US 20150381205A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0381205 A1

ZHANG et al. 43) Pub. Date: Dec. 31, 2015
(54) ENCODER FOR QUASI-CYCLIC (52) US.CL
LOW-DENSITY PARITY-CHECK CODES CPC HO3M 13/116 (2013.01); GO6F 11/1008
OVER SUBFIELDS USING FOURIER (2013.01)
TRANSFORM
(71) Applicant: SANDISK ENTERPRISE IP LLC, 67 ABSTRACT

DALLAS, TX (US
Us) A quasi-cyclic low-density parity-check (QC-LDPC)

(72) Inventors: XINMIAO ZHANG, SEATTLE, WA encoder includes a Fourier transform circuit configured to
(US); YING YU TAL, MOUNTAIN receive an input message and to generate a transformed mes-

VIEW, CA (US) sage based on the input message. The transformed message

includes leading symbols with indices corresponding to lead-

(73) Assignee: SANDISK ENTERPRISE IP LL.C ing elements of cyclotomic cosets of a finite field with respect

to a subfield. The QC-LDPC encoder further includes a

(21) Appl. No.: 14/316,128 matrix multiplier circuit configured to multiply the leading

(22) Filed: Jun. 26, 2014 symbols of the transformed message by leading symjbols ofa
transformed LDPC generator matrix to generate leading sym-
Publication Classification bols of transformed parity symbols associated with an LDPC
codeword. The QC-LDPC encoder is configured to provide
(51) Int.ClL the leading symbols of the transformed parity symbols to an
HO3M 13/11 (2006.01) inverse Fourier transform circuit to generate parity informa-
GOG6F 11/10 (2006.01) tion of the LDPC codeword.
100 N‘
Data Sterage Device
P 102
Memory {a.g. NAND flash memory) L— 104
L1 106
‘ ‘ ‘ Group of Storage Elements ’/
108 Slorage Rlement
120
Controlier 129
ECC Engine 124

QC-LDPC Encoder

138 Input Message
140

| Fourier Transform Circuit |
I
142 -
7 Transformed Message
144 0\
Generator Matrix Multiplication Circuit |

146 |
/ Transformed Parities /

148
| inverse Fourier Transform Cireuit |
[
150 =/ Parity information /

152 Circuitry

i L]
o iDPC Codewos /.

126
[Decoder |

Host Device

Patent Application Publication Dec. 31, 2015 Sheet 1 of 4 US 2015/0381205 A1
100 \‘
Data Storage Device
L— 102
Memory {e.g. NAND flash memory) L — 104
“
PaE 106
Group of Storage Elemenis
= 108 Storage Element
I L 120
Contralier 12 /]
ECC Engine s
QC-LDPC Encoder
138 W Input Message /;
140 ™y
Fourier Transform Circuit
I
442
4z 7 Transformed Message /
144 ™
Generator Malrix Multiplication Circuit
146 |
/ Transformed Parities /
148 v
Inverse Fourter Transform Circuit
I
150 =/ Parity Information /
152 — Circsitry =
]
807 LDRC Codeword /
| Decoder |

Host Device

132
130

Patent Application Publication Dec. 31, 2015 Sheet 2 of 4 US 2015/0381205 A1

{— 200

GF
ya 202 l ya 204 /‘206
F Generator mF-GF inverse e
. | Fourier m Mairixl Parlies | Fourier P
T | Transform o o | Transform on o
Muitiplication o
Parities -
5

’(_ 300

Y\

304 s Ay Denethes Pl P
Memary for Parity Columns of &

TR T

Shift 320
Reg. T soe
for L 312
mt
s 302
[...

NI

a
NZEAY

_

LT
N
d
N

g

N
L1\
1/
T
L/

Shiit register for mfGF Parities

[oe
<o
[e]

Patent Application Publication Dec. 31, 2015 Sheet 3 of 4 US 2015/0381205 A1

420\
403
e [
T / - 434
Tiad -. /"408
L T E; i 405
423 424 | [|40
! e
e 427 e
GFa0s ,
Ll l | s
Portion of mFGF 426 —™

443 __J/ Parity
444

Patent Application Publication Dec. 31, 2015 Sheet 4 of 4 US 2015/0381205 A1

500 \

502

Receive an input messags at a quasi-oyclic low-density parity check (QC-LDPC} encoder of 2
data storage device

v /‘ 504

(zenerate a transformed message based on the input message, whers the transformed message
includes leading symbols with indices corresponding 1o leading elements of cyciotomic cosels of a
finite field with respect o a subfield

v /‘ 506

Multiply the leading symbols of the transformed message by leading symbols of a ransformed
LDPC generator maleix to generale leading symbols of ransfermed parily symbols associated
with an LDPC eodeword

y /‘ 508

Provide the leading symbols of the transformed parity symbols to an inverse Fourier transform
circuit to generate parity information associated with the LDPC codeword

l /—5’10

Concatenate the parity information with the inpul message 1o generate the LDPC codeword
¥ p ¢ 4

US 2015/0381205 Al

ENCODER FOR QUASI-CYCLIC
LOW-DENSITY PARITY-CHECK CODES
OVER SUBFIELDS USING FOURIER
TRANSFORM

FIELD OF THE DISCLOSURE

[0001] The present disclosure is generally related to low-
density parity-check (LDPC) encoders.

BACKGROUND

[0002] Non-volatile data storage devices, such as universal
serial bus (USB) flash memory devices or removable storage
cards, have allowed for increased portability of data and soft-
ware applications. Flash memory devices can enhance data
storage density by storing multiple bits in each flash memory
cell. For example, multi-level cell (MLC) flash memory
devices provide increased storage density by storing 2 bits per
cell, 3 bits per cell, 4 bits per cell, or more. Although increas-
ing the number of bits per cell and reducing device feature
dimensions may increase the storage density of a memory
device, a bit error rate of data stored at the memory device
may also increase.

[0003] Error correction coding (ECC) is often used to cor-
rect errors that occur in data read from a memory device. Prior
to storage, data may be encoded by an ECC encoder to gen-
erate redundant information (e.g. “parity bits”) that may be
stored with the data as an ECC codeword. Conventionally,
encoding data to generate an ECC codeword, such as a quasi-
cyclic low-density parity-check (QC-LDPC) codeword,
includes multiplying the data with a generator matrix. A
systematic QC-LDPC generator matrix includes a parity por-
tion composed of circulant matrices. Because each row of a
circulant matrix is a cyclically shifted version of the previous
row of the circulant matrix, QC-LDPC encoding may be
simplified using a shift-register type encoder architecture.
However, due to a relatively high density of non-zero entries
in irregular locations in the parity portion of a QC-LDPC
generator matrix, QC-LDPC encoders conventionally
include a dedicated multiplier circuit for each column of the
parity portion for multiplying a message symbol with the
generator matrix in order to reduce encoding latency.

[0004] To reduce the number of multipliers used in a QC-
LDPC encoder, a Fourier transform of the generator matrix
over a finite field may be used. Because the Fourier transform
of'a circulant matrix is a diagonal matrix, non-zero entries are
only located along the matrix diagonal and a reduced number
of multipliers may be used, with one dedicated multiplier for
each block column of circulant matrices in the parity portion
of the generator matrix for multiplying a message symbol
with the generator matrix. However, multiplying an input
message (e.g., data to be encoded) with the Fourier transform
of the generator matrix results in an output codeword with
symbols that are elements of the finite field corresponding to
the transformed generator matrix (e.g., Galois field GF(2°)),
rather than of the input message (e.g., a “binary” message
with symbols that are elements of GF(2)).

[0005] Inorderto obtain a binary codeword using a Fourier
transform of the generator matrix of a QC-LDPC code, addi-
tional processing has been previously proposed that is applied
to the input message and to the transformed generator matrix.
However, the proposed additional processing includes per-
forming permutations of rows and columns of the trans-
formed generator matrix and also processing the input mes-

Dec. 31, 2015

sage by linearly combining together elements that appear in
different “blocks™ of the input message (i.e., sections of the
input message that correspond to different circulant matrices
in the generator matrix) to generate a mapped message. In
addition, a reverse permutation of the product of the mapped
message and the permuted transformed generator matrix is
required to obtain a codeword. The multiple permutations add
additional complexity and latency of encoding, and the mes-
sage mapping across multiple “blocks™ further increases
latency and storage requirements because large portions or all
of the input message have to be received and stored before
message mapping can be completed. Another drawback of the
previously proposed encoding process is that it is limited to
binary LDPC codes and is not applicable to non-binary LDPC
codes.

SUMMARY

[0006] A quasi-cyclic low-density parity-check (QC-
LDPC) encoder multiplies leading symbols of a Fourier
transform of an input message with leading symbols of a
Fourier transform of an LDPC generator matrix to generate
transformed leading parity symbols associated with a QC-
LDPC code. The leading symbols have indices corresponding
to leading elements of cyclotomic cosets of a finite field with
respect to a subfield. A reduced number of dedicated multi-
pliers may be used as compared to non-transform QC-LDPC
encoders without reduction of decoding throughput. Because
the Fourier transform of the QC-LDPC generator matrix is
used instead of a permuted version of the Fourier transform of
the QC-LDPC generator matrix, additional latency, complex-
ity, and buffering associated with post-multiplication reverse
permutation and inter-block message mapping may be
avoided. Additional reduction in computational complexity
may be achieved by exploiting properties of the cyclotomic
cosets of the finite field with respect to the sub-field. To
illustrate, a generator matrix multiplication operation may
include multiplying leading symbols of a transformed input
message (i.e., symbols having indices corresponding to lead-
ing elements of the cyclotomic cosets) with leading symbols
of'the generator matrix to generate a result that includes fewer
symbols than the input message. The QC-LDPC encoder may
conserve power because the inverse Fourier transform is car-
ried out only on the transformed parity symbols. Further, the
resulting QC-LDPC codes may be binary or non-binary.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a block diagram of a particular illustrative
embodiment of a system including a data storage device
having a quasi-cyclic low-density parity-check (QC-LDPC)
encoder;

[0008] FIG. 2 is a data flow diagram illustrating particular
example operations that may be performed by the QC-LDPC
encoder of FIG. 1;

[0009] FIG. 3 is a block diagram illustrating a particular
embodiment of a generator matrix multiplication circuit that
may be included in the QC-LDPC encoder of FIG. 1;

[0010] FIG. 4 is a diagram illustrating an embodiment of a
matrix multiplication operation that may be performed by a
generator matrix multiplication circuit that may be included
in the QC-LDPC encoder of FIG. 1; and

[0011] FIG. 5 is a flow chart of a particular illustrative
embodiment of a method of encoding data that may be per-
formed at the QC-LDPC encoder of FIG. 1.

US 2015/0381205 Al

DETAILED DESCRIPTION

[0012] Although certain examples are described herein
with reference to a data storage device, it should be appreci-
ated that techniques described herein are applicable to other
implementations. For example, information can be received
by a communication device (e.g., wirelessly or from a wired
network) alternatively or in addition to accessing information
from a memory. In this case, low-density parity-check
(LDPC) codes may be utilized to improve reliability of com-
munications (wired or wireless).

[0013] Conventionally, the encoding of LDPC codes is per-
formed according to c=mG, where c is the resulting code-
word, m is the message (e.g., a vector of message symbols)
and G is a generator matrix. A systematic generator matrix for
a quasi-cyclic low-density parity-check (QC-LDPC) code
can be expressed as:

10 ..0 Gop Gonte1 Eq 1
01 .0 Gip Gipiet
G=|.
00 ... I Gigo or Gictpoio
[0014] where 1 is the identity matrix and G, (O=i<k,

O=j<n-k) are circulant matrices of the same size as the iden-
tity matrix. The non-identity portion of G (i.e., the columns of
G that consist of G, ; submatrices) is also referred to as the
parity portion of G. In a circulant matrix, each row is the
previous row cyclically shifted by one position. Due to this
property of circulant matrices, the encoder of a QC-LDPC
code can be implemented by a shift-register architecture.
However, the matrices G, ; are relatively dense, and nonzero
entries in each row of G, ; appear at irregular locations. There-
fore, in conventional encoders a dedicated multiplier is used
for each parity column for multiplying a message symbol
with the generator matrix, and (n-k)e multipliers are used to
multiply a message symbol by G, when the dimension of each
submatrix is exe.

[0015] A Fourier-transformed method has been proposed
to reduce the encoder complexity of QC-LDPC codes. In the
following example, the size of the circulant submatrices in G
is e=(2"-1), where r is a positive integer, a is a primitive
element of finite field GF(2"), and V=[c."7] (0=i, j<e) is an exe
matrix over GF(2"), whose entry in the ith row and jth column
is a”. The Fourier transform of an e-tuple vector, w=[w0, w1,
..., w,=1], denoted as F(w), can be computed as:

11 1 1 Eq. 2
1 ot a2 a3

Fw)=wV=wll a? a* o°
L aeh gled e

[0016] The inverse of V is V-'=[a”], and the inverse Fou-
rier transform of a vector w is computed as

Dec. 31, 2015

1 1 1 1 Eq. 3
i o
Flw=wv! =w|l Z o &

1 a

L oft of? oo L

[0017] IfW isa circulant matrix and the first row of Wis w,
then

WE=v-wr=diag(d,d,, .. ., d,|) Eq. 4:
[0018] where [d,, dy, ..., d,] equals F(w). The diagonal

matrix W¥" is called the Fourier transform of the circulant
matrix W.V~® is defined as a kxk diagonal array of V', and
V@ is defined as an nxn diagonal array of V. The Fourier
transform of G is defined as G*=V*®GV™, Transformed
encoding in the proposed Fourier-transformed method is per-
formed according to:

=V =GPy y-1em, Eq. 5:

[0019] The codeword ‘c’ computed using Eq. 5 is different
from mG. However, ¢ also satisfies the equality cH”=0, where
H is the parity-check matrix of the LDPC code. Therefore, the
codeword c computed using Eq. 5 is also a valid codeword. In
the transformed generator matrix G, the first ke columns are
an identity matrix, and the last (n-k)e columns for the parity
bits are diagonal matrices of dimension exe. As a result,
multiplying a message symbol with G¥ may be performed
using n-k multipliers over GF(2"), as compared to the (n—k)e
multipliers of non-transformed conventional encoders.
[0020] Evenifm is over a subfield of GF(2"), the codeword
¢ computed according to Eq. 5 is over GF(2") (i.e., ¢ includes
symbols that are elements of GF(2")), unless conjugacy con-
straints are satisfied in each block of e symbols in the trans-
formed codeword c¢”. The proposed Fourier-transformed
method focuses on the case that m is binary. An e-tuple vector
w is binary if and only if the symbols in its Fourier transform
d=F(w) satisfy the conjugacy constraints:

d(2i)e:di2 Eq. 6:

where (21), denotes 2i modulo e. To make the encoder output
binary for binary messages, the proposed Fourier-trans-
formed method includes permuting G*" and carrying out map-
pings on m. The rows of G are permuted according to

n,,..=[0,e2e,...,(k-1)el,e+l2e+],. .. (k-1)e+l,e-
1,2e-1, ... ke-1]. Eq.7:

[0021] Thepermutation results inrow e of G becoming the
second row after permutation, row 2e of G* becoming the
third row after permutation, etc. The columns of G are also
permuted in a similar way. The row-and-column-permuted
transformed generator matrix GZ*™ is zero except for e non-
zero matrices of dimension kxn in the diagonal. In addition,
an e-tuple vector formed by the entries in the same row and
column inside each of these e submatrices satisfies the con-
jugacy constraints, such that the conjugacy constraints are
satisfied in an “inter-block” manner. The input message m is
also divided into e blocks of k messages and mapped to m to
satisfy the conjugacy constraints in an inter-block manner.
The indexes of the elements that satisfy the conjugacy con-
straints form cyclotomic cosets {i, (2i)e, (2%)e, ..., (2™ 'i)e}.
The cardinality of each cyclotomic coset, 1),, is a divisor of .
Using {B, o Bs.1» - - - Byt @8 @ basis of the subfield GF(2™),

US 2015/0381205 Al

the message mapping for each cyclotomic coset and p=0, 1, .
.,M,~-1,7=0, 1, . . ., k-1 is performed according to:

o _ -1 oM .
ity =™ BrM el ers)” - Eq. 8:

[0022] MG ™ satisfies the conjugacy constraints in an inter-
block manner. If reversely permuted, G would become a
vector that satisfies the conjugacy constraints in an intra-
block manner, i.e. each block of e consecutive symbols sat-
isfies the conjugacy constraints. As a result, a binary code-
word can be derived as follows:

=R gl p GFm p1m), Fq. 9

[0023] It should be noted that the codeword ¢ computed
according to Eq. 9 is different from the codeword mG gener-
ated according to conventional non-Fourier transformed
methods. However, the codeword ¢ computed according to
Eq. 9 is a valid codeword.

[0024] Despite the benefit of the proposed Fourier-trans-
formed encoding of Eq. 9—that the number of multipliers for
computing MG~ is reduced as compared to the number of
multipliers used for calculating mG—the Fourier-trans-
formed encoding according to Eq. 9 has several drawbacks.
For example, the permutation of G* and the reverse permu-
tation of ¢ complicate their storage and access. Also, inter-
block message mapping is needed to derive m according to
the conjugacy constraints of Eq. 8. Because the indices in a
cyclotomic coset can be far apart, a large number of blocks of
input messages have to be buffered such that a sufficient
portion of the input message m is available to generate each
symbol of the mapped message m. In addition to the message
mapping of Eq. 8, a reverse mapping is also needed in a
decoder to recover the original message m. The overhead
introduced by the message mapping of Eq. 8 may offset any
savings resulting from the less-complicated multiplication of
M by G of the proposed Fourier-transform encoding
method according to Eq. 9. In addition, the proposed Fourier-
transform encoding method according to Eq. 9 is limited to
binary LDPC codes.

[0025] Referring to FIG. 1, a particular illustrative embodi-
ment of a system is depicted and generally designated 100.
The system 100 includes a data storage device 102 and a host
device 130. The data storage device 102 and the host device
130 may be coupled via a connection, such as a bus or a
wireless connection. The data storage device 102 may be
embedded within the host device 130, such as in accordance
with a Joint Electron Devices Engineering Council (JEDEC)
Solid State Technology Association Universal Flash Storage
(UFS) configuration. Alternatively, the data storage device
102 may be removable from the host device 130. As an
example, the data storage device 102 may be removably
coupled to the host device 130 in accordance with a remov-
able universal serial bus (USB) configuration.

[0026] The data storage device 102 may include a memory
104. The memory 104 may include a non-volatile memory,
such as a non-volatile NAND flash memory or a non-volatile
resistive random access memory (ReRAM). The memory 104
may have a three-dimensional (3D) memory configuration.
As an illustrative example, the memory 104 may include one
or more layers having a first orientation and may further
include one or more elements, such as vertical columns, hav-
ing a second orientation perpendicular to (or approximately
perpendicular to) the first orientation to enable cross-layer
coupling of storage elements of the one or more layers. Alter-
natively, the memory 104 may have another configuration,
such as a two-dimensional (2D) memory configuration. In a

Dec. 31, 2015

particular implementation, the memory 104 is a non-volatile
memory having a three-dimensional (3D) memory configu-
ration that is monolithically formed in one or more physical
levels of arrays of memory cells having an active area dis-
posed above a silicon substrate. The data storage device 102
may include circuitry, such as read/write circuitry at the
memory 104, that is associated with operation of the memory
cells.

[0027] The memory 104 may include one or more physical
pages of storage elements (e.g., word lines of storage ele-
ments). The physical pages may be included in one or more
blocks (e.g., an erase group of word lines) of the memory 104.
The memory 104 may include multiple blocks of physical
pages. The physical pages may each store data. To illustrate,
one or more of the physical pages may correspond to a physi-
cal page of single-level cell (SLC) storage elements that can
be programmed using to store threshold voltages indicating
bit values of a logical page, such as in connection with a
one-bit-per-cell (“X1”) configuration. Alternatively, one or
more of the physical pages may correspond to a physical page
of multi-level cell (MLC) storage elements that can be pro-
grammed to store threshold voltages indicating bit values of
multiple logical pages, such as in connection with a two-bit-
per-cell (“X2”) configuration or a three-bit-per-cell (“X3”)
configuration, as illustrative examples. The memory 104
includes a representative group 106 of storage elements, such
as a word line of storage elements. The group 106 includes a
representative storage element 108, such as a flash storage
element.

[0028] The data storage device 102 may further include a
controller 120. The memory 104 and the controller 120 may
be operationally coupled via a connection, such as a bus. The
controller 120 may include an error correcting code (ECC)
engine 122 that includes a quasi-cyclic low-density parity-
check (QC-LDPC) encoder 124 and a decoder 126.

[0029] The QC-LDPC encoder 124 includes a Fourier
transform circuit 140, a generator matrix multiplication cir-
cuit 144, an inverse Fourier transform circuit 148, and cir-
cuitry 152. An output of the Fourier transform circuit 140 may
be coupled to an input of the generator matrix multiplication
circuit 144. An output of the generator matrix multiplication
circuit 144 may be coupled to an input of the inverse Fourier
transform circuit 148. An output of the inverse Fourier trans-
form circuit 148 may be coupled to an input of the circuitry
152. The circuitry 152 may include selection logic, such as a
multiplexer (MUX).

[0030] The controller 120 is configured to receive data and
instructions from the host device 130 and to send data to the
host device 130. The controller 120 is configured to send data
and commands to the memory 104 and to receive data from
the memory 104. For example, the controller 120 is config-
ured to send data and a write command to cause the memory
104 to store the data to a specified address of the memory 104,
such as a physical address corresponding to the group 106.
The controller 120 is configured to send a read command to
read data from a specified address of the memory 104, such as
a physical address corresponding to the group 106.

[0031] The host device 130 may correspond to a mobile
telephone, a computer, (e.g., a laptop, a tablet, or a notebook
computer), a music player, a video player, a gaming device or
console, an electronic book reader, a personal digital assistant
(PDA), a portable navigation device, another electronic
device, or a combination thereof. The host device 130 may
communicate via a host controller, which may enable the host

US 2015/0381205 Al

device 130 to communicate with the data storage device 102.
The host device 130 may operate in compliance with a
JEDEC Solid State Technology Association industry specifi-
cation, such as an embedded MultiMedia Card (eMMC)
specification or a Universal Flash Storage (UFS) Host Con-
troller Interface specification. The host device 130 may oper-
ate in compliance with one or more other specifications, such
as a Secure Digital (SD) Host Controller specification as an
illustrative example. Alternatively, the host device 130 may
communicate with the data storage device 102 in accordance
with another communication protocol.

[0032] Inoperation, the controller 120 may receive data to
be stored at the memory 104. For example, the controller 120
may receive a request for write access from the host device
130 to write user data 132 at the memory 104. In response to
receiving the user data 132, the controller 120 may input the
user data 132 to the QC-LDPC encoder 124 to encode the user
data 132. The QC-LDPC encoder 124 may encode the data
using a QC-LDPC encoding technique. For example, the
controller 120 may input the user data 132 at the QC-LDPC
encoder 124, and the QC-LDPC encoder 124 may encode the
data using a QC-LDPC encoding technique to generate an
LDPC codeword, such as a representative LDPC codeword
160. The LDPC codeword 160 may be formed of binary
symbols or non-binary symbols.

[0033] To generate the LDPC codeword 160, the ECC
engine 122 may initiate an encoding process by inputting an
input message 138 at the QC-LDPC encoder 124. The input
message 138 may be based on the user data 132. For example,
the input message 138 may correspond to a portion of the user
data 132 that is to be stored at a location of the memory 104,
such as at the group 106.

[0034] The Fourier transform circuit 140 may be config-
ured to receive the input message 138 and to generate a
transformed message 142 based on the input message 138.
For example, the Fourier transform circuit 140 may perform
a Fourier transform operation using the input message 138 to
generate the transformed message 142.

[0035] The generator matrix multiplication circuit 144 may
be responsive to the transformed message 142. For example,
the generator matrix multiplication circuit 144 may multiply
the leading symbols of the transformed message 142 corre-
sponding to cyclotomic cosets with the leading symbols in the
transformed LDPC generator matrix to generate the leading
symbols of parity information, such as transformed parities
146.

[0036] The QC-LDPC encoder 124 may be configured to
provide the transformed parities 146 to the inverse Fourier
transform circuit 148. The inverse Fourier transform circuit
148 may be configured to generate parity information 150,
such as by performing an inverse Fourier transform operation
using the transformed parities 146 to generate the parity infor-
mation 150.

[0037] Because the generator matrix multiplication circuit
144 is configured to multiply the leading symbols of the
transformed message 142 with the leading symbols in the
transformed LDPC generator matrix, the transformed parities
146 may include only the leading symbols of the parities. The
QC-LDPC encoder 124 may be further configured to generate
the non-leading symbols of the transformed parities. For
example, in some implementations, the QC-LDPC encoder
124 may be configured to generate the non-leading trans-
formed parity symbols based on the (leading) transformed
parities 146. In this case, the QC-LDPC encoder 124 may be

Dec. 31, 2015

configured to input both the leading and non-leading symbols
of the transformed parities to the inverse Fourier transform
circuit 148. Here, the inverse Fourier transform circuit 148
may be configured to perform a conventional inverse Fourier
transform operation to generate the parity information 150.
[0038] In another example implementation, only the lead-
ing symbols of the transformed parities 146 are input to the
inverse Fourier transform circuit 148. For example, the
inverse Fourier transform circuit 148 may implement an effi-
cient architecture for an inverse Fourier transform using the
transformed parities 146. To illustrate, the inverse Fourier
transform circuit 148 may operate on the leading parity sym-
bols. In such implementations, direct computation of parity
values corresponding to the non-leading symbols prior to the
inverse Fourier transform circuit 148 may be omitted.
Regardless of whether only the leading symbols or both the
leading and non-leading symbols are input to the inverse
Fourier transform circuit 148, the outputs of the inverse Fou-
rier transform circuit 148 are blocks of e symbols.

[0039] The circuitry 152 may be responsive to the parity
information 150. The circuitry 152 may be configured to
combine the parity information 150 with the encoder input
message (i.e., the input message 138 in the example of FIG. 1)
to generate the LDPC codeword 160. For example, the cir-
cuitry 152 may be configured to concatenate the parity infor-
mation 150 with the input message 138 to generate the LDPC
codeword 160. In the example of FIG. 1, the Fourier trans-
form circuit 140 and the circuitry 152 are each configured to
receive the input message 138.

[0040] The Fourier transform circuit 140 may be config-
ured to receive k blocks of symbols of the input message 138,
where k indicates a positive integer number. In a particular
embodiment, the inverse Fourier transform circuit 148 is con-
figured to receive n-k blocks of symbols of the transformed
parities 146, where n indicates a positive integer number that
is greater than k. Because n may be only slightly larger thank
in certain applications (e.g., in connection with a high code
rate encoder), applying an inverse Fourier transform to n-k
blocks of symbols may reduce computational complexity of
an encoder and may conserve power as compared to applying
an inverse Fourier transform to n blocks of symbols.

[0041] The QC-LDPC encoder 124 may output the LDPC
codeword 160, such as by outputting the LDPC codeword 160
to data latches of the memory 104. The memory 104 may
store the LDPC codeword 160, such as at the group 106. The
group 106 can be accessed by the controller 120, such as in
response to a request for read access received from the host
device 130. In this case, the controller 120 may cause read/
write circuitry of the memory 104 to sense the group 106 to
generate a word that is received at by the controller 120. The
received word can be input to the decoder 126 to correct one
or more errors that may be present in the received word.
Decoding the received word may generate user data, such as
the user data 132, which the controller 120 may provide to the
host device 130.

[0042] The example of FIG. 1 illustrates QC-LDPC encod-
ing techniques that simplify operation of an encoder. For
example, because a Fourier transform of a QC-LDPC genera-
tor matrix is used instead of a permuted version of the Fourier
transform of the QC-LDPC generator matrix, latency, com-
plexity, and buffering associated with post-multiplication
reverse permutation and inter-block message mapping may
be avoided. Further, the example of FIG. 1 illustrates that
encoder operation can be simplified using a transformed rep-

US 2015/0381205 Al

resentation of an input message instead of using a mapped
message. In this case, an inverse Fourier transform may be
applied to a parity portion of an LDPC codeword without
applying the inverse Fourier transform to a systematic portion
of'the LDPC codeword, which may enable power reduction in
some applications (e.g., to reduce a die size of an integrated
circuit that includes the QC-LDPC encoder 124).

[0043] To further illustrate, the QC-LDPC encoder 124 has
reduced complexity as compared to the transformed Fourier
encoding scheme based on Eq. 9. For an input message hav-
ing symbols over a subfield GF(2?), codeword symbols
should also be over GF(2?) in order to save storage space.
However, if the size of the circulant submatrix in the genera-
tor matrix G is e=2"-1, then entries in the transformed gen-
erator matrix G* are symbols over GF(2"). An e=2"-1 tuple
vector w is over subfield GF(27) if and only if the symbols in
its Fourier transform d=F(w) satisfy the following conjugacy
constraints:

ey, ==d7. Eq. 10:

[0044] To make the encoding output over GF(2?), the input
to the inverse Fourier transform should satisfy the conjugacy
constraints. Since the entries in each of the diagonal subma-
trices of G* already satisfy the conjugacy constraints, a mes-
sage vector to be multiplied with G should satisfy the con-
jugacy constraints. One technique may include mapping an
input message m to a mapped message m that satisfies the
conjugacy constraints using a basis.

[0045] Another vector that satisfies the conjugacy con-
straints is m”, which may be derived by applying a Fourier
transform to each block of e symbols in m. In this example,
m”G* also satisfies the conjugacy constraints, and encoding
may be performed according to

c=mFGEy-10,

[0046] An encoding process that uses Eq. 11 may result in
a unique codeword c¢ that differs from codewords generated
using other techniques. However, the codeword ¢ is a valid
codeword. To prove that the codeword c is valid, it is sufficient
to show that cH=0, where H indicates the parity-check
matrix of the code, and where H satisfies GH?=0. Because
GF=v-1RGy® ,
CHT=mF GF V=100 T =3 F =100 G o0 =10 T =y F -1
wWGH™=0.

Eq. 11:

Eq. 12:

[0047] The first ke block column of the transformed gen-
erator matrix G is also an identity matrix. Therefore, the first
k blocks of e symbols in ¢ can be computed according to:

TV 1 © = PO p-10 =

[0048] As a result, the Fourier transform and inverse Fou-
rier transform for computing the systematic part of the code-
word are canceled out, and the message symbols directly
become the systematic part. The inverse Fourier transform
may be applied only to parity symbols. Thus, by performing
the inverse Fourier transform only to parity symbols, an
inverse Fourier transform may be applied to n-k blocks of e
symbols (instead of to n blocks of e symbols). Advanta-
geously, the resulting codeword may be decoded using a
conventional decoding technique (e.g., the decoder 126 of
FIG. 1 may be configured to operate in accordance with a
conventional LDPC decoding process).

[0049] FIG. 2 is a data flow diagram illustrating particular
example operations 200 of an encoder. The operations 200
may be performed by the QC-LDPC encoder 124 of FIG. 1.

Eq. 13:

Dec. 31, 2015

[0050] The operations 200 may include a Fourier transform
operation 202 using an input message m. Performing the
Fourier transform operation 202 may generate a transformed
message m”". In a particular embodiment, the input message
corresponds to the input message 138, the transformed mes-
sage corresponds to the transformed message 142, and the
Fourier transform operation 202 is performed by the Fourier
transform circuit 140 of FIG. 1.

[0051] The operations 200 may further include a generator
matrix multiplication operation 204 that multiplies leading
symbols of the transformed message with leading symbols of
a transformed LDPC generator matrix G* to generate trans-
formed leading parity symbols of parity information p asso-
ciated with an LDPC codeword ¢ (i.e., to generate trans-
formed leading parity symbols of m”G"). In a particular
embodiment, the transformed leading parity symbols are the
same as the transformed parities 146, the LDPC codeword is
the same as the LDPC codeword 160, and the generator
matrix multiplication operation 204 is performed by the gen-
erator matrix multiplication circuit 144. In a particular
embodiment, the transformed leading parity symbols are
combined with transformed non-leading parity symbols. In
this case, both the transformed leading parity symbols and the
transformed non-leading parity symbols may be input to a
conventional inverse Fourier transform stage, which may cor-
respond to the inverse Fourier transform circuit 148 of FIG. 1.
In other examples, only the transformed leading parity sym-
bols are input to the inverse Fourier transform stage. In this
case, the inverse Fourier transform circuit 148 of FIG. 1 may
be configured to implement an efficient architecture for
inverse Fourier transform using the transformed leading par-
ity symbols without using the non-leading parity symbols.
[0052] To further illustrate, the operations 200 may further
include an inverse Fourier transform operation 206. For
example, the transformed leading parity symbols may be
inversely transformed by the inverse Fourier transform circuit
148 to generate the parity information p. The parity informa-
tion may correspond to the parity information 150. The
inverse Fourier transform operation 206 may correspond to a
conventional inverse Fourier transform operation that uses
the leading and non-leading symbols of parity information. In
another example, the inverse Fourier transform operation 206
corresponds to an efficient inverse Fourier transform using
only the transformed leading parity symbols as an input.
[0053] The operations 200 may further include a concat-
enation operation 208. For example, the parity information
may be concatenated with a systematic portion s to generate
the LDPC codeword. The systematic portion may correspond
to the input message, as illustrated in the example of FIG. 2.
In a particular embodiment, the concatenation operation 208
is performed by the circuitry 152.

[0054] The example of FIG. 2 illustrates QC-LDPC encod-
ing techniques that simplify operation of an encoder. For
example, latency, complexity, and buffering associated with
post-multiplication reverse permutation and inter-block mes-
sage mapping may be avoided using the techniques of FIG. 2.
Further, the example of FIG. 2 illustrates that encoder opera-
tions may utilize a transformed representation of an input
message instead of using a mapped message. Avoiding use of
message mapping techniques may enable simplified circuitry
in some applications.

[0055] FIG. 3 shows a partial-parallel architecture 300 of
the generator matrix multiplication circuit 144 of FIG. 1. A
memory 302 stores data corresponding to leading non-zero

US 2015/0381205 Al

elements of the parity columns of the transformed LDPC
generator matrix G7. A shift register 304 is configured to
receive symbols of the transformed message m” and to pro-
vide transformed message symbols via outputs 310-314 to a
group of multiplier circuits including a first representative
multiplier 320 and a second representative multiplier 322.
Outputs of multipliers are coupled to first inputs of adders,
such as a representative adder 324. Second inputs of the
adders and outputs of the adders are coupled to a shift register
306 for storing the transformed leading parity symbols of
m”G”. The shift register 306 may include multiple shift reg-
isters.

[0056] In a particular implementation, there are I' outputs
310-314 so that in each clock cycle, I' leading symbols of m”
are simultaneously multiplied with all the nonzero entries in
the corresponding rows of G”. I' may be selected so that the
throughput of the generator matrix multiplication circuit 144
matches the rate of receiving encoder input symbols in order
to reduce an amount of buffers. For example, when the num-
ber of input symbols received at a time is 1=8 and e=63, a
block of symbols of the input message are received over
[63/8]=8 clock cycles. For reduced buffering, matrix multi-
plication involving the transformed symbols in a block should
be completed over 8 clock cycles. In the case of p=2 and r=6,
there are 23 cyclotomic cosets so that the multiplications of
23 leading symbols are completed in 8 clock cycles. Hence,
the number of outputs 310-314 of the shift register 304 can be
determined as I'=[23/8]=3.

[0057] Since the parity part of G* consists of n-k block
columns of diagonal submatrices, n-k multipliers may be
implemented for each leading symbol of m” output from the
shift register 304. The intermediate products of m* and G* for
all parity columns may be stored in the shift register 306. In
every clock cycle, the output of each multiplier is accumu-
lated to the intermediate result belonging to the same column
of G”. For example, in each clock cycle, the output of the
multiplier 320 is added to the accumulated value for the
particular parity column from the shift register 306 storing the
transformed leading parity symbols of m”G” and the accu-
mulated result is stored into the shift register 306. The regis-
ters of the shift register 306 for the transformed leading parity
symbols of m“G* may be shifted by I' positions each time, so
that the connections between the multipliers and registers
may remain unchanged.

[0058] Components of the QC-LDPC encoder 124 may be
configured to match the rate of receiving encoder input sym-
bols, while reducing a number and size of buffers and regis-
ters used for storage during encoding. For example, if 1 sym-
bols (I<e) of the input message m are input at a time, the 1
symbols may be stored into a shift register inside the Fourier
transform circuit 140 that is configured to hold e symbols over
GF(27). After e symbols of the input message m are collected,
the Fourier transform is carried out over the e symbols to
generate the leading symbols of the corresponding trans-
formed message. In the generator matrix multiplication cir-
cuit 144, the shift register 304 of FIG. 3 holding the leading
symbols of m” may be sized to store e'r-bits, where ¢' is the
number of cyclotomic cosets. The shift register 304 may shift
out I' leading symbols of m” at a time (e.g., each clock cycle)
that are multiplied with the entries of the parity part of the
transformed generator matrix G*" using the architecture 300
of FIG. 3. To reduce a size of the memory 302, the leading
symbols in each diagonal submatrix of G* may be stored in
the memory 302 without storing non-leading symbols of G

Dec. 31, 2015

As explained previously, to avoid data build-up, ' may be
chosen so that the number of clock cycles for the QC-LDPC
encoder 124 to receive a block of the input message m equals
the number of clock cycles it takes for the generator matrix
multiplication circuit 144 to complete multiplication corre-
sponding to the block of the input message m, i.e., [e/l]=]e"/
1.

[0059] The outputs of the generator matrix multiplication
circuit 144 are parity symbols of a transformed codeword.
The parity portions of the transformed codeword may be
inversely transformed to generate the parity information 150,
and the parity information 150 may be routed to the circuitry
152. The input message m is also routed to the circuitry 152 to
become systematic symbols of the LDPC codeword 160. In
some implementations, the non-leading (transformed) sym-
bols associated with the parity information 150 may be gen-
erated prior to the inverse Fourier transform circuit 148, and
the inverse Fourier transform circuit 148 may compute the
parity information 150 using a conventional inverse Fourier
transform circuit architecture. In other implementations, the
inverse Fourier transform circuit 148 may implement an effi-
cient architecture for inverse Fourier transform over subfields
that operates on the leading parity symbols. In such imple-
mentations, there is no need to compute the non-leading
symbols from those leading symbols. In either example, the
output of the inverse Fourier transform circuit 148 may
include blocks of e symbols.

[0060] Compared to a conventional LDPC encoder that
multiplies a message vector with a generator matrix, an
encoder in accordance with the present disclosure can be
implemented using substantially fewer multipliers. Although
an additional Fourier transform and inverse Fourier transform
are implemented in the encoder as compared to a conven-
tional LDPC encoder, the Fourier transform and inverse Fou-
rier transform can be implemented by hardware architectures
that have small silicon area and relatively low complexity by
taking advantage of conjugacy constraints. Overall, the QC-
LDPC encoder 124 of FIG. 1 enables significant complexity
reduction as compared to a conventional LDPC encoder. Fur-
ther, as noted with reference to FIG. 1, a conventional decoder
may be implemented to decode codewords generated by the
QC-LDPC encoder 124 (e.g., no additional circuitry or addi-
tional operations are required in the decoder 126).

[0061] To further illustrate, for a (2016, 1764) non-binary
QC-LDPC code over subfield GF(2?) whose generator matrix
has circulants of dimension 63x63, the QC-LDPC encoder
124 of FIG. 1 may use only 55% of the logic gates (based on
architectural analysis) and slightly larger memory to achieve
the same throughput as compared to a conventional LDPC
encoder. For a (4064, 2921) binary QC-LDPC code whose
generator matrix consists of 127x127 circulants, the QC-
LDPC encoder 124 of FIG. 1 may be implemented having a
gate count that is 52% less than a gate count of a conventional
LDPC encoder.

[0062] FIG. 4 depicts an illustrative multiplication opera-
tion 420 that may be performed by the generator matrix
multiplication circuit 144 of FIG. 1. The multiplication
operation 420 illustrates a transformed message m’ 422 as
including multiple blocks of symbols, such as a representa-
tive block 403. A Fourier transform of a generator matrix G©
404 includes an identity portion I and a parity portion 405.
The parity portion 405 includes multiple diagonal matrices,
such as a representative diagonal matrix 408. Each of the

US 2015/0381205 Al

diagonal matrices has a dimension matching the size of the
blocks of the transformed message m” 422.

[0063] In FIG. 4, the multiplication operation 420 omits
multiplication of symbols of the transformed message m” 422
and elements of the Fourier transform of the generator matrix
G” 404 that correspond to non-leading elements in each
cyclotomic coset. The multiplication operation 420 may uti-
lize symbols of the transformed message m” 422 correspond-
ing to leading elements, illustrated as an unshaded portion
423 of the transformed message m” 422, and may omit sym-
bols of the transformed message m’ 422 corresponding to
non-leading elements, illustrated as a shaded portion 424 of
the transformed message m” 422. In addition, as described
with respect to FIG. 3, each diagonal matrix of the parity
portion 405 may include matrix elements corresponding to
leading elements, illustrated as unshaded matrix elements
(such as a representative unshaded element 433), and may
omit matrix elements corresponding to non-leading elements,
illustrated as shaded matrix elements (such as a representative
shaded element 434).

[0064] The resulting portion of m“G* 426 includes sym-
bols corresponding to leading elements of the parity portion
(e.g., an unshaded portion 443) but excludes the systematic
portion and also excludes symbols corresponding to non-
leading elements of the parity portion (e.g., a shaded portion
444). Because fewer multiplications are performed as com-
pared to a conventional LDPC encoding multiplication opera-
tion and also as compared to a transformed encoder that
operates according to Eq. 9, a smaller number of dedicated
multipliers may be used without reducing the throughput of
the overall encoder.

[0065] Referring to FIG. 5, a particular embodiment of a
method 500 is depicted. The method 500 may be performed in
a data storage device, such as the data storage device 102 of
FIG. 1. For example, the method 500 may be performed by
the QC-LDPC encoder 124 of FIG. 1.

[0066] The method 500 may include receiving an input
message at a QC-LDPC encoder of a data storage device, at
502. To illustrate, the input message may correspond to the
input message 138 or the input message m of FIG. 2. The
QC-LDPC encoder may correspond to the QC-LDPC
encoder 124, and the data storage device may correspond to
the data storage device 102, as illustrative examples.

[0067] The method 500 may further include generating a
transformed message based on the input message, at 504. For
example, the transformed message may correspond to the
transformed message 142 or the transformed message m” of
FIG. 2. The transformed message includes leading symbols
with indices corresponding to leading elements of cyclotomic
cosets of a finite field with respect to a subfield.

[0068] The method 500 may further include multiplying
the leading symbols of the transformed message by leading
symbols of a transformed LDPC generator matrix to generate
leading symbols of transformed parity symbols associated
with an LDPC codeword, at 506. To illustrate, the trans-
formed LDPC generator matrix may correspond to the trans-
formed LDPC generator matrix G* of FIG. 2. The LDPC
codeword may correspond to the LDPC codeword 160 of
FIG. 1 or the LDPC codeword ¢ of FIG. 2. The leading
symbols of the transformed parity symbols may correspond
to the transformed parities 146 of FIG. 1 or the transformed
leading parity symbols of m”G* described with reference to
FIG. 2, as illustrative examples.

Dec. 31, 2015

[0069] The transformed message may further include non-
leading transformed message symbols. In a particular
embodiment, the matrix multiplier circuit does not multiply
the non-leading symbols of the transformed message with
any symbols of the transformed L.DPC generator matrix. For
example, using the partial-parallel architecture 300 of FIG. 3,
non-leading symbols of the transformed message m” may be
omitted (e.g., not selected for operations) during multiplica-
tion performed by the generator matrix multiplication circuit
144 of FIG. 1.

[0070] The method 500 may further include providing the
leading symbols of the transformed parity symbols to an
inverse Fourier transform circuit to generate parity informa-
tion, at 508. The inverse Fourier transform circuit may corre-
spond to the inverse Fourier transform circuit 148 of FIG. 1.
The parity information may correspond to the parity informa-
tion 150 of FIG. 1 or the parity information p of FIG. 2.
[0071] In an illustrative implementation, the inverse Fou-
rier transform circuit is responsive to both the transformed
leading parity symbols and transformed non-leading parity
symbols. In other examples, only the transformed leading
parity symbols are input to the inverse Fourier transform
stage, and the inverse Fourier transform stage is configured to
implement an efficient architecture for inverse Fourier trans-
form using the transformed leading parity symbols. In any of
the foregoing illustrative examples, the parity information
generated by the inverse Fourier transform would be the
same.

[0072] The method 500 may further include combining the
parity information with a systematic portion to generate the
LDPC codeword, such as by concatenating the parity infor-
mation with the systematic portion to generate the LDPC
codeword, at 510. The systematic portion may correspond to
the input message. For example, the systematic portion may
correspond to the input message 138 and/or the systematic
portion s of FIG. 2. The parity information may be combined
with the systematic portion by the circuitry 152 of FIG. 1.
[0073] In a particular embodiment, the transformed mes-
sage is generated by a Fourier transform circuit, such as the
Fourier transform circuit 140. The transformed leading parity
symbols may be generated by a matrix multiplier circuit, such
as the generator matrix multiplication circuit 144. The Fou-
rier transform circuit may receive all blocks of symbols of the
input message, and the inverse Fourier transform circuit may
receive only parity symbols (e.g., only leading parity sym-
bols, or both leading and non-leading parity symbols). The
Fourier transform circuit may be configured to receive k
blocks of symbols of the input message, and the inverse
Fourier transform circuit may be configured to receive n-k
blocks of symbols of the transformed leading parity symbols,
where k indicates a positive integer number and n indicates a
positive integer number that is greater than k.

[0074] Techniques described herein may be applicable to
binary or non-binary LDPC techniques. For example, the
method 500 of FIG. 5 is not limited to binary codewords. In
some implementations, the LDPC codeword is formed of
binary symbols. In other implementations, the LDPC code-
word may be formed of non-binary symbols.

[0075] Although various components depicted herein are
illustrated as block components and described in general
terms, such components may include one or more micropro-
cessors, state machines, or other circuits configured to enable
the QC-LDPC encoder 124 of FIG. 1 to perform encoding to
generate a codeword. For example, the QC-LDPC encoder

US 2015/0381205 Al

124 may represent physical components, such as hardware
controllers, state machines, logic circuits, or other structures,
to enable the QC-LDPC encoder 124 to perform a Fourier
transform operation, matrix multiplication, and an inverse
Fourier transform operation as described with reference to
FIG. 1.

[0076] The QC-LDPC encoder 124 may be implemented
using a microprocessor or microcontroller programmed to
receive an input message, to provide the input message to
Fourier transform stage (e.g., as described with respect to the
Fourier transform circuit 140), to route the transformed mes-
sage to a matrix multiplication stage to generate a trans-
formed parity portion of a codeword (e.g., as described with
respect to generator matrix multiplication circuit 144), and to
provide the transformed parity portion to an inverse Fourier
transform stage (e.g., as described with respect to the inverse
Fourier transform circuit 148).

[0077] In aparticular embodiment, the QC-LDPC encoder
124 includes a processor executing instructions that are stored
at the memory 104. Alternatively, or in addition, instructions
that are executed by the processor may be stored at a separate
memory location that is not part of the memory 104, such as
at a read-only memory (ROM) that may be included in the
controller 120.

[0078] In aparticular embodiment, the data storage device
102 may be implemented in a portable device configured to be
selectively coupled to one or more external devices. However,
in other embodiments, the data storage device 102 may be
attached to or embedded within one or more host devices,
such as within a housing of a host communication device. For
example, the data storage device 102 may be within a pack-
aged apparatus such as a wireless telephone, a tablet com-
puter, a laptop computer, a personal digital assistant (PDA), a
gaming device or console, a portable navigation device, or
other device that uses internal non-volatile memory. In a
particular embodiment, the data storage device 102 may
include a non-volatile memory, such as a three-dimensional
(3D) memory, a flash memory (e.g., NAND, NOR, Multi-
Level Cell (MLC), a Divided bit-line NOR (DINOR)
memory, an AND memory, a high capacitive coupling ratio
(HiCR), asymmetrical contactless transistor (ACT), or other
flash memories), an erasable programmable read-only
memory (EPROM), an electrically-erasable programmable
read-only memory (EEPROM), a read-only memory (ROM),
a one-time programmable memory (OTP), or any other type
of memory.

[0079] Semiconductor memory devices include volatile
memory devices, such as dynamic random access memory
(“DRAM”) or static random access memory (“SRAM”)
devices, non-volatile memory devices, such as resistive ran-
dom access memory (“ReRAM?”), electrically erasable pro-
grammable read only memory (“EEPROM”), flash memory
(which can also be considered a subset of EEPROM), ferro-
electric random access memory (“FRAM”), magnetoresis-
tive random access memory (“MRAM?”), and other semicon-
ductor elements capable of storing information. Each type of
memory device may have different configurations. For
example, flash memory devices may be configured in a
NAND or a NOR configuration.

[0080] The memory devices can be formed from passive
and/or active elements, in any combinations. By way of non-
limiting example, passive semiconductor memory elements
include ReRAM device elements, which in some embodi-
ments include a resistivity switching storage element, such as

Dec. 31, 2015

an anti-fuse, phase change material, etc., and optionally a
steering element, such as a diode, etc. Further by way of
non-limiting example, active semiconductor memory ele-
ments include EEPROM and flash memory device elements,
which in some embodiments include elements containing a
charge storage region, such as a floating gate, conductive
nanoparticles, or a charge storage dielectric material.

[0081] Multiple memory elements may be configured so
that they are connected in series or so that each element is
individually accessible. By way of non-limiting example,
flash memory devices in a NAND configuration (NAND
memory) typically contain memory elements connected in
series. A NAND memory array may be configured so that the
array is composed of multiple strings of memory in which a
string is composed of multiple memory elements sharing a
single bit line and accessed as a group. Alternatively, memory
elements may be configured so that each element is individu-
ally accessible, e.g., a NOR memory array. NAND and NOR
memory configurations are exemplary, and memory elements
may be otherwise configured.

[0082] The semiconductor memory elements located
within and/or over a substrate may be arranged in two or three
dimensions, such as a two dimensional memory structure or a
three dimensional memory structure.

[0083] In a two dimensional memory structure, the semi-
conductor memory elements are arranged in a single plane or
a single memory device level. Typically, in a two dimensional
memory structure, memory elements are arranged in a plane
(e.g., in an x-z direction plane) which extends substantially
parallel to a major surface of a substrate that supports the
memory elements. The substrate may be a wafer over or in
which the layer of the memory elements are formed or it may
be a carrier substrate which is attached to the memory ele-
ments after they are formed. As a non-limiting example, the
substrate may include a semiconductor such as silicon.
[0084] The memory elements may be arranged in the single
memory device level in an ordered array, such as in a plurality
of'rows and/or columns. However, the memory elements may
be arrayed in non-regular or non-orthogonal configurations.
The memory elements may each have two or more electrodes
or contact lines, such as bit lines and word lines.

[0085] A three dimensional memory array is arranged so
that memory elements occupy multiple planes or multiple
memory device levels, thereby forming a structure in three
dimensions (i.e., in the X, y and z directions, where the y
direction is substantially perpendicular and the x and z direc-
tions are substantially parallel to the major surface of the
substrate).

[0086] As a non-limiting example, a three dimensional
memory structure may be vertically arranged as a stack of
multiple two dimensional memory device levels. As another
non-limiting example, a three dimensional memory array
may be arranged as multiple vertical columns (e.g., columns
extending substantially perpendicular to the major surface of
the substrate, i.e., in the y direction) with each column having
multiple memory elements in each column. The columns may
be arranged in a two dimensional configuration, e.g., in an X-z
plane, resulting in a three dimensional arrangement of
memory elements with elements on multiple vertically
stacked memory planes. Other configurations of memory ele-
ments in three dimensions can also constitute a three dimen-
sional memory array.

[0087] By way of non-limiting example, in a three dimen-
sional NAND memory array, the memory elements may be

US 2015/0381205 Al

coupled together to form a NAND string within a single
horizontal (e.g., x-z) memory device levels. Alternatively, the
memory elements may be coupled together to form a vertical
NAND string that traverses across multiple horizontal
memory device levels. Other three dimensional configura-
tions can be envisioned wherein some NAND strings contain
memory elements in a single memory level while other
strings contain memory elements which span through mul-
tiple memory levels. Three dimensional memory arrays may
also be designed in a NOR configuration and in a ReRAM
configuration.

[0088] Typically, in a monolithic three dimensional
memory array, one or more memory device levels are formed
above a single substrate. Optionally, the monolithic three
dimensional memory array may also have one or more
memory layers at least partially within the single substrate. As
anon-limiting example, the substrate may include a semicon-
ductor such as silicon. In a monolithic three dimensional
array, the layers constituting each memory device level of the
array are typically formed on the layers of the underlying
memory device levels of the array. However, layers of adja-
cent memory device levels of a monolithic three dimensional
memory array may be shared or have intervening layers
between memory device levels.

[0089] Then again, two dimensional arrays may be formed
separately and then packaged together to form a non-mono-
lithic memory device having multiple layers of memory. For
example, non-monolithic stacked memories can be con-
structed by forming memory levels on separate substrates and
then stacking the memory levels atop each other. The sub-
strates may be thinned or removed from the memory device
levels before stacking, but as the memory device levels are
initially formed over separate substrates, the resulting
memory arrays are not monolithic three dimensional memory
arrays. Further, multiple two dimensional memory arrays or
three dimensional memory arrays (monolithic or non-mono-
lithic) may be formed on separate chips and then packaged
together to form a stacked-chip memory device.

[0090] Associated circuitry is typically required for opera-
tion of the memory elements and for communication with the
memory elements. As non-limiting examples, memory
devices may have circuitry used for controlling and driving
memory elements to accomplish functions such as program-
ming and reading. This associated circuitry may be on the
same substrate as the memory elements and/or on a separate
substrate. For example, a controller for memory read-write
operations may be located on a separate controller chip and/or
on the same substrate as the memory elements.

[0091] One of skill in the art will recognize that this inven-
tion is not limited to the two dimensional and three dimen-
sional exemplary structures described but cover all relevant
memory structures within the spirit and scope of the invention
as described herein and as understood by one of skill in the art.
[0092] The illustrations of the embodiments described
herein are intended to provide a general understanding of the
various embodiments. Other embodiments may be utilized
and derived from the disclosure, such that structural and
logical substitutions and changes may be made without
departing from the scope of the disclosure. This disclosure is
intended to cover any and all subsequent adaptations or varia-
tions of various embodiments.

[0093] The above-disclosed subject matter is to be consid-
ered illustrative, and not restrictive, and the appended claims
are intended to cover all such modifications, enhancements,

Dec. 31, 2015

and other embodiments, which fall within the scope of the
present disclosure. Thus, to the maximum extent allowed by
law, the scope of the present invention is to be determined by
the broadest permissible interpretation of the following
claims and their equivalents, and shall not be restricted or
limited by the foregoing detailed description.

What is claimed is:

1. A data storage device comprising:

a non-volatile memory; and

a quasi-cyclic low-density parity-check (QC-LDPC)

encoder configured to encode data for storage into the
non-volatile memory, the QC-LDPC encoder including:
aFourier transform circuit configured to receive an input
message and to generate a transformed message based
on the input message, wherein the transformed mes-
sage includes leading symbols with indices corre-
sponding to leading elements of cyclotomic cosets of
a finite field with respect to a subfield; and
a matrix multiplier circuit configured to multiply the
leading symbols of the transformed message by lead-
ing symbols of a transformed LDPC generator matrix
to generate leading symbols of transformed parity
symbols associated with an LDPC codeword,
wherein the QC-LDPC encoder is configured to provide
the leading symbols of the transformed parity symbols
to an inverse Fourier transform circuit to generate parity
information of the LDPC codeword.

2. The data storage device of claim 1, wherein the trans-
formed message further includes non-leading symbols, and
wherein the matrix multiplier circuit does not multiply the
non-leading symbols of the transformed message with any
symbols of the transformed LDPC generator matrix.

3. The data storage device of claim 1, further comprising
circuitry configured to combine the parity information with
the input message to generate the LDPC codeword.

4. The data storage device of claim 3, wherein the Fourier
transform circuit and the circuitry are each configured to
receive the input message.

5. The data storage device of claim 3, wherein the circuitry
includes selection logic configured to concatenate the input
message and the parity information to generate the LDPC
codeword.

6. The data storage device of claim 1, wherein the Fourier
transform circuit is configured to receive all blocks of sym-
bols of the input message, and wherein the inverse Fourier
transform circuitis configured to receive only parity symbols.

7. The data storage device of claim 1, wherein the LDPC
codeword is formed of binary symbols.

8. The data storage device of claim 1, wherein the LDPC
codeword is formed of non-binary symbols.

9. The data storage device of claim 1, further comprising a
controller that is operationally coupled to the non-volatile
memory, wherein the controller includes the QC-LDPC
encoder.

10. The data storage device of claim 1, wherein the non-
volatile memory has a three-dimensional (3D) configuration
that is monolithically formed in one or more physical levels of
arrays of memory cells having an active area above a silicon
substrate, and further comprising circuitry associated with
operation of the memory cells.

11. A method comprising:

at a quasi-cyclic low-density parity-check (QC-LDPC)

encoder of a data storage device, performing:
receiving an input message;

US 2015/0381205 Al

generating a transformed message based on the input
message, wherein the transformed message includes
leading symbols with indices corresponding to lead-
ing elements of cyclotomic cosets of a finite field with
respect to a subfield;

multiplying the leading symbols of the transformed
message by leading symbols of a transformed LDPC
generator matrix to generate leading symbols of trans-
formed parity symbols associated with an LDPC
codeword; and

providing the leading symbols of the transformed parity
symbols to an inverse Fourier transform circuit to
generate parity information of the LDPC codeword.

12. The method of claim 11, further comprising combining
the parity information with the input message to generate the
LDPC codeword.

13. The method of claim 12, wherein the input message is
concatenated with the input message to generate the LDPC
codeword.

14. The method of claim 11, wherein the transformed mes-
sage is generated by a Fourier transform circuit, and wherein
the leading symbols of the transformed parity symbols are
generated by a matrix multiplier circuit.

15. The method of claim 14, wherein the transformed mes-
sage further includes non-leading symbols, and wherein the

Dec. 31, 2015

matrix multiplier circuit does not multiply the non-leading
symbols of the transformed message with any symbols of the
transformed LDPC generator matrix.

16. The method of claim 14, wherein the Fourier transform
circuit receives all blocks of symbols of the input message,
and wherein the inverse Fourier transform circuit receives
only parity symbols.

17. The method of claim 11, wherein the LDPC codeword
is formed of binary symbols.

18. The method of claim 11, wherein the LDPC codeword
is formed of non-binary symbols.

19. The method of claim 11, wherein the data storage
device further includes a controller and a non-volatile
memory that is operationally coupled to the controller, and
wherein the controller includes the QC-LDPC encoder.

20. The method of claim 19, wherein the non-volatile
memory has a three-dimensional (3D) configuration that is
monolithically formed in one or more physical levels of
arrays of memory cells having an active area above a silicon
substrate, and wherein the non-volatile memory further
includes circuitry associated with operation of the memory
cells.

