US 20240184621A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2024/0184621 A1l

JAYAKUMAR et al. 43) Pub. Date: Jun. 6, 2024
(54) FIRMWARE APPARATUS, DEVICE, (52) US. CL
METHOD AND COMPUTER PROGRAM CPC GO6F 9/485 (2013.01); GOG6F 9/4825
) (2013.01); GO6F 9/52 (2013.01)
(71) Applicant: Intel Corporation, Santa Clara, CA
US
s 57 ABSTRACT
(72) Inventors: Sarathy JAYAKUMAR, Portland, OR
(US); Zijian YOU, Shanghai (CN); Various examples relate to a firmware apparatus (10), firm-
Karthik GOPALAKRISHNAN, ware device, firmware method, and computer program for a
Folsom, CA (US); Erik KANEDA, computer system (100) comprising processing circuitry
Hood River, OR (US); Dan (105), and to a corresponding computer system (100). The
WILLIAMS, Forest Grove, OR (US) firmware apparatus (10) comprises an interface (12) for
accessing functionality of the firmware apparatus (10) from
(21) Appl. No.: 18/570,132 an operating system of the computer system (100). The
) firmware apparatus (10) comprises control circuitry (14),
(22) PCT Filed: Dec. 9, 2021 configured to identify one or more processing functionalities
) being supported by the processing circuitry (105) of the
(86) PCT No.: PCT/CN2021/136645 computer system (100), provide information on the one or
§ 371 (c)(1), more processing functionalities via the interface (12) to a
(2) Date: Dec. 14, 2023 user mode interface of the operating system of the computer
Publication Classificati system (100), and provide access to the one or more pro-
ublication Classification cessing functionalities for application programs being
(51) Int. CL executed in the operation system, the access being based on
GO6F 9/48 (2006.01) the information on the one or more processing functionali-
GO6F 9/52 (2006.01) ties provided to the user mode interface.
l"""""'""““""“""""""""""""""“"""""'“M""”"””"”!
i
!
. COMPUTER |
f
; SYSTEM |
i
: e R A P TO . i
| » PROCESSING
! |
/|| INTERFACE . CIRCUITRY ™~105
i Ll e o o e e e e e o m mm mm -
!
| } 12 !
, CONTROL ;
! -
| CIRCUITRY - 14 :
i
Ph- - - a5 Lo - ! i
: i STORAGE ! '
I r |
. CIRCUITRY 16 |
________________ X

Patent Application Publication Jun. 6,2024 Sheet 1 of 6 US 2024/0184621 A1

' COMPUTER |
| SYSTEM |
| » PROCESSING !
E INTERFACE ¢ . CIRCUITRY 105
| | 12 i
[CONTROL |, |
|| __CIRCUITRY |14 |
N Lo oo ‘
" "STORAGE ~ | i
|L__CIRCUITRY _:]-16 §
R T (¢
Fig. 1a

IDENTIFYING ONE OR MORE SUPPORTED
PROCESSING FUNCTIONALITIES
| 110
PROVIDING INFORMATION ON THE ONE OR MORE
SUPPORTED PROCESSING FUNCTIONALITIES

I 120
PROVIDING ACCESS TO THE ONE OR MORE
PROCESSING FUNCTIONALITIES
140
Fig. 1b
| APPLICATION PROGRAM I
101

>
.....{
m
2
>
O
m
O
O
prd
._.i
Py
@)
™~
o
A
O
=
_i
A
-

Patent Application Publication Jun. 6, 2024 Sheet 2 of 6 US 2024/0184621 A1

IDENTIFYING ONE OR MORE SUPPORTED
PROCESSING FUNCTIONALITIES
| 110
PROVIDING INFORMATION ON THE ONE OR MORE
SUPPORTED PROCESSING FUNCTIONALITIES

______________________ l o _.“-120
S EXPOSING ONE OR MORE SERVICES !
I S F<1s)
" EXPOSING A HANDLER FOR TIMER EVENTS 1
R .
- EXPOSING AN INTERRUPT HANDLER
__ 134
I EXPOSING A SERVICE FOR MULTI- |
| PROCESSING SYNCHRONIZATION |
___ 136
| EXPOSING A SERVICE FOR HANDLING |
| MUTUALLY EXCLUSIVE ACCESS |
__ "\ 1363
______EXPOSING A SEMAPHORE SERVICE !
. 136b
PROVIDING ACCESS TO THE ONE OR MORE
PROCESSING FUNCTIONALITIES
__ 140
f____________HOSTINGADRIVER !
__ 142
1 YIELDING CONTROL !
__ - 144
" TPROVIDING TRANSLATION FUNCTIONALITY 1
N V'Y
S PERFORMING ONLINE COMPILATION
148

US 2024/0184621 Al

Jun. 6,2024 Sheet 3 of 6

Patent Application Publication

slajpueH
NS JO ner
ut sisipueH Wyld

m‘_m%cm_._
WYd

[2UIY SO
yum Sugoeiaiu|
0€C ~

JUAS dIN &

1dnuslu| 4

JOWI] 4

PISIA «

:SaJIARS |BUUS) SO

Z b4

0L ~

I3ALQ
aspug INYd

02Z ~ ﬁ

<

UOIJBD0AU
INSQ uo peseq
sjepo abesn
RoebaT sessalppy

vV

i
UOLEJOAU| 10241

J3NIP SO

AN HALS
AT |
(Wsa™ 8-9)
uoiZoydo SPOYIdIA IdDV
NYd

IdDV Y3noJ4yljuoedoAu|

AT

JBALIP SO

Patent Application Publication Jun. 6, 2024 Sheet 4 of 6 US 2024/0184621 A1

Hardware
Manufacturer | ™ 310

/ l \\‘\Enabfngcompiiers

GCC MS VC LLVM ICC
- 322 324 \- 326 \-328
\ \Compi!er upgrade
Developer 1 Developer 2
l 332 334 \ Coding and compiling
Recompiled binary Recompiled binary
- 342 344
\ / Deploy
Hardware
\- 350
Fig. 3a

Hardware Manufacturer ~_ 310

Online
\Wentaﬁon

Enable or
Upgrade Developer 1 Developer 2 | 334
through a 332
PRM Module \ \Soding and compiling
Recompiled binary, | Recompiled binary
Deploy
Hardware

350

Fig. 3b

Patent Application Publication Jun. 6, 2024 Sheet 5 of 6 US 2024/0184621 A1

Hardware Manufacturer

- 410

Enabling
426

RTOS Driver

Linux Driver

Windows Driver

424

422

"

Hardware

- 430
Fig. 4a

Hardware Manufacturer

410
Enabling l

BIOS PRM Module

Hardware

e
Fig. 4b 0

Patent Application Publication Jun. 6, 2024 Sheet 6 of 6 US 2024/0184621 A1

Hardware Manufacturer

510 | Intermediate binary codes
Erab \- 540
nabling U
Online compilation

RTOS Driver 526

Linux Driver 524
: "\ 530
Windows Driver 522
|
Driver & compiler Compiled native codes
running on host CPU deployed on GPU
Host CPU Device Hardware / GPU
552 \- 554
Fig. 5a
Hardware Manufacturer
510 | Intermediate binary codes
Enabling @ 540
10 Online compilation
BIOS PRM Module - 530
!
PRM running on host Compiled native codes
CPU deployed on GPU
Host CPU Device Hardware / GPU
552 - 554

Fig. 5b

US 2024/0184621 Al

FIRMWARE APPARATUS, DEVICE,
METHOD AND COMPUTER PROGRAM

BACKGROUND

[0001] The computer industry frequently introduces new
features and enhances performance of existing features
through the means of new instructions such as Streaming
Single Instruction Multiple Data Extensions (SSE),
Advanced Vector extensions (ACX), PCommit (an instruc-
tion to commit data writes queued in memory subsystem to
persistent memory/storage), etc.) or new architecture
designs for CPUs (Central Processing Units), GPUs (Graph-
ics Processing Units), AS<ICs (Application-Specific Inte-
grated Circuits), FPGAs (Field-Programmable Gate Arrays
etc.

BRIEF DESCRIPTION OF THE FIGURES

[0002] Some examples of apparatuses and/or methods will
be described in the following by way of example only, and
with reference to the accompanying figures, in which
[0003] FIG. 1a shows a block diagram of an example of a
basic input/output system apparatus or device, and of a
computer system comprising such a basic input/output sys-
tem apparatus or device

[0004] FIGS. 156 and 1¢ show flow charts of examples of
a basic input/output system method;

[0005] FIG. 1d shows a schematic diagram of an example
illustrating different components of the computer system;
[0006] FIG. 2 shows a schematic diagram of an example
of a PRM Architecture with a PRM Handler;

[0007] FIG. 3a shows an example of a process for
enabling a new instruction;

[0008] FIG. 35 shows an example of an enhanced process
for enabling a new instruction;

[0009] FIG. 4a shows a schematic diagram of a process for
enabling a new system function;

[0010] FIG. 4b shows a schematic diagram of an enhanced
process for enabling a new system function;

[0011] FIG. 5a shows a schematic diagram of an example
of a process for enabling new graphics hardware; and
[0012] FIG. 55 shows a schematic diagram of an example
of'an enhanced process for enabling new graphics hardware.

DETAILED DESCRIPTION

[0013] Some examples are now described in more detail
with reference to the enclosed figures. However, other
possible examples are not limited to the features of these
embodiments described in detail. Other examples may
include modifications of the features as well as equivalents
and alternatives to the features. Furthermore, the terminol-
ogy used herein to describe certain examples should not be
restrictive of further possible examples.

[0014] Throughout the description of the figures same or
similar reference numerals refer to same or similar elements
and/or features, which may be identical or implemented in
a modified form while providing the same or a similar
function. The thickness of lines, layers and/or areas in the
figures may also be exaggerated for clarification.

[0015] When two elements A and B are combined using an
“or”, this is to be understood as disclosing all possible
combinations, i.e. only A, only B as well as A and B, unless
expressly defined otherwise in the individual case. As an
alternative wording for the same combinations, “at least one

Jun. 6, 2024

of A and B” or “A and/or B” may be used. This applies
equivalently to combinations of more than two elements.
[0016] If a singular form, such as an” and “the” is
used and the use of only a single element is not defined as
mandatory either explicitly or implicitly, further examples
may also use several elements to implement the same
function. If a function is described below as implemented
using multiple elements, further examples may implement
the same function using a single element or a single pro-
cessing entity. It is further understood that the terms
“include”, “including”, “comprise” and/or “comprising”,
when used, describe the presence of the specified features,
integers, steps, operations, processes, elements, components
and/or a group thereof, but do not exclude the presence or
addition of one or more other features, integers, steps,
operations, processes, elements, components and/or a group
thereof.

[0017] Inthe following description, specific details are set
forth, but examples of the technologies described herein
may be practiced without these specific details. Well-known
circuits, structures, and techniques have not been shown in
detail to avoid obscuring an understanding of this descrip-
tion. “An example/example,” “various examples/examples,”
“some examples/examples,” and the like may include fea-
tures, structures, or characteristics, but not every example
necessarily includes the particular features, structures, or
characteristics.

[0018] Some examples may have some, all, or none of the
features described for other examples. “First,” “second,”
“third,” and the like describe a common element and indi-
cate different instances of like elements being referred to.
Such adjectives do not imply element item so described
must be in a given sequence, either temporally or spatially,
in ranking, or any other manner. “Connected” may indicate
elements are in direct physical or electrical contact with each
other and “coupled” may indicate elements co-operate or
interact with each other, but they may or may not be in direct
physical or electrical contact.

[0019] As used herein, the terms “operating”, “executing”,
or “running” as they pertain to software or firmware in
relation to a system, device, platform, or resource are used
interchangeably and can refer to software or firmware stored
in one or more computer-readable storage media accessible
by the system, device, platform, or resource, even though the
instructions contained in the software or firmware are not
actively being executed by the system, device, platform, or
resource.

[0020] The description may use the phrases “in an
example/example,” “in examples/examples,” “in some
examples/examples,” and/or “in various examples/ex-
amples,” each of which may refer to one or more of the same
or different examples. Furthermore, the terms “comprising,”
“including,” “having,” and the like, as used with respect to
examples of the present disclosure, are synonymous.
[0021] FIG. 1a shows a block diagram of an example of a
basic input/output system (firmware) apparatus 10 or device
100, and of a computer system 100 comprising such a
firmware apparatus 10 or firmware device 10. As shown in
FIG. 1a, the computer system further comprises processing
circuitry 105.

[0022] The firmware apparatus 10 comprises circuitry that
is configured to provide the functionality of the firmware
apparatus 10. For example, the firmware apparatus 10 com-
prises an interface 12, processing circuitry 14 and (optional)

PRI
a,

US 2024/0184621 Al

storage circuitry 16. For example, the processing circuitry
14 may be coupled with the interface 12 and with the storage
circuitry 16. For example, the processing circuitry 14 may
be configured to provide the functionality of the firmware
apparatus (10), in conjunction with the interface 12 (for
exchanging information, e.g., with an operating system, an
application and/or processing circuitry 105 of the computer
system 100) and the storage circuitry (for storing informa-
tion) 16. In particular, the interface 12 is suitable for
accessing functionality of the firmware apparatus from an
operating system of the computer system. Likewise, the
firmware device 10 may comprise means that is/are config-
ured to provide the functionality of the firmware device 10.
The components of the firmware device 10 are defined as
component means, which may correspond to, or imple-
mented by, the respective structural components of the
firmware apparatus 10. For example, the firmware device 10
comprises means for controlling 14, which may correspond
to or be implemented by the processing circuitry 14, means
for communicating 12, which may correspond to or be
implemented by the interface 12, and (optional) means for
storing information 16, which may correspond to or be
implemented by the storage circuitry 16.

[0023] The control circuitry 14 or means for controlling 14
is configured to identify one or more processing function-
alities being supported by the processing circuitry of the
computer system. The control circuitry 14 or means for
controlling 14 is configured to provide information on the
one or more processing functionalities via the interface to a
user mode interface of the operating system of the computer
system. The control circuitry 14 or means for controlling 14
is configured to provide access to the one or more processing
functionalities for application programs being executed in
the operation system. The access is based on the information
on the one or more processing functionalities provided to the
user mode interface.

[0024] FIGS. 156 and 1¢ show flow charts of examples of
a corresponding firmware method for a firmware 10 (e.g.,
the firmware apparatus or device 10) the computer system
100. The firmware method comprises identifying 110 the
one or more processing functionalities being supported by
the processing circuitry of the computer system. The firm-
ware method comprises providing 120 the information on
the one or more processing functionalities, via the interface
for accessing functionality of the firmware 10 from the
operating system of the computer system to the user mode
interface of the operating system of the computer system.
The firmware method comprises providing 140 access to the
one or more processing functionalities for application pro-
grams being executed in the operation system. The access is
based on the information on the one or more processing
functionalities provided to the user mode interface. For
example, the method may be performed by the computer
system 100, e.g., by the firmware (apparatus or device) 10 of
the computer system.

[0025] In the following, the functionality of the firmware
apparatus 10, the firmware device 10, the firmware method
and of a corresponding computer program is introduced in
connection with the apparatus 10. Features introduced in
connection with the firmware apparatus 10 may be likewise
included in the corresponding device 10, method and com-
puter program.

[0026] Various examples of the present disclosure relate to
a firmware apparatus, firmware device, firmware method

Jun. 6, 2024

and corresponding computer program. In general, the firm-
ware being referred to is the firmware of the computer
system 100, e.g., the Basic Input Output System (BIOS) or
Unified Extensible Firmware Interface (UEFI) of the com-
puter system. The above-referenced firmware apparatus or
device may correspond to the firmware, or at least to a
component of the firmware. Accordingly, the method may be
performed by the firmware or by a component of the
firmware. In other words, the firmware apparatus may be
implemented as component of the firmware of the computer
system, e.g., as component of the basic input output system
or the unified extensible firmware interface of the computer
system. In this context, the term firmware is used for a class
of software that is used to control the hardware of the
computer system, acting as interface between the hardware
of the computer system and an operating system of the
computer system. In general, the firmware of the computer
system may be immutable during operation and may be
changed by “flashing” (i.e., replacing the firmware by over-
writing a flash storage or boot image) the firmware of the
computer system. For example, the firmware apparatus or
device may be implemented as part of, or extend, the
Platform Runtime Mechanism (PRM) being implemented in
the BIOS/UEFI of some computer system. For example, the
proposed concept may extend the PRM beyond management
functionality, providing access to capabilities of the process-
ing circuitry of the computer system.

[0027] The proposed concept is used to provide access to
processing functionalities provided by processing circuitry
of the computer system. In general, the processing circuitry
may be any processing circuitry of the computer system. For
example, the processing circuitry may be or comprise one or
more Central Processing Units (CPUs) and/or one or more
Graphics Processing Units (GPUs) of the computer system.
Other types of processing circuitry may be supported as
well, such as accelerator circuitry, such as accelerator cir-
cuitry for accelerating machine-learning processes, a Field-
Programmable Gate Array (FPGA) or an Application Spe-
cific Integrated Circuit (ASIC). In other words, the
processing circuitry may be accelerator circuitry, an FPGA,
or an ASIC. Correspondingly, the one or more processing
functionalities may correspond to functionalities that are
provided by the respective processing circuitry. For
example, the one or more processing functionalities may be
functionalities that relate to the processing of data. For
example, with respect to a CPU or GPU, the one or more
processing functionalities may be one or more processor
instructions or graphics processing instructions being pro-
vided by an instruction set of the CPU or GPU. With respect
to an FPGA, the one or more processor instructions may be
one or more instructions for loading and applying a con-
figuration of the FPGA. More generally, the one or more
processing functionalities may be one or more processing
instructions that are supported by the processing circuitry. In
general, these one or more processing functionalities or one
or more processing instructions may be invoked by corre-
sponding opcodes (operation codes). In the present scenario
it is assumed, that the one or more processing functionalities
are only recently introduced by the hardware manufacturer
providing the processing circuitry. Therefore, software being
built to run on the computer system might be compiled using
a compiler that is not yet updated to support the one or more
processing functionalities.

US 2024/0184621 Al

[0028] Initially, the control circuitry is configured to iden-
tify the one or more processing functionalities being sup-
ported by the processing circuitry of the computer system. In
general, the firmware, e.g. the BIOS or UEFI, may be aware
of the capabilities of the processing circuitry, e.g., to be
compatible with the processing circuitry. For example, the
firmware may be updated to support the processing circuitry.
After identifying the type/model of the circuitry, information
on the one or more processing functionalities of the pro-
cessing may be retrieved from a storage of the firmware
circuitry, e.g. from a storage device 16 of the storage
circuitry, to identify the one or more processing function-
alities being supported by the processing circuitry of the
computer system. Alternatively or additionally, the control
circuitry may be configured to obtain the information on the
one or more processing functionalities from the processing
circuitry. For example, the control circuitry may be config-
ured to query the processing circuitry to indicate, for each of
a plurality of processing functionalities, whether the pro-
cessing functionality is supported by the processing cir-
cuitry. For example, the plurality of processing functionali-
ties may depend on the type of processing circuitry, e.g.,
depend on whether the processing circuitry is/comprises a
CPU, GPU, FPGA etc. For example, the one or more
processing functionalities being supported may be process-
ing functionalities that are introduced in a current or recently
(e.g., one previous to the current) generation of the process-
ing circuitry.

[0029] The information on the one or more processing
functionalities is provided to a user-mode interface of the
operating system of the computer system. This user-mode
interface is accessible to application programs being
executed as part of the operating system, and thus provides
an interface between the application programs and the
firmware apparatus (via the interface 12 of the firmware
apparatus). The firmware apparatus, in turn, provides access
to the one or more processing functionalities of the process-
ing circuitry. Consequently, the application programs may
access the one or more processing functionalities via the
user-mode interface and the firmware apparatus. The pro-
posed layer stack is shown in FIG. 1d. FIG. 1d shows a
schematic diagram of an example illustrating different com-
ponents of the computer system. An application program
101 access the user-mode interface 102 that is provided by
the operating system 103 (albeit in user mode). The user-
mode interface 102 communicated, via the operating system
103, with the interface of the firmware apparatus 10. The
interface 12 of the firmware apparatus is coupled with the
control circuitry of the firmware apparatus 14, which pro-
vides access to the one or more processing functionalities of
the processing circuitry 105, thus providing access to the one
or more processing functionalities of the processing circuitry
105 for the application program 101 via the user-mode
interface 102, the operating system 103 and the interface of
the firmware apparatus 10. The entire layer stack is com-
prised by the computer system 100.

[0030] The application program 101 directly interacts with
the user-mode interface 102. This user-mode interface 102
operates, as the name indicates, in user mode (and thus in a
user space portion of virtual memory). In other words, the
user mode interface may be provided to the application
programs in user mode. Accordingly, the application pro-
gram 101 can access the one or more processing function-
alities of the processing circuitry 105 without switching to

Jun. 6, 2024

kernel mode. For example, the user mode interface may be
implemented as a library or application programming inter-
face (API) that may be accessed by the application pro-
grams, e.g., by name of the processing functionality. Accord-
ingly, the user mode interface may be implemented as a
library that is accessible to the application programs in user
space. The control circuitry is configured to provide the
information on the one or more processing functionalities
via the interface to the user mode interface of the operating
system of the computer system. For example, the user mode
interface may expose the information on the one or more
processing functionalities towards the application programs,
e.g., as listing of supported one or more processing func-
tionalities. The control circuitry may provide a listing of the
one or more supported functionalities to the user mode
interface. The application programs may invoke the one or
more processing functionalities based on the provided infor-
mation on the one or more processing functionalities, e.g.,
by calling the desired processing functionality by name or
reference provided by the user mode interface.

[0031] The user mode interface interacts with the interface
12 of the firmware apparatus, which is an interface that is
suitable for accessing functionality of the firmware appara-
tus from the operating system, and thus also from the user
mode interface, of the computer system. For example, the
interface 12 may be a logical interface, e.g., an API or
software interface for interacting with the firmware appara-
tus. In some examples, as will be shown in connection with
FIG. 2, the interface 12 may provide two interfaces—a first
interface for communicating with the user mode interface
hosted by the operating system, and a second interface for
accessing the one or more processing functionalities via the
advanced configuration and power interface (ACPI) of the
computer system. For example, the second interface may
expose the one or more processing functionalities as (so-
called) ACPI methods towards the operating system.

[0032] The control circuitry is configured to provide
access to the one or more processing functionalities for the
application programs being executed in the operation sys-
tem, with the access being based on the information on the
one or more processing functionalities provided to the user
mode interface. This access may be provided to speed up the
software enabling process, so that the processing function-
ality can be used even before the compilers being used to
compile the application programs are updated to support the
one or more processing functionalities. Instead, the respec-
tive processing functionality can be called via the user mode
interface without requiring an update of the compiler.

[0033] The firmware apparatus acts as an intermediary
between the application programs and the processing cir-
cuitry. In particular, the firmware apparatus may provide
driver functionality for accessing the processing function-
ality of the processing circuitry. In other words, the control
circuitry may be configured to host (e.g., execute) a driver
for accessing the one or more processing functionalities.
Accordingly, as shown in FIG. 1¢, the method may comprise
hosting 142 a driver for accessing the one or more process-
ing functionalities. In other words, a low-level driver may be
provided for accessing the processing functionality, e.g.,
without requiring a driver being hosted by the operating
system, e.g., in combination with a processing functionality-
agnostic driver that provides access to the processing func-
tionality provided by the firmware apparatus without having
logic for driving the respective functionality. The driver

US 2024/0184621 Al

hosted by the firmware apparatus may be used to translate
between instructions received via the user mode interface
(and via the interface of the firmware apparatus) and corre-
sponding instructions expected by the processing circuitry.
The access to the one or more processing functionalities may
be provided via a processing functionality-agnostic driver
hosted by the operating system. In other words, the actual
driver functionality may be hosted by the bios apparatus,
with the processing functionality-agnostic driver being used
to access the interface of the firmware apparatus from the
user mode interface.

[0034] As outlined above, the interface 12 may provide
two interfaces—the first interface for communicating with
the user mode interface hosted by the operating system, and
the second interface for accessing the one or more process-
ing functionalities via the ACPI of the computer system.
While instructions that are received via the first interface are
received according to the format imposed by the user mode
interface, instructions that are received via the second inter-
face adhere to the format imposed by the ACPI. In particular,
so-called “ACPI methods” may be defined that can be used
to access the one or more processing functionalities. The
control circuitry may be configured to provide access to the
one or more processing functionalities via one or more ACPI
methods exposed towards the operating system. In this case,
providing the information on the one or more processing
functionalities may comprise exposing the one or more
processing functionalities as ACPI methods towards the
operating system.

[0035] As outlined above, the firmware apparatus or
device may be implemented as part of, or extend, the
Platform Runtime Mechanism (PRM) being implemented in
the BIOS/UEFI of some computer system. Compared to the
initial release of the PRM, the proposed concept may
provide a deeper integration of the firmware apparatus with
the operating system, providing some co-called services to
integrate the operation of the firmware apparatus in the
operation of the operating system.

[0036] For example, the control circuitry may be config-
ured to expose one or more services towards the operating
system via the interface. Accordingly, the method may
comprises exposing 130 one or more services towards the
operating system via the interface. These services are gen-
erally not directly related to the respective processing func-
tionalities being supported by the processing circuitry, but
more related to the integration of the firmware apparatus
with the operating system. For example, the one or more
services may be accessed by the operating system instead of
the application programs being executed by the operating
system. For example, the one or more services may interact
with at least one of one or more system calls, one or more
system events and one or more interrupts being managed by
the operating system. While different operating systems use
different operating system-specific services, these services
may be similar across the operating systems. Therefore, the
firmware apparatus may provide the services in an operating
system-agnostic manner (i.e., in a manner that is compatible
with multiple operating systems), and translate the operating
system-specific service calls (i.e., service calls that are
specific to the operating system currently being executed by
the computer system) to operating system-agnostic service
calls (i.e., service calls that are not specific to the operating
system currently being executed by the computer system and
suitable for the services provides by the firmware apparatus),

Jun. 6, 2024

and vice versa. In other words, the one or more services may
be implemented in an operating system-agnostic manner.
The control circuitry is configured to provide an operating
system-specific translation functionality to translate native
operating system-specific service calls to operating system-
agnostic service calls (and vice versa). Accordingly, as
shown in FIG. 1¢, the method may comprise providing 146
an operating system-specific translation functionality to
translate native operating system-specific service calls to
operating system-agnostic service calls. In other words, the
control circuitry may be configured to translate the translate
native operating system-specific service calls to operating
system-agnostic service calls (and vice versa).

[0037] A first example of a service to be exposed towards
the operating system relates to the reaction to timer events.
Handlers may be provided for reacting to timer events
generated by the operating system, such that a processing
functionality is invoked in response to a timer event. For
example, the control circuitry may be configured to expose
at least one handler for timer events towards the operating
system. Accordingly, the method may comprise exposing
132 at least one handler for timer events towards the
operating system. The at least one handler for timer events
may be set to trigger at least one processing functionality. In
other words, when a timer event occurs (e.g., is generated/
thrown by the operating system), a handler that is associated
with the timer event is invoked, thereby triggering the
corresponding processing functionality.

[0038] Another example of a service relates to interrupt
handlers. As the name indicates, interrupt handlers are used
to handle interrupts, e.g., hardware interrupts, software
interrupt instructions or exceptions, which are events that
are generated (i.e., “thrown”) by hardware devices (such as
the processing circuitry) or software (such as a driver of the
processing circuitry, an application program, or the operat-
ing system). The control circuitry may be configured to
expose at least one interrupt handler towards the operating
system. Accordingly, the method may comprise exposing
134 at least one interrupt handler towards the operating
system. The at least interrupt handler may be set to trigger
at least one processing functionality. In other words, when
an interrupt is generated (i.e., thrown), e.g., by the hardware
device or by software, that is handled by the at least one
interrupt handler, the corresponding processing functionality
may be triggered in response to the interrupt.

[0039] A third type of services relates to multi-processing
synchronization, and in particular multiprocessing access to
the one or more processing functionalities of the processing
circuitry. The control circuitry may be configured to expose
at least one service for multi-processing synchronization to
the operating system. Accordingly, the method may com-
prise exposing 136 at least one service for multi-processing
synchronization to the operating system. The at last one
service for multi-processing synchronization may be suit-
able for, or configured to, restricting/restrict access to the
one or more processing functionalities with respect to mul-
tiple concurrent attempts to access the one or more process-
ing functionalities. For example, the firmware apparatus
may provide at least one of the two following services for
multiprocessing synchronization: mutex (mutually exclu-
sive access) and semaphore. Mutex and semaphore gener-
ally are kernel resources that provide multi-processing syn-
chronization services. In the proposed concept, with respect
to the one or more processing functionalities of the process-

US 2024/0184621 Al

ing circuitry, the firmware apparatus may handle the mutex
and semaphore in place of, or in cooperation with, the kernel
of the operating system. For example, the control circuitry
may be configured to expose at least one service for handling
mutually exclusive (mutex) access to the one or more
processing functionalities to the operating system. Accord-
ingly, the method may comprise exposing 136a at least one
service for handling mutually exclusive access to the one or
more processing functionalities to the operating system. For
example, the at least one service for handling mutually
exclusive to the one or more processing functionalities may
restrict access to the respective processing functionality to a
single access, e.g., to a single application program or thread
of an application program at the same time. The single
application program may be provided with a token (a mutex)
to access the respective processing functionality until the
application program gives back the token to the operating
system. Another service relates to semaphores. The control
circuitry may be configured to expose at least one sema-
phore service for synchronizing access to the one or more
processing functionalities to the operating system. Accord-
ingly, the method may comprise exposing 1365 at least one
semaphore service for synchronizing access to the one or
more processing functionalities to the operating system. A
semaphore is a more general version of a mutually exclusive
access. Semaphores are used to signal a state of multiple
processes accessing a shared resource between the multiple
processes. The semaphore service may be used to create,
alter or query at least one semaphore being handled by the
firmware apparatus (relating to the one or more processing
functionalities), and to notify one or more application pro-
grams when the semaphore is altered (e.g., to trigger a
component of the application program).

[0040] While the one or more processing functionalities
may generally relate to atomic operations, some of the
operations may require some time to complete. For example,
if a processing functionality relates to loading an image into
a FPGA, or to computing one training iteration of a neural
network, the time required for completing the respective
task may be immense, e.g., multiple seconds or even min-
utes. To avoid stalling the CPU of the computer system, the
control of the CPU may be handed back to the operating
system after the respective processing functionality is trig-
gered. In other words, the firmware apparatus may yield
control of the CPU back to the operating system, e.g., to a
scheduler of the operating system. For example, the control
circuitry may be configured to yield control (e.g., of the
CPU) to the operating system while waiting for the execu-
tion of a processing functionality to complete. Accordingly,
the method may comprise yielding 144 control to the
operating system while waiting for the execution of a
processing functionality to complete.

[0041] As will be further illustrated in connection with
FIGS. 5a and 55, in some scenarios, the proposed concept
may be used to adapt device-independent binary code (so-
called “intermediate binary code”) to device-specific binary
code. The process is denoted “online compilations”, as it is
being performed at runtime (“online”) instead of at the time
the code is compiled by the developer (“offline”). The
control circuitry may be configured to perform online com-
pilation of a device-independent intermediate binary code
(i.e., the intermediate code) of the application programs to
device-specific code for accessing the one or more process-
ing functionalities. Accordingly, as shown in FIG. 1c¢, the

Jun. 6, 2024

method may comprise performing 148 online compilation of
a device-independent intermediate binary code of the appli-
cation programs to device-specific code for accessing the
one or more processing functionalities. As indicated above,
online compilation is a (cross-)compilation that is being
performed at runtime.

[0042] The interface 12 or means for communicating 12 of
FIG. 1a may correspond to one or more inputs and/or
outputs for receiving and/or transmitting information, which
may be in digital (bit) values according to a specified code,
within a module, between modules or between modules of
different entities. For example, the interface 12 or means for
communicating 12 may comprise interface circuitry config-
ured to receive and/or transmit information.

[0043] For example, the control circuitry 14 or means for
controlling 14 of FIG. 1a may be implemented using one or
more processing units, one or more processing devices, any
means for controlling/processing, such as a processor, a
computer or a programmable hardware component being
operable with accordingly adapted software. In other words,
the described function of the processing circuitry 14 or
means for controlling may as well be implemented in
firmware/software, which is then executed on one or more
programmable hardware components. Such hardware com-
ponents may comprise a general purpose processor, a Digital
Signal Processor (DSP), a micro-controller, etc. In some
cases, e.g., if the processing circuitry is a CPU of the
computer system, the control circuitry may be implemented
by the CPU, e.g., via firmware instructions being executed
on the CPU.

[0044] For example, the storage circuitry 16 or means for
storing information 16 of FIG. 1a may comprise at least one
element of the group of a computer readable storage
medium, such as a magnetic or optical storage medium, e.g.
a hard disk drive, a flash memory, Floppy-Disk, Random
Access Memory (RAM), Programmable Read Only
Memory (PROM), Erasable Programmable Read Only
Memory (EPROM), an Electronically Erasable Program-
mable Read Only Memory (EEPROM), or a network stor-
age.

[0045] More details and aspects of the firmware apparatus
10, firmware device 10, firmware method, computer pro-
gram, processing circuitry 105 and computer system 100 are
mentioned in connection with the proposed concept or one
or more examples described above or below (e.g. FIGS. 2 to
5b). The firmware apparatus 10, firmware device 10, firm-
ware method, computer program, processing circuitry 105
and computer system 100 may comprise one or more
additional optional features corresponding to one or more
aspects of the proposed concept or one or more examples
described above or below.

[0046] Various examples of the present disclosure relate to
an Operating System (OS) agnostic abstraction for comput-
ing architecture.

[0047] For new hardware innovations, some hardware
manufacturers drive the initiative of unified Application
Programming Interfaces (APIs) for cross-architecture devel-
opment, e.g., to simplify the software ecosystem enabling
process. The proposed concept aims at further simplifying
the ecosystem enabling process by removing operating
system (OS) dependency by moving functions into a Sub-
Zero API exposed by the BIOS (Basic Input/Output Sys-
tem). In the following, the proposed concept is shown in
connection with the Platform Runtime Mechanism (PRM).

US 2024/0184621 Al

However, the features shown in connection with the PRM
may be applied to any BIOS apparatus or device, e.g., to the
BIOS apparatus or device shown in connection with FIGS.
la to 1d.

[0048] In other systems, an enabling process may be as
follows. First, the compiler may be upgraded to emit new
instructions. This involves upgrading compilers for different
targeted OS’s such as Linux and Microsoft Windows. Sec-
ond, OS drivers may be developed or updated to encapsulate
the new architectural changes and interface with applica-
tions. For GPU and ASICs, a new or upgraded device driver
may be developed to abstract the architectures. For FPGAs,
a new or upgraded device driver may be developed to load
FPGA binaries. As a third task, an online compiler for the
intermediate binary codes (e.g., SPIR-V) for computational
tasks may be updated. These intermediate binary codes may
be designed such that developers do not have to recompile
an algorithm for new hardware architecture. The online
compiler may translate intermediate codes into device spe-
cific codes at OS runtime. For example, such methods are
widely used in various software tools and APIs, e.g., in
compilers such as MSVC (Microsoft Visual C++ compiler),
GCC (GNU Compiler Collection), ICC (Intel® C Compiler)
and LLVM (Low-Level Virtual Machine), and in APIs such
as OpenGL (Open Graphics Language), OpenCL (Open
Computation Language), CUDA (Compute Unified Device
Architecture), IntelX OneAPI etc.

[0049] However, the above method involves some effort in
OS-specific development, be it on compilers (offline com-
piler and online compiler) or on device drivers. Since
developers often use different OS’s (e.g., different versions
of Linux and Windows), these may lead to multiplied
development and validation costs for OS types and versions,
delayed time to market, and increased complexities in
deployment and sustaining.

[0050] To address the above deficiencies, the proposed
concept proposes a concept that uses the runtime BIOS
infrastructure to host these new instructions and architec-
tures. The proposed concept may remove OS dependency,
avoid duplicated OS specific works, which may lead to
simplified enabling, deployment and sustaining for hardware
innovations. The proposed concept proposes to enhance a
current form of OS/BIOS interface—PRM (Platform Run-
time Mechanism) to achieve this.

[0051] PRM is a feature to be integrated in the BIOS or
UEFI (Unified Extensible Firmware Interface), which seeks
to supplant some functionality that previously has been
provided by the System Management Mode (SMM) that is
used in computer systems. With the proposed concept, PRM
can be enhanced to strengthen cross-platform APIs, such as
IntelX’s OneAPI with its OS neutrality as an advantage over
competitors’ offerings.

[0052] The proposed concept may address some short-
comings of existing OS dependent solutions by using an
OS-agnostic runtime BIOS infrastructure to host hardware
architecture innovations.

[0053] PRM is a newly designed infrastructure across
BIOS and OS that allows BIOS modules to run in OS kernel
space. These BIOS modules provide runtime support for the
OS through a clearly defined interface while the BIOS
modules themselves are OS agnostic.

[0054] PRM is primarily designed to replace traditional
BIOS runtime functions in SMM. This proposed concept
focuses on enhancing PRM’s OS/BIOS interface to allow

Jun. 6, 2024

compliant BIOS modules to interact more closely with OS.
With this enhancement, PRM becomes suitable to host more
complex architectural features which are traditionally hosted
by OS drivers.

[0055] This may reduce the cost of enabling and bringing
to market new hardware features, avoiding duplicated efforts
to enable OS’s of different types and versions. When appli-
cable, it may remove the dependency on compiler updates,
which in many cases are out of control of the hardware
manufacturer. Also, it may provide a simplified and flexible
usage model, where features are shipped with the BIOS on
the platform. User can query and use the features, either
directly from bare metal (through the UEFI interface) or
within a selected OS. It may also simplify sustaining (i.e.,
maintaining), as it may lead to fewer software patches (in
PRM form), without the multiplications in OS types and
versions.

[0056] Moreover, the BIOS travels with the platform and
is customized for the given Silicon and Platform. Taking
PCOMMIT (now deprecated) as an example. PCOMMIT
was ISA (Instruction Set Architecture)-based in one genera-
tion, Targeted PCOMMIT (ucore (microcore)/BIOS based/
non-ISA) in the next generation, and possibly something
else (like ondemand eADR (extended Asynchronous DRAM
(Dynamic Random Access Memory) Refresh) in a future
generation. These generational improvements for the same
feature may result in OS eco-system enabling challenges,
while also leading to effort to maintain backward compat-
ibility since the same OS can be installed on multiple
generations of Silicon. Since the BIOS is customized for
every platform and travels with the platform, it can exercise
the sequence that is appropriate/efficient for the given SoC/
Platform to achieve the desired end-result. This approach is
also OS agnostic and alleviates the need to enable the OS
eco-system for every generational improvement (for the
same feature) and maintain backward compatibility.

[0057] PRM may be considered to be motivated by the
need to reduce the SMM footprint by providing a mecha-
nism to invoke native code execution context from ACPI
(Advanced Configuration and Power Interface, instead of
dropping into SMI (System Management Interrupt) to
achieve the same). PRM is executed in Ring-0. This pro-
posed concept can be thought of as an extension to that PRM
concept, where the need for ring transitions is alleviated by
making this a Ring-3 layer, i.e., by providing an interface in
Ring-3. The proposed concept may provide an OS-agnostic
user mode library, customized for a given platform and
carried and delivered by the platform itself (instead of
having to enable the whole ecosystem every generation and
maintain backward compatibility).

[0058] Since BIOS travels with the platform, ISA opcodes
(operation codes) may be hand-edited without the need to
update the compiler and can be deployed with lesser hurdles.
If there are non-architectural sequences that would make it
efficient to enable the same feature, these sequences may be
placed in the BIOS (or any other platform entity).

[0059] A hardware platform that uses the proposed con-
cept may provide a BIOS runtime interface that integrates
more tightly with OS than an initial PRM interface and
expose a runtime firmware interface not only for traditional
BIOS system management works, but also for new instruc-
tions and heterogenous computing. The OS may cooperate
with the BIOS to perform functional/computational tasks
beyond the scope of traditional system management work,

US 2024/0184621 Al

and the OS/BIOS interaction may go through the interfaces
provided by the proposed concept.

[0060] In the following, examples are given for the design
of the OS/BIOS interface.

[0061] The PRM (Platform Runtime Mechanism) was
initially designed to move BIOS runtime functions from
SMM to OS kernel space. It can be used to provide the
system hardware management tasks such as RAS (Reliabil-
ity, Accessibility and Serviceability) and CPU power man-
agement. These tasks are time efficient (in the range of
milli-seconds) and can be done atomically without interac-
tions with OS. In this regard, the initial PRM is designed
with needing minimal OS services.

[0062] For PRM to host more lengthy and complex tasks,
such as loading binary into FPGA, or running computing
tasks (e.g., image rendering, DNN (Deconvolutional Neural
Network) inference) with GPU, a deeper interaction with OS
on thread scheduling may be desired. For this purpose, one
or more of the following OS services may be abstracted and
provided to PRM:

[0063] For example, in terms of execution control, timer
callback registration may be provided. These services allow
PRM to register a handler to timer events. Additionally or
alternatively, a yield service may be provided, which may
allow PRM to yield its control to the OS while waiting for
a lengthy operation to complete. Additionally or alterna-
tively, an interrupt handler registration service may be
provided, which may allow PRM to handle device events.
Additionally or alternatively, a multi-processing synchroni-
zation service may be provided, e.g., including Mutex
(mutually exclusive access) and Semaphore services. These
services may allow PRM to provide services to multiple
callers in parallel, while protecting critical resources. With
these expanded OS services, PRM may be improved to host
complex and lengthy functions with same level of flexibility
and efficiency as OS drivers.

[0064] These expanded OS services may be defined to be
OS neutral, so PRM codes can keep its OS independency
while using these services. An OS specific translation layer
may be provided at runtime to adapt PRM OS service calls
into native OS services from Linux or Windows.

[0065] FIG. 2 shows a schematic diagram of an example
of a PRM Architecture with a PRM Handler using the
afore-mentioned expanded OS services. FIG. 2 shows a first
block 210 with an OS driver 212 and APCI methods (such
as _DSM, Device-Specific Methods) 214). The first block
addresses legacy usage models based on _DSM invocation.
The OS driver invokes the ACPI methods via ACPI. In
contrast to other cases, SMI is not being used. The ACPI
methods access PRM Bridge Driver 10 (e.g., the BIOS
apparatus or device) via the PRM OpRegion. A second
(direct invocation) block 220 also includes an OS driver and
access the PRM Bridge Driver 10. The PRM Bridge Driver
10 operates via PRM handlers 240, which are used in lieu of
SMI handlers. OS kernel services 230 (such as Yield, Timer,
Interrupt, MP sync) also interact with the PRM handlers 240.

[0066] As depicted in FIG. 2, the PRM Bridge Driver 10
at the center passes direct invocations or indirect invocations
(via ACPI) from OS drivers to OS agnostic PRM Handlers
240 (where PRM Handlers can also be called PRM Modules
as they may be independently installable and updatable). A
PRM Handler 240 performs its tasks in close interaction
with OS kernel 230 through the OS services.

Jun. 6, 2024

[0067] In the following, some use cases are presented that
build upon the proposed concept.

[0068] As a first use case, a new system function is
abstracted as an instruction. The example is “PCommit”.
PCommit flushes data from DDR (Double Data Rate) RAM
(Random Access Memory) to persistent memory (such as
Intel 3D XPoint™). PCommit was first introduced in the
form of a new instruction. (Later on, a new form of PCom-
mit invocation is introduced, to be described in a subsequent
section).

[0069] For a new functionality to be represented as an
instruction, the conventional software enabling process is
shown in FIG. 3a. FIG. 3a shows an example of a process
for enabling a new instruction. In the process, the hardware
manufacturer 310 enables upgrades to popular compilers,
such as GCC 322, MSVC 324, LLVM 326 or ICC 328. The
four compilers are maintained by four different entities or
companies, such that at least three of them may be externally
maintained with respect to the hardware manufacturer. The
software developers 332; 334 may upgrade the compiler
tool, check out the manual about the syntax of the new
instruction, and build applications that make use of the new
or updated function (e.g., PCommit). As result, the devel-
opers provide recompiled binaries 342; 344, which are
deployed on the hardware 350.

[0070] In the proposed concept, an enhanced process is
provided. FIG. 35 shows an example of an enhanced process
for enabling a new instruction. As shown in FIG. 35, using
the enhanced PRM design in the proposed concept, a more
efficient enabling process may comprise the hardware manu-
facturer 310 releasing a PRM module that encapsulate the
new or updated instruction (e.g., PCommit). BIOS vendors
or OEM nay integrate the PRM module, and the platform
ships with the BIOS comprising the integrated PRM mod-
ule. The software developers 332; 334 may check the
website of the hardware manufacturer and find the new PRM
module that has the new feature. The software developers
332; 334 may write code that retrieves this PRM module and
makes use of it through well-defined PRM enumeration and
invoking APIs, leading to recompiled binaries 342a; 344a,
which are deployed to the hardware. In this enhanced
process, no compiler upgrade may be required. The software
enabling work may be limited to within the BIOS and may
mostly be done by the hardware manufacturer, such that
efforts are not multiplied and distributed across the various
ecosystems. Moreover, the application software developers
can use new features with an existing version of the com-
piler.

[0071] It is worth noting that in the first use case, it may
be more time consuming to call a PRM service than to run
a pre-compiled instruction embedded in the program. So the
first use-case might only be feasible to cases where a new
feature does not need frequent or consecutive invocations.
For example, AVX instructions might not be enhanced by
this process since they are more efficient in compiled form;
however, system functions such as flushing cache to persis-
tent memory may benefit from this enhanced process.

[0072] In a second use case, a new system function is
invoked through hardware programming. Again, PCommit
is used as an example. PCommit’s second form of invoca-
tion may require software to write to a specific (system
reserved) memory addresses. This form of invocation
enhances the first form in that it does not define a new

US 2024/0184621 Al

instruction (hence no need of compiler upgrade), but it may
require hardware programming.

[0073] FIG. 4a shows a schematic diagram of a process for
enabling a new system function. In the process, the abstrac-
tion of this system function may be provided through an OS
device driver (e.g., Windows driver 422, Linux driver 424 or
Real-Time Operating System (RTOS) driver 426), which
shields upper layer software from the details of the hardware
programming requirements (of hardware 430). Evolution of
the hardware programming per silicon design changes may
also be hidden. Thus, duplicate work may be necessary, by
the hardware manufacturer 410, for each OS type and OS
version that needs to be enabled.

[0074] FIG. 4b shows a schematic diagram of an enhanced
process for enabling a new system function. With the usage
of PRM, the system function may be abstracted through a
PRM interface, where the PRM module 10 implementing
this interface may be directly deployable in multiple OS
versions and types, eliminating the duplicated work for each
OS type and version.

[0075] A third use case relates to online compilation. New
features that need frequent or consecutive invocations, such
as new instructions used to compose an algorithm or to
perform a math function, cannot benefit from using a PRM
service for accessing these individual instructions.

[0076] For these new instructions, the abstraction may be
provided at an architecture independent binary code level.
One example of the architecture independent binary inter-
mediate languages is SPIR-V (Standard Portable Interme-
diate Representation 5). An online compiler may translate
the binary intermediate language into device code at run-
time, where device codes and their deployments can vary in
different hardware models and generations.

[0077] FIG. 5a shows a schematic diagram of an example
of a process for enabling new graphics hardware. With the
software enabling flow, an OS specific device driver (e.g.,
Windows driver 522, Linux driver 524 or RTOS driver 526)
may host the online compilation 530 and deployment of
device codes (based on the intermediate binary codes 540)
into the actual hardware (e.g., the discrete graphics card
554). For example, the driver and compiler may run on the
host CPU 552. This approach may eliminate the need of a
compiler upgrade at the application developer side for any
hardware enhancement. However, for new hardware, this
approach still needs a device driver to be updated (by the
hardware manufacturer 510) and deployed for each OS type
and version.

[0078] FIG. 55 shows a schematic diagram of an example
of'an enhanced process for enabling new graphics hardware.
By using the proposed concept described in the present
disclosure, the online compiler and device code deploy-
ments may be hosted by a PRM module 10 (which may be
implemented by the BIOS apparatus or device 10). When-
ever there is a device code or hardware design change, the
only update needed might be on the PRM module which can
be released as part of firmware update (e.g. a seamless
update) for targeted platforms. No additional development
or validation efforts to support multiple OS types and
versions might be necessary.

[0079] The proposed concept may simplify software
enabling for hardware features by avoiding duplicated work
for OS types and versions. The proposed concept may
reduce both development costs and sustaining costs. Time-
to-market may be shortened because of reduced develop-

Jun. 6, 2024

ment costs. Client, server, and IoT (Internet of Things)
products can benefit from the proposed concept. The pro-
posed concept may expedite hardware manufacturer’s deliv-
ery of new hardware features through a simplified software
enabling infrastructure.

[0080] The aspects and features described in relation to a
particular one of the previous examples may also be com-
bined with one or more of the further examples to replace an
identical or similar feature of that further example or to
additionally introduce the features into the further example.
[0081] In the following, some examples are presented:
[0082] An example (e.g., example 1) relates to a firmware
apparatus (10) for a computer system (100), the computer
system comprising processing circuitry (105), the firmware
apparatus comprising an interface (12) for accessing func-
tionality of the firmware apparatus from an operating system
of the computer system. The firmware apparatus (10) com-
prises control circuitry (14), configured to identify one or
more processing functionalities being supported by the
processing circuitry of the computer system, provide infor-
mation on the one or more processing functionalities via the
interface to a user mode interface of the operating system of
the computer system, and provide access to the one or more
processing functionalities for application programs being
executed in the operation system, the access being based on
the information on the one or more processing functionali-
ties provided to the user mode interface.

[0083] Another example (e.g., example 2) relates to a
previously described example (e.g., example 1) or to any of
the examples described herein, further comprising that the
control circuitry is configured to host a driver for accessing
the one or more processing functionalities.

[0084] Another example (e.g., example 3) relates to a
previously described example (e.g., one of the examples 1 to
2) or to any of the examples described herein, further
comprising that the control circuitry is configured to provide
access to the one or more processing functionalities via one
or more advanced configuration and power interface meth-
ods exposed towards the operating system.

[0085] Another example (e.g., example 4) relates to a
previously described example (e.g., one of the examples 1 to
3) or to any of the examples described herein, further
comprising that the access to the one or more processing
functionalities is provided via a processing functionality-
agnostic driver hosted by the operating system.

[0086] Another example (e.g., example 5) relates to a
previously described example (e.g., one of the examples 1 to
4) or to any of the examples described herein, further
comprising that the control circuitry is configured to yield
control to the operating system while waiting for the execu-
tion of a processing functionality to complete.

[0087] Another example (e.g., example 6) relates to a
previously described example (e.g., one of the examples 1 to
5) or to any of the examples described herein, further
comprising that the control circuitry is configured to expose
one or more services towards the operating system via the
interface.

[0088] Another example (e.g., example 7) relates to a
previously described example (e.g., example 6) or to any of
the examples described herein, further comprising that the
control circuitry is configured to expose at least one handler
for timer events towards the operating system, wherein the
at least one handler for timer events set to trigger at least one
processing functionality.

US 2024/0184621 Al

[0089] Another example (e.g., example 8) relates to a
previously described example (e.g., one of the examples 6 to
7) or to any of the examples described herein, further
comprising that the control circuitry is configured to expose
at least one interrupt handler towards the operating system,
wherein the at least interrupt handler is set to trigger at least
one processing functionality.

[0090] Another example (e.g., example 9) relates to a
previously described example (e.g., one of the examples 6 to
8) or to any of the examples described herein, further
comprising that the control circuitry is configured to expose
at least one service for multi-processing synchronization to
the operating system.

[0091] Another example (e.g., example 10) relates to a
previously described example (e.g., example 9) or to any of
the examples described herein, further comprising that the
control circuitry is configured to expose at least one service
for handling mutually exclusive access to the one or more
processing functionalities to the operating system.

[0092] Another example (e.g., example 11) relates to a
previously described example (e.g., one of the examples 9 to
10) or to any of the examples described herein, further
comprising that the control circuitry is configured to expose
at least one semaphore service for synchronizing access to
the one or more processing functionalities to the operating
system.

[0093] Another example (e.g., example 12) relates to a
previously described example (e.g., example 11) or to any of
the examples described herein, further comprising that the
one or more services are implemented in an operating
system-agnostic manner, wherein the control circuitry is
configured to provide an operating system-specific transla-
tion functionality to translate native operating system-spe-
cific service calls to operating system-agnostic service calls.

[0094] Another example (e.g., example 13) relates to a
previously described example (e.g., one of the examples 1 to
12) or to any of the examples described herein, further
comprising that the control circuitry is configured to perform
online compilation of a device-independent intermediate
binary code of the application programs to device-specific
code for accessing the one or more processing functionali-
ties.

[0095] Another example (e.g., example 14) relates to a
previously described example (e.g., one of the examples 1 to
13) or to any of the examples described herein, further
comprising that the processing circuitry comprises one or
more central processing units and/or one or more graphics
processing units.

[0096] Another example (e.g., example 15) relates to a
previously described example (e.g., one of the examples 1 to
14) or to any of the examples described herein, further
comprising that the firmware apparatus is implemented as
component of a basic input output system or unified exten-
sible firmware interface of the computer system.

[0097] An example (e.g., example 16) relates to a com-
puter system (100) comprising the firmware apparatus (10)
according to one of the examples 1 to 15 or according to any
other example.

[0098] Another example (e.g., example 17) relates to a
previously described example (e.g., example 16) or to any of
the examples described herein, further comprising that the
user mode interface is provided to the application programs
in user mode.

Jun. 6, 2024

[0099] Another example (e.g., example 18) relates to a
previously described example (e.g., one of the examples 16
to 17) or to any of the examples described herein, further
comprising that the user mode interface is implemented as a
library that is accessible to the application programs in user
space.

[0100] An example (e.g., example 19) relates to a firm-
ware device (10) for a computer system (100), the computer
system comprising processing circuitry (105), the firmware
device comprising means for communicating (12), suitable
for accessing functionality of the firmware device from an
operating system of the computer system. The firmware
device (10) comprises means for controlling (14), config-
ured to identify one or more processing functionalities being
supported by the processing circuitry of the computer sys-
tem, provide information on the one or more processing
functionalities via the means for communicating to a user
mode interface of the operating system of the computer
system, and provide access to the one or more processing
functionalities for application programs being executed in
the operation system, the access being based on the infor-
mation on the one or more processing functionalities pro-
vided to the user mode interface.

[0101] Another example (e.g., example 20) relates to a
previously described example (e.g., example 19) or to any of
the examples described herein, further comprising that the
means for controlling is configured to host a driver for
accessing the one or more processing functionalities.
[0102] Another example (e.g., example 21) relates to a
previously described example (e.g., one of the examples 19
to 20) or to any of the examples described herein, further
comprising that the means for controlling is configured to
provide access to the one or more processing functionalities
via one or more advanced configuration and power interface
methods exposed towards the operating system.

[0103] Another example (e.g., example 22) relates to a
previously described example (e.g., one of the examples 19
to 21) or to any of the examples described herein, further
comprising that the access to the one or more processing
functionalities is provided via a processing functionality-
agnostic driver hosted by the operating system.

[0104] Another example (e.g., example 23) relates to a
previously described example (e.g., one of the examples 19
to 22) or to any of the examples described herein, further
comprising that the means for controlling is configured to
yield control to the operating system while waiting for the
execution of a processing functionality to complete.

[0105] Another example (e.g., example 24) relates to a
previously described example (e.g., one of the examples 19
to 23) or to any of the examples described herein, further
comprising that the means for controlling is configured to
expose one or more services towards the operating system
via the means for communicating.

[0106] Another example (e.g., example 25) relates to a
previously described example (e.g., example 24) or to any of
the examples described herein, further comprising that the
means for controlling is configured to expose at least one
handler for timer events towards the operating system,
wherein the at least one handler for timer events set to
trigger at least one processing functionality.

[0107] Another example (e.g., example 26) relates to a
previously described example (e.g., one of the examples 24
to 25) or to any of the examples described herein, further
comprising that the means for controlling is configured to

US 2024/0184621 Al

expose at least one interrupt handler towards the operating
system, wherein the at least interrupt handler is set to trigger
at least one processing functionality.

[0108] Another example (e.g., example 27) relates to a
previously described example (e.g., one of the examples 24
to 26) or to any of the examples described herein, further
comprising that the means for controlling is configured to
expose at least one service for multi-processing synchroni-
zation to the operating system.

[0109] Another example (e.g., example 28) relates to a
previously described example (e.g., example 27) or to any of
the examples described herein, further comprising that the
means for controlling is configured to expose at least one
service for handling mutually exclusive access to the one or
more processing functionalities to the operating system.
[0110] Another example (e.g., example 29) relates to a
previously described example (e.g., one of the examples 27
to 28) or to any of the examples described herein, further
comprising that the means for controlling is configured to
expose at least one semaphore service for synchronizing
access to the one or more processing functionalities to the
operating system.

[0111] Another example (e.g., example 30) relates to a
previously described example (e.g., example 11) or to any of
the examples described herein, further comprising that the
one or more services are implemented in an operating
system-agnostic manner, wherein the means for controlling
is configured to provide an operating system-specific trans-
lation functionality to translate native operating system-
specific service calls to operating system-agnostic service
calls.

[0112] Another example (e.g., example 31) relates to a
previously described example (e.g., one of the examples 19
to 30) or to any of the examples described herein, further
comprising that the means for controlling is configured to
perform online compilation of a device-independent inter-
mediate binary code of the application programs to device-
specific code for accessing the one or more processing
functionalities.

[0113] Another example (e.g., example 32) relates to a
previously described example (e.g., one of the examples 19
to 31) or to any of the examples described herein, further
comprising that the processing circuitry comprises one or
more central processing units and/or one or more graphics
processing units.

[0114] Another example (e.g., example 33) relates to a
previously described example (e.g., one of the examples 19
to 32) or to any of the examples described herein, further
comprising that the firmware device is implemented as
component of a basic input output system or unified exten-
sible firmware interface of the computer system.

[0115] An example (e.g., example 34) relates to a com-
puter system (100) comprising the firmware device (10)
according to one of the examples 19 to 33 or according to
any other example.

[0116] Another example (e.g., example 35) relates to a
previously described example (e.g., example 34) or to any of
the examples described herein, further comprising that the
user mode interface is provided to the application programs
in user mode.

[0117] Another example (e.g., example 36) relates to a
previously described example (e.g., one of the examples 34
to 35) or to any of the examples described herein, further

Jun. 6, 2024

comprising that the user mode interface is implemented as a
library that is accessible to the application programs in user
space.

[0118] An example (e.g., example 37) relates to a firm-
ware method for a firmware (10) of the computer system
(100), the computer system comprising processing circuitry
(105), the firmware method comprising identifying (110)
one or more processing functionalities being supported by
the processing circuitry of the computer system. The firm-
ware method comprises providing (120) information on the
one or more processing functionalities via an interface for
accessing functionality of the firmware from an operating
system of the computer system to a user mode interface of
the operating system of the computer system. The firmware
method comprises providing (140) access to the one or more
processing functionalities for application programs being
executed in the operation system, the access being based on
the information on the one or more processing functionali-
ties provided to the user mode interface.

[0119] Another example (e.g., example 38) relates to a
previously described example (e.g., example 37) or to any of
the examples described herein, further comprising that the
method comprises hosting (142) a driver for accessing the
one or more processing functionalities.

[0120] Another example (e.g., example 39) relates to a
previously described example (e.g., one of the examples 37
to 38) or to any of the examples described herein, further
comprising that the method comprises providing the access
(140) to the one or more processing functionalities via one
or more advanced configuration and power interface meth-
ods exposed towards the operating system.

[0121] Another example (e.g., example 40) relates to a
previously described example (e.g., one of the examples 37
to 39) or to any of the examples described herein, further
comprising that the access to the one or more processing
functionalities is provided via a processing functionality-
agnostic driver hosted by the operating system.

[0122] Another example (e.g., example 41) relates to a
previously described example (e.g., one of the examples 37
to 40) or to any of the examples described herein, further
comprising that the method comprises yielding (144) control
to the operating system while waiting for the execution of a
processing functionality to complete.

[0123] Another example (e.g., example 42) relates to a
previously described example (e.g., one of the examples 37
to 41) or to any of the examples described herein, further
comprising that the method comprises exposing (130) one or
more services towards the operating system via the interface.
[0124] Another example (e.g., example 43) relates to a
previously described example (e.g., example 42) or to any of
the examples described herein, further comprising that the
method comprises exposing (132) at least one handler for
timer events towards the operating system, wherein the at
least one handler for timer events set to trigger at least one
processing functionality.

[0125] Another example (e.g., example 44) relates to a
previously described example (e.g., one of the examples 42
to 43) or to any of the examples described herein, further
comprising that the method comprises exposing (134) at
least one interrupt handler towards the operating system,
wherein the at least interrupt handler is set to trigger at least
one processing functionality.

[0126] Another example (e.g., example 45) relates to a
previously described example (e.g., one of the examples 42

US 2024/0184621 Al

to 44) or to any of the examples described herein, further
comprising that the method comprises exposing (136) at
least one service for multi-processing synchronization to the
operating system.

[0127] Another example (e.g., example 46) relates to a
previously described example (e.g., example 45) or to any of
the examples described herein, further comprising that the
method comprises exposing (136a) at least one service for
handling mutually exclusive access to the one or more
processing functionalities to the operating system.

[0128] Another example (e.g., example 47) relates to a
previously described example (e.g., one of the examples 45
to 46) or to any of the examples described herein, further
comprising that the method comprises exposing (1365) at
least one semaphore service for synchronizing access to the
one or more processing functionalities to the operating
system.

[0129] Another example (e.g., example 48) relates to a
previously described example (e.g., example 47) or to any of
the examples described herein, further comprising that the
one or more services are implemented in an operating
system-agnostic manner, wherein the method comprises
providing (146) an operating system-specific translation
functionality to translate native operating system-specific
service calls to operating system-agnostic service calls.

[0130] Another example (e.g., example 49) relates to a
previously described example (e.g., one of the examples 37
to 48) or to any of the examples described herein, further
comprising that the method comprises performing (148)
online compilation of a device-independent intermediate
binary code of the application programs to device-specific
code for accessing the one or more processing functionali-
ties.

[0131] Another example (e.g., example 50) relates to a
previously described example (e.g., one of the examples 37
to 49) or to any of the examples described herein, further
comprising that the processing circuitry comprises one or
more central processing units and/or one or more graphics
processing units.

[0132] Another example (e.g., example 51) relates to a
previously described example (e.g., one of the examples 37
to 50) or to any of the examples described herein, further
comprising that the firmware method is performed by a basic
input output system or unified extensible firmware interface
of the computer system.

[0133] An example (e.g., example 52) relates to a com-
puter system (100) being configured to perform the firmware
method according to one of the examples 37 to 51 or
according to any other example described herein.

[0134] Another example (e.g., example 53) relates to a
previously described example (e.g., example 52) or to any of
the examples described herein, further comprising that the
user mode interface is provided to the application programs
in user mode.

[0135] Another example (e.g., example 54) relates to a
previously described example (e.g., one of the examples 52
to 53) or to any of the examples described herein, further
comprising that the user mode interface is implemented as a
library that is accessible to the application programs in user
space.

[0136] An example (e.g., example 55) relates to a
machine-readable storage medium including program code,

Jun. 6, 2024

when executed, to cause a machine to perform the method
of'one of the examples 37 to 51 or according to any previous
example.

[0137] An example (e.g., example 56) relates to a com-
puter program having a program code for performing the
method of one of the examples 37 to 51 or according to any
previous example, when the computer program is executed
on a computer, a processor, or a programmable hardware
component.

[0138] An example (e.g., example 57) relates to a
machine-readable storage including machine readable
instructions, when executed, to implement a method or
realize an apparatus as claimed in any pending claim or
shown in any example.

[0139] Examples may further be or relate to a (computer)
program including a program code to execute one or more
of the above methods when the program is executed on a
computer, processor, or other programmable hardware com-
ponent. Thus, steps, operations, or processes of different
ones of the methods described above may also be executed
by programmed computers, processors, or other program-
mable hardware components. Examples may also cover
program storage devices, such as digital data storage media,
which are machine-, processor- or computer-readable and
encode and/or contain machine-executable, processor-ex-
ecutable or computer-executable programs and instructions.
Program storage devices may include or be digital storage
devices, magnetic storage media such as magnetic disks and
magnetic tapes, hard disk drives, or optically readable digital
data storage media, for example. Other examples may also
include computers, processors, control units, (field) pro-
grammable logic arrays ((F)PLAs), (field) programmable
gate arrays ((F)PGAs), graphics processor units (GPU),
application-specific integrated circuits (ASICs), integrated
circuits (ICs) or system-on-a-chip (SoCs) systems pro-
grammed to execute the steps of the methods described
above.

[0140] It is further understood that the disclosure of sev-
eral steps, processes, operations, or functions disclosed in
the description or claims shall not be construed to imply that
these operations are necessarily dependent on the order
described, unless explicitly stated in the individual case or
necessary for technical reasons. Therefore, the previous
description does not limit the execution of several steps or
functions to a certain order. Furthermore, in further
examples, a single step, function, process, or operation may
include and/or be broken up into several sub-steps, -func-
tions, -processes or -operations.

[0141] If some aspects have been described in relation to
a device or system, these aspects should also be understood
as a description of the corresponding method. For example,
a block, device or functional aspect of the device or system
may correspond to a feature, such as a method step, of the
corresponding method. Accordingly, aspects described in
relation to a method shall also be understood as a description
of a corresponding block, a corresponding element, a prop-
erty or a functional feature of a corresponding device or a
corresponding system.

[0142] As used herein, the term “module” refers to logic
that may be implemented in a hardware component or
device, software or firmware running on a processing unit,
or a combination thereof;, to perform one or more operations
consistent with the present disclosure. Software and firm-
ware may be embodied as instructions and/or data stored on

US 2024/0184621 Al

non-transitory computer-readable storage media. As used
herein, the term “circuitry” can comprise, singly or in any
combination, non-programmable (hardwired) circuitry, pro-
grammable circuitry such as processing units, state machine
circuitry, and/or firmware that stores instructions executable
by programmable circuitry. Modules described herein may,
collectively or individually, be embodied as circuitry that
forms a part of a computing system. Thus, any of the
modules can be implemented as circuitry. A computing
system referred to as being programmed to perform a
method can be programmed to perform the method via
software, hardware, firmware, or combinations thereof.

[0143] Any of the disclosed methods (or a portion thereot)
can be implemented as computer-executable instructions or
a computer program product. Such instructions can cause a
computing system or one or more processing units capable
of executing computer-executable instructions to perform
any of the disclosed methods. As used herein, the term
“computer” refers to any computing system or device
described or mentioned herein. Thus, the term “computer-
executable instruction” refers to instructions that can be
executed by any computing system or device described or
mentioned herein.

[0144] The computer-executable instructions can be part
of, for example, an operating system of the computing
system, an application stored locally to the computing
system, or a remote application accessible to the computing
system (e.g., via a web browser). Any of the methods
described herein can be performed by computer-executable
instructions performed by a single computing system or by
one or more networked computing systems operating in a
network environment. Computer-executable instructions
and updates to the computer-executable instructions can be
downloaded to a computing system from a remote server.

[0145] Further, it is to be understood that implementation
of the disclosed technologies is not limited to any specific
computer language or program. For instance, the disclosed
technologies can be implemented by software written in
C++, C#, Java, Perl, Python, JavaScript, Adobe Flash, C#,
assembly language, or any other programming language.
Likewise, the disclosed technologies are not limited to any
particular computer system or type of hardware.

[0146] Furthermore, any of the software-based examples
(comprising, for example, computer-executable instructions
for causing a computer to perform any of the disclosed
methods) can be uploaded, downloaded, or remotely
accessed through a suitable communication means. Such
suitable communication means include, for example, the
Internet, the World Wide Web, an intranet, cable (including
fiber optic cable), magnetic communications, electromag-
netic communications (including RF, microwave, ultrasonic,
and infrared communications), electronic communications,
or other such communication means.

[0147] The disclosed methods, apparatuses, and systems
are not to be construed as limiting in any way. Instead, the
present disclosure is directed toward all novel and nonob-
vious features and aspects of the wvarious disclosed
examples, alone and in various combinations and subcom-
binations with one another. The disclosed methods, appara-
tuses, and systems are not limited to any specific aspect or
feature or combination thereof, nor do the disclosed
examples require that any one or more specific advantages
be present or problems be solved.

Jun. 6, 2024

[0148] Theories of operation, scientific principles, or other
theoretical descriptions presented herein in reference to the
apparatuses or methods of this disclosure have been pro-
vided for the purposes of better understanding and are not
intended to be limiting in scope. The apparatuses and
methods in the appended claims are not limited to those
apparatuses and methods that function in the manner
described by such theories of operation.

[0149] The following claims are hereby incorporated in
the detailed description, wherein each claim may stand on its
own as a separate example. It should also be noted that
although in the claims a dependent claim refers to a par-
ticular combination with one or more other claims, other
examples may also include a combination of the dependent
claim with the subject matter of any other dependent or
independent claim. Such combinations are hereby explicitly
proposed, unless it is stated in the individual case that a
particular combination is not intended. Furthermore, fea-
tures of a claim should also be included for any other
independent claim, even if that claim is not directly defined
as dependent on that other independent claim.

1. A firmware apparatus for a computer system, the
computer system comprising processing circuitry (105), the
firmware apparatus comprising:

an interface for accessing functionality of the firmware

apparatus from an operating system of the computer
system; and

control circuitry to:

identify one or more processing functionalities being
supported by the processing circuitry of the com-
puter system,

provide information on the one or more processing
functionalities via the interface to a user mode inter-
face of the operating system of the computer system,
and

provide access to the one or more processing function-
alities for application programs being executed in the
operation system, the access being based on the
information on the one or more processing function-
alities provided to the user mode interface.

2. The firmware apparatus according to claim 1, wherein
the control circuitry is to host a driver for accessing the one
or more processing functionalities.

3. The firmware apparatus according to claim 1, wherein
the control circuitry is to provide access to the one or more
processing functionalities via one or more advanced con-
figuration and power interface methods exposed towards the
operating system.

4. The firmware apparatus according to claim 1, wherein
the access to the one or more processing functionalities is
provided via a processing functionality-agnostic driver
hosted by the operating system.

5. The firmware apparatus according to claim 1, wherein
the control circuitry is to yield control to the operating
system while waiting for the execution of a processing
functionality to complete.

6. The firmware apparatus according to claim 1, wherein
the control circuitry is to expose one or more services
towards the operating system via the interface.

7. The firmware apparatus according to claim 6, wherein
the control circuitry is to expose at least one handler for
timer events towards the operating system, wherein the at
least one handler for timer events set to trigger at least one
processing functionality.

US 2024/0184621 Al

8. The firmware apparatus according to claim 6, wherein
the control circuitry is to expose at least one interrupt
handler towards the operating system, wherein the at least
interrupt handler is set to trigger at least one processing
functionality.

9. The firmware apparatus according to claim 6, wherein
the control circuitry is to expose at least one service for
multi-processing synchronization to the operating system.

10. The firmware apparatus according to claim 9, wherein
the control circuitry is to expose at least one service for
handling mutually exclusive access to the one or more
processing functionalities to the operating system.

11. The firmware apparatus according to claim 9, wherein
the control circuitry is to expose at least one semaphore
service for synchronizing access to the one or more pro-
cessing functionalities to the operating system.

12. The firmware apparatus according to claim 11,
wherein the one or more services are implemented in an
operating system-agnostic manner, wherein the control cir-
cuitry is to provide an operating system-specific translation
functionality to translate native operating system-specific
service calls to operating system-agnostic service calls.

13. The firmware apparatus according to claim 1, wherein
the control circuitry is to perform online compilation of a
device-independent intermediate binary code of the appli-
cation programs to device-specific code for accessing the
one or more processing functionalities.

14. The firmware apparatus according to claim 1, wherein
the processing circuitry comprises one or more central
processing units and/or one or more graphics processing
units.

Jun. 6, 2024

15. The firmware apparatus according to claim 1, wherein
the firmware apparatus is implemented as component of a
basic input output system or unified extensible firmware
interface of the computer system.

16. A computer system comprising the firmware apparatus
according to claim 1.

17. The computer system according to claim 16, wherein
the user mode interface is provided to the application
programs in user mode.

18. The computer system according to claim 16, wherein
the user mode interface is implemented as a library that is
accessible to the application programs in user space.

19-20. (canceled)

21. A firmware method for a firmware of the computer
system, the computer system comprising processing cir-
cuitry, the firmware method comprising:

identifying one or more processing functionalities being

supported by the processing circuitry of the computer
system,
providing information on the one or more processing
functionalities via an interface for accessing function-
ality of the firmware from an operating system of the
computer system to a user mode interface of the
operating system of the computer system; and

providing access to the one or more processing function-
alities for application programs being executed in the
operation system, the access being based on the infor-
mation on the one or more processing functionalities
provided to the user mode interface.

22-23. (canceled)

24. A machine-readable storage medium including pro-
gram code, when executed, to cause a machine to perform
the method of claim 19.

#* #* #* #* #*

