US 20150378718A1

a2y Patent Application Publication o) Pub. No.: US 2015/0378718 A1l

a9 United States

JOHANSSON et al.

43) Pub. Date: Dec. 31, 2015

(54) SYSTEMS, METHODS, AND COMPUTER
PROGRAM PRODUCTS FOR A SOFTWARE
BUILD AND LOAD PROCESS USING A
COMPILATION AND DEPLOYMENT
SERVICE
(71) Applicant: TELEFONAKTIEBOLAGET L M
ERICSSON (PUBL), Stockholm (SE)
(72) Inventors: Bengt JOHANSSON, Vastra Frolunda
(SE); Per ANDERSSON, Montreal
(CA); Abdallah CHATILA, Montreal
(CA); Anders FRANZEN, Trangsund
(SE); Tarik HAMMAM, Kista (SE);
Jon MALOY, Montreal (CA); Tord
NILSSON, Bohus-Bjorko (SE); Sten
Rune PETTERSSON, Torslanda (SE);
Richard TREMBLAY, Rosemere (CA)

(73) Assignee: TELEFONAKTIEBOLAGET L M

ERICSSON (PUBL), Stockholm (SE)

(21) Appl. No.: 14/843,272

(22) Filed: Sep. 2,2015

Saurce
Files 1

31

[

1

320

re-compiler > s e o »

<—=

Related U.S. Application Data

Continuation of application No. 14/105,694, filed on
Dec. 13, 2013, now Pat. No. 9,189,227.

Provisional application No. 61/737,605, filed on Dec.
14, 2012.

Publication Classification

(63)

(60)

Int. Cl1.
GO6F 9/445
GO6F 9/44
U.S. CL
CPC ... GOG6F 8/65 (2013.01); GOGF 8/70 (2013.01)

(57) ABSTRACT

Systems, methods, and computer program products for a
software build and load process using a compilation and
deployment service. A method for a software build and load
process using a compilation and deployment service includes
receiving, at the service, new software. The method further
includes comparing, at the service, the received new software
with data in a database, wherein the data comprises active
software. The method further includes merging, at the service
said new software and active software into one or more load
modules based on the comparison. The method further
includes deploying the one or more load modules to one or
more target processing units.

(51)
(2006.01)
(2006.01)

(52)

Source
Files N

31

Pra-compilar

e
Cantainer
N

<—

N
(o]

Deployment service

340

Patent Application Publication Dec. 31, 2015 Sheet 1 of 7 US 2015/0378718 A1

Generator

=

110

— |

[
N
o

Load

Archiver Modules

150

FIG. 1

Patent Application Publication Dec. 31, 2015 Sheet 2 of 7 US 2015/0378718 A1

Module

N

\\ //

Processing unit

200

FIG. 2

Patent Application Publication Dec. 31, 2015 Sheet 3 of 7

Source Source

Pre-compiler e & @ e ¢ s 0 ¢ »

3 D
W
1

<—
<

Deployment service

Load
Module

Load
Module
N

33 330

N__ /"

, 1

o . N

o . e
Processing unit

340

FIG. 3

US 2015/0378718 Al

Pre-compiler

Patent Application Publication Dec. 31, 2015 Sheet 4 of 7 US 2015/0378718 A1

Packets entering
and exiting the
system.

Load Balancers 400

| Application ;
1 processor Vi

Application
processor

S

s SPsewss 490

FIG. 4

Patent Application Publication

550a

SGSN software
bundle.

210

Load
balancer
rules.

Dec. 31,2015 Sheet 5 of 7

SGSN software

Load balancer software

Existing
LB rules.

US 2015/0378718 Al

SGSN checkers and
compilers 540a

Load balancer checkers
and compilers 5§40h

SGSN load godules

SGSN
load
modules.

Load

balancer
modules,

FIG. 5

Patent Application Publication Dec. 31, 2015 Sheet 6 of 7 US 2015/0378718 A1

Receive new software
$600

N4

Compare received new software with data in a database
5610

Merge new software and active software into one or more
load modules based on the comparison
S620

Deploy the load modules to target processing units
S630

FIG. 6

Patent Application Publication Dec. 31, 2015 Sheet 7 of 7 US 2015/0378718 A1

Service
300

Data Storage System

123 Data Processing System

700

CRPC $

Computer readable
medium Network Interface

720

(4,

:

\

FIG. 7

US 2015/0378718 Al

SYSTEMS, METHODS, AND COMPUTER
PROGRAM PRODUCTS FOR A SOFTWARE
BUILD AND LOAD PROCESS USING A
COMPILATION AND DEPLOYMENT
SERVICE

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 14/105,694, filed Dec. 13, 2013, which claims
the benefit of U.S. Provisional Application Ser. No. 61/737,
605, filed Dec. 14, 2012, and of PCT Application Serial No.
PCT/EP2013/076506, filed Dec. 13, 2013. The entire con-
tents of each of the referenced applications are incorporated
by reference herein.

TECHNICAL FIELD

[0002] Thepresent invention relates generally to improving
software build and load processes, and more particularly, to
systems, methods, and computer program products for a soft-
ware build and load process using a compilation and deploy-
ment service.

BACKGROUND

[0003] Typically, after a software application is built, the
source code, configuration files, and other artifacts are gen-
erated, compiled, and packed into load modules. Once these
load modules are built, the load modules may be shipped to an
execution environment where they are loaded and possibly
linked to a processing unit.

[0004] FIG. 1 is a flow chart illustrating a typical build
process. Source files 110 may be provided or automatically
created using a generator 120. A generator 120 may use
configuration files 100 to automatically generate source files
110 using, for example, generic frames, classes, prototypes,
templates, aspects, or other ontological models. Generator
120 may also include one or more programming tools, such as
a template processor or an integrated development environ-
ment (“IDE”).

[0005] The source files 110 may be compiled by a compiler
130 into object files 140. The compiler 130 may be a com-
puter program, or a set of programs, that transforms source
code written in one programming language into another com-
puter language. For example, the compiler 130 may translate
source code from a high-level programming language to a
lower level language, such as assembly language or machine
code.

[0006] In a typical build process, as illustrated in FIG. 1, a
compiler 130 may translate source files 110 into object files
140. Object files 140 may contain, for example, relocate-able
format machine code. Since object files 140 may not be
directly executable, they may be inputted into an archiver
150. The archiver 150 may be a linker, or link editor, that takes
one or more object files generated by a compiler 130 and
combines them into a single executable program, or load
module 160. A computer application may comprise several
modules 160, and all of the modules are not necessarily
contained in a single object file 140. For example, the object
files 140 may contain symbols that are resolved by an archiver
150, which links the object files into a unified executable
program, or load modules 160. As a result, the load modules
160 may comprise an Executable and Linkable Format

Dec. 31, 2015

(“ELF”) archive, a JAR (Java ARchive) or TAR (Tape
ARchive) file, a Debian (“DEB”) or RPM package, or other
containers.

[0007] Once the load modules are built for a software appli-
cation, the type of the software application may determine
how the load modules are sent from the building site to be
loaded onto a processing unit. Currently, when sending the
load-units to the processing unit, it is often assumed that the
new load-units do not interfere with the existing software on
the processing unit. Additionally, it is often assumed that the
new load module is compatible with underlying software
frameworks on the processing units, such as middle-wares
and operating systems. In some instances, a new load module
may be tested in a sand box on a processing unit. Sand boxes
allow a new load module to be tested against the actual pro-
cessing unit environment without the risk of interfering with
the operation of the actual equipment.

[0008] FIG. 2 is a flow chart illustrating load modules
loaded onto a processing unit. In a typical load process, the
worst case is that no checks are performed when the load
modules 160 are loaded onto the processing unit 200. In other
cases—such as when a package manager, like apt or yum is
used—rudimentary dependency checks are performed when
new packages are loaded onto a processing unit 200 or exist-
ing ones are updated. Packages that violate one or more
dependencies may not be loaded.

[0009] The above build and load processes, illustrated in
FIGS. 1 and 2, may function well in static environments
where software changes are relatively infrequent. For
example, current processes may be sufficient in a desktop
setting or in a small server farm. However, in modern envi-
ronments, the above build and load processes present prob-
lems. For example, in large data-centers and cloud deploy-
ments, ordinary containers or package systems are not
sufficient. Additionally, since the state changes frequently in
data-centers and cloud environments, frequent load module
deployments are required. Furthermore, especially in a cloud
environment, one must be able to package functioning soft-
ware and deploy it on dynamically allocated virtual
machines.

[0010] Complex applications also often stretch over several
processing units 200. It is common for applications to span
several processing units 200, so installation and upgrade must
be coordinated across several processing units 200. For
example, software may need to be loaded onto processing
units 200 that perform specific tasks, and as a result, different
pieces of software must work together when loaded onto the
processing unit. Processing units 200 and services may also
be shared between users that have different requirements.
Additionally, the new software may interfere with existing
software, and thereby cause errors and down-time when
executed on a processing unit.

[0011] Accordingly, there exists a need to overcome the
deficiencies of current software build and load processes.

SUMMARY

[0012] Particular embodiments are directed to systems,
methods, and computer program products for a software build
and load process using a compilation and deployment service.
[0013] In certain embodiments, software is loaded onto a
server (or service) arranged to provide a compilation and
deployment service. The service provides a database config-
ured to permit storing of all of the active software employed
by target processing units, for example. The active software

US 2015/0378718 Al

may be in source form or an intermediate form. For example,
the intermediate format may be native object code for the
target environment.

[0014] In one particular embodiment, a method for a soft-
ware build and load process using a compilation and deploy-
ment service is provided. The method comprises receiving, at
the service, new software. The method further comprises
comparing, at the service, the received new software with data
in a database, wherein the data comprises active software. The
method further comprises merging, at the service, the new
software and active software into one or more load modules
based on the comparison. Additionally, the method further
comprises deploying the one or more load modules to one or
more target processing units.

[0015] In certain embodiments, the new software may be
source code packaged into a container. In this embodiment,
the comparing step further comprises checking the source
code on a source level against previously defined restraints
and the active software. Additionally, the merging step further
comprises merging and compiling the source code with the
active software at the service.

[0016] In certain embodiments, the new software may be
compiled source code packaged into a container with a new
manifest describing the properties of the compiled source
code. In this embodiment, the data in the database comprises
one or more existing manifest files associated with the active
software. The comparing step further comprises extracting
the new manifest and checking the new manifest against
predefined constraints and the one or more existing manifests.

[0017] Insome embodiments, the new software is interme-
diate format source code. In this embodiment, the method
comparing step further comprises checking the intermediate
format source code against predefined constraints and the
active software. Additionally, the merging step further com-
prises fully compiling the intermediate format source code. In
some embodiments, the merging step may further comprise
merging the intermediate format source code with the active
software on a statement and expression level.

[0018] In some embodiments, the method further com-
prises receiving, at the service, one or more code character-
istics of the received new software, wherein the database data
includes stored characteristics of the active software. The
method further comprises comparing, at the service, the
received new software code characteristics with the stored
active software code characteristics as part of the data com-
parison.

[0019] In other embodiments, the target processing units
comprise one or more SGSN-nodes and load balancers, the
new software comprises SGSN software and new load bal-
ancer rules, and the data comprises existing load balancer
rules.

[0020] In some embodiments, the method comparing step
further comprises checking, using one or more load balancer
checks and compliers, the new load balancer rules against the
existing load balancer rules. The method merging step further
comprises merging parts of the new load balancer rules that
are common with the existing load balancer rules, and report-
ing the new load balancer rules that conflict with the existing
load balancer rules.

[0021] In some embodiments, the method comparing step
further comprises checking the SGSN software at one or more
SGSN checkers and compilers.

Dec. 31, 2015

[0022] In some embodiments, the target processing units
are classified by one or more of processor architecture, oper-
ating system, and/or intended use of the new software.

[0023] According to particular embodiments, a system for
a software build and load process using a compilation and
deployment service is provided. The system comprises a
compilation and deployment service including a server, a
processor coupled to the server, a memory coupled to the
processor, and a database coupled electronically to the server.
The processor is configured to receive new software. The
processor is further configured to compare the received new
software with data in a database, wherein the data comprises
active software. The processor is further configured to merge
the new software and active software into one or more load
modules based on the comparison. Additionally, the proces-
sor is further configured to deploy the load modules to target
processing units.

[0024] In certain embodiments, new software is source
code packaged into a container, and the processor may be
further configured to check the source code on a source level
against previously defined restraints and the active software.
The processor may also be further configured to merge and
compile the source code with the active software.

[0025] Inotherembodiments, the new software is compiled
source code packaged into a container with a new manifest
describing the properties of the compiled source code. In this
embodiment, the data in the database may comprise one or
more existing manifest files associated with the active soft-
ware. Additionally, the processor may be further configured
to extract the new manifest and check the new manifest
against predefined constraints and one or more existing mani-
fests.

[0026] Insome embodiments, the new software is interme-
diate format source code and the processor is further config-
ured to check the intermediate format source code against
predefined constraints and the active software. The processor
may be further configured to fully compile the intermediate
format source code. In some embodiments, the processor may
be further configured to merge the intermediate format source
code with the active software on a statement and expression
level.

[0027] Insomeembodiments, the system further comprises
a processor that is further configured to receive one or more
code characteristics of the received new software, wherein the
database data includes stored characteristics of the active
software. The processor may be further configured to com-
pare the received new software code characteristics with the
stored active software code characteristics as part of the data
comparison.

[0028] In other embodiments, the target processing units
comprise one or more SGSN-nodes and load balancers, the
new software comprises SGSN software and new load bal-
ancer rules, and the data comprises existing load balancer
rules. In some embodiments, the system may include a pro-
cessor further configured to check the new load balancer rules
against the existing load balancer rules. The processor may be
further configured to merge parts of the new load balancer
rules that are common with the existing load balancer rules.
The processor may also be further configured to report the
new load balancer rules that conflict with the existing load
balancer rules. In some embodiments, the system may further
comprise one or more SGSN checkers and compilers,

US 2015/0378718 Al

wherein the processor is further configured to check the new
SGSN software using the one or more SGSN checkers and
compilers.

[0029] According to another embodiment, a non-transitory
computer program product comprising a computer readable
medium storing computer readable program code embodied
in the medium is provided. The computer program product
includes program code for causing a device to receive new
software. The computer program product includes program
code for causing a device to compare the received new soft-
ware with data in a database, wherein the data contains active
software. The computer program product includes program
code for causing a device to merge the new software and
active software into one or more load modules based on the
comparison. Additionally, the computer program product
includes program code for causing a device to deploy the load
modules to one or more target processing units.

[0030] In certain embodiments, the new software is source
code packaged into a container. The computer program prod-
uct further includes program code for causing the device to
check the source code on a source level against previously
defined restraints and the active software. The computer pro-
gram product further includes program code for causing the
device to merge and compile the source code with the active
software.

[0031] Inotherembodiments, the new software is compiled
source code packaged into a container with a new manifest
describing the properties of the compiled source code. Addi-
tionally, the data in the database comprises neo or more
existing manifest files associated with the active software.
The computer program product further includes program
code for causing the device to extract the new manifest and
check the new manifest against predefined constraints and the
one or more existing manifests.

[0032] Insome embodiments, the new software is interme-
diate format source code. The computer program product
may further include program code for causing the device to
check the intermediate format source code against predefined
constraints and the active software. The computer program
product may further include program code for causing the
device to merge the intermediate format source code with the
active software on a statement and expression level.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The accompanying drawings, which are incorpo-
rated herein and form part of the specification, illustrate vari-
ous embodiments of the present disclosure and, together with
the description, further serve to explain the principles of the
disclosure and to enable a person skilled in the pertinent art to
make and use the embodiments disclosed herein. In the draw-
ings, like reference numbers indicate identical or functionally
similar elements.

[0034] FIG. 1 is a flow chart illustrating a typical build
process.
[0035] FIG. 2 is a flow chart illustrating load modules

loaded onto a processing unit.
[0036] FIG. 3 is a flow chart illustrating deployment using

a deployment service in accordance with exemplary embodi-
ments.

[0037] FIG. 4 is a flow chart illustrating load balancers
serving application processors in accordance with exemplary
embodiments.

Dec. 31, 2015

[0038] FIG. 5 is flow chart illustrating checking and final
stage of building of the new SGSN related software in accor-
dance with exemplary embodiments.

[0039] FIG. 6 is a flow chart illustrating a method of
deployment using a deployment service, in accordance with
exemplary embodiments.

[0040] FIG. 7 is a functional block diagram that schemati-
cally illustrates a service, in accordance with exemplary
embodiments.

DETAILED DESCRIPTION

[0041] Particular embodiments are directed to systems,
methods, and computer program products for a software build
and load process using a compilation and deployment service.
[0042] New software may be loaded onto a service that
manages the creation and deployment of load modules. The
service may act as an intermediary that deploys new software
load modules to processing units. In some embodiments, the
service is a server that contains a database. The database may
contain all of the active software that is currently executed on
target processing units, software that was previously received
by the service and deployed to target processing units, and/or
other information, such as constraints, about target process-
ing units. The active software may be stored in several differ-
ent formats, including, for example, source form or an inter-
mediate format. In some embodiments, the intermediate
format may be native object code for the target processing
unit environment.

[0043] Insomeembodiments, the service may receive new
software either in source form or in some pre-compiled inter-
mediate code. In an exemplary embodiment, the intermediate
code allows the service to inspect and check the code for
compliance with target processing units. Once checked for
compliance, the service can merge the new software with the
software previously uploaded to the service and stored in the
database. In some embodiments, new load units can be gen-
erated from the merged software and deployed to target pro-
cessing units.

[0044] Referring now to FIG. 3, a flow chart illustrating
deployment using a deployment service according to exem-
plary embodiments is shown. In an exemplary embodiment,
the service 300 receives new software to be deployed on a
processing unit 340. In some embodiments, the new software,
which may be source files and/or intermediate code 310, may
be packaged by a pre-compiler into one or more containers
320. The service 300 may receive one or more containers 320.
In exemplary embodiments, any uploaded container 320 con-
tains code 310 in a form suitable for the deployment service
300 to inspect and check the code inside the container 320 for
compliance with the active software and target processing
unit information, which may be stored in a database.

[0045] In an exemplary embodiment, the service 300
ensures that the received new software works together with
the active, or existing, software. One advantage is that it is
possible to ensure that the new software works with the active
software before it is deployed to processing units 340.
Another advantage is that it is possible to check software from
different suppliers for compatibility with existing software on
processing units 340 without having to disclose the source
code.

[0046] There are several possibilities when creating the
new intermediate code and checking the intermediate code
with the active software. In one embodiment, for example, the
source code 310 may be packaged into a container 320 before

US 2015/0378718 Al

being received by the service 300. The service 300 may check
or compare the source code against predefined constraints
and/or the active code in the database. If all of the constraints
are met, the new code may be compiled and merged with the
other active software into load modules 330. The compiled
form may include, for example, native object code or an
intermediate virtual machine code, such as for a Java Virtual
Machine (“JVM”).

[0047] Insome embodiments, the source code 310 may be
compiled and packaged into a container 320, and a manifest
describing the code in the container may be transmitted with
the container 320. Generally, characteristics about code,
including source and intermediate code, may be received by
the service 300. The service 300 may receive the code inside
the container 320 and the manifest describing the properties
of'the code (i.e., code characteristics) inside the container. In
some embodiments, when the service 300 receives the code
inside the container 320, the service 300 extracts and checks
the manifest describing the code against predefined con-
straints (i.e., code characteristics) as well as the other mani-
fests of the active, or previously uploaded, code stored in the
database. If all of the constraints are met, the service 300 may
merge the compiled new software, or the code inside the
container 320, with the other active software stored in the
database to form one or more load modules 330.

[0048] Incertain embodiments, the source code 310 may be
compiled into an intermediate format which is not human-
readable but can be inspected programmatically. The semi-
compiled code 310 may be packaged inside a container 320
and be received by the service 300. The service 300 may
check the semi-compiled code against predefined constraints
(i.e., code characteristics) as well as the active code stored in
the database for compatibility. If all of the constraints are met,
the code may be compiled to its final form and merged with
the other active software into load modules 330. The com-
piled form may include, for example, native object code or an
intermediate virtual machine code, such as for a Java Virtual
Machine (“JVM”).

[0049] One advantage of the above embodiments and oth-
ers is that the new software 310, 320 is not required to be
uploaded in source form and therefore cannot be easily
inspected by humans. However, the new software is available
in all of its complexity to a consistency checker implemented
on service 300. For example, the new software may be
checked by the service’s consistency checker down to the
statement and expression level for any possible inconsisten-
cies or constraints. Another advantage may be that it is pos-
sible to intricately merge semi-compiled code with the other,
active, code down to the statement and expression level.
Therefore, it may be possible for service 300 to receive parts
of an application and to merge it completely with the whole
application once checked for compatibility and other con-
straints. Furthermore, it is possible that the service 300 may
merge software parts from different suppliers into one appli-
cation.

[0050] Insome embodiments, the database contains classi-
fications of target processing units 340 including, for
example, processor architecture, operating system, etc. The
database may also contain classification information con-
cerning the intended use of a processing unit 340 or active
software, so that a processing unit 340 may only receive new
software that is intended for that processing unit. These clas-
sifications and the classification information can be included

Dec. 31, 2015

as part of the code characteristics associated with the new
software or the active software.

[0051] Furthermore, in some embodiments, the service 300
may deploy the load modules 330 to processing units 340.
Once the building process starts, service 300 may generate or
rebuild load modules 330 for target processing units 340 that
are affected by the new software change. The service 300,
after rebuilding or building the load modules 330, loads and
activates the load modules 330 onto target processing units
340.

[0052] Referring now to FIG. 4, a flow chart illustrating
load balancers serving application processors, according to
some embodiments, is shown. In some embodiments, some of
the processing units act as load balancers 400 for some other
processing units running applications 410. The applications
may include any application that accepts packets from a net-
work, including, for example, web-servers, sip-servers,
Mobility Management Entity (“MME”) nodes, home sub-
scriber sever (“HSS”) nodes, etc.

[0053] The configuration of the application processors 410
are dynamic and may change over time. In some embodi-
ments, when the configuration is changed, the software of the
load-balancers 400 is updated in order to accommodate new
and/or updated applications. In some embodiments, and
according to the setup in FIG. 4, the system may be currently
running both Web and SIP servers on processing units 410. It
may be desirable, for example, to reconfigure some of the
processing units 410 to run as a SGSN-node. Consequently,
SGSN software would need to be installed on some of the
processing units 410. Additionally, the software on the load-
balancers 400 may need to be upgraded so that the load-
balancers 400 may distribute connections from the radio net-
work to specific application processors that handle them.
[0054] FIG. 5 is flow chart illustrating checking and final
stage of building of the new SGSN related software according
to exemplary embodiments. As described in the example
above, it may be desirable to reconfigure certain processing
units to run an SGSN-node in a system with only web servers
and SIP servers. According to some embodiments, service
300 may receive a new SGSN software bundle 510, or new
software, and load balancer rules 520 associated with the new
SGSN software bundle 510.

[0055] Insome embodiments, the service 300 may run the
new SGSN software bundle 510 through an SGSN checker
and compiler 540a. In some embodiments, the SGSN checker
and compiler 540a may compare the new SGSN software
with, for example, active SGSN software or processing unit
constraints stored in a database accessible by server 300. If
the SGSN software bundle 510 successfully completes the
comparisons performed by the SGSN checker 540a, then the
new SGSN software bundle 510 may be compiled into code
that can be understood by one or more processing units and
loaded into SGSN load modules 550a.

[0056] In some embodiments, the load-balancer rules 520
are pre-compiled into a format which is not human readable
but can be parsed by the next stage of the rule compiler on
service 300. In exemplary embodiments, the new load-bal-
ancer rules 520 are checked against the existing load-balancer
rules 525. The existing load-balancer rules 525 may, for
example, be stored in a database accessible by service 300. In
some embodiments, there is a load-balancer checker and
compiler 54056 that compares and compiles the new load
balancer rules 520. The comparison performed by the load
balancer checker and compiler 540 may include determining

US 2015/0378718 Al

which parts of the new load-balancer rules 520 and existing
load-balancer rules 525 are common. The comparison may
also include determining and reporting conflicting parts of the
new load-balancer rules 520 and existing load-balancer rules
520. These load balancer rules can be included as part of the
code characteristics associated with the new software or the
active software.

[0057] In some embodiments, the load-balancer checker
and compiler 540 may merge all of the new load balancer
rules 520 with the existing load balancer rules 525, or it may
only merge a subset of the rules, such as the common rules.
Additionally, the merged rules may be compiled into code
that can be understood by the load-balancers and are pack-
aged into load modules 5505. In some embodiments, should
an error occur—for instance if some new load balancer rules
520 will conflict with existing load balancer rules 525—the
old software version will not be removed from the target
processing units. Furthermore, an error report may be sent
back to the user that initiated the transaction.

[0058] Referring now to FIG. 6, a flow chart illustrating a
method of deployment using a deployment service, according
to exemplary embodiments, is shown. In some embodiments,
according to step S600, the service receives new or modified
software. As explained above, the received software may be
in many different formats, including source code form, an
intermediate form, a compiled form with a manifest describ-
ing the code, etc.

[0059] In some embodiments, in accordance with step
S610, the service compares the received new software with
data in a database. The data may include, for example, active
software that is currently deployed on target processing units,
software that has been previously received at the service,
constraints about the software and/or target processing units,
code characteristics about the software and/or target process-
ing units, etc. The comparison may include, for example,
checking for inconsistencies between the received new soft-
ware and the active software, checking for compatibility, e.g.,
operating system requirements, in addition to evaluating
other constraints and code characteristics.

[0060] In accordance with step S620, in some embodi-
ments the service merges the new software and active soft-
ware into one or more load modules based on the comparison
of'step S610. As explained above, the new software may be in
source code form or an intermediate form and may addition-
ally need to be compiled in order to be merged with the active
software into load modules. Furthermore, based on the com-
parison, the new software in its entirety or a subset, such as
only the components that are common between the new and
active software, may be merged with the active software and
built into load modules.

[0061] In some embodiments, in accordance with step
S630, the one or more load modules may be deployed to one
or more target processing units. The deployment may be
based, for example, on data contained in the database about
the processing units.

[0062] Now referring to FIG. 7, a functional block diagram
that schematically illustrates a service, according to exem-
plary embodiments, is shown. The service 300 may include a
processor or other processing means, a memory or other
storage means and a network interface or other networking
means. In an exemplary embodiment, the device includes a
data processing system 700 (e.g., one or more of the follow-
ing: microprocessors, application specific integrated cir-
cuits—ASICs, Field-programmable gate arrays (FPGAs),

Dec. 31, 2015

logic circuits, and other circuits), a data storage system 725
(e.g., non-volatile memory such as hard disk, flash memory or
other storage unit), and a network interface 720.

[0063] Data storage system 725 may include one or more
non-volatile storage devices and/or one or more volatile stor-
age device (e.g., random access memory (RAM)). In
instances where service 300 includes data processing system
700 and a microprocessor, computer readable program code
may be stored in a computer readable medium, such as, but
not limited to, magnetic media (e.g. a hard disk), optical
media (e.g., a DVD), memory devices (e.g., random access
memory), etc. In some embodiments, computer readable pro-
gram code is configured such that when executed by a pro-
cessor, the code causes the device to perform the steps
described above. In other embodiments, the device is config-
ured to perform steps described above without the need for
code.

[0064] Furthermore, network interface 720 may provide
means to connect to network 730. The network interface 720
is configured to enable communication with a communica-
tion network 730, using a wired and/or wireless connection.
In an exemplary embodiment, processing units are also con-
nected to network 730. Network 730 may be, for example, a
GPRS core network, the Internet, etc.

[0065] In embodiments where the service is a server, the
server 300 may include a network interface 720 for transmit-
ting and receiving data, a data processing system 700 with a
processor for controlling operation of the server device 300,
and a data storage system 725 for storing computer readable
instructions (i.e., software) and data. The network interface
720 and data storage system 725 are coupled to and commu-
nicate with the data processing system 700, which controls
their operation and the flow of data between them.

[0066] The methods described herein can be implemented
in the service 300 described above. In such embodiments, the
method actions are realized by means of computer readable
program code that is stored in the computer readable medium
of data storage system 725 and is executable by the data
processing system 700. Such computer readable program
code can be realized and provided in any suitable way, e.g.
installed during manufacturing, uploaded at a later time, etc.,
as the skilled person will appreciate. Moreover, the data stor-
age system 725, the data processing system 700, as well as the
network interface 720 comprise software and/or firmware
that, in addition to being configured such that it is capable of
implementing the methods to be described, is configured to
control the general operation of the service when operating in
a network. However, for the purpose of avoiding unnecessary
detail, no further description will be made in the present
disclosure regarding this general operation.

[0067] The above described embodiments pose several
advantages. For example, by using a service to automate the
resolution of complex dependencies between software pack-
ages, the number or errors are reduced when software is
deployed in complex data-center and/or cloud environments.
Additionally, the use of a service may simplify software man-
agement and deployment by automating the deployment of
new software by a common set of rules automatically map-
ping the new software onto specific processing units.

[0068] Furthermore, theuse ofa service may introduce new
possibilities in software integration. For example, new soft-
ware can be checked against a set of constraints that ensure
that the software is applicable for the intended system and that
the intended operating environment is compatible with the

US 2015/0378718 Al

software. Additionally, the use of a service may allow intri-
cate merging of software, thereby creating a synthesis of the
existing software and the new version.

[0069] Whilevarious embodiments of the present invention
have been described above, it should be understood that they
have been presented by way of example only, and not limita-
tion. Thus, the breadth and scope of the present invention
should not be limited by any of the above-described exem-
plary embodiments. Moreover, any combination of the
above-described elements in all possible variations thereofis
encompassed by the invention unless otherwise indicated
herein or otherwise clearly contradicted by context.

[0070] Additionally, while the processes described above
and illustrated in the drawings are shown as a sequence of
steps, this was done solely for the sake of illustration. Accord-
ingly, it is contemplated that some steps may be added, some
steps may be omitted, the order of the steps may be re-
arranged, and some steps may be performed in parallel.

1. A method for a software build and load process using a
compilation and deployment service comprising:

receiving, at said service, new software;

comparing, at said service, said received new software with

data in a database, wherein the data comprises active
software;

merging, at said service said new software and active soft-

ware into one or more load modules based on said com-
parison; and,

deploying said one or more load modules to one or more

target processing units.

2. The method of claim 1, wherein said new software is
source code packaged into a container, wherein

said comparing step further comprises checking said

source code on a source level against previously defined
restraints and said active software, and

said merging step further comprises merging and compil-

ing said source code with said active software at said
service.

3. The method of claim 1, wherein

said new software is compiled source code packaged into a

container with a new manifest describing the properties
of said compiled source code,
said data in said database comprises one or more existing
manifest files associated with said active software; and,

said comparing step further comprises extracting said new
manifest and checking said new manifest against pre-
defined constraints and said one or more existing mani-
fests.

4. The method of claim 1, wherein said new software is
intermediate format source code, wherein

said comparing step further comprises checking said inter-

mediate format source code against predefined con-
straints and said active software, and

said merging step further comprises fully compiling said

intermediate format source code.

5. The method of claim 4, wherein said merging step fur-
ther comprises merging said intermediate format source code
with said active software on a statement and expression level.

6. The method of claim 1, further comprising:

receiving, at said service, one or more code characteristics

of said received new software, wherein said database
data includes stored characteristics of said active soft-
ware; and,

Dec. 31, 2015

comparing, at said service the received new software code
characteristics with said stored active software code
characteristics as part of said data comparison.

7. The method of claim 1, wherein said target processing
units comprise one or more SGSN-nodes and load balancers,
said new software comprises SGSN software and new load
balancer rules, and said data comprises existing load balancer
rules.

8. The method of claim 7, wherein said comparing step
further comprises checking, using one or more load balancer
checkers and compliers, said new load balancer rules against
said existing load balancer rules, wherein said merging step
further comprises merging parts of said new load balancer
rules that are common with said existing load balancer rules
and reporting said new load balancer rules that conflict with
said existing load balancer rules.

9. The method of claim 7, wherein said comparing step
further comprises checking, at one or more SGSN checkers
and compliers, said SGSN software.

10. The method of claim 1, wherein said target processing
units are classified by one or more of processor architecture,
operating system, and/or intended use of said new software.

11. A system for a software build and load process using a
compilation and deployment service comprising:

a server;

a processor coupled to said server;

a memory coupled to said processor; and,

a database coupled electronically to said server;

wherein the processor is configured to:

receive new software;
compare said received new software with data in a data-
base, wherein the data comprises active software;
merge said new software and active software into one or
more load modules based on said comparison; and,
deploy said one or more load modules to one or more target
processing units.

12. The system of claim 11 wherein said new software is
source code packaged into a container, wherein said proces-
sor is further configured to:

check said source code on a source level against previously

defined restraints and said active software, and

merge and compile said source code with said active soft-

ware.

13. The system of claim 11, wherein said new software is
compiled source code packaged into a container with a new
manifest describing the properties of said compiled source
code and said dada in said databases comprises one or more
existing manifest files associated with said active software,
wherein said processor is further configured to:

extract said new manifest and check said new manifest

against predefined constraints and said one or more
existing manifests.

14. The system of claim 11, wherein said new software is
intermediate format source code, wherein said processor is
further configured to:

check said intermediate format source code against pre-

defined constraints and said active software, and

fully compile said intermediate format source code.

15. The system of claim 14, wherein said processor is
further configured to merge said intermediate format source
code with said active software on a statement and expression
level.

16. The system of claim 11, wherein said processor is
further configured to:

US 2015/0378718 Al

receive one or more code characteristics of said received
new software, wherein said database data includes
stored characteristics of said active software, and

compare the received new software code characteristics
with said stored active software code characteristics as
part of said data comparison.

17. The system of claim 11, wherein said target processing
units comprise one or more SGSN-nodes and load balancers,
said new software comprises SGSN software and new load
balancer rules, and said data comprises existing load balancer
rules.

18. The system of claim 17 further comprising one or more
load balancer checkers and compliers, wherein said processor
is further configured to:

check said new load balancer rules against said existing

load balancer rules;

merge parts of said new load balancer rules that are com-

mon with said existing load balancer rules; and,

report said new load balancer rules that conflict with said

existing load balancer rules.

19. The system of claim 17, further comprising one or more
SGSN checkers and compliers, wherein said processor is
further configured to:

check said new SGSN software using the one or more

SGSN checkers and compilers.

20. The system of claim 11, wherein said target processing
units are classified by one or more of processor architecture,
operating system, and/or intended use of said new software.

21. A non-transitory computer program product compris-
ing a computer readable medium storing computer readable
program code embodied in the medium, the computer pro-
gram product comprising:

program code for causing a device to receive new software;

program code for causing said device to compare said

received new software with data in a database, wherein
the data comprises active software;

Dec. 31, 2015

program code for causing said device to merge said new
software and said active software into one or more load
modules based on said comparison; and,

program code for causing said device to deploy said load

modules to one or more target processing units.

22. The non-transitory computer program product of claim
21, wherein said new software is source code packaged into a
container, said computer program product further compris-
ing:

program code for causing said device to check the source

code on a source level against previously defined
restraints and said active software, and

program code for causing said device to merge and compile

said source code with said active software.

23. The non-transitory computer program product of claim
21, wherein

said new software is compiled source code packaged into a

container with a new manifest describing the properties
of said compiled source code,

said data in said database comprises one or more existing

manifest files associated with said active software, and
said computer program product further comprises:
program code for causing said device to extract said new
manifest and check said new manifest against pre-
defined constraints and said one or more existing mani-
fests.

24. The non-transitory computer program product of claim
21, wherein said new software is intermediate format source
code and said computer program product further comprises:

program code for causing said device to check said inter-

mediate format source code against predefined con-
straints and said active software; and

program code for causing said device to merge said inter-

mediate format source code with said active software on
a statement and expression level.

#* #* #* #* #*

