a9 United States

Cherian et al.

US 20150381494A1

a2y Patent Application Publication (o) Pub. No.: US 2015/0381494 A1l

43) Pub. Date: Dec. 31, 2015

(54) METHODS AND SYSTEMS TO OFFLOAD

(71)
(72)

@
(22)

(1)

OVERLAY NETWORK PACKET
ENCAPSULATION TO HARDWARE

Applicant: Nicira, Inc., Palo Alto, CA (US)

Inventors: Shoby Cherian, Dublin, CA (US);
Raghavendra Subbarao Narahari
Venkata, Santa Clara, CA (US); Tanuja

Ingale, Campbell, CA (US)

Appl. No.:

Filed:

14/320,386

Jun. 30,2014

Publication Classification

(52) US.CL
CPC oo HO4L 45/745 (2013.01); HO4L 69/22
(2013.01); HO4L 61/2592 (2013.01); HO4L

49/354 (2013.01); HO4L 49/9068 (2013.01)

57 ABSTRACT

A method for offloading packet encapsulation for an overlay
network is provided. The method, at a virtualization software
of a host, sends a mapping table of the overlay network to a
physical network interface controller (NIC) associated with
the host. The mapping table maps the identification of each of
a set of virtual machine (VM) of a tenant on the host to an
identification of a tunnel on the overlay network. The method,
at the virtualization software, receives a packet from a VM of
the tenant. The method sends the packet to the physical NIC.

Int. Cl. The method, at the physical NIC, encapsulates the packet for
HO4L 12/741 (2006.01) transmission over the overlay network by using the mapping
HO4L 12/861 (2006.01) table. The method of claim also tags the packet by the virtu-
HO4L 12/931 (2006.01) alization software as a packet that requires encapsulation for
HO4L 29/06 (2006.01) transmission in the overlay network prior to sending the
HO4L 29/12 (2006.01) packet to the physical NIC.
110 110 110 110
Z
VM1 vee VMn 130 VMI cen VMn
Virtual Virtual - 4X-14- Virtual Virtual
NIC [~ e [N ! S NIC [~
125 125 125 125
Yy 4 120 P Y Y 120
LFE Overlay Network d LFE Overlay Network 4
Software Softwarc
135 \135
Host virtualization Host virtualization -
Software Software
7 y L]
115 150 115 150
Physical NIC - Physical NTC -
Host Host
7 7
105 \ e ——— \ 105

Overlay Tunnel for a Particular Tenant

145

140

Network

US 2015/0381494 A1l

I 314

Dec. 31,2015 Sheet 1 of 16

Syl
sl T
SEOMIAN b1
yd
O JURUd] JR[NOTIRJ € JOF [UUN] AB[ISAQ C
01 A e A 01
\ \
S04 180H
A DIN[eoishyd A DIN=asAyqg
0s1 SIl 0€1 ST
) / A i
oIRMIJOS 01eM}JOS

] UONBZI[ENYIIA JSOH uoneZI[eNJIA JSOH

Sel
Gel
\ \
QIBM}JOS aleMiJog
SIOMIAN AR[I2AQ MIoMION ABIOAQ
/| q4471 e dd1
0cl q q oo 0z q q
STl STl STl STl
~J OIN ~J OIN - ~J OIN ~J DOIN

[eniIA [eay | A—fFq4—-xr-q1-|l-—- » | (panp TemaIA

UNA (11} TINA 0c1 TAA (X1} TINA

£ Z

’ d \\ \\
0Tl 011 011 011

Patent Application Publication

US 2015/0381494 A1l

Dec. 31,2015 Sheet 2 of 16

Patent Application Publication

00t uonensdesug NVIXA

4

1]

Y

S0T dweriy 771 [PUISLQ

~ - ~
0LT 0€7 44 S1¢ 0I¢ S¢T
\ \ \ \ \ \
/ / / /
/ / / : A odA1 1oy
\ \ \ x / pueoyuy | VS va
$0d soa | oorc o | VS | VA epeay | TREH VAL VS L gs) gy [OVIN| OVIN
nmo peojAed T TeUISHIO [DVIN| DOVIN dd PmQ (1¢mQ N0 1o | om
ouu Jouug | Jouuy NVIXA nmo ° ©
“ _ / \ \
! _ \ N \ N
| " \ \ \ \ \ \
f ; 0¥C e (11Y4 Y4 09¢ 9T

Patent Application Publication Dec. 31, 2015 Sheet 3 of 16 US 2015/0381494 A1
305 310 315 320
VNI ID VM MAC Address | VTEP MAC Address |VTEP IP Address
// VNI 1 VM1 _MAC ADD VTEP1 MAC ADD VTEPI _1IP_ADD
325 —+ VNI I VM2 MAC_ADD | VTEPI MAC_ADD | VTEP1_IP_ADD
N
™S VNI 1 VM3 MAC ADD | VTEPm_MAC_ADD | VTEPm_IP_ADD
[] [] [J []
[] [] [d L
[] [] [d L
// VNI n VMp MAC ADD | VTEP1 MAC ADD | VTEP1 IP ADD
330
—t VNI n VMq_MAC_ADD | yTEP2 MAC ADD | VTEP2 IP. ADD

Fig.

3

AN

300

Patent Application Publication

Dec. 31,2015 Sheet 4 of 16

US 2015/0381494 A1l

405

VM MAC Address

VTEP MAC Address

VTEP IP Address

VM1_MAC_ADD

VTEP1_MAC_ADD

VTEP1 _IP_ADD

VM2_MAC_ADD

VTEP1 MAC_ADD

VTEP1_IP_ADD

VM3 _MAC_ADD

VTEPm_MAC_ADD

VTEPm_IP_ADD

410

VM MAC Address

VTEP MAC Address

VTEP IP Address

VMp_MAC_ADD

VTEP1_MAC_ADD

VTEP1 IP_ADD

VMq MAC_ADD

VTEP2_ MAC_ADD

VTEP2_IP_ADD

Fig. 4

Patent Application Publication

Dec. 31,2015 Sheet 5 of 16

US 2015/0381494 A1l

500

Tenant VM3
migrates to/from
another Host 505
<
Tenant VM1 joins Tenant VM2 Leves S/ 545
Virtual Network vijrtual Network S pd
K
540 VXLAN
VM1 VM2 VM3 4 Controller
\ AN Create VTEP
530 535
510
K <
LFE 515
VXLAN VTEP Software /
' A
|
555 _/\"L; Receive Traffic
(Ingress Path)
Push VXLAN Adress : A~
Mapping Tablc to ‘L 550
Physical NIC | \/\
520
o Uplink 4
Host Virtualization
Software : A
|
|
* 525
Physical NIC /

I_I

Receive Traffic
(Ingrcss Path)

Fig. 5

Patent Application Publication Dec. 31, 2015 Sheet 6 0f 16 US 2015/0381494 A1

Y

¢
605
Yes .
Tunnel end point is create
on the host?
No
610
Yes
615
Yes
620
Yes A tenant VM has migrate
to/from the host?
No 625
Yes
No
627
Any other event that requires No
modification to the overlay network
mapping table??
Yes
630
> Update the overlay network mapping table e
on the host

¢ 635

Send the overlay network mapping table to /
the physical NIC

v Fig. 6

End

Patent Application Publication = Dec. 31, 2015 Sheet 7 0f 16 US 2015/0381494 A1

705

Receive an egress path (transmit) packet

VXLAN encapsulation
offload to hardware?

720
Z yd
Tag the packet for Perform VXLAN table
encapsulation offload lookup
l 725
Encapsulate the packet with
VXLAN header
730
VXLAN checksum and
TSO offload to hardware? 735
Z
Yes Compute VXLAN packet
760 checksum
Host _§
———t b e
NIC 740
A 4 Z \J 750
NIC performs VXLAN table /
lookup to determine the outer NIC performs TSO and
hcader, performs TSO, and computes checksum
computcs checksum
¢ 755
g Transmit the packet ¢

Fig. 7

Patent Application Publication = Dec. 31, 2015 Sheet 8 0f 16 US 2015/0381494 A1

860
Send the packet to the destination VM L

f 855

Switch the packet to appropriate VM port /
group

)

850
e

Strip VXLAN header

T 845
pd

Perform learning and update

VXLAN table
T 840
Z
865 Validate checksums
Host - A
______ A S R PRSP U

NIC sends VNIID, VTEPIPand | 830
VLAN ID along with the inner
packet to the host software

* 825

NIC performs LRO if required L

835
f 820 . £
NIC sends the received packet to
NIC validates checksums L the host software

f 815

NIC strips VXLAN outer header

The packetisa
VXLAN packet and the NIC is VXLAN

Yes offload enabled?

F i g . 8 Receive an ingress path /

(receive) packet

Patent Application Publication = Dec. 31, 2015 Sheet 9 0of 16 US 2015/0381494 A1

900

r'd

Provide the functionality to register the VXLAN /9 05

encapsulation capability on behalf of the associated
VFs

¢ 910

Provide pass-through operation callback to push the | ~
VXLAN address mapping table to the NIC

¢ 915

Provide pass-through operation callback to program the -
VNI ID for each VF

920

Provide pass-through operation callback to program the Ve
VXLAN port for each VF

Fig. 9

US 2015/0381494 A1l

Dec. 31,2015 Sheet 10 of 16

Patent Application Publication

0001

N

01 31

U gav ar o) v aav Ovin o| v aav ISVOW dar | aav dI TdAIA | ddy DV TdalA aav OviN bwa INA
0€0T1
U aay dl D| ¥ dav OV D| U day ISVOW dI | aav di Id41A | ady OVIN 1d9LA aav OviN dnA Hz>\\
® ® [[]
[] [] [] ®
® ® L []
aav dl o| 1 aav DvIN O | 1 dav 1SVOW dl | aav df WddlA | ddav DOVIN WddlA aav v €WA - Hz>/
[aav dl |1 dav DviN O | 1 aav 1SVOW dI | aav dI 1d3LA aav OviN 1d4.1A aav DVIN TINA CINA :Wﬁ
[dav dl |1 dav DOvIN O | 1 dav 1SVOW dI| dav dI 1d31A aav OV [ddLA aav dviN TIWA TINAT
SSAUIPPV dI SSMPPY JVIN | SSMPPVISEIDINUL] | (0o
FRAAS A My PPV AT JALA | SS3IPPV DVIN JALA SSAIPPY OVIN WA | dIINA
S101 0101 S001 0ce 953 01¢ 4}3

US 2015/0381494 A1l

Dec. 31,2015 Sheet 11 of 16

Patent Application Publication

Orrt

SOT11

IT S

U aav d D|uaavy OvVIN D |¥ aav ISVOW dI | ddv dI eddIA | dav DVIN eddIA| qav OviN WA
U aav di O | v adv OV D | v aav LSYOW dI| dav di 1dalA | aav ovIN 1dala| aav Ovw dna
SSUPPV AT | SSUPPY IVIN [SSHPPVISEINNWAL | g5 1ppy g7 JALA | $501PPV DVIN JALA | 559IPPV DVIN WA
Aemajen femajen TPAE]
[]
[]
[]
L] [J [] [J [J L J
L] [] [] [[L J
[] [] [] ® [] ®
aav dl o 1raav oviN o | 1T dav ISVOW dI| dav dl WddlA | aav OVIN WddlA | aav OvIN SNA
[dav' dl D1 dav JvIN D | T dav ILSVOW dI| aav dlI 1ddlA | dav OVIN TddLA | aav OvIN TINA
I aav a 9|1 aav oviN O | 1 aav ISVOIN dI| aav dI [d41A | aav OV Id9lA | dav OvIN TINA
SSUPPV AL | SS9IPPY DVIL | SSHPPVISBBIMMAL| - gonynper g7 gapA | $91pPY DVINAALA | $5010PV DVIN WA
Lemdyen) Lemayen) T Hke]

Patent Application Publication Dec. 31,2015 Sheet 12 0of 16

US 2015/0381494 A1
1235
| ~
| 1240 1245
/ i
VMs VM1 VMn
(with VF pass- ose (with VF pass-
through) through)
Guest Operating system
Host Virtualization
Software
LFE
1225
VXILAN Mapping Table /
(TX - software encapsulation/ |~
RX - softwarc decapsulation) \
|
\
; ; H
< 7 1210\ 1215 1220
Z \ yd yd
PF ': VFI .ee VEn
v : = 1290 v
N y g
/ “~] Copy of VXLAN Mapping Table 1230
1290 (TX - hardware encapsulation/ }—"
RX - hardware decapsulation)
NIC
/7
1205

Fig. 12

Patent Application Publication = Dec. 31, 2015 Sheet 13 of 16 US 2015/0381494 A1

1300

\ Receive an egress path (transmit) packet at a VF that is /1305
bound to a VM

+ 1310

Identify the source VM MAC address and destination |-
VM MAC address in the packet header

v

Perform VXLAN address mapping table lookup using | |35
the VNI ID assigned to the VF and the identified source |~
and destination MAC addresses to identify the MAC
address and 1P address of the source and destination
VTEPs

1320

TSO and/or checksum calculation 18
required and VF configured to perform
TSO and checksum calculation?

Yes

1330
N v

Perform TCP segmentation and/
or calculate checksums

1350

Lookup in the VXLA
address mapping tablc failed to identify an
associated VTEP for the inner destination
MAC address?

1355 l
AN

Encapsulate the packet using the 1360
MAC and IP addresses for the
source and destination VTEPs <
identified in the VXLAN Encapsulate the packet using (i) the MAC and IP addresses of the
e . source VTEP identified in the VXLAN mapping table lookup and
address mapping table lookup (ii) the MAC and IP addresses of the gale?xr/)a)/g;)rogramme(ll for
the VNI ID as the outer destination MAC and IP addresscs

>l 1365
=
| Calculate checksum for the outside packet if required |
* 1370
e
| Transmit the encapsulated packet |

Fig. 13

Patent Application Publication = Dec. 31, 2015 Sheet 14 0of 16 US 2015/0381494 A1

1405
Receive an ingress path (receive) packet at the NIC -
1400 +
\ 1410
Decapsulate the packet by stripping the outer headers |~

1415

N
0 Outer VLAN ID in
the packet matches the VLAN ID configurcd
for a VF or the PF?

1425

No The VTEP MAC and IP

g addresses in the packet match the mapping
table entries for the inner MACg?
1430
prd
Calculate checksum for the inner packet

1435

No

< The calculated checksum matches the
checksum received in the packet?
1440
S
1420] .
P Perform LRO if required
Drop the packet

Yes
e destination VTEP IP address in the

packet is a multicast address?

l 1450
pd

Forward the packet to all
ports (including the PF and No
all VFs)in the VNI 1D
domain of the packet

The inner destination MAC address
matches any of the VFs MAC addresg?

1460

P

Forward the inner packet to the

port associated with the matched
VF

Forward the inner packet to the
port associated with the PF

Fig. 14

Patent Application Publication Dec. 31, 2015 Sheet 15 0of 16 US 2015/0381494 A1

1500

1505

Receive an ARP response packet

1510

No The inner destination

MAC address in the packet matches one of

the VFs or the PF MAC address?

Yes
1520

The packet's VNI ID matches the

y

VNI ID assigned to the VF?
1515

Ignore the ARP request

Y
- © 1525

No

The packet's inner source MAC address is found

in the VXLAN address mapping table?

Yes

1530

The source VTEP MAC and IP
addresscs in the packet match the VXLAN

\ 4 =

address mapping table entry for the inner source
MAC address of the packet in the card2

1540 Yes

Decapsulate the outer header of
the the ARP response and send
the inner packet to the PF's port

Decapsulate the outer header of the the ARP response
and send the inner packet to the VF’s VM

Fig. 15

1535

US 2015/0381494 A1l

Dec. 31,2015 Sheet 16 of 16

Patent Application Publication

9] ‘31

N\

GvalL

0291

czoL _ 0191 0£91
N N AN
$90IA9Q (shiun
HOMSN indu Buissano.ld NOY
N\
5091
s991A0(Q Aowas| 0091
ndinQ Wwa)sAs ebeioys
< D

Ge9lL

US 2015/0381494 Al

METHODS AND SYSTEMS TO OFFLOAD
OVERLAY NETWORK PACKET
ENCAPSULATION TO HARDWARE

BACKGROUND

[0001] Anoverlay network is a network virtualization tech-
nology that achieves multi-tenancy in cloud computing envi-
ronment. Examples of overlay networks include Virtual
eXtensible LAN (VXL AN), Generic Network Virtualization
Encapsulation (GENEVE), and Network Virtualization using
Generic Routing Encapsulation (NVGRE). For instance,
VXLAN is an Open Systems Interconnection (OSI) model
Layer 2 (L2) overlay scheme over a Layer 3 (I.3) network.
VXLAN encapsulates an Ethernet [.2 frame in [P (MAC-in-
UDP encapsulation) and allows Virtual Machines (VM) to be
apart of virtualized L.2 subnets operating in separate physical
L3 networks. Similarly, NVGRE uses Generic Routing
Encapsulation (GRE) to tunnel 1.2 packets over [.3 networks.
[0002] Today, the encapsulation of an overlay network [.2
frame originating from a VM is handled in software. This
involves significant work on the part of the overlay network
software to maintain and lookup overlay network address
mapping tables, and to encapsulate a transmit packet with an
outer header that includes relevant overlay network, UDP, IP
and Ethernet information before it is sent out on the wire.
Similarly the reverse process of decapsulation of the outer
header for a received packet is also the responsibility of the
software. Each mapping table lookup and encapsulation/de-
capsulation of packet in software incurs significant CPU cost
and affects performance.

[0003] Peripheral Component Interconnect Express (PCle)
is a high-speed serial computer expansion bus standard.
Single Root I/O Virtualization (SR-IOV) is an 1/O virtualiza-
tion technology that allows a PCle device to appear as mul-
tiple separate physical PCle devices.

[0004] The virtualization software (sometime referred to as
a hypervisor) of some host machines support SR-IOV
enabled network adapters. The instantiated VFs can be con-
figured such that they are assigned directly to VMs and the
guest operating system’s driver takes possession of the VFs.
While such configuration delivers near native network per-
formance to the VM, the data path bypasses hypervisor/net-
work stack. Hence such VMs cannot be fully utilized in an
overlay network based multi-tenant environment.

BRIEF SUMMARY

[0005] Someembodiments provide a method for offloading
overlay network packet encapsulation and decapsulation to
hardware. A host that participates in overlay network includes
an overlay network virtualization software that covers the
configuration/control plane, data plane and overlay network
packet processing functionality. The host acts as a tunnel end
point. There is a unique identifier associated with each over-
lay network. For a VXLAN overlay network, the tunnel end
point is known as Virtual Tunnel Endpoint (VTEP) and the
unique identifier is referred to as the VXLLAN Network Iden-
tifier (VNI).

[0006] The overlay network software is responsible for
maintaining an overlay network mapping table to include VM
media access control (MAC) address to the tunnel end point
1P and other address mappings. These tables are looked up by
the virtualization software while performing packet encapsu-
lation and decapsulation on an overlay network packet during

Dec. 31, 2015

its travel from a VM to virtual network and vice versa. Some
embodiments provide a copy of the overlay network mapping
table to an overlay network offload capable physical network
interface controller (NIC). Packets that require an overlay
network encapsulation are tagged by the overlay network
virtualization software.

[0007] When an overlay network offload capable NIC
receives such atagged packet in the transmit (egress) path, the
NIC encapsulates the packet using the mapping table before
transmitting the packet to the network. On the receive (in-
gress) path, the NIC decapsulates an overlay network packet
by stripping the outer overlay network layers before passing
the packet to the host virtualization software.

[0008] SR-IOV is a specification that allows a single PCle
physical device under a single root port to appear to be mul-
tiple separate physical devices to the hypervisor or the guest
operating system. SR-IOV uses physical functions (PFs) and
virtual functions (VFs) to manage global functions for the
SR-IOV devices. The instantiated VFs can be configured such
that they are assigned directly to VMs and the guest operating
system’s driver takes possession of the VFs causing the over-
lay network data path (e.g., VXLAN data path) to be bypassed
in the virtualization software/network stack. An overlay net-
work offload capable NIC is able to overcome this limitation.
[0009] Once the overlay network mapping table is shared
with the overlay network capable NIC, the NIC is able to form
proper association between each VM, VF, and the physical
NIC by using the overlay network mapping table. This will
enable the NIC to correctly encapsulate (for transmit) and
de-capsulate (for receive) all overlay network packets.
[0010] For SR-IOV VF’s, the egress packets are received
directly from the VMs at the NIC. The VMs do not tag the
packets to indicate the packets require an overlay network
encapsulation. Since there is no tag associated with the pack-
ets that arrive at the NIC through the VFs, all packets received
atthe NIC through a VF are encapsulated in the NIC using the
mapping table if the VF is configured in the overlay network
segment. On the other hand, the packets that are sent by VMs
through the PF are tagged by the overlay network software in
the hypervisor to indicate that the hypervisor requires NIC to
perform the encapsulation on the given packet before the NIC
sends out on the wire.

[0011] The preceding Summary is intended to serve as a
brief introduction to some embodiments of the invention. It is
not meant to be an introduction or overview of all inventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred to
in the Detailed Description will further describe the embodi-
ments described in the Summary as well as other embodi-
ments. Accordingly, to understand all the embodiments
described by this document, a full review of the Summary,
Detailed Description and the Drawings is needed. Moreover,
the claimed subject matters are not to be limited by the illus-
trative details in the Summary, Detailed Description and the
Drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The novel features of the invention are set forth in
the appended claims. However, for purposes of explanation,
several embodiments of the invention are set forth in the
following figures.

[0013] FIG. 1 conceptually illustrates a portion of a virtual
infrastructure that includes VXILLAN in some embodiments of
the invention.

US 2015/0381494 Al

[0014] FIG. 2 conceptually illustrates a simplified diagram
for VXL AN encapsulation.

[0015] FIG. 3 illustrates a VXILAN address mapping table
in some embodiments of the invention.

[0016] FIG. 4 illustrates several VXTI AN address mapping
tables that are maintained per VNI ID in some embodiments
of the invention.

[0017] FIG.5 conceptually illustrates VXL AN control flow
that results in updating of VXLAN address mapping table in
some embodiments of the invention.

[0018] FIG. 6 conceptually illustrates a process for updat-
ing the VXLAN address mapping table of a physical NIC in
some embodiments of the invention.

[0019] FIG. 7 conceptually illustrates the changes in the
egress traffic flow (the transmit path) to offload VXLAN
packet decapsulation to hardware in some embodiments of
the invention.

[0020] FIG. 8 conceptually illustrates the changes in the
ingress traffic flow (the receive path) to offload VXLAN
packet decapsulation to hardware in some embodiments of
the invention.

[0021] FIG. 9 conceptually illustrates several functional-
ities provided by a PF driver to support multi-tenancy for
SR-IOV in some embodiments of the invention.

[0022] FIG. 10 illustrates a VXLLAN address mapping table
in some embodiments of the invention.

[0023] FIG. 11 illustrates several VXILAN address map-
ping tables that are maintained per VNI ID in some embodi-
ments of the invention.

[0024] FIG.12 conceptually illustrates the flow of VXLLAN
traffic in an SR-IOV environment in some embodiments of
the invention.

[0025] FIG. 13 conceptually illustrates the encapsulation
process for the egress packets in some embodiments of the
invention.

[0026] FIG. 14 conceptually illustrates the decapsulation
process for the ingress packets in some embodiments of the
invention.

[0027] FIG. 15 conceptually illustrates a process for pro-
cessing the ARP request from a VF in some embodiments of
the invention.

[0028] FIG. 16 conceptually illustrates an electronic sys-
tem with which some embodiments of the invention are
implemented.

DETAILED DESCRIPTION

[0029] In the following detailed description of the inven-
tion, numerous details, examples, and embodiments of the
invention are set forth and described. However, it will be clear
and apparent to one skilled in the art that the invention is not
limited to the embodiments set forth and that the invention
may be practiced without some of the specific details and
examples discussed.

[0030] Virtualization is the ability to simulate a hardware
platform, such as a server, storage device or network resource,
in software. A virtual machine (VM) is a software implemen-
tation of a machine such as a computer. Virtual networks are
abstractions of a physical network. VMs may communicate
using virtual networks. One such virtual network is an overlay
network, which is a Layer 2 overlay scheme over a Layer 3
network. Examples of this type of overlay network are
VXLAN, NVGRE, and GENEVE. For brevity, the rest of this
specification uses the example of VXLAN as an overlay net-
work thatisa Layer 2 overlay scheme over a Layer 3 network.

Dec. 31, 2015

A person of ordinary skill in the art will realize that the
invention can be readily applied to other overlay networks
(which, e.g., may use other encapsulation protocols) without
deviating from the teachings of the invention.

[0031] VXLAN uses MAC Address-in-User Datagram
Protocol (MAC-in-UDP) encapsulation to extend Layer 2
segments across a data center network. The MAC-in-UDP
adds a VXL AN header to the original payload (i.e., the Layer
2 frame) and encapsulates them in a UDP-IP packet. The
MAC-in-UDP encapsulation is then used to tunnel Layer 2
network over Layer 3 network.

[0032] As a part of the VXLAN configuration, a virtual
tunnel endpoint (VTEP) is configured on every host. The
VTEPs are used to map tenants’ end devices to VXLAN
segments and to perform VXL AN encapsulation and decap-
sulation. Each VXILLAN network is assigned a unique identi-
fier referred to as virtual network identifier (VNI). Each host
VTEP is assigned a unique IP address. The VTEP uses this IP
address to encapsulate Ethernet frames and transmit the
encapsulated packets to the transport network through the IP
interface.

[0033] FIG. 1 conceptually illustrates a portion of a virtual
infrastructure that includes an overlay network in some
embodiments of the invention. As shown, several virtual
machines (VMs) 105 are hosted by several host virtualization
software 110-115.

[0034] The virtualized infrastructure in some embodiments
is managed by a single cloud management system. The term
cloud service refers to services (such as computing, storage,
etc.) provided in a distributed manner over a network. The
virtualized infrastructure includes a set of host machines 105
hosting multiple tenants. Each tenant has one or more VMs.
For simplicity, FIG. 1 only shows VMs 110 for one tenant.

[0035] Each host 105 includes a host virtualization soft-
ware 115 (sometimes referred to as a hypervisor). The host
virtualization software 115 shown in this figure are represen-
tative of the various types of virtualization software (e.g.,
virtual machine monitor, etc.) that may operate on hosts in
such a virtualized infrastructure.

[0036] In some embodiments, the virtualization software
includes a physical forwarding element (PFE) such as a vir-
tual switch. In the virtualization field, some refer to software
switches as virtual switches as these are software elements.
However, in this specification, the software forwarding ele-
ments are referred to as physical forwarding elements (PFEs),
in order to distinguish them from logical forwarding elements
(LFEs), which are logical constructs that are not tied to the
physical world. In other words, the software forwarding ele-
ments are referred to as PFEs because they exist and operate
in the physical world, whereas LFEs are a logical represen-
tation of a forwarding element that is presented to a user when
designing a logical network. In some embodiments, several
PFEs are distributed throughout the network implement ten-
ant’s LFEs, where each PFE is a local instantiation of an LFE
that operate across different host machines and can perform
L3 packet forwarding between VMs on the host machine or
on different host machines. An LFE is sometimes referred to
as a virtual distributed switch (VDS).

[0037] Ineachhost105,the LFE 120 connects to a physical
network interface card 125 to send outgoing packets and to
receive incoming packets. In some embodiments, an LFE is
defined to include a port (not shown) through which it con-
nects to the physical NIC 150 to send and receive packets.

US 2015/0381494 Al

Each LFE is also defined to have several virtual ports (not
shown) to connect to tenant VMs.

[0038] As shown, each VM 110 includes a virtual NIC 125.
In some embodiments, each virtual NIC in a VM is respon-
sible for exchanging packets between the VM and the net-
work virtualization layer of the host virtualization software
115 through an associated virtual NIC emulator. Each virtual
NIC emulator interacts with NIC drivers in the VMs to send
and receive data to and from the VMs. In some embodiments,
the virtual NIC are software abstractions of physical NICs
implemented by virtual NIC emulators. For instance, the code
for requesting and obtaining a connection ID resides in com-
ponents of virtual NIC emulators in some embodiments. In
other words, the virtual NIC state is implemented and main-
tained by each virtual NIC emulator in some embodiments.
Virtual devices such as virtual NICs are software abstractions
that are convenient to discuss as though part of VMs, but are
actually implemented by virtualization software using emu-
lators. The state of each VM, however, includes the state of'its
virtual devices, which is controlled and maintained by the
underlying virtualization software.

[0039] The VMs 110 of a tenant form a logical network
(also referred to as private network or virtual network), which
is conceptually shown by the dashed line 130. The logical
network is an abstraction of a physical network and may
provide a virtual Layer 2 (or data link layer) for services such
as encapsulation and decapsulation of network layer data
packets into frames, frame synchronization, medial access
control, etc. The logical network may span one or more physi-
cal networks and be organized independent of the underlying
physical topology and organization of the physical networks.
The logical network is identified by a logical network iden-
tifier (also known as virtual network identifier or VNI). Each
logical network is configured by a tenant.

[0040] A host that participates in overlay network includes
overlay network virtualization software that covers the con-
figuration/control plane, data plane and overlay network
packet processing functionality. The host includes (e.g., as a
part of the LFE software) the overlay network virtualization
software 135 that acts as a tunnel end point. In the example of
VXLAN overlay network, the overlay network virtualization
software is referred to as VXL AN Virtual Tunnel Endpoint
(VTEP) software and the tunnel end point is known as VTEP.
There is a unique identifier associated with each instance of
an overlay network. The unique identifier associated with
each VXLAN network is referred to as the VXL AN Network
Identifier (VNI). The overlay network software 135 is respon-
sible for maintaining a mapping table to include, e.g., VM
MAC o tunnel end point address and other address mappings.
The overlay network traffic between a tenant’s VMs 110 that
are hosted on separate hosts 105 is passed through a tunnel
140 through the communication network 145. The commu-
nication network 140 may include the Internet, local area
networks (LLANs), wide area networks (WANs), different
hardware equipment such as cables, routers, switches, etc.
[0041] As described further below, the physical NICs 150
in some embodiments are capable (e.g., through the NIC’s
hardware, firmware, and/or software) of offloading encapsu-
lation and decapsulation of overlay network packets from the
host virtualization software. The virtualization software
determines (e.g., based on the virtual port configuration)
whether a transmit packet requires overlay network encapsu-
lation. For instance, overlay network encapsulation is
required when the packet has to traverse the virtual network

Dec. 31, 2015

from one host to another. In some embodiments, a transmit
packet that requires overlay network encapsulation is tagged
by the virtualization software and forwarded to the physical
NIC for overlay network encapsulation.

[0042] Similarly, when an overlay network encapsulated
packetis received at the NIC, the NIC decapsulates the packet
by stripping the outer encapsulation layer (e.g., the VXLAN
encapsulation) of the packet before forwarding the packet to
the virtualization software. An overlay network encapsula-
tion offload capable NIC receives a copy of the overlay net-
work mapping table from the virtualization software. The
mapping table provides the mapping between each VM’s
address (e.g., VM’s MAC address) and overlay network iden-
tifier (e.g., VXLAN VNI) and tunnel end point address (e.g.,
VTEP MAC and IP addresses).

[0043] FIG. 2 conceptually illustrates a simplified diagram
for VXLAN encapsulation 200. As shown, the original [.2
packet (e.g., an original Ethernet frame) 205 includes a des-
tination MAC address 210 (referred to as inner destination
MAC address), a source MAC address 215 (referred to as
inner source MAC address), and a payload 225 (e.g., an
original Ethernet payload). The original .2 frame 205 can
also include a frame check sequence (FCS) 230 such as
checksum or cyclic redundancy check (CRC). The original
L2 packet 205 is herein referred to as the inner packet.
[0044] The original Ethernet frame 205 is wrapped in a
VXLAN header 235 (which includes the VXL AN VID). This
inner frame is further wrapped in a UDP header 240 (referred
to as outer UDP). The result is further wrapped in outer IP
header (which includes outer IP destination 245 and source
250 addresses). The result is further wrapped in outer MAC
header (which includes outer virtual local area network
(VLAN) tag information and Ether type 255 and the Ethernet
header that includes the outer source MAC address 260, and
outer destination MAC address 265). Finally, the VXLLAN
encapsulation includes an optional outer FCS 270. By doing
the outer wrapping, VXL AN creates a logical network for
VMs across different networks. VXLAN (and other similar
overlay networks) creates a Layer 2 network on top of Layer
3 networks. The fields 235-265 and the optional outer FCS
270 are herein referred to as the outer header and the encap-
sulated packet 200 is referred to as the outer packet.

[0045] FIG. 2 is a simplified diagram that shows a selected
number of fields for VXL AN encapsulation. Further details
describing additional fields for VXLAN encapsulation is
described in “VXLAN: A Framework for Overlaying Virtu-
alized Layer 2 Networks over Layer 3 Networks”, by M.
Mabhalingam, et al., Network Working Group, Aug. 26, 2011,
which is incorporated herein by reference. Although this
document refers to this selected fields for simplicity, a person
of ordinary skill in the art will realize that encapsulating
packets for VXLAN or other overlay networks require encap-
sulating the packets with the entire outer header. A person of
ordinary skill in the art will also realize that the inner packet
205 can have additional fields that are not shown in FIG. 2.
[0046] In FIG. 2, the outer wrap is used to deliver the [.2
payload through an 1.3 network. For instance, the outer source
IP source address is the IP address of the source VI'EP and the
outer destination IP address is the IP address of the destina-
tion VIEP. The outer source MAC address is the MAC
address of the source VIEP and the outer destination MAC
address is the MAC address of the next network entity (such
as a router of gateway) on the path from the source VTEP to
the destination VTEP.

US 2015/0381494 Al

[0047] In some embodiments, the VTEP includes the fol-
lowing components: A VM kernel component that is part of
the LFE and is used for VXLAN data path processing, which
includes maintenance of forwarding tables; a VM kernel NIC
virtual adapter to carry VXLAN traffic, and a VXL AN port
group that dictates how VXL AN traffic is carried in and out of
the host VTEP through the physical NICs.

[0048] 1. Offloading Vxlan Packet Encapsulation to Hard-
ware
[0049] Some embodiments provide methods and systems

for offloading encapsulation and decapsulation of VXLLAN
headers to network interface controllers (also known as net-
work adapters, network interface cards or NICs). These
embodiments improve the performance and latency of
VXLAN implementation by avoiding spending CPU cycles
in software for performing VXIL.AN address table lookups
and for encapsulating/decapsulating each outgoing or incom-
ing packet. The VXL AN control path and data path are modi-
fied in order to offload the encapsulation and de-capsulation
of the header to hardware.

[0050] A. Programming NIC with VXL AN Address Map-
ping Table
[0051] The control path changes in some embodiments

include programming the VXL AN offload aware NICs with
VXL AN address mapping tables based on a table maintained
in the host virtualization software. Copying the mapping
tables to a NIC enables the NIC to generate outer encapsula-
tion header on its own by referencing the mapping table
stored in the NIC.

[0052] FIG. 3 illustrates a VXILAN address mapping table
300 in some embodiments of the invention. The VXLAN
software maintained address mapping table 300 in some
embodiments includes the following information (or tuple):
VM MAC 305, VXLAN VNI identifier 1D) 310, VTEP MAC
address 315, and VTEP IP address 320. The VXLAN soft-
ware in some embodiments updates (through configuration or
learning) the mapping table for the VMs on any host that is
configured to use VXLAN.

[0053] Insome embodiments, one VXLAN VNI ID 305 is
associated to each tenant that is using the VXLAN (i.e., each
tenant has a unique VNI ID which is e.g., associated to a
particular port group on the LFE). In the example of FIG. 3,
VNI_1 325 is the VNI ID associated to one tenant (e.g.,
Tenant 1) and VNI_n 330 is the VNI ID associated with
another tenant (e.g., Tenant n). The VTEP MAC address 315
and VTEP IP address 320 identify the virtual tunnel endpoint.
[0054] Some embodiments (as shown in FIG. 3) maintain
one mapping table that includes the VNI IDs for all tenants.
The mapping table is pushed to the NIC after each event that
modifies the mapping table by the host software. Other
embodiments maintain one mapping table per VNI ID. These
embodiments push each individual mapping table to the NIC
after the mapping table is modified by the host software. FIG.
4 illustrates several VXL AN address mapping tables 405-410
that are maintained per VNI ID in some embodiments of the
invention. Tables 405-410 in the example of FIG. 4 include
similar information as the single table 300 in FIG. 3 except
that the tables in FIG. 4 do not include VNI ID. Instead, table
405 includes VXLAN mapping information for VNI_1 325
and table 410 includes VXLAN mapping information for
VNI_n 330.

[0055] Different embodiments push the address mapping
tables to the NIC differently. Some embodiments push the
entire table to the NIC whenever the table is updated in the

Dec. 31, 2015

virtualization software. Other embodiments push only one
table entry at a time when an entry is added, modified or
deleted.

[0056] FIG. 5 conceptually illustrates VXIL.AN control flow
that results in updating of VXL AN address mapping table in
some embodiments of the invention. As shown, the host vir-
tualization software (sometimes referred to as a hypervisor)
505 includes a virtual switch 510 (e.g., an LFE). The figure
illustrates several control events that trigger copying the
VXL AN mapping table into the physical NIC 525.

[0057] The control events include creation of VTEP 515 by
VXLAN controller 545. The control events also include a
tenant VM such as VM1 530 joining the virtual network, a
tenant VM such as VM2 535 leaving the virtual network, a
tenant VM such as VM3 540 migrating to/from another host
from/to the host 505. The control events further include
receiving traffic on the ingress path 550. As shown in FIG. 5,
once any of the above mentioned control events occurs, the
VXLAN address mapping table is pushed from the host 505
into the physical NIC 525 as shown by the dashed line 555.
Although FIG. 5 shows only one physical NIC, some embodi-
ments utilize multiple physical NICs. The NICs can be
bounded (or teamed) together to provide more bandwidth or
can be assigned to different virtual switches for traffic isola-
tion.

[0058] FIG. 6 conceptually illustrates a process 600 for
updating the VXLAN address mapping table of a physical
NIC in some embodiments of the invention. Process 600 is
performed in some embodiments by the overlay network
software resided in the host virtualization software. As
shown, the process determines (at 605) whether a tunnel end
point (e.g., a VXLAN VTEP) is created for the host. In some
embodiments, the VTEP is configured on a host as a part of
the VXLLAN configuration process. If yes, the process pro-
ceeds to 630, which is described below.

[0059] Otherwise, the process determines (at 610) whether
a tenant VM (such as VM1 530 in FIG. 5) has joined the
network. For instance, a tenant VM may be created and is
joined the network. If yes, the process proceeds to 630, which
is described below. Otherwise, the process determines (at
615) whether a tenant VM (such as tenant VM2 535 in FIG. 5)
has left the network. For instance, a tenant may be removed
from the network for security reasons. If yes, the process
proceeds to 630, which is described below. Otherwise, the
process determines (at 620) whether a tenant VM (such as
VM3 in FIG. 5) has migrated to/from the host. For instance,
atenant VM can migrate to/from a host to balance the load on
the hosts or a VM can migrate from a failed host to another
host.

[0060] If yes, the process proceeds to 630, which is
described below. Otherwise, the process determines (at 625)
whether packets are received on the ingress path. If yes, the
process proceeds to 630, which is described below. Other-
wise, the process determines (at 627) whether any other event
has occurred (e.g., an ARP request from a new source is
received at the virtualization software) that causes modifica-
tion to the mapping table. If not, the process proceeds (e.g.,
after a predetermined wait) to 605, which was described
above. Otherwise, the process updates (at 630) the overlay
network address mapping table maintained by the software
on the host. The process then sends (at 635) the updated
mapping table to the physical NIC. For instance, the process

US 2015/0381494 Al

invokes a callback function provided by the overlay network
offload enable NIC to push the updated table to the NIC. The
process then ends.

[0061] In some embodiments a NIC registers its VXLAN
capability with the VXL AN software. For instance, a native
device driver model in some embodiments allows a NIC
device driver to register its VXL AN capability and provide
relevant callbacks during initialization. A callback is a func-
tion that is passed to another function as a parameter. In an
exemplary embodiment, a new callback is added to the reg-
istration data of the driver (e.g., a callback named vxlanMap-
pingTableUpdate). The driver provides a function handle for
this callback during registration. The VXLAN software
invokes this callback to push down VXLAN table updates
(e.g., the whole table or only one or more entries of a table) to
the NIC.

[0062] In addition to the VXTL.AN address mapping table,
gateway details are programmed into the VXILAN offload
aware NIC. The gateway details include IP and MAC
addresses of the NAT gateway in the event that the destination
VTEP is outside of the source VTEP network and routing is
required. When the destination VTEP IP is not in the source
VTEP network, the destination VTEP IP is still the destina-
tion IP, but the outer destination MAC would be the gateway
connected to the source VITEP network. The virtualization
software provides the NIC the netmask (a mask used to divide
an [P address into subnets and specify the networks available
hosts) of the source VTEP IP in the egress path for the PF
packets. Details of several more callback functions are pro-
vided further below.

[0063] Furthermore, in order to facilitate broadcast traffic
within VXL AN segment, some embodiments program the IP
multicast addresses for each VNI ID and MAC multicast into
the NIC. IP multicast is a protocol used to simultaneously
deliver information to multiple destinations. Multicast
sources send single copies of information over the network
and let the network take the responsibility for replicating and
forwarding the information to multiple recipients. An [P mul-
ticast address is a Layer 3 IP address. In order to receive IP
multicast packets, the NIC must be programmed to accept
traffic destined to the multicast MAC address that correspond
to a given multicast IP address.

[0064] B. Modifications to Data Path

[0065] Inorderto offload encapsulation and de-capsulation
of VXLAN headers to hardware, some embodiments make
changes to transmit (egress) and receive (ingress) paths of
VXLAN traffic.

[0066] 1. Modifications to Transmit Data Path

[0067] When an outgoing transmit VXLAN packet arrives
from a VM into the VXLAN software, the VXLAN software
tags the packet for Encapsulation. The VXLAN software
supplies the VNI in the packet attribute field so that the NIC
knows which virtual network the packet has arrived on. The
expensive steps of performing a VXLAN table lookup and
encapsulation of the packet (which are offloaded to the physi-
cal NIC) are skipped by the VXL AN software.

[0068] The rest of the operations on the outgoing packet in
the VXLAN software for example, tagging the packet for
checksum offload or TCP segmentation offload (TSO) remain
unchanged. Once the packet reaches the physical NIC, the
NIC first looks for the encapsulation tag. If the tag is set to
TRUE, the NIC performs a lookup of the hardware VXLLAN
address mapping table that was programmed in the control

Dec. 31, 2015

path. The lookup will be based on (Inner destination MAC
and VNI to retrieve the corresponding destination VTEP IP
and VTEP MAC.

[0069] The NIC validates if the destination VTEP IP
address is on the same network as source VIEP IP address. If
the destination VIEP IP address is not in the same source
VTEP network, then in some embodiments the NIC encap-
sulates the packet with gateway’s MAC address as the outer
destination MAC address (instead of using a mapping table
entry). In other embodiments, the virtualization software
updates the address mapping table with the gateway MAC
address for the VTEP that is not in the source VTEP network
and pushes the updated table to the NIC. In these embodi-
ments, the NIC does not need to do anything as the NIC picks
up the VIEP MAC address, which is already changed to
gateway’s MAC address in the mapping table. Once this
lookup is successful, the NIC will encapsulate the inner
packet with the newly constructed outer IP header (VTEP IP,
VTEP MAC) and carry out rest of the operations such as
hardware checksum and TSO and transmit the packet on the
wire.

[0070] IfNIC lookup fails for the inner MAC address in the
mapping table, NIC can generate an event to the hypervisor
indicating the lookup failure condition for the inner MAC
address using the PF driver. This can be achieved by the PF
driver calling hypervisor event notification function.

[0071] Once this lookup is successful, the NIC encapsu-
lates the inner packet with the newly constructed outer IP
header (VTEP IP, VTEP MAC) and carries out the rest of the
operations such as hardware checksum and TSO and trans-
mits the packet on the wire.

[0072] FIG. 7 conceptually illustrates the changes in the
egress traffic flow (the transmit path) to offload VXLAN
packet decapsulation to hardware in some embodiments of
the invention. The operations shown above the dotted line 760
are performed by the host software while the operations
shown below the line 760 are performed by the physical NIC
(i.e., by hardware, firmware, and/or software of the physical
NIC).

[0073] As shown, the VXL AN software receives (at 705) a
packet on the egress path. The VXL AN software then deter-
mines (at 710) whether VXLLAN encapsulation can be off-
loaded to the physical NIC. For instance, the process deter-
mines whether the packet is transmitted through a VXLAN
offload aware NIC. If yes, the packet is tagged (at 715) for
encapsulation offload. The packet is then sent for process by
the physical NIC as described below.

[0074] If VXLAN encapsulation is not offloaded to the
NIC, the VXL AN software performs (at 720) VXLAN table
lookup. The VXLLAN software then encapsulates the packet
with the VXL AN header. The software then determines (at
730) whether checksum and/or TSO calculation can be oft-
loaded to hardware. If yes, the packet is forwarded to NIC to
perform TSO and compute checksum. Otherwise, the
VXLAN software computes (at 735) VXL AN packet check-
sum. The VXL AN software then forwards the packet to NIC
to transmit.

[0075] On the hardware side, once a packet is tagged for
encapsulation offload, the NIC encapsulates the packet. The
NIC (using hardware/firmware and/or software) performs
VXLAN table lookup (at 740) to determine the outer header,
performs (at 740) TSO, and computes (at 740) checksum with
the encapsulated header. The order in which the NIC per-
forms encapsulation, TSO, and checksum calculation is

US 2015/0381494 Al

implementation dependent. The NIC then transmits (at 755)
the packet (that is encapsulated by the NIC) to the destination.
[0076] Also, when the packetis sent to NIC (after operation
730) to do TSO and checksum calculation (e.g., when the NIC
is capable of TSO and checksum calculation but not encap-
sulation), the NIC performs (at 750) TSO and computes
checksum. The NIC then transmits (at 755) the packet (which
was encapsulated by the host software) to the destination.
[0077] TheNICinsome embodiments is configured to have
access to information for all fields required for encapsulating
a packet for transmission over an overlay network. For
instance, the NIC in some embodiments constructs the UDP
header (item 240 in FIG. 2) by using the source port. The NIC
further calculates the UDP length based on the encapsulated
packet. Although the encapsulation is described by reference
to the example of VXILLAN, a person of ordinary skill in the art
will realize that the encapsulation can be done over other
overlay networks such as GENEVE, etc.

[0078] 2. Modifications to Receive Data Path

[0079] When an incoming packet arrives on the wire at the
NIC, the VXL AN offload capable NIC first checks whether it
is a VXLAN packet. If yes, the NIC will decapsulate the
packet to remove the outer VXLLAN header. The NIC tags the
packet to indicate that the packet was decapsulated, and saves
the VNI, source VTEP IP and VLAN ID from the decapsu-
lated header, in the packet attribute fields before passing it
onto the software stack.

[0080] VTEP in the host in some embodiments learns any
changes to the current mapping table (e.g., VNI, source VTEP
MAC, source VTEP IP, inner source MAC) and updates the
table in the VXLAN offload aware NIC.

[0081] FIG. 8 conceptually illustrates the changes in the
ingress traffic flow (the receive path) to offload VXLAN
packet decapsulation to hardware in some embodiments of
the invention. The operations shown above the dotted line 865
are performed by the host software while the operations
shown below the line 865 are performed by the physical NIC
(i.e., by hardware, firmware, and/or software of the physical
NIC). As shown, the physical NIC receives (at 805) a packet
in the ingress (receive) data path. The NIC determines (at
810) whether the packet is a VXL AN packet and the NIC is
VXLAN offload enabled. If not, the NIC sends (at 835) the
packet to VXLAN software for further processing as
described below.

[0082] If the NIC is VXLAN offload enabled, the NIC
strips (at 815) the VXL AN outer header (e.g., items 240-270
in FIG. 2) of the packet. The NIC validates (at 820) the inner
checksum (e.g., item 230 in FIG. 2) and the outer checksum,
if any (e.g., item 270 in FIG. 2). The NIC in some embodi-
ments is configured to also perform (at 825) large receive
offload (LRO). The LRO aggregates multiple incoming pack-
ets from a single stream into a larger buffer before the buffer
content is passed higher up the networking stack and thereby
reducing the packet processing overhead. The NIC then sends
(at 830) the inner packet (e.g., item 205 in FIG. 2) along with
the outer header information (e.g., the source VNI ID, VTEP
1P and MAC addresses, and VLAN ID) to the host software
(e.g., the NIC sends the this information to the NIC driver in
the host, which in turn sends the information to the VXLAN
software). The VXL AN software uses the outer header infor-
mation as well as the inner packet information (e.g., the
source VM MAC) to perform learning and determine, e.g.,
whether a new VM is created or a VM has moved from one
VTEP to another and update the VXL AN address mapping

Dec. 31, 2015

table accordingly. The VXL AN software learns which VM
MAC address in the inner packet is associated with which
VTEP. Once the mapping table is updated, the VXL AN soft-
ware uses the callback function (which is provided by the NIC
when the NIC has registered its VXLAN offload capability) to
push the updated VXLAN mapping table to the NIC hard-
ware.

[0083] If the NIC is not VXLAN offload enabled, the
VXLAN software validates (at 840) the packet checksums.
The VXLAN software then performs learning (at 845) and
updates VXLAN table. For instance, when a VM moves from
one host to another host, the VXL AN software associates the
inner source MAC address (i.e., the source VM MAC address
to the source VIEP MAC and the source VIEP IP. The
VXLAN header is the stripped (at 850) from the packet.
[0084] The host switches (at 855) the packet to appropriate
VM port group using the inner destination MAC address.
Some embodiments provide port groups as templates for
creating virtual ports with particular sets of specifications.
Port groups make it possible to specify that a given virtual
machine should have a particular type of connectivity on
every host on which it might run. The port groups are user-
named objects that contain enough configuration information
to provide persistent and consistent network access for virtual
NICs. When a VM has to be connected to a particular kind of
port, a port group with an appropriate definition is used to
connect the VM. The VXL AN software identifies the appro-
priate port group based on the destination MAC address pro-
vided in the packet. The host then sends (at 860) the packet to
the destination VM.

[0085] II. Providing Support for Multi-Tenancy in SR-IOV
Enabled NICs
[0086] Single Root I/O Virtualization (SR-IOV) is a speci-

fication that allows a single Peripheral Component Intercon-
nect Express (PCle) physical device under a single root port
to appear to be multiple separate physical devices to the
virtualization software or the guest operating system. SR-
IOV uses physical functions (PFs) and virtual functions (VFs)
to manage global functions for the SR-IOV devices.

[0087] PFs are full PCle functions that include the SR-IOV
extended capability, which is used to configure and manage
the SR-IOV functionality. Itis possible to configure or control
PCle devices using PFs, and the PF has full ability to move
data in and out of the device. VFs are lightweight PCle func-
tions that contain all the resources necessary for data move-
ment but have a minimized set of configuration resources.
SR-IOV enabled PCle devices present multiple instances of
themselves to the guest operating system instance and the
host virtualization software.

[0088] The instantiated VFs can be configured such that
they are directly assigned to VMs and the guest operating
system’s driver takes possession of the VF. For instance, each
VF can create a direct path from a VM to the physical NIC.
While such configuration delivers near native network per-
formance to the VM, the data path bypasses the virtualization
software/network stack (i.e., the VFs are pass-through
devices). Hence such VFs in those VMs are unable to benefit
from an overlay network based multi-tenant environment.
[0089] Once VXL.AN address mapping table is shared with
VXLAN capable NIC (as described in Section I, above), it
will enable the NICs to overcome the limitation of bypassing
of the data path described above by intelligently forming
proper association between VM, VF, and the physical NIC
using the VXL AN address mapping table. This will enable

US 2015/0381494 Al

the NIC to correctly encapsulate (for transmit) and de-capsu-
late (for receive) all VXLLAN packets.

[0090] A. SR-IOV Flow

[0091] SR-IOV capable NIC hardware exposes physical
function (PF) and several virtual functions (VF) to the oper-
ating system during PCle bus scan. In some embodiments,
VFs can be configured as pass-through PCle devices for VM
consumption. Once a particular VF is assigned to a VM, the
driver within the VM takes control of the VF PCle device. In
the prior art implementation of SR-IOV, VMs with pass-
through devices cannot be part of VXLAN domain as the
traffic bypasses the virtualization software and hence the VM
is not enabled to run in a multi-tenant environment. As
described below, some embodiments provide a method to
have multi-tenancy solution for the VFs that are assigned to
the VMs. The method includes modifications to control path,
transmit data path, and receive data path.

[0092] 1. Modifications to Control Path

[0093] The VFs are available as PCle pass-through devices
in the virtualization software in some embodiments. A PCle
VF device can be assigned to a VM. In the VM configuration,
the PCle VF device can be linked to an LFE port group (like
any other network adaptor). At the time of the VM power on,
aport on the LFE’s port group is reserved to associate with the
VF device. This port is marked on the LFE as a pass-through
port. The VF does not use the assigned port as a data path
since the VF provides a direct connection between the VM
and the NIC and bypasses the virtualization software. Instead,
the port assigned to the VF is used for control operations such
as MAC address change, MTU change, assigninga VLAN ID
to the VF, etc.

[0094] As described below, the PF driver registers several
pass-through operations for its associated VFs with VXLAN
software. The MAC, maximum total size (MTU), and VLAN
properties of a VF are set using these pass-through operation
callbacks. These pass-through operations are done using the
PF driver in the virtualization software.

[0095] Some embodiments provide several modifications
to the control path in order to provide support for multi-
tenancy in the SR-IOV enabled NICs. FIG. 9 conceptually
illustrates several functionalities 900 that are provided by a
PF driver (which resides in the virtualization software) to
support multi-tenancy for SR-IOV in some embodiments of
the invention. As shown, the PF driver provides (at 905) the
functionality to register the VXILLAN encapsulation offload
capability on behalf of its associated VFs with the virtualiza-
tion software. The PF driver also provides several callback
functions at the time of registration for use by the VXLLAN
software. The PF driver provides (at 910) pass-through opera-
tion callback for the VXLAN software to push the VXLAN
address mapping table updates (e.g., the whole table or only
one or more entries of a table) to the NIC. FIG. 10 illustrates
a VXL AN address mapping table 1000 in some embodiments
of the invention. As described in Section I above, the infor-
mation in the VXL AN address mapping table 1000 includes
mappings of inner VM MAC address 310 to the VTEP IP
address 315 and VITEP MAC address 320 for each VNI-ID
305 that is configured on the LFE. The virtualization software
sets the source VTEP IP address, source VIEP netmask for
the VF in addition to setting the VNI ID. The virtualization
software in some embodiments pushes the table entries
required for the VNI ID that is configured on the VF only.
[0096] As shown, the mappings in table 1000 also include
one ore more [P multicast address 1005 for Layer 2 broadcast

Dec. 31, 2015

and multicast (one IP address 1005 is shown in FIG. 10). A
multicast address is a logical identifier for a group (or a
subset) of destinations in a network that are intended to
receive multicast packets. The table 1000 also includes gate-
way [P address 1010 and gateway MAC address 1015 for a
gateway that is assigned to each VNI ID. The gateway, in
some embodiments is a network address translation (NAT)
gateway to provide connection to destinations outside the
domain of the VNI ID.

[0097] Furthermore, some embodiments maintain a sepa-
rate VXLAN address mapping table for each VNI ID. FIG. 11
illustrates several VXLLAN address mapping tables 1105-
1110 that are maintained per VNI ID in some embodiments of
the invention. Tables 1105-1110 in the example of FIG. 11
include similar information as the single table 1000 in F1G. 10
except that the tables in FIG. 11 do not include VNI ID.
Instead, table 1105 includes VXLAN mapping information
for VNI_1 1025 and table 1110 includes VXLAN mapping
information for VNI_n 1030.

[0098] FIGS. 10 and 11 show a Layer 2 IP multicast
Address (1005) for each table entry. However, in some
embodiments, the Layer 2 IP multicast Address is the same
for all entries for a given VTEP IP address and VNI ID pair.
Accordingly, when a separate mapping table (such as tables
1105-1110) is used for each VNI ID, some embodiments do
not include the Layer 2 IP multicast address and the associ-
ated gateway IP address in the mapping table. Instead, these
embodiments provide determine that when the inner MAC
address in a packet is a broadcast or multicast [P address and
use the multicast IP and MAC address as the VTEP IP and
MAC addressees respectively. In addition, some embodi-
ments provide one mapping table per VF based on the VNI ID
of the VF.

[0099] Referring back to FIG. 9, the PF driver further pro-
vides (at 915) a pass-through operation callback for the
VXLAN software to program (i.e., to set) the VNI ID for the
VF on the NIC. The PF driver also provides (at 920) pass-
through operation callback to program the VXL AN port (i.e.,
the source UDP port) for the VF. The destination UDP port is
a well-defined port (e.g., Internet Assigned Number Author-
ity (IRNA) has assigned the value 4789 for the destination
UDP port). The virtualization software updates the VXLAN
mapping table and sets the VNI ID for the VF using these
pass-through operations. Callbacks described by reference to
operations 910-920 are examples of the callbacks provided by
the NIC in some embodiments of the invention. Other
embodiments provide additional pass-through operation call-
backs (e.g., to set MAC address, MTU, VLAN properties,
etc., ona VF).

[0100] FIG. 9 described examples of several functionalities
and callbacks provided by a PF driver in some embodiments
of the invention. Other embodiments provide additional and/
or other mechanisms. For instance, some embodiments pro-
vide a mechanism to set or update each entry in the address
mapping table. Some of these embodiments utilize the same
callback function (with different parameters) to set or update
each table entry. Other embodiments provide difterent call-
backs for different entries.

[0101] In addition to the VXLAN address mapping table,
gateway details are programmed into the VXLLAN offload
aware NIC in some embodiments. The gateway details
include IP and MAC addresses of the NAT gateway in the
event that the destination VTEP is outside of the source VIEP
network and routing is required. When the destination VTEP

US 2015/0381494 Al

IP is not in the source VTEP network, the destination VTEP
IP is still the destination IP, but the outer destination MAC
would be the gateway connected to the source VTEP network.
The virtualization software provides the NIC the netmask of
the source VTEP IP in the egress path for the PF packets. For
a VF, the virtualization software sets the source VIEP IP,
netmask, VNI ID, and source UDP port during power on of
VM in the control path using the PF pass-through callback
operations to configure the VF. Similar method can be used to
update other overlay networks such as GENEVE optional
headers to the NIC. Furthermore, the above-mentioned func-
tionalities can be provided in one or in multiple callback
functions.

[0102] FIG.12 conceptually illustrates the flow of VXLLAN
traffic in an SR-IOV environment in some embodiments of
the invention. As shown, the NIC 1205 has instantiated a PF
1210 and several VFs 1215-1220. The VXLAN software in
the host virtualization software has sent a copy 1230 of the
VXLAN address mapping table 1225 that is maintained by
VXLAN software to the NIC 1205.

[0103] Each one of the VFs 1215-1220 is used to present
itself as a separate instance of a NIC to a corresponding VM
1240-1245. In addition, the PF 1210 presents itself as a sepa-
rate instance of a NIC to VMs 1235. Although FIG. 12 con-
ceptually shows that VM 1240-1245 are not connected to the
PF and VMs 1235 are not connected to any VFs, each VM
1235-1245. can be connected to either one VF, to the PF, or to
the PF and one VF.

[0104] Since the NIC 1205 has a copy 1230 of the VXLLAN
mapping table, the NIC is capable of correctly encapsulate
and decapsulate packets that are transmitted and received
through the PF 1210 and each of VFs 1215-1220 to/from each
VM 835-845. In some embodiments, the NIC provides the
VXLAN mapping table 1230 to the PF and the VFs (as shown
by the dashed lines 1290). For instance, the NIC stores copies
of the table in memory regions that are accessible to indi-
vidual VFs or the PF. In other embodiments, the NIC stores
the table 1230 in a centralized memory region location that is
accessible to all VFs and the PF.

[0105] When a VF is linked to a port set that is part of a
VXLAN segment, the virtualization software pushes the
VXLAN address mapping table to the VF by using the PF
driver pass-through operation callback function handle (as
described by reference to operation 910 in FIG. 9). This
callback is used to program the VXLLAN mapping informa-
tion into the NIC hardware. The virtualization software also
configures the VF with its VNI ID using the pass through
operation call back provided by the PF driver (as described by
reference to 915 in FIG. 9). For VFs to be part of VXLAN
domain and active, the PF uplink in the virtualization soft-
ware is linked to the same virtual switch where the VF’s are
placed.

[0106] Since VXL AN requires the packets to be encapsu-
lated, the MTU on the LFE is configured to adjust the size of
the packet to allow encapsulated frames to be sent out suc-
cessfully. Some embodiments set the MTU on the LFE for the
VF’s part of a VXLAN segment. Any MTU change from the
VF’s VM goes through the PF driver pass-through callbacks
and always ensures the MTU set in VM is ‘n’ bytes less than
the configured MTU on LFE to accommodate the encapsula-
tion needs, where ‘n’ the number of bytes required for the
encapsulation headers. The actual verification of MTU in the
virtualization software can choose to validate based on the
encapsulation header requirements. Typically VF’s MTU is

Dec. 31, 2015

100 bytes (for GENEVE encapsulation needs to also include
for optional headers) less than LFE MTU to accommodate the
encapsulation.

[0107] 2. Modifications to Transmit Data Path

[0108] The NIC in some embodiments encapsulates all the
egress packets coming from a VF that is bounded to a VM. For
SR-IOV VF’s, the egress packets are received directly from
the VMs at the NIC. The VMs do not tag the packets to
indicate the packets require an overlay network encapsula-
tion. Since there is no tag associated with the packets that
arrive at the NIC through the VFs, all packets received at the
NIC through a VF are encapsulated in the NIC using the
mapping table if the VF is configured in the overlay network
segment. On the other hand, he overlay network software in
the hypervisor tags the packets that are sent by VMs through
the PF to indicate that the hypervisor requires NIC to perform
the encapsulation on the given packet before the NIC sends
out on the wire.

[0109] Ifthesource VTEP IP address and destination VTEP
IP address are in the same network based on the source VIEP
netmask, then NIC just encapsulates using the table entry. If
the destination VTEP IP address is not in the same network as
source VTEP IP address, then in some embodiments the NIC
encapsulates the packet with gateway’s MAC address as the
outer destination MAC address (instead of using a mapping
table entry). In other embodiments, the virtualization soft-
ware updates the address mapping table with the gateway
MAC address for the VTEP that is not in the source VIEP
network and pushes the updated table to the NIC. In these
embodiments, the NIC does not need to do anything as the
NIC picks up the VTEP MAC address, which is already
changed to gateway’s MAC address in the mapping table.
Once this lookup is successful, the NIC will encapsulate the
inner packet with the newly constructed outer IP header
(VTEP IP, VTEP MAC) and carry out rest of the operations
such as hardware checksum and TSO and transmit the packet
on the wire.

[0110] FIG. 13 conceptually illustrates the encapsulation
process 1300 for the egress packets in some embodiments of
the invention. As shown, the process receives (at 1305) an
egress path (transmit) packet at a VF that is bounded to aVM.
For instance, the VM has sent the packet to the VF (which
appears as a NIC to the VM) to transmit. The process identi-
fies (at 1310) the source VM MAC address and destination
VM MAC address (e.g., items 215 and 210 in FIG. 2) in the
packet header.

[0111] The process performs (at 1315) VXL AN address
mapping table lookup using the VNI ID assigned to the VF
and the identified source and destination MAC addresses in
the packet header to identify the MAC address and IP address
of the source and destination VTEPs.

[0112] The process then determines (at 1320) whether TSO
and/or checksum calculation is required and the VF is con-
figured to perform TSO and/or checksum offload. If not, the
process proceeds to 1350, which is described below. Other-
wise, the process performs (at 1330) TSP segmentation and/
or checksum calculation.

[0113] The process then determines (at 1350) whether
lookup in the VXL AN address mapping table has failed to
identify an associated VTEP for the inner destination MAC
address. If yes, the process proceeds to 1360, which is
described below. Otherwise, the process encapsulates (at
1355) the packet using the MAC and IP addresses for the
source and destination VTEPs identified in the VXLAN

US 2015/0381494 Al

address mapping table lookup. The process then proceeds to
1365, which is described below.

[0114] When lookup inthe VXI.AN address mapping table
fails to identify an associated VTEP for the inner destination
MAC address, the process encapsulate (at 1360) the packet
using (i) the MAC and IP addresses of the source VIEP
identified in the VXTLAN mapping table lookup and (ii) the
MAC and IP addresses of the gateway programmed for the
VNI ID as the outer destination MAC and IP addresses. The
NIC in some embodiments generates an event for the virtu-
alization software to indicate the lookup failure condition for
the inner MAC address using the PF driver. The process then
calculates (at 1365) checksum for the outside packet if
required. The process then transmits (at 1370) the encapsu-
lated packet. If the process performs TCP segmentation (at
1335), the process repeats operations 1340-1370 for each
individual segmented TCP packet. Although the encapsula-
tion is described by reference to the example of VXILLAN, a
person of ordinary skill in the art will realize that the encap-
sulation can be done over other overlay networks such as
GENEVE, etc.

[0115] TheNICinsome embodiments is configured to have
access to information for all fields required for encapsulating
a packet for transmission over an overlay network. For
instance, the NIC in some embodiments constructs the UDP
header (item 240 in FIG. 2) by using the source port. The NIC
further calculates the UDP length based on the encapsulated
packet.

[0116] 3. Modifications to Receive Data Path

[0117] The physical NIC in some embodiments decapsu-
lates (using the NIC hardware, firmware, and/or software) all
the ingress packets received for the VF before sending the
packets to the VM. The NIC decapsulates the ingress packet
by stripping the outer headers (i.e., items 235-270 shown in
FIG. 2).

[0118] FIG. 14 conceptually illustrates the decapsulation
process 1400 for the ingress packets in some embodiments of
the invention. As shown, the process receives (at 1405) an
ingress path (receive) packet at the NIC. The process decap-
sulates (at 1410) the packet by stripping the outer headers
(e.g., items 235-270 shown in FIG. 2).

[0119] The process then determines (at 1415) whether the
outer VL AN ID in the packet matches the VLAN ID config-
ured for a VF or the PF. If not, the process drops (at 1420) the
packet. Otherwise, the process determines (at 1425) whether
the source VITEP MAC and IP addresses in the packet match
the mapping table entry for the inner source MAC address and
the destination VIEP MAC and IP addresses in the packet
match the mapping table entry for the inner destination MAC
address. If not, the process proceeds to 1420, which was
described above. Otherwise, the process calculates (at 1430)
the checksum for the inner packet.

[0120] The process then determines (at 1435) whether the
calculated checksum matches the checksum for the inner
packet received in the packet. If not, the process proceeds to
1420, which was described above. Otherwise, the process
performs (at 1440) LRO if required. The process then deter-
mines (at 1445) whether the destination VTEP IP address in
the packet is a multicast address. In some embodiments, the
multicast IP addresses fall in a predetermined range of IP
addresses. When the destination VIEP IP address in the
packet is a multicast, the process forwards (at 1450) the
packetto all ports (including the PF and all VFs) in the VNI ID
domain of the packet. Otherwise, the process determines (at

Dec. 31, 2015

1455) whether the inner destination MAC address matches
any of the VFs MAC address. If yes, the process forwards (at
1460) the inner packet to the port associated with the matched
VF. Otherwise, the process forwards (at 1465) the inner
packet to the port associated with the PF.

[0121] 4. ARP Handling for VF in the NIC

[0122] The Address Resolution Protocol (ARP) requests
originating from a VF’s VM is encapsulated with the IP
multicast address configured for VF’s VNI-ID. The NIC
sends out this encapsulated ARP frame. When the NIC
receives an ARP response for one of its VF, the NIC validates
the outer header with the VXLLAN mapping table. The NIC
performs the validation operations described below.

[0123] FIG. 15 conceptually illustrates a process 1500 for
processing the ARP response from a VF in some embodi-
ments of the invention. As shown, the process receives (at
1405) an ARP response packet. The process determines (at
1510) whether the inner destination MAC address in the
packet matches the MAC address of one of the VFs or the
MAC address of the PF. If not, the process ignores (at 1515)
the ARP request. Otherwise, the process determines (at 1520)
whether the packet' VNI ID matches the VNI ID assigned to
the VF or the PF that matched the inner destination MAC
address in operation 1510.

[0124] If not, the process proceeds to 1515, which was
described above. Otherwise, the process performs a VXL AN
address mapping table lookup using the inner source MAC
address in the packet to determine (at 1525) whether a match
is found in the table. If not, the process proceeds to 1540,
which is described below. Otherwise, the process determines
(at 1530) whether the source VTEP MAC and IP addresses in
the packet match the VXL AN address mapping table (i.e., the
copy of the table in the NIC as described by reference to table
1230 in FIG. 12) entry for the inner source MAC address of
the packet. If a valid entry is found, then the process decap-
sulates the outer header and sends (at 1535) the ARP response
to the VF’s VM.

[0125] Otherwise, if no valid entry found, then the process
in some embodiments decapsulates the outer header and for-
wards (at 1540) the ARP response to the PF port and does not
forward the packet to a VF’s port. Instead, the PF sends the
outer header information and the inner packet to the VXLAN
software (through the PF driver in the virtualization soft-
ware). The VXL AN software in the virtualization software
learns the mapping for the VTEP location for the inner source
MAC. Once this is learned, the virtualization software pushes
the updated mapping table to the VF using pass-through
operations for that VF. Since the ARP response is not sent to
the VF’s VM, the VM experiences an ARP timeout and retries
the ARP request. The VF’s VM should be configured for the
ARP retries and ARP timeout. The subsequent ARP requests
go outofthe VF port encapsulated with IP multicast and when
the NIC receives the ARP response, it finds a matching entry
in its table and forward to the VF’s VM.

[0126] Inoperation 1540, the VM could experience an ARP
timeout and needs to retry ARP request. Some embodiments
perform the followings instead of operation 1540 to avoid the
ARP timeout. When there is no valid entry found in 1530, the
NIC forwards the ARP response to the PF port and should not
forward this packet to VF’s port. The VXL AN software in the
hypervisor will learn the mapping for the VTEP location for
the inner source MAC address. Once this is learned, the
virtualization software pushes the updated mapping table to
the VF using pass-through operations for that VF. After the

US 2015/0381494 Al

table is successfully set in the NIC with this entry included,
the ARP Proxy (ARP agent in virtualization software) sends
an ARP response to the VF’s VM. The VF then performs
operations 1510-1535.

[0127] IV. Electronic System

[0128] Many of the above-described features and applica-
tions are implemented as software processes that are specified
as a set of instructions recorded on a computer readable
storage medium (also referred to as computer readable
medium). When these instructions are executed by one or
more processing unit(s) (e.g., one or more processors, cores
of processors, or other processing units), they cause the pro-
cessing unit(s) to perform the actions indicated in the instruc-
tions. Examples of computer readable media include, but are
not limited to, CD-ROMs, flash drives, RAM chips, hard
drives, EPROMs, etc. The computer readable media does not
include carrier waves and electronic signals passing wire-
lessly or over wired connections.

[0129] Inthis specification, the term “software” is meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, in some embodi-
ments, multiple software inventions can be implemented as
sub-parts of a larger program while remaining distinct soft-
ware inventions. In some embodiments, multiple software
inventions can also be implemented as separate programs.
Finally, any combination of separate programs that together
implement a software invention described here is within the
scope of the invention. In some embodiments, the software
programs, when installed to operate on one or more electronic
systems, define one or more specific machine implementa-
tions that execute and perform the operations of the software
programs.

[0130] FIG. 16 conceptually illustrates an electronic sys-
tem 1600 with which some embodiments of the invention are
implemented. The electronic system 1600 can be used to
execute any of the control, virtualization, or operating system
applications described above. The electronic system 1600
may be a computer (e.g., a desktop computer, personal com-
puter, tablet computer, server computer, mainframe, a blade
computer etc.), phone, PDA, or any other sort of electronic
device. Such an electronic system includes various types of
computer readable media and interfaces for various other
types of computer readable media. Electronic system 1600
includes a bus 1605, processing unit(s) 1610, a system
memory 1620, a read-only memory (ROM) 1630, a perma-
nent storage device 1635, input devices 1640, and output
devices 1645.

[0131] The bus 1605 collectively represents all system,
peripheral, and chipset buses that communicatively connect
the numerous internal devices of the electronic system 1600.
For instance, the bus 1605 communicatively connects the
processing unit(s) 1610 with the read-only memory 1630, the
system memory 1620, and the permanent storage device
1635.

[0132] From these various memory units, the processing
unit(s) 1610 retrieve instructions to execute and data to pro-
cess in order to execute the processes of the invention. The
processing unit(s) may be a single processor or a multi-core
processor in different embodiments.

[0133] The read-only-memory 1630 stores static data and
instructions that are needed by the processing unit(s) 1610
and other modules of the electronic system. The permanent
storage device 1635, on the other hand, is a read-and-write

Dec. 31, 2015

memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 1600 is off. Some embodiments of the invention use a
mass-storage device (such as a magnetic or optical disk and
its corresponding disk drive) as the permanent storage device
1635.

[0134] Other embodiments use a removable storage device
(such as a floppy disk, flash drive, etc.) as the permanent
storage device. Like the permanent storage device 1635, the
system memory 1620 is a read-and-write memory device.
However, unlike storage device 1635, the system memory is
a volatile read-and-write memory, such a random access
memory. The system memory stores some of the instructions
and data that the processor needs at runtime. In some embodi-
ments, the invention’s processes are stored in the system
memory 1620, the permanent storage device 1635, and/or the
read-only memory 1630. From these various memory units,
the processing unit(s) 1610 retrieve instructions to execute
and data to process in order to execute the processes of some
embodiments.

[0135] The bus 1605 also connects to the input and output
devices 1640 and 1645. The input devices enable the user to
communicate information and select commands to the elec-
tronic system. The input devices 1640 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”). The output devices 1645 display images generated
by the electronic system. The output devices include printers
and display devices, such as cathode ray tubes (CRT) or liquid
crystal displays (LCD). Some embodiments include devices
such as a touchscreen that function as both input and output
devices.

[0136] Finally, as shown in FIG. 16, bus 1605 also couples
electronic system 1600 to a network 1625 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or a
network of networks, such as the Internet. Any or all compo-
nents of electronic system 1600 may be used in conjunction
with the invention.

[0137] Someembodiments include electronic components,
such as microprocessors, storage and memory that store com-
puter program instructions in a machine-readable or com-
puter-readable medium (alternatively referred to as com-
puter-readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital ver-
satile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a vari-
ety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-
RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD
cards, micro-SD cards, etc.), magnetic and/or solid state hard
drives, read-only and recordable Blu-Ray® discs, ultra den-
sity optical discs, any other optical or magnetic media, and
floppy disks. The computer-readable media may store a com-
puter program that is executable by at least one processing
unit and includes sets of instructions for performing various
operations. Examples of computer programs or computer
code include machine code, such as is produced by a com-
piler, and files including higher-level code that are executed
by a computer, an electronic component, or a microprocessor
using an interpreter.

[0138] While the above discussion primarily refers to
microprocessor or multi-core processors that execute soft-

US 2015/0381494 Al

ware, some embodiments are performed by one or more inte-
grated circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In some
embodiments, such integrated circuits execute instructions
that are stored on the circuit itself

[0139] As used in this specification, the terms “computer”,
“server”, “processor”, and “memory” all refer to electronic or
other technological devices. These terms exclude people or
groups of people. For the purposes of the specification, the
terms display or displaying means displaying on an electronic
device. As used in this specification, the terms “computer
readable medium,” “computer readable media,” and
“machine readable medium” are entirely restricted to tan-
gible, physical objects that store information in a form that is
readable by a computer. These terms exclude any wireless
signals, wired download signals, and any other ephemeral or
transitory signals.

[0140] While the invention has been described with refer-
ence to numerous specific details, one of ordinary skill in the
art will recognize that the invention can be embodied in other
specific forms without departing from the spirit of the inven-
tion. In addition, a number of the figures (including FIGS. 6-9
and 13-15) conceptually illustrate processes. The specific
operations of these processes may not be performed in the
exact order shown and described. The specific operations may
not be performed in one continuous series of operations, and
different specific operations may be performed in different
embodiments. Furthermore, the process could be imple-
mented using several sub-processes, or as part of a larger
macro process.

[0141] Inview of the foregoing, one of ordinary skill in the
art would understand that the invention is not to be limited by
the foregoing illustrative details, but rather is to be defined by
the appended claims.

What is claimed is:

1. A method for offloading packet encapsulation for an
overlay network, the method comprising:

at a virtualization software of a host, sending a mapping

table of the overlay network to a physical network inter-
face controller (NIC) associated with the host, the map-
ping table associating an identification of each of a set of
virtual machine (VM) of a tenant on the host with an
identification of a tunnel on the overlay network;

at the virtualization software, receiving a packet fromaVM

of the tenant;

sending the packet to the physical NIC; and

at the physical NIC, encapsulating the packet, for transmis-

sion through the tunnel associated with the VM, using
the mapping table.

2. The method of claim 1 further comprising tagging the
packet by the virtualization software as a packet that requires
encapsulation for transmission in the overlay network priorto
sending the packet to the physical NIC.

3. The method of claim 1 further comprising updating the
mapping table by the virtualization software after receiving a
control event in a set of control events trigging the update of
the mapping table; and

sending the updated mapping table to the physical NIC.

4. The method of claim 3, wherein the set of control events
comprises a VM joining the overly network, a VM leaving the
overlay network, a VM of the tenant migrating to the host
from another host, a VM of the tenant migrating from the host

Dec. 31, 2015

to another host, and receiving incoming packets for the over-
lay network at the physical NIC from an entity outside of the
host.

5. The method of claim 1, wherein the identification of the
tunnel comprises an identification of an end of the tunnel
terminating on the host, wherein the mapping table further
associates the identification of each VM to an identification of
the overlay network.

6. The method of claim 1 further comprising:

at the physical NIC, receiving a packet destined for one of

the VMs of the tenant;

removing an outer layer of the received packet, the outer

layer comprising information corresponding to the over-
lay network; and

sending the packet after removing the outer layer to the

virtualization software.

7. The method of claim 6, wherein the packet comprises an
identification of a source VM of the tenant sending the packet,
an identification of an end of the tunnel corresponding to the
source VM, and an identification of the overlay network.

8. The method of claim 7 further comprising:

at the physical NIC, learning any changes to the mapping

table based on the information received from the packet;
and

sending the changes to the virtualization software.

9. The method of claim 8 further comprising updating the
mapping table by the virtualization software based on the
learned changes.

10. The method of claim 1, wherein the overlay network is
a virtual extensible local area network (VXLAN).

11. A virtual machine host comprising:

a physical network interface controller (NIC);

a virtualization software, the virtualization software con-

figured to:

send a mapping table of the overlay network to the NIC,
the mapping table associating an identification of
each of a set of virtual machine (VM) of a tenant on
the host with an identification of a tunnel on the over-
lay network;

receive a packet from a VM of the tenant; and

send the packet to the physical NIC,

wherein the physical NIC is configured to encapsulate the

packet, for transmission through the tunnel associated

with the VM, using the mapping table.

12. The virtual machine host of claim 11, the virtualization
software further configured to tag the packet as a packet that
requires encapsulation for transmission in the overlay net-
work prior to sending the packet to the physical NIC.

13. The virtual machine host of claim 11, the virtualization
software further configured to:

update the mapping table after receiving a control event in

a set of control events trigging the update of the mapping
table; and

send the updated mapping table to the physical NIC.

14. The virtual machine host of claim 13, wherein the set of
control events comprises a VM joining the overly network, a
VM leaving the overlay network, a VM of the tenant migrat-
ing to the host from another host, a VM of the tenant migrating
from the host to another host, and receiving incoming packets
for the overlay network at the physical NIC from an entity
outside of the host.

15. The virtual machine host of claim 11, wherein the
identification of the tunnel comprises an identification of an
end of the tunnel terminating on the host, wherein the map-

US 2015/0381494 Al Dec. 31, 2015
12

ping table further associates the identification of each VM to
an identification of the overlay network.

16. The virtual machine host of claim 11, the physical NIC
further configured to:

receive a packet destined for one of the VM of the tenant;

remove an outer layer of the received packet, the outer layer

comprising information corresponding to the overlay
network; and

send the packet after removing the outer layer to the virtu-

alization software.

17. The virtual machine host of claim 16, wherein the
packet comprises an identification of a source VM of the
tenant sending the packet, an identification of an end of the
tunnel corresponding to the source VM, and an identification
of the overlay network.

18. The virtual machine host of claim 17, the physical NIC
further configured to:

learn any changes to the mapping table based on the infor-

mation received from the packet; and

send the changes to the virtualization software.

19. The virtual machine host of claim 18, the virtualization
software further configured to update the mapping table
based on the learned changes.

20. The virtual machine host of claim 11 further compris-
ing a storage to store the mapping table.

#* #* #* #* #*

