is not able to
locate the security policy in the agent local database 206,
then the agent reputation manager 204 enforces a default
security policy in step 718. In the next step 720, the
reputation manager 204 sends a request for a security policy
(corresponding to the hash) to the cloud security policy
system 107. In the next step 720, the reputation manager 204
updates the agent local database 206 if the cloud security
policy system 107 responds with a security policy.

[0128] In the next step 724, the agent cache 210 is updated
with the security policy. Next, in step 726, the agent file filter
208 and agent network filter 228 are updated with the
security policy.

[0129] FIG. 9 is flow diagram illustrating how processes
are monitored and/or controlled by the reputation manager
204.

[0130] In the first step 802, the agent API detour 212 is
loaded as a DLL into the process. In the next step 804, the
agent API detour 212 sends a message to the agent file filter
208 for a security policy associated with the process. The
agent file filter 208 then determines if the process is moni-
tored or controlled in step 806. If the process is not moni-
tored or controlled, then the agent API detour 212 will not
intercept or modify process behaviors in step 808. In the
next step 810, the agent API detour DLL may be unloaded
from the process.

[0131] If the process is monitored or controlled, then the
agent API detour 212 intercepts API calls from the process
in step 812 using software such as the Microsoft Detours

US 2016/0373486 Al

product. In the next step 814, the agent API detour 212
intercepts resource requests from the process.

[0132] Next, in step 815, the agent file filter 208 deter-
mines if the process is being monitored. If the process is
being monitored, then the agent API detour 212 logs
requested API calls to agent reputation manager 204. In the
preferred embodiment, this is accomplished by sending a
message via the agent file filter 208. In other embodiments,
the monitored information is passed directly to the reputa-
tion manager 204. Alternatively, the monitored information
is stored in a log file, syslog, or an NtEvent Log, to list a few
examples. Then the monitored information is read in by the
reputation manager. In the next step, the reputation manager
204 stores the monitored information to agent local database
206. Then, the agent reputation manager 204 sends the
monitored information to cloud security policy system 107
in step 828.

[0133] In the next step 818, or if the process is not being
monitored (from step 815), then the agent file filter 208
determines if the process is being controlled based on a
security policy. If the process is not being controlled based
on the security policy, then agent API detour intercepts
resource requests in step 814. If the process is being con-
trolled based on a security policy, then the restrictions within
the security policy are applied to the resource requests in
step 820. The restrictions include the agent network filter
228 preventing network connections, in one implementa-
tion. Alternatively, the process being controlled is termi-
nated (in the case where the security policy indicates the
application is not allowed to run). Typically, the application
is terminated by either the reputation manager 204 or the
agent file filter 208 terminating the process (operating in a
privileged context). Alternatively, the application is termi-
nated by indicating the security policy to the agent API
detour 212, which causes the process to exit.

[0134] FIG. 10A is a flowchart illustrating the steps per-
formed by the agent security software of the user devices
102-1 to 102-# to check for security policies from the cloud
security policy system 107 at predefined intervals.

[0135] In the first step 904, the agent reputation manager
204 determines if “CheckForPolicy” equals TRUE. “Check-
ForPolicy” does not equal TRUE, then the agent reputation
manager 204 waits a predetermined length of time in step
906. In the next step 908, the agent reputation manager 204
determines if “TimeSincelastCheck” is greater than the
specified timeout period. If “TimeSincelastCheck” is
greater than the timeout period, then the reputation manager
204 sets “CheckforPolicy” to TRUE and returns to step 904.
If “TimeSincel.astCheck™ is not greater than the timeout
period, then the reputation manager returns to determine if
“CheckForPolicy” equals TRUE in step 904.

[0136] Returning to step 904, if “CheckForPolicy” equals
TRUE, then the agent reputation manager 204 sends a
request for a security policy to the cloud security policy
system 107 in step 912. In the next step 914, the web
services component 108 receives the request for the security
policy from the user device. In the next step 916, the web
services component 108 forwards the request to policy
engine 110. In the next step 918, the policy engine 110 looks
up the user device in configuration & security policy data-
base 112.

[0137] Next, the policy engine 110 retrieves the default
security policy for the user device in step 920. In the next
step 922, the web services component 108 sends the security

Dec. 22,2016

policy to the user device. In the next step 924, the agent
reputation manager 204 stores the security policy in agent
local database 206. In the next step 926, the agent reputation
manager sets “CheckForPolicy” to FALSE and updates
“TimeSincelastCheck”. The agent security software records
the time for “TimeSinceLastCheck”, so it is able to calculate
when then next timeout period should expire, causing the
agent security software to recheck for a new security policy.
[0138] FIG. 10B is a flowchart illustrating the steps per-
formed by agent security software of the user devices 102-1
to 102-z to check for security policies from the cloud
security policy system 107 based on messages or responses
received from cloud security policy system 107.

[0139] In the first step 950, the agent reputation manager
204 sends a message to cloud security policy system 107, In
the next step 952, the agent reputation manager 204 receives
a response from cloud security policy system 107. In the
next step 954, the agent reputation manager 204 determines
if the response indicates that security policy has changed.
[0140] If the security policy received from the cloud
security policy system 107 has changed, then the reputation
manager 204 sets “CheckForPolicy” equal to TRUE in step
956. In the next step 958, or if the response did not indicate
that security policy has changed, then the reputation man-
ager processes the response received from cloud security
policy system 107.

[0141] The remaining steps 960-982 are identical to cor-
responding steps 904-926 of FIG. 100A. In the preferred
embodiment, step 960 is processed by a separated worker
thread running in the reputation manager 204.

[0142] FIG. 11 is a flow diagram illustrating how log
information is sent from user devices 102-1 to 102-» to
cloud security policy system 107.

[0143] In the first step 1102, the user devices 102-1 to
102-7 send report messages with report logs about applica-
tion behaviors to the cloud security policy system 107. In the
next step 1104, the web services component 108 receives the
report messages. In a typical implementation, when the web
services component 108 receives report messages of new
hashes from the user devices 102-1 to 102-r, the web
services component 108 includes a time-stamp to record
when the message arrived.

[0144] In the next step 1106, the web services component
108 forwards the report messages to analysis engine 114.
The analysis engine 114 stores the report message informa-
tion in the behavioral history database 118 in step 1108.
Additionally, after each report message is received, the
behavioral history database 118 is updated to reflect how
many different user devices 102-1 to 102-» (or companies)
have reported this hash.

[0145] in some embodiments, the database behavioral
history database 118 also includes a summary record for
each hash, which includes a set of information that can be
used for enforcing security via access control lists (ACLs)
by the agent security software residing on the user devices
102-1 to 102-z. In one implementation, the summary records
include a time-stamp of when this hash was first reported to
the server, a global “age” for the hash, a count of the number
of user devices 102-1 to 102-» that have accessed the hash,
a count of the number of organizational units or companies
(in a multi-tenant environment) that have accessed the hash,
and the trust score of the hash, to list a few examples.
[0146] in the next step 1110, the analysis engine 114
searches the whitelist/blacklist database 120 and the behav-

US 2016/0373486 Al

ioral history database 118 for other information about the
hash. Next, in step 1112, the analysis engine 114 calculates
a trust score for the hash based on the received information
and any information found in the whitelist/blacklist database
120 and the behavioral history database 118, In the next step
1114, the analysis engine 114 updates the reputation data-
base 116.
[0147] While this invention has been particularly shown
and described with references to preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the scope of the invention encom-
passed by the appended claims.
What is claimed is:
1. A method for implementing security policies on user
devices, the method comprising:
monitoring processes executing on user devices;
searching for security policies associated with the pro-
cesses;
upon locating security policies, applying the security
policies to the processes;
upon failing to locate security policies on the user devices,
sending requests to a security policy system; and
upon receiving security policies from the security policy
system, applying the security policies to the processes.
2. The method according to claim 1, further comprising:
upon failing to receive security policies from the security
policy system, implementing default security policies
for the processes.
3. A method for monitoring applications on user devices,
the method comprising:
monitoring applications requesting to open files using
system dynamic-link libraries;
searching for hashes corresponding to filenames of the
files requested by application in caches of the user
devices;
upon locating hashes of the user devices, searching for
security policies associated with the hashes; and

Dec. 22,2016

upon locating the security policies associated with the
hashes, enforcing restrictions of the security policies.

4. A method for monitoring processes executing on user

devices, the method comprising:

intercepting application program interface calls to moni-
tor resource requests of executing processes;

maintaining a log of the resource requests in a database if
the processes are being monitored;

applying security policies to the processes if the processes
are controlled by security policies; and

sending the log of resource requests to a security policy
system.

5. A distributed security system for monitoring processes

executing on user devices, the system comprising:

an application program interface detour that intercepts
application program interface calls and monitors
resource requests of executing processes;

a reputation manager that applies security policies to the
processes if the processes are controlled by the security
policies; a database of a user system that stores logs of
resource requests if the processes are being monitored
by the reputation manager; and

a reputation database of a security policy system that
stores logs of resource requests from multiple user
devices.

6. A method for identifying polymorphic malware on user

devices, the method comprising:

monitoring behaviors of applications executing on user
devices to determine fingerprints of the applications;

comparing the fingerprints of the applications to finger-
prints of known malware;

determining if any fingerprints of the application are
similar to fingerprints of known malware; and

applying security policies to the applications when the
fingerprints of the application are similar to fingerprints
of known malware.

#* #* #* #* #*

