
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0241572 A1

Muhlestein et al.

US 20160241572A1

(43) Pub. Date: Aug. 18, 2016

(54)

(71)

(72)

(73)

(21)

(22)

(51)

MANTAINING DYNAMIC CONFIGURATION
INFORMATION OF A MULT-HOST
OFF-CLUSTER SERVICE ON ACLUSTER

Applicant: NETAPP, INC., Sunnyvale, CA (US)

Inventors: Mark Muhlestein, Sunnyvale, CA (US);
Rajesh Jaiswal, Bangalore (IN); Sunil
Bhargo, Bangalore (IN);
Mankawaldeep Singh, Bangalore (IN)

Assignee: NETAPP, INC., Sunnyvale, CA (US)

Appl. No.: 14/620,711
Filed: Feb. 12, 2015

Publication Classification

Int. C.
H04L 29/06 (2006.01)

Y

(52) U.S. Cl.
CPC H04L 63/145 (2013.01); H04L 63/1408

(2013.01)

(57) ABSTRACT

Techniques for maintaining dynamic configuration informa
tion of a multi-host off-cluster service on a cluster are
described. An apparatus may comprise a dynamic configura
tion validation service component to execute to execute a
dynamic configuration validation service for scanning files in
a cluster of nodes. The dynamic configuration validation ser
Vice component operative to validate a scanner version for
each one of multiple scanners for scanning a file in a cluster of
nodes, maintain the scanner version in a list of valid Scanner
versions for the multiple scanners, and Scan the file by one of
the one of multiple Scanners having the Scanner version con
tained in the list of the valid scanner versions.

3.2 2

RCCESSR
SCRASE MANAGERi
SERVICEMANAGER

8.

Nix

An AP ER NIC
38 YAx

BiAUNIAN
FRAMEWORK

23g f

i:

MEMRY CONTROLLER
S.

SRASE
AAER SER AAPER

8.

FR3 RADISKS

Patent Application Publication Aug. 18, 2016 Sheet 1 of 12 US 2016/0241572 A1

COCA it
FRAAEWRK

23 f

2

WRY (CNR)
STORAGE MANAGER/
SERVICE WANAGER

SS
s

NEWORK SECRAGE
AEAEPEF NC CJSTER ADAPTER AAPSR

YAM
3. CONFIGURATON

Mid:
93.

Of ROWEISKS

F.C.

US 2016/0241572 A1 Aug. 18, 2016 Sheet 2 of 12 Patent Application Publication

t
t
en

Patent Application Publication Aug. 18, 2016 Sheet 3 of 12 US 2016/0241572 A1

re.

C

-
2

&
er

-

S 5 s

S

US 2016/0241572 A1 Aug. 18, 2016 Sheet 4 of 12 Patent Application Publication

Patent Application Publication Aug. 18, 2016 Sheet 5 of 12 US 2016/0241572 A1

O O

CONNECE SANNER AND DEERN
HE WENORANSANNERERSON

4.

- DOES AWERSON FA BLEY
Y - f. -1 CAAR HAWNGH \ CREAEANEW R NEE WERSON A3E

< WENER ANDSCANNER WERSON OF)-No - ENE WEEOCRAND SCANER

\ E CONNECE SCAR 1 WERSON AND CEN CAS

\ 30 -
\ -

S YES ASSGN A JNCRUE NDENFCA NED)
CORESPNN ENE ENCOR ANO

- NEi SANNER WERSC

NCREASE - CONNECTCN CONE YAFACR 4.
F. N-ERO AN REE ANY WE

NEOMAN "-p-
432.

f EN \

Patent Application Publication Aug. 18, 2016 Sheet 6 of 12 US 2016/0241572 A1

PBA - WRANSCANNER WERS. Q. A
SANNER

1 Y
-1-1 s

- Y
1. a.

-OES AVERSONTABLE Yas 1 i S. 1 CONTAIN A ROW HAVING THE N SREATE A NEW NEWERS: A3E
- UAE ENOCRAND SCANNER Y witH THE UPDATED VENDOR ANDSCANNER
\ - VERSION ANE CONNECQN CONE AS 3.

Y WERS -
Y- Y 38
N SS - Y

Y- 1 -

N
YES ASSGN A NCUE INDENTIFICATION (E))

..w CORRESPONDING TO THE UPEATED VENDOR
iNCREASE THE CONNECTION COUNT BY AFACTOR OF AND AED SCANNER WERSON

i - RAN REAY WC S.

ORWACN

52

R.C. - CONNECENNY ACN 3

OTHE ENERY CORRESPONDING TO THE PREVIOUS i
NBCRAN SCANNERSON

54

PCAE ANY WEC FORAD
CON ECON CON SAER, AN E ENRY

- CONNECON CON REMANSA 2ROFOR A
REDETERRAN WECU EROC

FIG. 5

Patent Application Publication Aug. 18, 2016 Sheet 7 of 12 US 2016/0241572 A1

(begin Y
\ 602 /

SCON NEC A SCANNER - A WNORAN
SCANNER WERSON NCE N A WERSON A3E

REDUCE CONNECON CON. 8 y A CON OF .

TO THE ENTRY CORRESPONDING TO THE PREVIOUS
i WNBO ANO SCANNER WERSON

88

PAE ANY MEC, NORMAN FE

CONNECEON COUNT IS ZERO AND DELETE HE ENTRY
- CONNECON COUN REWANS, A28RO RA

REEERNE WEC PRO

--s--

ED

i. f (

FIG. 6

Patent Application Publication Aug. 18, 2016 Sheet 8 of 12 US 2016/0241572 A1

700
- ar

| BEGIN
w 2O2 /

ERFRA ASCARNG WER AON A SANG
PERAN FOR A E

^.
- N

1 N
Y Y

Y.

1 DOES AVERSIONN
-1 TABLE INCLUDE N.

-1AN ENTRY WITH A VERSION ID ANDY
1 CNECN CON GREAER Y

w YS--a < SCANNED N. YES is AAERC - W-C-E- 1
N (CHECK INA CACHE)? - Ya FEAS REWSSY -
N - \ ANNE -

C CONSER SCANSAS HE FEAS WA AND NOSCAN
S RECURE) i

O

y

SCAN E E AN REAHE WERSN
CORRESPONDENG O SCANNER WERS. F. H.

SCANNER HE CAE

72

FIG. 7

Patent Application Publication Aug. 18, 2016 Sheet 9 of 12 US 2016/0241572 A1

System 800

Leice 82t

Host OS 8.5

Migration Application 822

Source Hypervisor 830

i estination if 845
-Ma

Guest OS 850

File System 880

Processing Component 860

Device
8

- x v. - Signals 8 i4
Coinniinications Component 8 ft e- -s

FIG. 8

US 2016/0241572 A1 Aug. 18, 2016 Sheet 10 of 12 Patent Application Publication

0 #6 quouoduto D suo?po?unutuoo
046 33443,7 ± 34.485'096 3344307 434.?æS ?7faes ?p?tistae

Patent Application Publication

PROCESSVG
NIT

SYSTE
f

- INTERFACE

WTERFA CE

ADAPTOR

Nift
FEWICE

INTERFA E

'WIRED, HTRELESS,

NETWORK
ADAPTOR

Aug. 18, 2016 Sheet 11 of 12

tour c- 104
- EXTERN it is -- - - - -

F2

OPT CAL
DR/E

FIG. It

US 2016/0241572 A1

A. i:3i
OpERTASYSTE4

APPLATONS

AL HDi

MONITOR
f

KEYBOARD

- it it
OfSE

ina
REf CTE

COMPUTERS
1951

fi:AfCRY/

STORAGE

II (DIA?

US 2016/0241572 A1 Aug. 18, 2016 Sheet 12 of 12

{}{} I {

Patent Application Publication

US 2016/0241572 A1

MANTAINING DYNAMIC CONFIGURATION
INFORMATION OF AMULTI-HOST

OFF-CLUSTER SERVICE ON ACLUSTER

BACKGROUND

0001. As computer systems have become faster and more
reliable, the deployment of network data storage systems in
enterprise computing environments has become more wide
spread. In a typical enterprise computing environment, client
systems such as computer workstations, database servers,
web servers, and other application servers can access data
stored remotely from the client systems, typically in one or
more central locations. One or more computer networks con
nect the client systems to mass storage devices such as disks
disposed at the central locations. Such centralized data Stor
age, often referred to simply as network data storage, facili
tates the sharing of data among many geographically distrib
uted client systems. Network data storage also enables
information systems (IS) departments to use highly reliable
(sometimes redundant) computer equipment to store their
data.
0002 These computer systems offer end users unprec
edented access to information of all types on a global basis.
With the proliferation of wireless communication, users can
now access these computer networks from practically any
where. Connectivity of this magnitude has magnified the
impact of computer viruses. Computer viruses have a devas
tating impact on computer systems worldwide in terms of
costs, productivity loss and data privacy. As such, a need exist
to provide increased protection against a computer virus.

BRIEF DESCRIPTION OF THE DRAWINGS

0003 FIG. 1 illustrates an embodiment of a distributed
data system.
0004 FIG. 2 illustrates an embodiment of maintaining
dynamic configuration and Verification information for scan
ner devices hosted outside a cluster of nodes of the distributed
data system.
0005 FIG. 3A illustrates an embodiment of version table
of FIG. 2.
0006 FIG.3B-3I illustrate embodiments for a sequence of
events for maintaining dynamic configuration information
using version table of FIG. 2 and embodiments of FIGS. 4-7.
0007 FIG. 4 illustrates an embodiment of a detailed logic
flow for connecting a scanner device to a cluster of nodes of
FIG 2.

0008 FIG. 5 illustrates an embodiment of a detailed logic
flow for updating a scanner device to a cluster of nodes of
FIG 2.

0009 FIG. 6 illustrates an embodiment of a detailed logic
flow for disconnecting a scanner device to a cluster of nodes
of FIG. 2.
0010 FIG. 7 illustrates an embodiment of a detailed logic
flow for executing a scanning operation of a file using a
scanner device to a cluster of nodes of FIG. 2.
0.011 FIG. 8 illustrates an embodiment of a centralized
system for the virtual machine migration system of FIG. 1.
0012 FIG. 9 illustrates an embodiment of a distributed
system for the virtual machine migration system of FIG. 1.
0013 FIG. 10 illustrates an embodiment of a computing
architecture.
0014 FIG. 11 illustrates an embodiment of a communica
tions architecture.

Aug. 18, 2016

DETAILED DESCRIPTION

00.15 Various embodiments are generally directed to com
puter networks that may be organized into clusters of com
puters running collections of systems and applications. The
clusters may include an operating system, such as Data
ONTAPR) operating system available from NetApp.R., Inc.
(hereinafter “Clustered DATAONTAP or “CDOT), among
others. The operating system may be arranged to simulta
neously interface with multiple, third party Scanning service
components hosted inside or outside of the cluster for scan
ning data for viruses on a clustered network. Furthermore, the
operating system may be arranged to simultaneously inter
face with a heterogeneous mix of multiple third party antivi
rus Scanning products in an efficient manner by reducing a
number of scanning service requests processed by the oper
ating system. The reduction in Scanning service requests may
be accomplished by defining a valid scanning service
response in terms of availability of a particular version of
service provider.
0016. In general, the word “virus' refers to a program or
piece of code that is loaded onto a computer without the
computer user's knowledge and runs against their wishes.
Most viruses can also replicate themselves, and the more
dangerous types of viruses are capable of transmitting them
selves across networks and bypassing security systems. A
virus may include malicious code designed to modify soft
ware or data accessible by a device. Examples of a virus may
include without limitation a computer virus, computer worm,
computer time bomb, Trojan horse, malware, or other types of
program code with similar effect. A virus may be designed to
performany number of malicious acts directed towards infor
mation processed by a device or accessible to a device. Such
as revealing information, damaging information, destroying
information, altering information, replacing information, and
so forth. Accordingly, the above described “virus' represent
an imminent danger to clients that utilize the data storage and
retrieval services provided by a clustered storage system.
0017 Scanners utilized by an antimalware or antivirus
support system may be provided “off-box” in that the scan
ners are provided or hosted on remote computing systems,
including, in Some cases, systems controlled or provided by a
third party vendor. In other words, the scanners that are “off
box' are outside of a computer cluster. Maintaining and hon
oring the scan status of a file is extremely important particu
larly for multiple off-box virus scanners connected to the
cluster. The operating software of the cluster should thus be
able to support multiple off-box virus scanners while honor
ing a scan-status of a file from multiple third party Scanning
Vendors. Thus, rescanning of a file only occurs when either 1)
scan-engines of the multiple third party vendors are modified
or 2) upon rolling upgrades of the scan-engines of a single
scanning vendor in a multi-host deployment. The restrictions
on rescanning should also ensure that the files scan-status of
the data is gradually upgraded from a legacy version to the
new version as the rolling upgrade progresses while limiting
the increase of scan-request traffic when either a first or a last
Scanner undergoes an upgrade.
0018. One of the challenges for honoring the scan status is
avoiding any unnecessary resetting of the scan status of all
files. For example, each of the multiple off-box virus scanners
may be running an arbitrary antivirus (AV) scanning Software
version. As such, any version update from any of the multiple
off-box virus scanners may result in resetting the scan status
of all files. This in turn results in unnecessary rescanning of

US 2016/0241572 A1

data because if N scanners are attached, updating a scanner to
newer version of the AV scan database happens N times as
often. Beyond forcing a large number of rescanning opera
tions, the actual process of clearing a scan status involves
visiting every non-resident ('in-core') data structure. For
example, the data structure could be an inode, which may
number in the millions. The extra work of visiting every
non-resident data structure is a non-trivial performance hit.
Embodiments attempt to reduce or avoid such performance
hits especially when the scan status is persisted on a disk.
0019. As such, embodiments overcome the disadvantages
of the prior art by providing a technique whereby data is
scanned for viruses on a clustered storage system with third
party Scanner device components hosted outside of the cluster
by maintaining dynamic configuration information about a
multi-host third party scanner device. Various embodiments
are directed to a dynamic configuration validation service for
scanning files in a cluster of nodes. The dynamic configura
tion validation service component is operative to validate a
scanner version for each one of multiple Scanners for scan
ning a file in a cluster of nodes, maintain the scanner version
in a list of valid scanner versions for the multiple scanners,
and Scan the file by one of the multiple scanners having the
scanner version contained in the list of the valid scanner
versions. A list of valid scanner versions of a scanner includes
Vendor information, a scanner version and Scanner vendor
identification (ID) information. The scanner vendor ID is
associated with the scanner vendor and the Scanner version.
Thus, dynamic configuration validation service validates a
scanner version using information contained in the list of
valid scanner versions.

0020. In this way, the present disclosure ensures that the
scan-status of data is gradually upgraded from a legacy ver
sion to the new version as a rolling upgrade progresses while
limiting the increase of scan-request traffic when either a first
or a last Scanner undergoes an upgrade.
0021. In one embodiment, by way of example only, a
clustered network system may scan data for viruses on a
clustered storage system with third party scanner device com
ponents being hosted outside (“off-box”) of the cluster by
maintaining dynamic configuration information about a
multi-host third party scanner device as follows. The clus
tered network system maintains a list of valid Scanner ver
sions in the clustered network system. A file’s scan-signature
yields and produces the scanner version with which the file
was last Scanned. Each time a new scanner version is added or
upgraded, a unique scanner version identification (ID) is
assigned to the Scanner version. In one embodiment, for
example, the unique scanner version ID is a unique 16-bit
identifier. The unique scanner version identification ID is
stored with a file scan signature. In one embodiment, the file
scan signature on the file is used for indicating a most recent
scanner version used to Scan the file for determining whether
to rescan the file.

0022. If the scanner version derived from the scan signa
ture of the file (herein after “file scan signature') is included
in the list of valid scanner versions, the scan-status of the file
may be trusted. Any need for rescanning is eliminated. If the
scanner version is not located in the list of valid scanner
versions, the file must be rescanned. Furthermore, the list of
valid scanner-Versions is derived from the scanners that are
actively performing scan operations in the clustered network
system. The Scanner connection information is collated from
each node of the clustered network system. A count number

Aug. 18, 2016

of the Scanner connections per vendor version are maintained
in a cluster-wide database of the clustered network system.
By correlating the scanner connection information to each
vendor versionallows for the scanner versions available to the
storage cluster be determined and validated at any time.
0023 The list of valid scanner versions may be automati
cally updated and the collated Scanner connection status may
be change, which may be executed as follows. In one embodi
ment, a new valid Scanner version may be added to the list of
valid scanner versions whenever a connection with new ven
dor Scanner version is received. Also, a valid scanner version
may be marked as invalid whenever a last connection for a
Vendor Scanner version disconnects from the clustered net
work system. More specifically, the Scanner version is
marked as invalid upon disconnection from the last connected
scanner. The scanner version marked as invalid may be sched
uled for removal from the list of valid scanner-versions after
a predetermined time delay.
0024 Delaying the removal of the scanner version marked
as invalid may act as a de-ittering mechanism providing
protection to the list of valid scanner-Versions from frequent
updates in an unstable condition of the clustered network
system.
0025. This de-jittering mechanism provides enhanced sta
bility to the clustered network system especially in light of the
unique scanner version ID being assigned each time a new
Vendor scanner version is detected on the cluster. In absence
of this de-jittering mechanism, each time the scanner recon
nects to the cluster after an intermittent network disruption,
the scanner version would be assigned the new 16-bit unique
scanner version ID leading to rescanning of the files with scan
signatures containing the old 16-bit identifier.
0026. The advantages of the present technique are realized
in a reduction of cost and increased performance. The present
technique reduces cost by providing a platform whereby third
party software vendors may compete to provide the third
party software components for the scanning of viruses. Spe
cifically, a clustered storage system is free to acquire the third
party components from any one of a number of third party
software vendors thereby creating effective competition
between third party software vendors. The present technique
further increases the performance of the producers of the
clustered storage system who may apply engineering
resources to subject matter which they have specialized
knowledge, the storage and retrieval of data.
0027. Reference is now made to the drawings, wherein
like reference numerals are used to refer to like elements
throughout. In the following description, for purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding thereof. It may be evident,
however, that the novel embodiments can be practiced with
out these specific details. In other instances, well known
structures and devices are shown in block diagram form in
order to facilitate a description thereof. The intention is to
cover all modifications, equivalents, and alternatives consis
tent with the claimed subject matter.
0028 FIG. 1 illustrates an embodiment of a distributed
data system having a storage system 102. In one embodiment,
the distributed data system 100 may comprise a computer
implemented system having a software operation application
130 comprising one or more components. The distributed
data system 100 in FIG. 1 includes a storage controller 150 in
a cluster of nodes. Although the distributed data system 100
shown in FIG. 1 has a limited number of elements in a certain

US 2016/0241572 A1

topology, it may be appreciated that the distributed data sys
tem 100 may include more or less elements in alternate
topologies as desired for a given implementation.
0029. It is worthy to note that “a” and “b” and “c” and
similar designators as used herein are intended to be variables
representing any positive integer. Thus, for example, if an
implementation sets a value for a 5, then a complete set of
components 122-a may include components 122-1, 122-2,
122-3, 122-4 and 122-5. The embodiments are not limited in
this context.
0030. In an exemplary embodiment, the distributed data
system 100 includes a processor subsystem that includes one
or more processors 110. The distributed data system 100 may
comprise a storage controller 150 that may implement one or
more of the nodes, such as nodes 210 and 215 in FIG.2. In one
embodiment, the storage controller 150 is a physical process
ing device that is used to store and retrieve data on behalf of
one or more hosts. In an alternative embodiment, the storage
controller 150 is a network storage controller that may be
configured (e.g., by hardwiring, Software, firmware, or any
combination thereof) to operate as a storage server that serves
one or more clients on a network, to store and manage data in
a set of mass storage devices, such as magnetic or optical
storage-based disks or tapes. The distributed data system 100
further includes a memory 120, a network adapter 140, a
cluster access adapter 170 and a storage adapter 180, all
interconnected by an interconnect 190. The cluster access
adapter 170 includes a multiplicity of ports adapted to couple
one or more nodes together. For example, the cluster access
adapter 170 may connect node 210 nodes 215 in FIG. 2. A
variety of clustering protocols and interconnect media may be
utilized within the cluster architecture described herein.
0031. The distributed data system 100 may be embodied
as a single- or multi-processor storage system executing a
storage operating system 130 that preferably implements a
high-level module. Such as a storage manager 185, to logi
cally organize the information as a hierarchical structure of
named directories, files and special types of files called virtual
disks. Illustratively, one or more processors, such as proces
sor 110, may execute the functions of the nodes in the cluster
of nodes.
0032. The memory 120 illustratively comprises storage
locations that are addressable by the processors and adapters
140, 170, 180 for storing software program code and data
structures associated with the present invention. The proces
Sor 110 and adapters may, in turn, comprise processing ele
ments and/or logic circuitry configured to execute the Soft
ware code and manipulate the data structures. The storage
operating system 130 may include portions of which may be
resident in memory and executed by the processors(s) 110.
The storage operating system 130 may functionally organize
the distributed data system 100 by configuring the processor
(s) 110 to invoke storage operations in Support of the storage
service provided by a node. It will be apparent to those skilled
in the art that other processing and memory implementations,
including various computer readable storage media, may be
used for storing and executing program instructions pertain
ing to the technique introduced here.
0033. The network adapter 140 is in communication with
one or more clients 135. The communication may occur over
one or more types of the communication framework 230 or
communication network. The network adaptor 140 includes a
multiplicity of ports to couple the distributed data system 100
to one or more clients 135 overpoint-to-point links, wide area

Aug. 18, 2016

networks, virtual private networks implemented over a public
network (Internet) or a shared local area network. The net
work adapter 140 thus can include the mechanical, electrical
and signaling circuitry needed to connect the distributed data
system 100 to a network.
0034. The storage adapter 180 cooperates with the storage
operating system 130 to access information requested. The
information may be stored on any type of attached array 125
of writable storage media 128, Such as magnetic disk or tape,
optical disk (e.g., CD-ROM or DVD), flash memory, solid
state disk (SSD), electronic random access memory (RAM),
micro-electro mechanical and/or any other similar media
adapted to store information, including data and parity infor
mation. However, as illustratively described herein, the infor
mation is stored on disks 128.
0035. The dynamic configuration module 190, which is a
dynamic configuration validation service component, is in
communication with processor 110 and other components of
the distributed data system 100. The dynamic configuration
module 190 allows for multiple scanners on a non-cluster host
to scan data and/or files within the distributed data system 100
(e.g., a cluster). The dynamic configuration module 190 vali
dates a scanner version for each one of multiple scanners for
scanning a file in a cluster of nodes, maintains the scanner
version in a list of valid scanner versions for the multiple
scanners, and assists with the scanning of the file by one of the
multiple scanners having the scanner version contained in the
list of the valid scanner versions. The dynamic configuration
module 190 includes the list of valid scanner versions.
0036 Storage of information can be implemented as one
or more storage Volumes that include a collection of physical
storage disks cooperating to define an overall logical arrange
ment of volume block number (VBN) space on the volume(s).
The disks can be organized as a RAID group 125. One or
more RAID groups 125 together form an aggregate. An
aggregate can contain one or more Volumes/file systems.
0037. The storage operating system 130 facilitates clients
access to data stored on the disks. In certain embodiments, the
storage operating system 130 implements a write-anywhere
file system that cooperates with one or more virtualization
modules to “virtualize' the storage space. In the illustrative
embodiment, the storage operating system 130 is a version of
the Data ONTAPR) operating system available from
NetApp.R., Inc. and the storage manager 185 implements the
Write Anywhere File Layout (WAFL(R) file system. How
ever, other storage operating systems are capable of being
enhanced or created for use in accordance with the principles
described herein.

0038 Moreover, the distributed data system 100 is in com
munication with one or more multiple third party Scanner
devices 212 connected to the storage system 102. Each mul
tiple third party Scanner devices 212 communicates via the
communication framework 230 with the storage system 102.
0039 FIG. 2 illustrates an embodiment of maintaining
dynamic configuration and Verification information for scan
ner devices hosted outside a cluster of nodes of the distributed
data system. The cluster 200 is a clusterofcomputing systems
coupled together by one or more communication frameworks
230, such as network 130. In one embodiment, by way of
example only, the cluster 200 may be a two-node cluster 204.
One or more storage controllers 150 may implement the
nodes 210, 215. Each node 210, 215 may be a storage server
functioning and operating in one or more of the storage sys
tems 102. The cluster 200 is configured to maintain dynamic

US 2016/0241572 A1

configuration information about a multi-host off-cluster Ser
vice on a cluster as described herein. The nodes 210, 215
automatically configures cluster paths based on configuration
information shared in the cluster 200.
0040. The cluster 200 is configured to maintain dynamic
configuration information about a multi-host off-cluster Ser
vice on a cluster as described herein. The nodes 210, 215
include a version table 202A, 202B (herein after collectively
referred to as “version table 202') that are in synch with each
other. The version table 202A, 202B of each node 210, 215
include a list of valid scanner versions of a scanner having
scanner vendor identification (ID) information (labeled as
vender: AV 1 or AV2) and a scanner vender version (labeled as
Version 1.1, 1.2, and/or 5.0). In one embodiment, the cluster
200 is in communication with multiple third party scanner
devices (hereinafter collectively referred to as “multiple third
party scanner devices 210’).
0041. For example, the multiple third party scanner
devices 212 are connected to the cluster 200. Each multiple
third party scanner devices 212 includes both the scanner
vendor ID (labeled as vender: AV1 or AV2) and the scanner
vender version (labeled as Version 1.1, 1.2, and/or 5.0). The
scanner vendor ID for Scanner 1 212A indicates that the
vender is AV1 and the scanner version is 1.1. The scanner
vendor ID for Scanner 2212B indicates that the vender is AV1
and the scanner version is 1.2. The scanner vendor ID for
Scanner 3 212N indicates that the vender is AV2 and the
scanner version is 5.0.

0042. After a file is scanned, the scanner version ID of the
scanner that performed the scan is stored in an in-core inode
of the file. In other words, the scanner version ID is stored in
a scan signature of a file. Later, ifa request comes into access
that file, ONTAP can look at the on-disk version ID and see if
any connected Scanner exists which has that particular scan
ner version ID. If so, the scan results, such as cleanfor
infected, are considered valid, and no further scan is required.
If there is no connected Scanner with a scanner version ID
identical to the on-disk version ID, a new scan request is
triggered. It should be noted that the on-disk version ID may
be considered the same as the file scan signature. The file Scan
signature of a file includes the scan status (e.g., a status of
clean or infected) and the scanner version ID with which the
file is scanned.

0.043 FIG. 3A illustrates an embodiment of version table
of FIG. 2. In FIG. 3, a version table 202 includes 5 rows and
5 columns. Row 20 illustrates the name of the columns. The
first column 302 is the name of the third party scanner vendor.
The second column is the scanner version. The third column
306 is the scanner version identification, such as a unique
16-bit identifier scanner version ID. The fourth column 308 is
the connection counter 308, and the fourth column 310 is the
timeout period, if any. In other words, row 20 categorizes the
version table 202 with the vendor listed in column 302, the
scanner version listed in column 304, the scanner version
identification (ID) listed in column 306, the connection count
indicating how many times the Scanner version is connected
to the cluster listed in column 308, and a timeout, if any, listed
in column 310.

0044) More specifically, the scanner version ID 306 is
associated with a specific third party vendor 302 and scanner
version 304. In other words, the scanner version ID 306 is
associated with the scanner vendor ID 302 and the scanner
Vendor version 304. In one embodiment, when a scan engine
of a scanner from a vendor 302 registers with the nodes 210,

Aug. 18, 2016

215, the vendor 302 and scanner version304 includes both the
scanner vendor ID (also referred to hereafter a “vendor ID')
302 identifying the scanner vendors 302 company and/or
product, plus the Scanner vendor version (herein after 'scan
ner version') 304, which may be a string consisting of two
version number, such as “x.y. The combination of the vendor
ID or scanner vendor 302 and the scanner version 304 is used
to search for scanner version ID 306 in the version table 202.
0045. The scanner version ID 306 may be a number that
nodes 210, 215 use to identify a combination of both the
vendor 302 and scanner version 304. The scanner version ID
306 is included in the version table 202 and is used after a file
is scanned to identify which vendor 302 and scanner version
304 combination has performed the scan. Future accesses to
a file will not trigger a scan if there is a currently connected
scanner with a matching scanner version ID 306.
0046. The version table 202 is a database that the node
210, 215 maintains which maps a vendor and scanner version
combination to a scanner version ID. For example, the nodes
210, 215 use operation software, such as DATAONTAP to
maintain the version table 202. The version table 202 keeps
track of how many scanners are currently connected which
have the same vendor 302 and scanner version 304 combina
tion, and hence, the same scanner version ID 306.
0047. The version table 202 collates connection informa
tion of the scanner version 304 for each one of multiple
scanners from each node in the cluster 200 in the list of the
valid scanner versions. The version table 202 may be the list
of valid scanner version. For example, row 20 is categorizes
the list or table with the vendor listed in column 302, the
scanner version listed in column 304, the scanner version ID
listed in column 306, the connection count indicating how
many times the scanner version is connected to the cluster is
listed in column 308, and a timeout, if any, is listed in column
31 O.

0048 For example, row 30 indicates a first scanner is from
a third party scanner vendor 302 generically represented as
AV1 for illustration purposes, the scanner version 304 is 1.0,
the scanner version ID 306 is 9, the connection count 308 is
Zero (0), and a timeout period of 12 hours (H). Row 40
indicates a second scanner is from a third party Scanner ven
dor 302 generically represented as AV1 for illustration pur
poses, the scanner version 304 is 1.1, the scanner version ID
306 is 11, the connection count 308 is 1, and there is no
timeout period. Row 50 indicates a third scanner is from a
third party scanner vendor 302 generically represented as
AV1 for illustration purposes, the scanner version 304 is 1.2,
the scanner version ID 306 is 12, the connection count 308 is
2, and there is no timeout period. Row 60 indicates a fourth
scanner is from a third party Scanner vendor 302 generically
represented as AV2 for illustration purposes, the scanner ver
sion 304 is 5.0, the scanner version ID 306 is 10, the connec
tion count 308 is 2, and there is no timeout period.
0049. The scanner version 304 may be derived from the
file's scan signature and is included in version table 202,
which is a list of valid scanner versions. If the scanner version
304 is included in the version table 202, the scan-status of the
file may be trusted. Any need for rescanning is eliminated. If
the scanner version 304 is not located in the in version table
202, the file must be rescanned. Furthermore, the version
table 202 is derived, generated, and/or maintained from the
scanners that are actively performing scan operations in the
cluster 200. The scanner-connection information, such as the
connection count 308, is collated from each node 201, 215 of

US 2016/0241572 A1

the cluster 200. The connection count 308 of the scanner
connections per vendor version is maintained in in the version
table 202 of the cluster 200. By correlating the scanner con
nection information, Such as the connection count 308, to
each vendor version, such as scanner version 304, allows for
the scanner versions 304 available to the cluster 200 be deter
mined and validated at any time.
0050. The vendor table 202 may be automatically updated
and the collated connection-status may be changed. For
example, a new valid scanner version 304 may be added to the
vendor table 202 whenever the cluster 200 receives a connec
tion with the new scanner version 304. Also, a valid scanner
version 304 may be marked as invalid whenever a last con
nection for a scanner version 304 disconnects from the cluster
200. The scanner version 304 marked as invalid may be
scheduled for removal from the version table 202 after a
predetermined time delay.
0051 Delaying the removal of the scanner version 304
marked as invalid may act as a de-ittering mechanism pro
viding protection to the version table from frequent updates in
an unstable condition of the cluster 200.

0052. This de-jittering mechanism provides enhanced sta
bility to the cluster 300 especially in light of the unique
scanner version ID being assigned each time a new scanner
version 304 is detected and used in the cluster 200. In absence
of the de-jittering mechanism, each time the Scanner recon
nects to the clustered network system after an intermittent
network disruption it will be assigned a new 16-bit unique
scanner version ID. This will lead to rescanning of the files
with scan signatures containing the old 16-bit identifier.
0053 FIG.3B-3I illustrate embodiments for a sequence of
events for maintaining dynamic configuration information
using version table 202 of FIG. 2 and embodiments of FIGS.
4-7. Consider the following example illustrating the embodi
ments described herein. In FIG. 3B, assume Scanner 1 con
nects with the cluster 200 with the vendor being “ScanMas
ter'302 and the scanner version being “viš.643 (herein after
combined as “ScanMaster v5.643) 304. Assume there is no
entry in the version table 202 for the vendor “ScanMaster
and the scanner version “viš.643. Thus, a new scanner ver
sion ID is chosen, such as scanner version ID “52”. The
version table 202 enters a new row 30 indicating Scanner 1 is
from a third party scanner vendor 302 represented as Scan
Master and the scanner version 304 is v3.64, the scanner
version ID 306 is 52, the connection count 308 is 1, and a
timeout period 310 of never. Assume files “a”, “b', and “c”
are scanned by Scanner 1. The scan signature and/or scanner
version ID 306 for files “a”, “b', and “c” may be 52.
0054 Building on FIG.3B, assume in FIG. 3C, scanner 2
connects with the cluster 200 with the vendor 302 being
“ScanMaster and the scanner version 304 being “vs. 644
(herein after combined as “ScanMaster v5.644). Again,
assume no entry exists for “ScanMaster and the scanner
version “viš.644” in the version table 202. A new scanner
version ID 306 is created, such as scanner version ID “53”.
The version table 202 enters a another new row 40 indicating
Scanner 2 is from a third party scanner vendor 302 repre
sented as “ScanMaster.” The scanner version 304 is repre
sented as “vs.644 and the Scanner version ID 306 is 53 with
a connection count 308 as 1 and a timeout period 310 of
“never.” Assume files “x”, “y”, and “Z” are scanned by 2. The
scan signature and/or scanner version ID 306 for files “x'.
y”, and “Z” may be 53.

Aug. 18, 2016

0055 Building on FIGS. 3B and 3C, assume now in FIG.
3D Scanner1 sends a scanner version 304 update to “5.644.
The row 30 entry for scanner version 304 of Scanner1 with
“ScanMaster v5.643’ will have the connection count reduced
to Zero, and row 40 entry for scanner version 304 of scanner
2 with "ScanMaster v5.644' will increase to 2. Assume now
a request to access file 'a' arrives in the cluster with a scanner
version ID of 52. The request will trigger a scan operation
because no active scanner exists which has a scanner version
ID 306 of 52. The timeout 308 of row 1 now indicates a
timeout 310 of over 12 hours.
0056 Turning now to FIG. 3E and continuing from FIG.
3D, assume one hour later, scanner3 connects with the cluster
200 with the vendor 302 being “ScanMaster and the scanner
version 304 being “viš.643 (herein after combined as “Scan
Master v5.643’). Because row 30 in the version table 202
includes a pre-existing entry for “ScanMaster v5.643 the
connection count 308 may be increased to 1 rather than a new
row being added. The scanner version ID 306 will remain 52.
Assume now a request to access file “barrives in the cluster,
which has an scanner version ID 306 is 52. A scan operation
will not be triggered because there is now an active Scanner
exists which has a scanner version ID 306 of 52.
0057 Building on FIG.3E, assume now in FIG.3F Scan
ner 1 in row 40 disconnects from the cluster 200 because a
host it is running on shuts down. The Scanner 1 connection
count 308 in row 40 for the vendor 302 being “ScanMaster”
and the scanner version 304 being “viš.644” (e.g., “ScanMas
ter v5.644) is decremented, yielding a count of 1. Assume
now a request to access file 'x' arrives in the cluster 200,
which has an scanner version ID 306 is 53. A scan operation
will not be trigger because there is now an active scanner (e.g.,
Scanner 1 in row 40) exists that has a scanner version ID 306
of 53.
0.058 Building on FIG.3E, assume now two hours later in
FIG. 3G, Scanner1 reconnects with an updated vendor 302
being “ScanMaster and the scanner version 304 being “vs.
650 (herein after combined as “ScanMaster v5.650).
Because there is no row entry in the version table 202 for
“ScanMaster v5.650, the version table 202 enters a new row,
such as row 50, indicating Scanner 1 is from scanner vendor
302 represented as ScanMaster and the scanner version 304
represented as V5.650. The scanner version ID 306 is assigned
as 54 to ScanMaster v5.650".

0059. Shortly thereafter as illustrated in FIG.3H, Scanner
2 and Scanner 3 both update to the scanner version304 v5.650
(e.g. “ScanMaster v5.650) as indicated in row 50 with the
connection count 308 increasing from 1 as illustrated in FIG.
3G to a connection count 308 of 3 as illustrated in FIG.3H. At
this point, any files that have not been scanned by a scanner
with scanner version ID 306 of 54 (before that, only Scanner
1) will trigger a scan, since that is the only scanner version ID
306 that include active scanners, such as Scanner 1-3. The
timeout are of row 1 and row 2 now indicate a timeout 310 of
over 12 hours.

0060 Assume, the next day as illustrated in FIG.3I, Scan
ner 4 connects to the cluster 200 from a different vendor. The
vendor 302 being “MalAway” and the scanner version 304
being “viš349.5549078 (herein after combined as “MalA
way v5349.5549078). A new scanner version ID 306 is
allocated as 55.

0061. It should be noted that since over 12 hours have
passed as illustrated in timeout 310 of row 30 and row 40 of
FIG.3H, the row entries, row 30 and row 40, for “ScanMaster

US 2016/0241572 A1

V5.643 and “ScanMaster v5.644 have timed out and are
removed from the version table 202. If a scanner were to
reconnect with one of those versions (e.g., “ScanMaster
V5.643 and “ScanMaster v5.644), the new scanner would
be assigned a new scanner version ID, and treated like any
other vender and scanner version combination.
0062. As such, a new row 60 entry may be created for the
new scanner since the version table 202 does not include the
new scanners vendor 302 information and/or the scanner
version 304 of the Scanner 4. (At this point there are only 2
rows, such as rows 50 and row 60, in the version table 202 of
FIG.3I). Again, any file withan Scan signature and/or scanner
version ID 54 corresponding to any connected scanner will be
considered as having been scanned, and will not trigger a
rescan. The Vender and Scanner version combination may be
used as an opaque key.
0063. The embodiments are not limited to this example.
0064 FIG. 4 illustrates an embodiment of a detailed logic
flow 400 for connecting a scanner device to a cluster of nodes
of FIGS. 2-3. In the illustrated embodiment shown in FIG. 4,
the logic flow 400 may begin at block 402. The logic flow then
proceeds to block 404. The logic flow 400 connect a scanner
to the cluster 200 and determines the identity of the third party
vender and scanner version of the scanner at block 404.
0065. The logic flow 400 determines if a version table 202
contains a row having the vendor 302 and scanner version 304
of the connected scanner at block 406. If the version table 202
does not have the vendor 302 and scanner version 304, the
logic flow 400 creates a new row in the version table 202 with
the new vendor 302 and scanner version 304 and connection
count 308 as 1 at block 408. The logic flow 400 assigns a
unique 16-bit identifier Scanner version ID (e.g., Scanner ver
sion ID 308 of FIG.3A) corresponding and relating to the new
vendor 302 and scanner version 304 information at block 410

0066. If the version table 202 does have the vendor 302
and scanner version 304, the logic flow 400 increases the
connection count 308 by a count of 1 in the row and removes
any time out information at block 412. The logic flow 400
may end at block 414.
0067. The embodiments are not limited to this example.
0068 FIG. 5 illustrates an embodiment of a detailed logic
flow 500 for updating a scanner device to a cluster of nodes of
FIGS. 2-3. In the illustrated embodiment shown in FIG.5, the
logic flow 500 may begin at block 502. The logic flow then
proceeds to block 504. The logic flow then proceeds to block
504. The logic flow 500 updates the vender (third party)302
and scanner version 304 of a scanner at block 504. The logic
flow 500 determines if a version table 202 contains a row
having the updated vendor 302 and scanner version 304 of the
connected scanner at block 506. If the version table 202 does
not have the vendor 302 and scanner version 304, the logic
flow 500 creates a new row in the version table 202 with the
updated vendor 302 and scanner version 304 and connection
count 308 as 1 at block 508. The logic flow 500 assigns a
unique 16-bit identifier scanner version ID 306 correspond
ing and relating to the updated vendor 302 and Scanner Ver
Sion 304 at block 510.
0069. If the version table 202 does have the vendor 302
and scanner version 304, the logic flow 500 increases the
connection count by a count of 1 in the row and removes any
timeout 310 information at block 512. The logic flow 500
reduces the connection count 308 by a count of 1 to the entry
in the version table 202 corresponding to the previous vendor
302 and scanner version 304 at block514. The logic flow 500

Aug. 18, 2016

updates any timeout 310 information if the connection count
308 is Zero (0) and deletes the entry in the version table 202 if
the connection count 308 of the scanner remains at Zero for a
predetermined timeout 310 period at block 516. The logic
flow 500 may end at block 518.
0070 The embodiments are not limited to this example.
0071 FIG. 6 illustrates an embodiment of a detailed logic
flow 600 for disconnecting a scanner device to a cluster of
nodes of FIG. 2. In the illustrated embodiment shown in FIG.
6, the logic flow 600 may begin at block 602. The logic flow
600 then proceeds to block 604. The logic flow 600 discon
nects a scanner from the cluster 200 at block 604. The logic
flow 600 reduces the connection count 308 by a count of one
(1) to the entry in the version table 202 corresponding to a
previous vendor 302 and scanner version 304 at block 606.
The logic flow 600 updates any timeout 310 information if the
connection count 308 is zero (0) and deletes the entry in the
version table 202 if the connection count 308 of the scanner
remains at Zero for a predetermined timeout 310 period at
block 608. The logic flow 500 may end at block 610. The
embodiments are not limited to this example.
0072 FIG. 7 illustrates an embodiment of a detailed logic
flow for executing a scanning operation of a file using a
scanner device to a cluster of nodes of FIGS. 2-3. In the
illustrated embodiment shown in FIG. 7, the logic flow 700
may begin at block 702. The logic flow 700 then proceeds to
block 704. The logic flow 700 may perform a scanning veri
fication and scanning operation for a file at block 704. The
logic flow 700 determines if the file has previously been
scanned by checking in a cache at block 706. It should be
noted that the cache contains the file scan signature of the
scanned files. If no, the logic flow 700 moves to block 712.
The logic flow 700 scans the file and retains the scanner
version ID 306 corresponding to the scanner version 304 in
the cache at block 712. The scanner version ID 306 may be a
unique 16-bit scanner version identifier. The unique scanner
version identification ID 306 is stored with a scan signature of
the file.
0073. If the file has been previously scanned, the logic
flow 700 determines if a version table 202 includes an entry
with a scanner version ID 306 and a connection count 308 that
is greater than Zero (0) with which the file was previously
scanned at block 708. Ifno, the logic flow moves to block 712.
If yes, the logic flow 700 the scan status of the file is consid
ered as valid and no scan is required at block 710. The scan
status of the file is set and maintained as valid. The logic flow
700 may move to block 714. The logic flow 700 may end at
block 714.
0074 The embodiments are not limited to this example.
0075 Thus, as described herein, various embodiments are
directed to can data files for viruses on the cluster 200 with the
multiple third party scanner devices 212 being hosted outside
of the cluster 200 by maintaining dynamic configuration
information about a multi-host third party Scanner device as
follows. The cluster 200 maintains a list of valid scanner
versions in the version table 202 in the cluster 200. A file’s
scan-signature yields and produces the scanner version with
which the file was last Scanned. Each time a new scanner
version is added or upgraded, a unique scanner version iden
tification (ID) is assigned to the scanner version. The unique
scanner version ID is a unique 16-bit identifier.
0076 Moreover, the present disclosure provides a unique,
resilient, easy-to-implement solution for problems faced in
the inter-workings of a storage cluster with non-cluster Ser

US 2016/0241572 A1

vices. The present disclosure allows the storage cluster to
efficiently use services provided by non-cluster hosts while
allowing these hosts to maintain their own schedule of
upgrades, with no prior co-ordination of Such events with
storage cluster operations.
0077 FIG. 8 illustrates a block diagram of a centralized
system 800. The centralized system 800 may implement
some or all of the structure and/or operations for the distrib
uted data system 100 having one or more clusters 200.
0078. The device 820 may comprise any electronic device
capable of receiving, processing, and sending information for
the centralized system 800. Examples of an electronic device
may include without limitation an ultra-mobile device, a
mobile device, a personal digital assistant (PDA), a mobile
computing device, a Smartphone, a telephone, a digital tele
phone, a cellular telephone, eBook readers, a handset, a one
way pager, a two-way pager, a messaging device, a computer,
a personal computer (PC), a desktop computer, a laptop com
puter, a notebook computer, a netbook computer, a handheld
computer, a tablet computer, a server, a server array or server
farm, a web server, a network server, an Internet server, a
work station, a mini-computer, a main frame computer, a
Supercomputer, a network appliance, a web appliance, a dis
tributed computing system, multiprocessor systems, proces
sor-based systems, consumer electronics, programmable
consumer electronics, game devices, television, digital tele
vision, set top box, wireless access point, base station, Sub
scriber station, mobile subscriber center, radio network con
troller, router, hub, gateway, bridge, Switch, machine, or
combination thereof. The embodiments are not limited in this
COInteXt.

007.9 The device 820 may execute processing operations
or logic for the centralized system 800 using a processing
component 860. The processing component 860 may com
prise various hardware elements, Software elements, or a
combination of both.

0080 Examples of hardware elements may include
devices, logic devices, components, processors, micropro
cessors, circuits, processor circuits, circuit elements (e.g.,
transistors, resistors, capacitors, inductors, and so forth), inte
grated circuits, application specific integrated circuits
(ASIC), programmable logic devices (PLD), digital signal
processors (DSP), field programmable gate array (FPGA),
memory units, logic gates, registers, semiconductor device,
chips, microchips, chip sets, and so forth. Examples of Soft
ware elements may include Software components, programs,
applications, computer programs, application programs, sys
tem programs, software development programs, machine
programs, operating system software, middleware, firmware,
Software modules, routines, Subroutines, functions, methods,
procedures, software interfaces, application program inter
faces (API), instruction sets, computing code, computer code,
code segments, computer code segments, words, values, sym
bols, or any combination thereof. Determining whether an
embodiment is implemented using hardware elements and/or
Software elements may vary in accordance with any number
of factors, such as desired computational rate, power levels,
heat tolerances, processing cycle budget, input data rates,
output data rates, memory resources, data bus speeds and
other design or performance constraints, as desired for a given
implementation.
0081. The device 820 may execute communications
operations or logic for the centralized system 800 using com
munications component 840. The communications compo

Aug. 18, 2016

nent 840 may implement any well-known communications
techniques and protocols, such as techniques Suitable for use
with packet-switched networks (e.g., public networks such as
the Internet, private networks such as an enterprise intranet,
and so forth), circuit-switched networks (e.g., the public
Switched telephone network), or a combination of packet
switched networks and circuit-switched networks (with suit
able gateways and translators). The communications compo
nent 840 may include various types of standard
communication elements, such as one or more communica
tions interfaces, network interfaces, network interface cards
(NIC), radios, wireless transmitters/receivers (transceivers),
wired and/or wireless communication media, physical con
nectors, and so forth. By way of example, and not limitation,
communication media 812 include wired communications
media and wireless communications media. Examples of
wired communications media may include a wire, cable,
metal leads, printed circuitboards (PCB), backplanes, switch
fabrics, semiconductor material, twisted-pair wire, co-axial
cable, fiber optics, a propagated signal, and so forth.
Examples of wireless communications media may include
acoustic, radio-frequency (RF) spectrum, infrared and other
wireless media.

I0082. The device 820 may communicate with a device 810
over a communications media 812 using communications
signals 814 via the communications component 840. The
device 810 may be internal or external to the device 820 as
desired for a given implementation.
0083) The device 820 may host a host operating software
(OS), a host 825 running a migration application 822, source
hypervisor 830, and destination hypervisor 835, with the
source VM 140 and destination VM 845 provided by the
respective hypervisors 830, 835. The device 820 may also
host the file system 880 storing the virtual disk blocks for the
source VM virtual disk and destination VM virtual disk. The
migration application 822 may perform the migration of the
guest OS 850 from the source VM 840 to the destination VM
845 on the device 820.

I0084. The device 810 may provide support or control for
the migration operations of the migration application 822
and/or the hosting operations of the device 820 and host 825.
The device 810 may comprise an external device externally
controlling the device 820, such as where device 810 is a
server device hosting the guest OS 850 and the device 810 is
a client administrator device used to administrate device 810
and initiate the migration using migration application 822. In
Some of these cases, the migration application 822 may
instead be hosted on the device 810 with the remainder of the
virtual machine migration system 100 hosted on the device
820. Alternatively, the device 810 may have hosted the migra
tion application 822 as a distribution repository, with the
migration application 822 downloaded to the device 820 from
the device 810.

I0085 FIG. 9 illustrates a block diagram of a distributed
system 900. The distributed system 900 may distribute por
tions of the structure and/or operations for the distributed data
system 100 across multiple computing entities. Examples of
distributed system 900 may include without limitation a cli
ent-server architecture, a 3-tier architecture, an N-tier archi
tecture, a tightly-coupled or clustered architecture, a peer-to
peer architecture, a master-slave architecture, a shared
database architecture, and other types of distributed systems.
The embodiments are not limited in this context.

US 2016/0241572 A1

I0086. The distributed system 900 may comprise a client
device 910 and server devices 950 and 970. In general, the
client device 910 and the server devices 950 and 970 may be
the same or similar to the client device 820 as described with
reference to FIG.8. For instance, the client device 910 and the
server devices 950 and 970 may each comprise a processing
component 930 and a communications component 940 which
are the same or similar to the processing component 860 and
the communications component 840, respectively, as
described with reference to FIG.8. In another example, the
devices 910, 950, and 970 may communicate over a commu
nications media 912 using communications signals 914 via
the communications components 940. The distributed system
900 may comprise a distributed file system implemented by
distributed file servers 960 including file servers 960-1
through 960-n, where the value of n may vary in different
embodiments and implementations. The local storage of the
client device 910 and server devices 950, 970 may work in
conjunction with the file servers 960 in the operation of the
distributed file system, Such as by providing a local cache for
the distributed file system primarily hosted on the file servers
960 so as to reduce latency and network bandwidth usage for
the client device 910 and server devices 950,970.
0087. The client device 910 may comprise or employ one
or more client programs that operate to perform various meth
odologies in accordance with the described embodiments. In
one embodiment, for example, the client device 910 may
implement the migration application 822 initiating, manag
ing, and monitoring the migration of the guest OS 850 from
the source VM 840 to the destination VM 845. The client
device 910 may use signals 914 to interact with the source
hypervisor 130, destination hypervisor 835 and/or guest OS
850 while they are running on each of the source VM 840 and
destination VM 845, and file servers 960.
I0088. The server devices 950, 970 may comprise or
employ one or more server programs that operate to perform
various methodologies in accordance with the described
embodiments. In one embodiment, for example, the server
device 950 may implement a source host OS 920 hosting the
source hypervisor 830 providing the source VM 840. The
server device 950 may use signals 914 to receive control
signals from the migration application 822 on client device
910 and to transmit configuration and status information to
the migration application 822. The server device 950 may use
signals 914 communicate with the file servers960 both for the
providing of sourceVM 840 and for the migration of guest OS
850 from the Source VM 840 to the destination VM 845.

I0089. The server device 970 may implement a destination
host OS 925 hosting the destination hypervisor 835 providing
the destination VM 845. The server device 970 may use
signals 914 to receive control signals from the migration
application 822 on client device 910 and to transmit configu
ration and status information to the migration application
822. The server device 970 may use signals 914 communicate
with the file servers 960 both for the providing of destination
VM 845 and for the migration of guest OS 850 to the desti
nation VM 845 to the Source VM 840.

0090. In some embodiments, the same server device may
implement both the source hypervisor 830 and the destination
hypervisor 835. In these embodiments, the migration appli
cation 850 hosted on a client device 910 may perform the
migration of the guest OS 850 from the source VM 840 to the

Aug. 18, 2016

destination VM 845 on this single server device, in conjunc
tion with migration operations performed using the distrib
uted file system.
0091 FIG. 10 illustrates an embodiment of an exemplary
computing architecture 1300 suitable for implementing vari
ous embodiments as previously described. In one embodi
ment, the computing architecture 1000 may comprise or be
implemented as part of an electronic device. Examples of an
electronic device may include those described with reference
to FIGS. 8,9, and 10 among others. The embodiments are not
limited in this context.
0092. As used in this application, the terms “system’’ and
“component” are intended to refer to a computer-related
entity, either hardware, a combination of hardware and soft
ware, Software, or Software in execution, examples of which
are provided by the exemplary computing architecture 1000.
For example, a component can be, but is not limited to being,
a process running on a processor, a processor, a hard disk
drive, multiple storage drives (of optical and/or magnetic
storage medium), an object, an executable, a thread of execu
tion, a program, and/or a computer. By way of illustration,
both an application running on a server and the server can be
a component. One or more components can reside within a
process and/or thread of execution, and a component can be
localized on one computer and/or distributed between two or
more computers. Further, components may be communica
tively coupled to each other by various types of communica
tions media to coordinate operations. The coordination may
involve the uni-directional or bi-directional exchange of
information. For instance, the components may communicate
information in the form of signals communicated over the
communications media. The information can be imple
mented as signals allocated to various signal lines. In Such
allocations, each message is a signal. Further embodiments,
however, may alternatively employ data messages. Such data
messages may be sent across various connections. Exemplary
connections include parallel interfaces, serial interfaces, and
bus interfaces.
0093. The computing architecture 1000 includes various
common computing elements, such as one or more proces
sors, multi-core processors, co-processors, memory units,
chipsets, controllers, Scanners, interfaces, oscillators, timing
devices, video cards, audio cards, multimedia input/output
(I/O) components, power Supplies, and so forth. The embodi
ments, however, are not limited to implementation by the
computing architecture 1000.
0094. As shown in FIG. 10, the computing architecture
1000 comprises a processing unit 1004, a system memory
1006 and a system bus 1008. The processing unit 1004 can be
any of various commercially available processors, including
without limitation an AMDR), Athlon(R), Duron(R) and
Opteron(R) processors; ARMO application, embedded and
secure processors; IBM(R) and Motorola R. DragonBall R and
PowerPC(R) processors; IBM and Sony(R) Cell processors;
Intel R. Celeron(R), Core (2) Duo(R), Itanium(R), Pentium(R),
Xeon R, and XScale R processors; and similar processors.
Dual microprocessors, multi-core processors, and other
multi-processor architectures may also be employed as the
processing unit 1004.
(0095. The system bus 1008 provides an interface for sys
tem components including, but not limited to, the system
memory 1006 to the processing unit 1004. The system bus
1008 can be any of several types of bus structure that may
further interconnect to a memory bus (with or without a

US 2016/0241572 A1

memory controller), a scanner bus, and a local bus using any
of a variety of commercially available bus architectures.
Interface adapters may connect to the system bus 1008 via a
slot architecture. Example slot architectures may include
without limitation Accelerated Graphics Port (AGP), Card
Bus, (Extended) Industry Standard Architecture ((E)ISA),
Micro Channel Architecture (MCA). NuBus, Scanner Com
ponent Interconnect (Extended) (PCICX)), PCI Express, Per
Sonal Computer Memory Card International Association
(PCMCIA), and the like.
0096. The computing architecture 1000 may comprise or
implement various articles of manufacture. An article of
manufacture may comprise a computer-readable storage
medium to store logic. Examples of a computer-readable
storage medium may include any tangible media capable of
storing electronic data, including Volatile memory or non
Volatile memory, removable or non-removable memory, eras
able or non-erasable memory, writeable or re-writeable
memory, and so forth. Examples of logic may include execut
able computer program instructions implemented using any
Suitable type of code, Such as Source code, compiled code,
interpreted code, executable code, static code, dynamic code,
object-oriented code, visual code, and the like. Embodiments
may also be at least partly implemented as instructions con
tained in or on a non-transitory computer-readable medium,
which may be read and executed by one or more processors to
enable performance of the operations described herein.
0097. The system memory 1006 may include various
types of computer-readable storage media in the form of one
or more higher speed memory units, such as read-only
memory (ROM), random-access memory (RAM), dynamic
RAM (DRAM), Double-Data-Rate DRAM (DDRAM), syn
chronous DRAM (SDRAM), static RAM (SRAM), program
mable ROM (PROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE
PROM), flash memory, polymer memory such as ferroelec
tric polymer memory, ovonic memory, phase change or fer
roelectric memory, silicon-oxide-nitride-oxide-silicon
(SONOS) memory, magnetic or optical cards, an array of
devices such as Redundant Array of Independent Disks
(RAID) drives, solid state memory devices (e.g., USB
memory, solid state drives (SSD) and any other type of stor
age media Suitable for storing information. In the illustrated
embodiment shown in FIG. 10, the system memory 1006 can
include non-volatile memory 1010 and/or volatile memory
1012. A basic input/output system (BIOS) can be stored in the
non-volatile memory 1010.
0098. The computer 1002 may include various types of
computer-readable storage media in the form of one or more
lower speed memory units, including an internal (or external)
hard disk drive (HDD) 1014, a magnetic floppy disk drive
(FDD) 1016 to read from or write to a removable magnetic
disk 1018, and an optical disk drive 1020 to read from or write
to a removable optical disk 1022 (e.g., a CD-ROM or DVD).
The HDD 1014, FDD 1016 and optical disk drive 1020 can be
connected to the system bus 1008 by a HDD interface 1024,
an FDD interface 1026 and an optical drive interface 1028,
respectively. The HDD interface 1024 for external drive
implementations can include at least one or both of Universal
Serial Bus (USB) and IEEE 1394 interface technologies.
0099. The drives and associated computer-readable media
provide Volatile and/or nonvolatile storage of data, data struc
tures, computer-executable instructions, and so forth. For
example, a number of program modules can be stored in the

Aug. 18, 2016

drives and memory units 1010, 1012, including an operating
system 1030, one or more application programs 1032, other
program modules 1034, and program data 1036. In one
embodiment, the one or more application programs 1032,
other program modules 1034, and program data 1036 can
include, for example, the various applications and/or compo
nents of the system 100.
0100. A user can entercommands and information into the
computer 1002 through one or more wire/wireless input
devices, for example, a keyboard 1038 and a pointing device,
such as a mouse 1040. Other input devices may include
microphones, infra-red (IR) remote controls, radio-frequency
(RF) remote controls, game pads, stylus pens, card readers,
dongles, finger print readers, gloves, graphics tablets, joy
Sticks, keyboards, retina readers, touch screens (e.g., capaci
tive, resistive, etc.), trackballs, trackpads, sensors, styluses,
and the like. These and other input devices are often con
nected to the processing unit 1004 through an input device
interface 1042 that is coupled to the system bus 1008, but can
be connected by other interfaces such as a parallel port, IEEE
1394 serial port, a game port, a USB port, an IR interface, and
so forth.
0101. A monitor 1044 or other type of display device is
also connected to the system bus 1008 via an interface, such
as a video adaptor 1046. The monitor 1044 may be internal or
external to the computer 1002. In addition to the monitor
1044, a computer typically includes other scanner output
devices. Such as speakers, printers, and so forth.
01.02 The computer 1002 may operate in a networked
environment using logical connections via wire and/or wire
less communications to one or more remote computers. Such
as a remote computer 1048. The remote computer 1048 can be
a workstation, a server computer, a router, a personal com
puter, portable computer, microprocessor-based entertain
ment appliance, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the computer 1002, although, for pur
poses of brevity, only a memory/storage device 1050 is illus
trated. The logical connections depicted include wire/wire
less connectivity to a local area network (LAN) 1052 and/or
larger networks, for example, a wide area network (WAN)
1054. Such LAN and WAN networking environments are
commonplace in offices and companies, and facilitate enter
prise-wide computer networks, such as intranets, all of which
may connect to a global communications network, for
example, the Internet.
0103) When used in a LAN networking environment, the
computer 1002 is connected to the LAN 1052 through a wire
and/or wireless communication network interface or adaptor
1056. The adaptor 1056 can facilitate wire and/or wireless
communications to the LAN 1052, which may also include a
wireless access point disposed thereon for communicating
with the wireless functionality of the adaptor 1056.
0104. When used in a WAN networking environment, the
computer 1002 can include a modem 1058, or is connected to
a communications server on the WAN 1054, or has other
means for establishing communications over the WAN 1054,
such as by way of the Internet. The modem 1058, which can
be internal or external and a wire and/or wireless device,
connects to the system bus 1008 via the input device interface
1042. In a networked environment, program modules
depicted relative to the computer 1002, or portions thereof,
can be stored in the remote memory/storage device 1050. It
will be appreciated that the network connections shown are

US 2016/0241572 A1

exemplary and other means of establishing a communications
link between the computers can be used.
0105. The computer 1002 is operable to communicate
with wire and wireless devices or entities using the IEEE 802
family of standards. Such as wireless devices operatively dis
posed in wireless communication (e.g., IEEE 802.13 over
the-air modulation techniques). This includes at least Wi-Fi
(or Wireless Fidelity), WiMax, and BluetoothTM wireless
technologies, among others. Thus, the communication can be
a predefined structure as with a conventional network or
simply an ad hoc communication between at least two
devices. Wi-Fi networks use radio technologies called IEEE
802.13x (a, b, g, n, etc.) to provide secure, reliable, fast
wireless connectivity. A Wi-Fi network can be used to con
nect computers to each other, to the Internet, and to wire
networks (which use IEEE 802.3-related media and func
tions).
0106 FIG. 11 illustrates a block diagram of an exemplary
communications architecture 1100 suitable for implementing
various embodiments as previously described. The commu
nications architecture 1100 includes various common com
munications elements, such as a transmitter, receiver, trans
ceiver, radio, network interface, baseband processor, antenna,
amplifiers, filters, power supplies, and so forth. The embodi
ments, however, are not limited to implementation by the
communications architecture 1100.

0107 As shown in FIG. 11, the communications architec
ture 1100 comprises includes one or more clients 1102 and
servers 1104. The clients 1102 may implement the client
device 910. The servers 1104 may implement the server
devices 2350/2370. The clients 1102 and the servers 1104 are
operatively connected to one or more respective client data
stores 1108 and server data stores 1110 that can be employed
to store information local to the respective clients 1102 and
servers 1104. Such as cookies and/or associated contextual
information.

0108. The clients 1102 and the servers 1104 may commu
nicate information between each other using a communica
tion framework 1106. The communications framework 1106
may implement any well-known communications techniques
and protocols. The communications framework 1106 may be
implemented as a packet-switched network (e.g., public net
works Such as the Internet, private networks such as an enter
prise intranet, and so forth), a circuit-switched network (e.g.,
the public switched telephone network), or a combination of
a packet-switched network and a circuit-switched network
(with Suitable gateways and translators).
0109 The communications framework 1106 may imple
ment various network interfaces arranged to accept, commu
nicate, and connect to a communications network. A network
interface may be regarded as a specialized form of an input
output interface. Network interfaces may employ connection
protocols including without limitation direct connect, Ether
net (e.g., thick, thin, twisted pair 10/100/1900 Base T, and the
like), token ring, wireless network interfaces, cellular net
work interfaces, IEEE 802.11a-X network interfaces, IEEE
802.16 network interfaces, IEEE 802.20 network interfaces,
and the like. Further, multiple network interfaces may be used
to engage with various communications network types. For
example, multiple network interfaces may be employed to
allow for the communication over broadcast, multicast, and
unicast networks. Should processing requirements dictate a
greater amount speed and capacity, distributed network con
troller architectures may similarly be employed to pool, load

Aug. 18, 2016

balance, and otherwise increase the communicative band
width required by clients 1102 and the servers 1104. A com
munications network may be any one and the combination of
wired and/or wireless networks including without limitation a
direct interconnection, a secured custom connection, a private
network (e.g., an enterprise intranet), a public network (e.g.,
the Internet), a Personal Area Network (PAN), a Local Area
Network (LAN), a Metropolitan Area Network (MAN), an
Operating Missions as Nodes on the Internet (OMNI), a Wide
Area Network (WAN), a wireless network, a cellular net
work, and other communications networks.
0110. Some embodiments may be described using the
expression “one embodiment’ or “an embodiment” along
with their derivatives. These terms mean that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment.
The appearances of the phrase “in one embodiment” in vari
ous places in the specification are not necessarily all referring
to the same embodiment. Further, some embodiments may be
described using the expression “coupled' and “connected
along with their derivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected
and/or “coupled to indicate that two or more elements are in
direct physical or electrical contact with each other. The term
“coupled, however, may also mean that two or more ele
ments are not in direct contact with each other, but yet still
co-operate or interact with each other.
0111. With general reference to notations and nomencla
ture used herein, the detailed descriptions herein may be
presented in terms of program procedures executed on a
computer or network of computers. These procedural
descriptions and representations are used by those skilled in
the art to most effectively convey the substance of their work
to others skilled in the art.
0112 A procedure is here, and generally, conceived to be
a self-consistent sequence of operations leading to a desired
result. These operations are those requiring physical manipu
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical, magnetic or opti
cal signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It proves convenient
at times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like. It should be noted, however, that
all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to those quantities.
0113. Further, the manipulations performed are often
referred to in terms, such as adding or comparing, which are
commonly associated with mental operations performed by a
human operator. No Such capability of a human operator is
necessary, or desirable in most cases, in any of the operations
described herein, which form part of one or more embodi
ments. Rather, the operations are machine operations. Useful
machines for performing operations of various embodiments
include general purpose digital computers or similar devices.
0114 Various embodiments also relate to apparatus or
systems for performing these operations. This apparatus may
be specially constructed for the required purpose or it may
comprise a general purpose computer as selectively activated
or reconfigured by a computer program stored in the com
puter. The procedures presented herein are not inherently
related to a particular computer or other apparatus. Various

US 2016/0241572 A1

general purpose machines may be used with programs written
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per
form the required method steps. The required structure for a
variety of these machines will appear from the description
given.
0115. It is emphasized that the Abstract of the Disclosure

is provided to allow a reader to quickly ascertain the nature of
the technical disclosure. It is submitted with the understand
ing that it will not be used to interpret or limit the scope or
meaning of the claims. In addition, in the foregoing Detailed
Description, it can be seen that various features are grouped
together in a single embodiment for the purpose of stream
lining the disclosure. This method of disclosure is not to be
interpreted as reflecting an intention that the claimed embodi
ments require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive sub
ject matter lies in less than all features of a single disclosed
embodiment. Thus the following claims are hereby incorpo
rated into the Detailed Description, with each claim standing
on its own as a separate embodiment. In the appended claims,
the terms “including and “in which are used as the plain
English equivalents of the respective terms "comprising and
“wherein, respectively. Moreover, the terms “first.” “sec
ond,” “third, and so forth, are used merely as labels, and are
not intended to impose numerical requirements on their
objects.
0116. What has been described above includes examples
of the disclosed architecture. It is, of course, not possible to
describe every conceivable combination of components and/
or methodologies, but one of ordinary skill in the art may
recognize that many further combinations and permutations
are possible. Accordingly, the novel architecture is intended
to embrace all Such alterations, modifications and variations
that fall within the spirit and scope of the appended claims.

1. A computer-implemented method, comprising:
validating a scanner version for each one of multiple scan

ners for Scanning a file in a cluster of nodes;
maintaining the Scanner version in a list of valid scanner

versions for the multiple Scanners; and
Scanning the file by one of the one of multiple scanners

having the scanner version contained in the list of the
valid scanner versions.

2. The method of claim 1, comprising generating the list of
the valid Scanner versions from the multiple scanners actively
performing scanning operations in the cluster of nodes,
wherein the multiple Scanners are services provided by non
cluster hosts.

3. The method of claim 1, comprising determining the
scanner version for each one of the multiple Scanners.

4. The method of claim 1, comprising:
assigning a unique scanner version identification (ID) to

the scanner version;
storing the unique scanner version ID with a file scan

signature; and
using the file scan signature on the file indicating a most

recent scanner version used to Scan the file for determin
ing whether to rescan the file.

5. The method of claim 1, comprising:
collating connection information of the scanner version for

each one of multiple Scanners from each node in the
cluster in the list of the valid scanner versions;

maintaining a number of connections to the scanner ver
sion for each one of multiple scanners; and

Aug. 18, 2016

updating the connection information in the list of the valid
Scanner versions for an updated version of the scanner
version.

6. The method of claim 1, comprising:
adding to the list of the valid scanner versions a new scan

ner version for one of multiple scanners upon connec
tion with a new scanner version; and

marking the scanner version as invalid upon disconnection
from one of multiple Scanners.

7. The method of claim 1, comprising delaying a removal
from the list of the valid scanner versions the scanner version
marked as invalid.

8. An apparatus, comprising:
a processor circuit on a device;
a dynamic configuration validation service component for

a non-cluster host operative on the processor circuit to
execute a dynamic configuration validation service for
Scanning files in a cluster of nodes, the dynamic con
figuration validation service component operative to
validate a scanner version for each one of multiple scan
ners for Scanning a file in a cluster of nodes; maintain the
Scanner version in a list of valid Scanner versions for the
multiple Scanners; and scan the file by one of the one of
multiple scanners having the scanner version contained
in the list of the valid scanner versions.

9. The apparatus of claim 8, the dynamic configuration
validation service component operative to determine the
scanner version for each one of the multiple scanners.

10. The apparatus of claim 8, the dynamic configuration
validation service component operative to:

assign a unique scanner version identification (ID) to the
Scanner version;

store the unique scanner version ID with a file scan signa
ture; and

use the file scan signature on the file indicating a most
recent scanner version used to Scan the file for determin
ing whether to rescan the file.

11. The apparatus of claim 8, the dynamic configuration
validation service component operative to:

collate connection information of the scanner version for
each one of multiple Scanners from each node in the
cluster in the list of the valid scanner versions; and

maintaining a number of connections to the scanner Ver
sion for each one of multiple scanners.

12. The apparatus of claim 11, the dynamic configuration
validation service component operative to update the connec
tion information in the list of the valid scanner versions for an
updated version of the scanner version.

13. The apparatus of claim 8, the dynamic configuration
validation service component operative to add to the list of the
valid scanner versions a new scanner version for one of mul
tiple Scanners upon connection with a new scanner version.

14. The apparatus of claim 8, the dynamic configuration
validation service component operative to:
mark the scanner version as invalided upon disconnection

from a last connected Scanner, and
delay a removal from the list of the valid scanner versions

of the scanner version marked as invalid.
15. At least one non-transitory computer-readable storage

medium comprising instructions that, when executed, cause a
system to:

US 2016/0241572 A1

validate a scanner version for each one of multiple scanners
in an for Scanning a file in a cluster of nodes, wherein the
multiple scanners are hosted by a host outside of the
cluster of nodes;

maintain the scanner version in a list of valid scanner
versions for the multiple Scanners; and

Scan the file by one of the one of multiple scanners having
the scanner version contained in the list of the valid
Scanner versions.

16. The computer-readable storage medium of claim 15,
comprising further instructions that, when executed, cause a
system to:

determine the scanner version for each one of the multiple
SCannerS.

assign a unique scanner version identification (ID) to the
Scanner version;

store the unique scanner version ID with a file scan signa
ture; and

use the file scan signature on the file indicating a most
recent scanner version used to Scan the file for determin
ing whether to rescan the file.

17. The computer-readable storage medium of claim 15,
comprising further instructions that, when executed, cause a
system to:

12
Aug. 18, 2016

collate connection information of the scanner version for
each one of multiple Scanners from each node in the
cluster in the list of the valid scanner versions; and

maintaining a number of connections to the scanner Ver
sion for each one of multiple scanners.

18. The computer-readable storage medium of claim 17,
comprising further instructions that, when executed, cause a
system to update the connection information in the list of the
valid Scanner versions for an updated version of the Scanner
version.

19. The computer-readable storage medium of claim 15,
comprising further instructions that, when executed, cause a
system to add to the list of the valid scanner versions a new
scanner version for one of multiple scanners upon connection
with a new scanner version.

20. The computer-readable storage medium of claim 15,
comprising further instructions that, when executed, cause a
system to:
mark the scanner version as invalided upon disconnection

from a last connected Scanner, and
delay a removal from the list of the valid scanner versions

of the scanner version marked as invalid.

k k k k k

