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OBJECT DETECTION SYSTEM,
AUTONOMOUS VEHICLE USING THE
SAME, AND OBJECT DETECTION METHOD
THEREOF

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the priority benefits of U.S.
provisional application Ser. No. 62/673,131, filed on May
18, 2018. The entirety of the above-mentioned patent appli-
cation is hereby incorporated by reference herein and made
a part of this specification.

TECHNICAL FIELD

[0002] The disclosure is directed to an object detection
system used by an autonomous vehicle, an autonomous
vehicle using the same system, and an object detection
method thereof.

BACKGROUND

[0003] Developments of autonomous vehicles have soared
over the years because of factors including catalyzation of
deep learning-based object detection algorithms and utiliza-
tion of mobile yet powerful computing systems to imple-
ment the advanced technologies. Furthermore, the develop-
ments of imaging sensors that utilize more complex and
accurate framework have enabled sensing techniques to go
beyond passive-based technique as used in a camera into
active-based techniques such as LiDAR and RaDAR trans-
ducers. These active sensors may also provide three-dimen-
sional (3D) information by introducing depth information as
compared to just two-dimensional (2D) information such as
luminance and chrominance information from the camera
sensors. In addition, various implementations have devel-
oped multi sensing technology to obtain comprehensive
information from data fusion of different types of sensing
devices in order to increase the accuracy of an object
detection system.

[0004] Nevertheless, recent developments of different
types of sensing devices as well as the performance of the
prior state of the arts in object detection with multi sensing
devices come with a few drawbacks. For instance, data
qualities from each type of sensing devices for autonomous
vehicles are influenced by both external and internal con-
straints. Any adverse constraint for the corresponding type
of sensing device will reduce the data quality. Most of state
of' the arts that developed technology to fuse data from multi
sensing devices have mostly considered internal constraints
(objects’ relative position, an objects’ relative distance, a
classifier’s reliability, and etc.) exclusively. Some of the
state of the arts that developed fusion technology for multi
sensing devices have fused the information on the input
level and utilized a single classifier to perform object
detections. By doing so, the possibility for higher miss rates
may increase.

[0005] In an autonomous vehicle, sensing devices dis-
posed within the vehicle would be considered essential for
obtaining accurate information of surrounding objects and
conditions. Ideally, through implementations of a compre-
hensive variety and amount of sensor inputs acquired from
different sensing modalities (i.e. different types of sensors),
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more reliable information could be procured as each sensing
device may also verify information acquired from another
sensing device.

[0006] The commonly used sensing devices for the devel-
opment of the autonomous vehicles may include an imaging
sensor, a light detection and ranging (LiDAR) transducer,
and a radio detection and ranging (RaDAR) transducer. Each
of these sensing devices possess sensing modalities which
may retain characteristics and behaviors that either benefi-
cially enhance sensory performances or adversely worsen
sensory performances. Whether the sensory performances
are enhanced or worsened would depend on certain circum-
stances and environments because of distinct principle of
operation of each sensing device.

[0007] The principle of operation of an imaging sensor
such as a RGB camera is to conduct imaging passively by
receiving light information from external environment
including light reflected from surrounding objects. In con-
trast, a LIDAR and a RaDAR are active transducers that rely
upon at least a transmitter and a receiver to obtain informa-
tion from the surrounding objects and environment. The
difference between LiDAR and RaDAR is the spectrum of
light being used (i.e. infrared vs. millimeter waves) which
then determine the characteristic of the corresponding sens-
ing modality. In particular, LiDAR would use modulated
infrared (IR) wave to measure the time of flight between the
transmitter and the receiver with a full-round (i.e. 360
degrees) field of view; whereas a RaDAR would use a radio
frequency wave to measure the time of flight between the
transmitter and the receiver with a field of view of a certain
degree (e.g. less than 360 degrees).

[0008] Table 1 shows a comparison of characteristics
among various sensing devices that are commonly imple-
mented in an autonomous vehicle. Values shown in Table 1
are only shown for exemplary purposes as specific values
may vary based on design considerations.

TABLE 1
Constraints RGB Camera LiDAR RaDAR
sensor type passive active Active

not sensitive not sensitive
slightly sensitive not sensitive

lux interference highly sensitive
sun-exposure  highly sensitive

interference

weather mildly sensitive  highly sensitive  slightly sensitive
interference

sensing range 50 meters 100 meters 150 meters

field of view 60° 360° 30°

data resolution dense sparse highly sparse

[0009] According to Table 1 and the prior elaboration, an
imaging sensor would likely be prone to light interference
since inferior or excessive light intensities may jeopardize
perceived qualities of acquired images. Contrary to general
characteristics of an imaging sensor, the LiDAR and
RaDAR transducers are much less influenced by interfer-
ences from any amount of light intensities because the
sensing mediums of LiDAR and RaDAR are not located on
the same frequency ranges as the visible light spectra. Thus
from the perspective of lux interference, performing an
object detection by using an imaging sensor would likely be
less favorable in an environment having a certain amount of
light intensities in contrast to a LiDAR-based or a RaDAR-
based object detection system.



US 2019/0353774 Al

[0010] Moreover, the comparison among various sensing
devices also shows the potential possibility of having inter-
ferences from sun exposures when operating these sensing
devices within an autonomous vehicle. A direct sun expo-
sure to a camera lens may introduce signal clipping that
attenuates color information within the range of an exposure
glare so as to result in salient information of acquired images
being unintentionally removed. Similarly, a LiDAR is also
slightly sensitive to a direct sun exposure as the radiated
energy from the sun contains infrared (IR) waves that may
fall within the range of a spectrum of a LiDAR receiver.
However, the interference would not be nearly as high as in
a camera since the IR wave from the LiDAR transmitter is
modulated. On the other hand, a RaDAR transducer is
hardly affected by the sun exposure since the means for
sensing contains a radio frequency in the millimeter wave
length range.

[0011] Outdoor environment for autonomous vehicles
yields independent variables that may significantly lower
performances of each sensing devices. Adverse weather
conditions could be unavoidable constraints that are needed
to be taken into account in order to implement an accurate
object detection mechanism. The similarities among a cam-
era, a LIDAR, and a RaDAR could be based on a framework
of'a non-contact sensing technique which requires a medium
for information to be sent out and to be received back from
an object to be detected by each of these distinct types of
sensing devices. During an adverse weather condition (e.g.
rain, fog, or haze), the medium may contain unwanted
materials such as water droplets in rain, water colloid in fog,
and pollutant colloid in haze which may reduce visibilities
and thus attenuates the strength of information to travel
between an object to be detected and its corresponding
sensing device. Although performances of these sensing
devices can be interfered by weather conditions, perfor-
mances of a LIDAR could be shown to be the most inferior
amongst the other types of sensing devices described in this
disclosure.

[0012] FIG. 1A illustrates characteristics of commonly
used sensing devices for an autonomous vehicle. FIG. 1B
illustrates the field of view (FOV) and range of each of the
sensing devices of FIG. 1A. An autonomous vehicle may use
a RGB camera 101, a LiDAR 102, and a RaDAR 103 for
sensing nearby objects. In addition to being affected by
external constraints, internal specifications of these sensing
devices (e.g. 101 102 103) may also contribute to their
performances for object detections. As seen from Table 1,
internal constraints that may influence sensing characteris-
tics can be demarcated into at least three categories includ-
ing but not limited to (a) sensing range, (b) FOV, and (c) data
resolution. Each of these constraints may operate as a
trade-off in performances for the RGB camera 101, the
LiDAR transducer 102, and a RaDAR transducer 103.
[0013] For example, from the perspective of sensing
ranges as shown in FIG. 1B, a RaDAR 103 may provide the
broadest sensing range of up to 150 meters for most of
known object detection algorithms. However, from the per-
spective of the FOV, a LiDAR 102 may offer the widest field
of view that covers 3600 or a full-view. Nevertheless, both
RaDAR 103 and LiDAR 102 would likely fail to provide as
high data resolution as the RGB camera 101.

[0014] Based on the above described elaborations, both
internal and external constraints may potentially interfere
with the data quality in a non-trivial manner and thus would
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affect performances of object detection for each of the data
sensors. However, since the adverse conditions do not apply
to all sensor at the same time, it is possible to address the
drawback through utilization of comprehensive framework
that implements multi sensing modalities and multi object
detections.

SUMMARY OF THE DISCLOSURE

[0015] Accordingly, the disclosure is directed to an object
detection system used by an autonomous vehicle, an autono-
mous vehicle using the same system, and an object detection
method thereof.

[0016] In one of the exemplary embodiments, the disclo-
sure is directed to an object detection system which would
include not limited to: a first type of sensor for generating a
first sensor data; a second type of sensor for generating a
second sensor data; and a processor coupled to the first type
of sensor and the second type of sensor and configured at
least for: processing the first sensor data by using a first
plurality of object detection algorithms and processing the
second sensor data by using a second plurality of object
detection algorithms, wherein each of the first plurality of
object detection algorithms and each of the second plurality
of object detection algorithms include environmental param-
eters calculated from a plurality of parameter detection
algorithms; and determining for each detected object a
bounding box resulted from processing the first sensor data
and processing the second sensor data.

[0017] In one of the exemplary embodiments, the disclo-
sure is directed to an autonomous vehicle which includes not
limited to: an object detection system including a first type
of sensor for generating a first sensor data; a second type of
sensor for generating a second sensor data; and a processor
coupled to the first type of sensor and the second type of
sensor. and configured at least for: processing the first sensor
data by using a first plurality of object detection algorithms
and processing the second sensor data by using a second
plurality of object detection algorithms, wherein each of the
first plurality of object detection algorithms and each of the
second plurality of object detection algorithms include envi-
ronmental parameters calculated from a plurality of param-
eter detection algorithms; and determining for each detected
object a bounding box resulted from processing the first
sensor data and processing the second sensor data.

[0018] In one of the exemplary embodiments, the disclo-
sure is directed to an object detection method used by an
autonomous vehicle, the method would include not limited
to: generating, by using a first type of sensor, a first sensor
data; generating, by using a second type of sensor, a second
sensor data; processing the first sensor data by using a first
plurality of object detection algorithms and processing the
second sensor data by using a second plurality of object
detection algorithms, wherein each of the first plurality of
object detection algorithms and each of the second plurality
of object detection algorithms include environmental param-
eters calculated from a plurality of parameter detection
algorithms; and determining for each detected object a
bounding box resulted from processing the first sensor data
and processing the second sensor data.

[0019] In order to make the aforementioned features and
advantages of the disclosure comprehensible, exemplary
embodiments accompanied with figures are described in
detail below. It is to be understood that both the foregoing
general description and the following detailed description
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are exemplary and are intended to provide further explana-
tion of the disclosure as claimed.

[0020] It should be understood, however, that this sum-
mary may not contain all of the aspect and embodiments of
the disclosure and is therefore not meant to be limiting or
restrictive in any manner. Also, the disclosure would include
improvements and modifications which are obvious to one
skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The accompanying drawings are included to pro-
vide a further understanding of the disclosure and are
incorporated in and constitute a part of this specification.
The drawings illustrate embodiments of the disclosure and,
together with the description, serve to explain the principles
of the disclosure.

[0022] FIG. 1A illustrates characteristics of commonly
used sensing devices for an autonomous vehicle.

[0023] FIG. 1B illustrates the FOV and range of each of
the sensing devices of FIG. 1A.

[0024] FIG. 2 illustrates a hardware block diagram of an
object detection system in accordance with one of the
exemplary embodiments of the disclosure.

[0025] FIG. 3 illustrates an autonomous vehicle which
uses an object detection system in accordance with one of
the exemplary embodiments of the disclosure.

[0026] FIG. 4 is a flow chart which illustrates steps of an
object detection method in accordance with one of the
exemplary embodiments of the disclosure.

[0027] FIG. 5 illustrates a block diagram of the object
detection framework in accordance with one of the exem-
plary embodiments of the disclosure.

[0028] FIG. 6 illustrates techniques used in analyzing
bounding boxes in accordance with one of the exemplary
embodiments of the disclosure.

[0029] FIG. 7 is a detailed block diagram which illustrates
generating sensor data and subsequently analyzing detection
results to output bounding boxes in accordance with one of
the exemplary embodiments of the disclosure.

[0030] FIG. 8 illustrates a parameter detection algorithm
in accordance with one of the exemplary embodiments of
the disclosure.

[0031] FIG. 9 illustrates the FOVs of sensor candidates to
be used by an autonomous vehicle as well as each possible
detection cases in accordance with one of the exemplary
embodiments of the disclosure.

[0032] FIG. 10A-FIG. 10B illustrates a first implementa-
tion example of the object detection method in accordance
with one of the exemplary embodiments of the disclosure.
[0033] FIG. 11A-FIG. 11B illustrates a second implemen-
tation example of the object detection method in accordance
with one of the exemplary embodiments of the disclosure.
[0034] FIG. 12A-FIG. 12B illustrates a third implemen-
tation example of the object detection method in accordance
with one of the exemplary embodiments of the disclosure.

DETAILED DESCRIPTION OF DISCLOSED
EMBODIMENTS

[0035] Reference will now be made in detail to the present
exemplary embodiments of the disclosure, examples of
which are illustrated in the accompanying drawings. Wher-
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ever possible, the same reference numbers are used in the
drawings and the description to refer to the same or like
parts.

[0036] The disclosure provides a framework for an
autonomous vehicle to detect nearby objects, and the frame-
work is to be explained from the perspective of an object
detection system, an autonomous vehicle that uses the object
detection system, and an object detection method. The
system could be disposed within an autonomous vehicle
which would operate automatically without human interven-
tion and thus object detection accuracy would be paramount.
The system would include not limited to multiple sets of
different sensing devices with overlapping FOVs such as a
set of imaging devices having one or more image sensors for
acquiring two dimensional (2D) RGB data from the sur-
roundings, a set of LiDAR transducers having one or more
LiDAR transducers for acquiring three dimensional (3D)
point clouds volume from the surrounding, a set of RaDAR
transducers having one or more RaDAR transducers for
acquiring 3D echo points volume from the surrounding, and
aprocessing unit configured at least to execute a set of object
detection algorithms for each type of sensor and analyzes the
detection results from all algorithms to determine the final
detection results based on sensors’ characteristics and
behaviors against various constraints. Such constraints may
include light intensities, weather condition, exposure levels,
object positions, object distances, and detection algorithms’
reliability. Available information acquired from the sensors
would be integrated on each early detection results which
are then further analyzed automatically by a processing
device to obtain a final detection result which could be a part
of a comprehensive data for further analysis. Through the
provided framework, false positives could be suppressed so
as to increase the accuracy of the overall object detection.
FIG. 2-FIG. 5 elucidates the provided object detection
framework with further details.

[0037] FIG. 2 illustrates a hardware block diagram of an
object detection system in accordance with one of the
exemplary embodiments of the disclosure. The object detec-
tion system would include not limited to a first type of sensor
201, a second type of sensor 202, and a processor 203. The
first type of sensor 201 could be an imaging sensor such as
a RGB image sensor that captures visible light within a
designated FOV into a 2D image. The second type of sensor
202 could be an imaging or ranging sensor such as a LiDAR
sensor or RaDAR sensor that sample reflected signals from
within a designated FOV and reconstruct a 3D volume
accordingly. The processor 203 would be configured at least
for processing the first sensor data by using a first plurality
of object detection algorithms and processing the second
sensor data by using a second plurality of object detection
algorithms. Each of the first plurality of object detection
algorithms and each of the second plurality of object detec-
tion algorithms would include environmental parameters
calculated from a plurality of parameter detection algo-
rithms. The processor 203 would then be configured for
determining, for each detected object, a bounding box
resulted from processing the first sensor data and processing
the second sensor data.

[0038] Assuming that the first type of sensor 201 is a RGB
image sensor such as a RGB camera, the first plurality of
object detection algorithms may include one or a combina-
tion of a “YOLO’ algorithm as taught by J. Redmon et al.,
“You Only Look Once: Unified, Real-time Object Detec-
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tion,” CoRR, vol. abs/1506.02640, 2016, a Faster R-CNN
algorithm as taught by S. Ren et al., “Faster R-CNN:
Towards Real-time Object Detection with Region Proposal
Networks,” CoRR, vol. abs/1506.01497, 2016, and a Single
Shot Detection (SSD) algorithm as taught by W Liu et al.,
“SSD: Single Shot Multibox Detector,” CoRR, vol. abs/
1512/02325, 2015. Each of the above described object
detection algorithms are incorporated by reference.

[0039] Assuming that the second type of sensor 202 is
imaging or ranging sensor such as a LiDAR sensor, the
second plurality of object detection algorithms may include
one or a combination of a 3D-FCN algorithm as taught by
B. Li et al., “Vehicle Detection from 3D Lidar Using Fully
Convolutional Network”, CoRR, vol. abs/1608.0791, 2016,
TuSimple algorithm as taught by J. Guo et al., “Exploit All
the Layers: Fast and Accurate CNN Object Detector with
Scale Dependent Pooling and Cascaded Rejection Classifi-
ers,” IEEE CVPR, pp. 770-779, 2016, and L-SVM algo-
rithm as taught by C. Guidel, “Joint Object Detection and
Viewpoint Estimation using CNN Features,” IEEE VES, pp.
145-150, 2017. Each of the above described object detection
algorithms are incorporated by reference.

[0040] FIG. 3 illustrates an autonomous vehicle which
uses an object detection system in accordance with one of
the exemplary embodiments of the disclosure. The autono-
mous vehicle 300 would include not limited to the object
detection system 200 as shown in FIG. 2.

[0041] FIG. 4 is a flow chart which illustrates steps of an
object detection method by using an object detection system
in accordance with one of the exemplary embodiments of
the disclosure. In step S401, the object detection system
would generate, by using a first type of sensor, a first sensor
data. In step S402, the object detection system would
generate, by using a second type of sensor, a second sensor
data. In step S403, the object detection system would
process the first sensor data by using a first plurality of
object detection algorithms and would also process the
second sensor data by using a second plurality of object
detection algorithms. Each of the first plurality of object
detection algorithms and each of the second plurality of
object detection algorithms would include environmental
parameters calculated from a plurality of parameter detec-
tion algorithms. In step S404, the object detection system
would determine, for each detected object, a bounding box
resulted from processing the first sensor data and processing
the second sensor data.

[0042] FIG. 5-FIG. 12B elucidates the provided object
detection framework with several exemplary embodiments
and examples. FIG. 5 illustrates a detailed block diagram of
the object detection framework in accordance with one of
the exemplary embodiments of the disclosure. The frame-
work to be described would include a detection fusion
system that that utilizes multiple types of sensing devices to
perform object detections by using multiple object detection
algorithms (i.e. classifiers) for each type of sensing devices
over the overlapping FOVs (as illustrated in FIG. 2). The
multiple types of sensing devices may include a RaDAR
transducer array 501, a RGB camera array 502, a LiDAR
transducer array 503, and an environmental sensor array
504. The environmental sensor 504 array could be, for
example, an array of one or more rain sensors, visible
spectrum light sensors, pressure sensors, and etc.

[0043] To be more specific, the environmental data col-
lected from the environmental sensor array 504 may include
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detected weather condition, local intensity measurements
and over/under-exposure detections which are subsequently
used by the feature alignment S512 S532 process to calcu-
late objects’ relative distance, objects’ relative angular posi-
tion, the classifier’s confidence of the corresponding objects,
and/or any other parameter that may affect the performance
of object detection based on the corresponding type of
sensors. The collected environmental data are then normal-
ized to conform to the characteristics of each type of sensors
through mathematical modeling that estimates the outcome
in a uniform range of normalized values.

[0044] As shown in FIG. 5, the RaDAR transducer array
501 could be a set of one or more RF transducers, and each
transducer may collect a set of raw sensor data used to
perform A object detection(s) S511. Similarly, the RGB
camera array 502 could be a set of one or more image
sensors, and each image sensor may collect a set of raw
sensor data used to perform B object detection(s) S521.
Also, the LiDAR transducer array 503 could be a set of one
or more infrared transducers, and each transducer may
collect a set of raw sensor data used to perform C object
detections(s) S531. The environmental sensor array 504
could be one or more different types of sensors that collects
environmental data which are used to perform environmen-
tal analysis S541. The raw data from each of the sensing
devices (i.e. 501 502 503 504) could be obtained simulta-
neously and object detections from the different types of
sensing devices could also be performed simultaneously.

[0045] Next, various object detection algorithms of each
of the sensing devices (i.e. 501 502 503 504) would be
applied to obtain each detected object’s class and position
which could be characterized by a BB. During feature
alignment S512 S532, environmental based constraints
could be obtained from each of the environmental sensors
504. The environmental-based constraints modeling S551
would then be performed by fusing all the data as the results
of steps S512, S521, S532, and S541 and apply one or a
plurality of object detection algorithms for each of the
results in order to recognize one or more detected objects’
classes and position as preliminary detection results. In other
words, in S551, the object detection results S512, S521, and
S532 from each of the sensors 501 502 503, and obtained
values of some environmental-based constraints and envi-
ronment analysis S541 from each of the environmental
sensors would be combined together as the preliminary
detection results which are fused together through a decision
fusion module that analyzes the preliminary detection results
based on the enviromnent-based constraints. The prelimi-
nary detection results could be selected from the most
reliable detection results based on various constraints from
the relationships of the preliminary detection results and the
characteristics of the corresponding sensor according to the
environment conditions.

[0046] Each type of sensing devices (e.g. 501 502 503
504) would be assigned with a set of dedicated object
detection algorithms which generates preliminary object
detection results (e.g. RaDAR transducer array 501 and
LiDAR transducer 503 are in the 3D coordinate system
while RGB camera array 502 is in the 2D coordinate
system). Before the data fusion can be performed on the
preliminary detection results and before the final detection
results could be produced, the results from RaDAR trans-
ducer array 501 and LiDAR transducer array 503 are trans-
formed from 3D to 2D coordinate system S512 S532 by
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using feature alignment modules. These modules would
rectify the input format for the decision fusion to be syn-
chronized in the 2D coordinate system with depth informa-
tion being embedded for each preliminary detection results.
However, if the preliminary detection result is projected
outside the overlapping FOVs, then the corresponding data
would directly process as the final detection result in the 3D
coordinate system.

[0047] Each of the rectified-preliminary detection results
could be in the form of a bounding box (BB), and two BBs
could be analyzed pair-wisely based on relationship criteri-
ons that include comparisons of the object-based constraints
which may include spatial distance, depth, and class values.
Thus, determining whether the paired rectified-preliminary
detection results could be dependent or independent to each
other. In the scenario of FIG. 5, there could be a cluster of
up to three BBs as each BB is generated from a different type
of sensing device.

[0048] Two distinct techniques could be used to analyze
the rectified-preliminary detection results based on the over-
lapping-cluttering criterions that were observed between
each pair of the rectified-preliminary detection results. Thus,
in S552, whether the BBs are cluttered and overlapped
would be determined. The final detection results would be
determined from the preliminary detection results based on
using the normalized constraints parameters. Whether there
is cluttering is determined based on whether any pair of
rectified-preliminary detection results has less than a prede-
termined detection distance threshold as calculated based on
the L2 distance between the centroids between two BBs.
Also, whether there is overlapping is determined based on
whether an overlapping area between the paired BBs has
exceeded a predetermined area threshold. If the BBs are both
cluttered and overlapped, the detection result would utilize
the Dempster-Shafer module S553; otherwise, the detection
result would utilize a parameter filter module S555. For any
pair of dependent BB, Dempster-Shafer module S553 could
be used to preserve the more reliable BB and remove the
other BB from the corresponding pair based on the analysis
on the total confidence of all parameters. For any indepen-
dent BB, parameter filter module S555 would be utilized to
determine whether the stand-alone BB is preserved or
removed based on the analysis on the total confidence of all
parameters against its pseudo BB.

[0049] The Dempster-Shater module S553 can be briefly
described as a technique to competitively confront a paired
of BBs according to the confidence values of different
observed variables (which will be described in further
details in sections to come). The development purpose of the
Dempster-Shafer module S553 is to improve the detection
accuracy by preserving a detection result which has the
highest reliability according to the observed variables. The
final detection results as determined by the Dempster-Shafer
module S553 would be an object highlighted by a BB S554.
Similarly, the parameter filter module S555 is a filtering
technique to discriminatively measure the reliability of any
independent bounding box as compared to a pseudo-version
of the BB based on the confidence values of different
observed variables. The pseudo bounding box is created
based on the original bounding box and thus possesses the
same observed constraints. However, the constraints of the
pseudo bounding box are calculated with modeling equa-
tions as if measured with other type of sensor. As shown in
FIG. 6, a pair of BBs with the same or different detected
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class of object would be analyzed by using the Dempster-
Shafer module S553 when the cluttering distances and the
overlapping areas are smaller; whereas a pair of BBs with
the same or different detected class of object would be
analyzed by using the parameter filter module S555 when
the cluttering distances and the overlapping areas are larger.

[0050] FIG. 7 shows a more detailed block diagram by
expanding upon the embodiment of FIG. 5. In FIG. 7, the
embodiment is assumed to use a RaDAR sensor array (e.g.
501) having one or more RaDAR sensors, a RGB camera
array (e.g. 502) having one or more RGB cameras, and a
LiDAR sensor array (e.g. 503) having one or more LiDAR
sensors. The RaDAR sensor array would execute steps
S701-S707 to generate one or more RaDAR preliminary
detected objects with each of the one or more preliminary
detected objects presented in a 2D BB having a depth
information. The RGB camera array would execute steps
S711-S716 to generate one or more camera preliminary
detected objects with each of the one or more preliminary
detected objects presented in a 2D BB having a depth
information. The LiDAR sensor array would execute steps
S721-S728 to generate one or more LiDAR preliminary
detected objects with each of the one or more preliminary
detected objects either presented in a 2D BB having a depth
information or presented in as a 3D BB based on whether the
preliminary detected object is within a FOV which overlaps
with the FOVs of the RaDAR sensor array and the RGB
camera array. A processor (e.g. 203) would fuse all the
information of the preliminary detected objects from the
RaDAR sensor array, the RGB camera array, and the LiDAR
sensor array and process the information by incorporating
environment-based modeling to derive a final set of detected
object presented in a BB. Alternatively, the processor (e.g.
203) may also execute all of the steps including S701-S707,
S711 8716, S721-S729, and S731 S738. The details of FIG.
7 are described as follows.

[0051] In S701, an echo points acquisition module of the
RaDAR sensor array would obtain raw sensor data from the
RaDAR sensor array. In S702, there are n; number of object
detection algorithms that are implemented to generate raw
detection results in a 3D coordinate system, and the nj,
number is an integer greater than one. In S703, the raw
detection results are then analyzed based on the 3D over-
lapping detection which measures the BB distance of each
pair of raw detection results in order to generate preliminary
detection results. In S705, an echo points alignment module
of would receive raw sensor data from the echo points
acquisition module S701 and generate a transformation
matrix. In S704, a depth acquisition module would calculate
depth information for each of the rectified-preliminary
detection results. In S706, the preliminary detection results
are rectified to convert its coordinate system from 3D to 2D
by using a forward transformation module which requires
the transformation matrix from the echo points alignment
module S705, and generate 2D BB. In S707, one or more
RaDAR rectified-preliminary detected objects presented in a
2D BB embedded with corresponding a depth information
would be generated.

[0052] For the RGB camera array, in S711, an image
acquisition module would capture one or more still or
continuous images. In S712, there are n, number of object
detection algorithms that are implemented to generate raw
detection results in a 2D coordinate system format. In S713,
these raw detection results are analyzed based on the 2D
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overlapping detection which measures a BB distance for
each pair of the raw detection results so as to generate the
preliminary detection results. In S714, an inverse transfor-
mation module would receive the preliminary detection
results to convert them from 2D into a 3D coordinate system
format by using a transformation matrix from a point clouds
alignment module from S722. In S715, the depth informa-
tion of each BB of the preliminary detection results is
calculated by using the converted results in 3D coordinate
system. After acquiring the depth information, in S716, the
rectified-preliminary detection results from S713 would be
embedded with corresponding depth information from S715
to generate one or more camera preliminary detected objects
with each of the one or more rectified-preliminary detected
objects presented in a 2D BB having a depth information.

[0053] For the LiDAR sensor array, in S721, sensor data
as 3D point clouds would be acquired from a depth acqui-
sition module. In S722, a point clouds alignment module
would receive the 3D point clouds to output a transformation
matrix. In S723, there are n, number of object detection
algorithms that would receive the captured images to gen-
erate the raw detection results in a 3D coordinate system
format. In S724, these raw detection results are then ana-
lyzed based on the 3D overlapping detection which mea-
sures a BB distance for each pair of raw detection results so
as to generate preliminary detection results. In S725, these
preliminary detection results are rectified to convert its
coordinate system from 3D to 2D by using a forward
transformation module which requires a transformation
matrix from the point clouds alignment module from S722.
In 8726, depth information (in meters) is calculated for each
of the rectified-preliminary detection results in 2D by using
a depth acquisition module.

[0054] In S727, whether the converted rectified-prelimi-
nary detection results would fall within a FOV which
overlaps with the FOVs of the LiDAR sensor array and the
RGB camera array would be determined. If the converted
preliminary detection results would fall within the FOV
which overlaps with the FOVs of the LiDAR sensor array
and the RGB camera array, then in S728, the converted
rectified-preliminary detection results would be embedded
with the corresponding depth information to generate one or
more LiDAR rectified-preliminary detected objects with
each of the one or more rectified-preliminary detected
objects presented in a 2D BB having a depth information. If
the converted rectified-preliminary detection result would
fall outside the FOV which overlaps with the FOVs of the
LiDAR sensor array and the RGB camera array, then in
S729, one or more LiDAR preliminary detected objects with
each of the one or more preliminary detected objects pre-
sented in a 3D BB would be generated and will be directly
regarded as the final detection results using the original 3D
coordinate system.

[0055] 1In S731, all the outputs from S707, S716, and S728
are fused together to determine whether the BBs are clut-
tered and overlapped to in order to determine the final
detection results based on normalized parameters. Assuming
that there is sufficient cluttering and overlapping based on
the previously described criteria, then S732-S734 would be
executed; otherwise S735-S738 would be executed. In S732,
each of the outputs from S707, S716, S728 would be sent to
a parameter detection module which will be described in
latter section with further details. In S733, the Dempster-
Shafer module would process the outputs of all of the
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parameter detection modules by preserving the more reliable
BB and by removing the other BB for each corresponding
pair based on the analysis on the total confidence of all
parameters. The Dempster-Shafer would output final detec-
tion results as an object highlighted by a BB S554 and has
a corresponding depth information.

[0056] In S735, the outputs from S707, S716, and S728
are transmitted to a pseudo BB generation module and a
parameter detection module. The output pseudo BB genera-
tion module would also be transmitted to a parameter
detection module. In S736, each of the parameter detection
module would process received data and transmit the pro-
cessed data to a parameter filtering module. The parameter
detection module will be described in latter section with
further details. In S737, the parameter filtering module
would determine whether the stand-alone BB is preserved or
removed based on the analysis on the total confidence of all
parameters against the outputs of the pseudo BB generation
module. The parameter filter module S555 would discrimi-
natively measure the reliability of any independent bounding
box as compared to a pseudo-version of the BB based on the
confidence values of different observed variables. In S738,
the parameter filing module would output final detection
results as an object highlighted by a BB S554 and has a
corresponding depth information.

[0057] FIG. 8 illustrates an overall diagram of a parameter
detection module in accordance with one of the exemplar
embodiments of the disclosure. A parameter detection mod-
ule may specify six enviromnent-based constraints and may
also specify one additional constraint by utilizing an inten-
sity measurement module 801, a lux detection module 802,
a weather detection module 803, a underexposure detection
(UE) module 804, an overexposure detection (OE) module
805, and an angular position measurement module 806.

[0058] The intensity measurement module 801 would
measure light intensities in the uniformly-sized regions of
the input RGB image by calculating the average luma value
of each region. The measurements are performed on local
patches of images from the camera sensor with continuous
values (I) from range 0 (being dark) to 1 (being bright). The
1 value of the bounding box is normalized by an intensity-
based normalization module 807 according to the type of the
sensor as:

2 (1A)
Ci(h = (71 " 10@(*’-10”1) for camera
1 2 . (1B)
Cl(l):‘l_(W] for LIDAR
Cy (1) =1 for RaDAR (10)

[0059] The output of the intensity-based normalization
module 807 denotes the confidence value based on the
intensity measurement (C,).

[0060] The lux detection module 802 would determine the
light intensity of the input RGB image by comparing the
average luma values from all local regions inside the image
or from the dedicated lux sensor. The detection is charac-
terized as discrete values (L) range O (being dark) or 1 (being
bright). The L value of the bounding box will be used in the
intensity-based normalization module 807.
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[0061] Weather detection module 803 would determine
the real-time weather condition through analyzing the pat-
tern of the frequency-domain of the input RGB image. The
measurement is performed globally on the images from
camera sensor or from the dedicated moisture sensor. The
detection is characterized as discrete values (W) range O
(being bad weather) or 1 (being good weather). The W value
of'the BB is normalized by the weather-based normalization
module 808 according to the type of the sensor as:

a if W=0 (2A)
Cr(W) = i for camera

1 ifw=1

B if w=0 (2B)
G (W) = . for LiDAR

1 ifw=1

y if W=0 (20)
Co(W) = . for RaDAR

1 ifw=1

where o, f and y represent the predefined constants. The
output of the weather-based normalization module 808
denotes the confidence value based on the weather detection
(€.

[0062] The underexposure detection module 804 and the
overexposure detection module 805 would lead to quanti-
fying the level of under- and over-exposures for each pixel
of the input RGB image by evaluating the image’s contrast,
luma, and saturation. The detections are performed locally
on pixel level as continuous values (U and O) range 0 (not
being under- or over-exposed) to I (being under- or over-
exposed). The U and O values of the BBs are normalized by
the exposure-based normalization module 809 according to
the type of the sensor as:

G0, U)=1-wx0—(1 = w)xU

with
eif L=1 (3A)
wy = . for camera
l-pif L=0
C3 = (0, U)=1-0 for LIDAR (3B)
C3=(0,U) =1 for RaDAR (3C)

The output of the exposure-based normalization module 809
denotes the confidence value based on the under- and
over-exposures (Cj).

[0063] Depth estimations (e.g. S704, S715, S726) would
straightforwardly acquires the depth values from the recti-
fied-preliminary detection results. The detection is charac-
terized as continuous values (D) range 0 (being too close) or
1 (being too far). The depth (D) value of the BB is normal-
ized by the depth-based normalization module 810 accord-
ing to the type of the sensor as:

2 (4A)
] if D<6

) for camera

] ifD=6

1
(1 + 10e-D30HT

1
T £ 10e~D-0)201+1

Ca(D) =
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-continued
1 L 4B)
(1 7 108(—D.60)+1] if D<d
Ca(D) = for LiDAR

1 2
17 10@‘*(17*9)-25)“) if D=0

( 1 ]2 (4C)

T+ 10e(- D301 itb<e
for RaDAR

1 2
| T+ 10eco-a2071 ] if D=0

Ca(D) =

where 0 denotes the characterization parameter. The output
of the depth-based normalization module 810 denotes the
confidence value based on the depth value (C,).

[0064] The angular position estimation module 806 would
quantifies the angular position of the bounding box centroid
from the Cartesian to the cylindrical coordinate system. The
estimation is performed locally on each rectified-prelimi-
nary BBs as continuous values (T). The T value of the
bounding box is normalized by the angular-based normal-
ization module 811 according to the type of the sensor as:

2, R,-T, (5A)
Cs(R,T)=1-—cos | ————————| for camera
i (Ry =Ty + (R, - Tx)
Cs(R, T) = 1 for LIDAR (5B)
R,-T (5C)

2
Cs(R,T)=1- —cos*( Y ] for RaDAR
Fie

(Ry =Ty + (Ry = T)?

where R denotes the reference coordinate. The output of the
angular-based normalization module 811 denotes the confi-
dence value based on the angular position (Cs).

[0065] In addition, the set of confidence values are also
completed with reliability score for the corresponding object
detection algorithm, which is denotes as C; s. After calcu-
lating the required number of confidence values, the inde-
pendent rectified-preliminary detection results along with
the set of confidence values are sent to the parameter
filtering module S737. Nevertheless, the pseudo BB is
generated by simulating the detection result as if created by
different sensing modality. The modality for pseudo-BB is
chosen based on BB that provides the lowest cumulative
confidence value. The final confidence value for the inde-
pendent rectified-preliminary detection results is measured
as:

S/l (6
C=Ccrs XZ(W XC[]
=1

where w, denotes the weighting coefficient for each type of
confidence values. In addition, the final confidence value for
the pseudo BB is measured as:

_ Sl @
c=(1 _CCLS)XZ(W XCL]
=1
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if C>C, then the detection from classifier remains; other-
wise, the detection from classifier is eliminated. In addition,
a prerequisite is added where if C; =0, then C;~0.5.
[0066] After the parameter detections (e.g. S732 S736)
have completed, the rectified-preliminary detection results
including C,~C; and C,;¢ from each of the parameter
detection modules along with sets of confidence values are
transmitted to either a Dempster-Shafer module S733 or a
parameter filtering module S737. For the cluster of BBs that
fit into the aforementioned criterions to be sent to the
Dempster-Shafer module S733, the processes of a cluster
pair would follow one of the following cases:

[0067] For case 1, if classes of the BBs from a first type
of sensor’s classifier and a second type of sensor’s classifier
are the same, then the final confidence value for the first type
of sensor’s rectified-preliminary detection results is mea-
sured as:

1 S (8
=5 XCW]@(W“A‘]

i=

and the final confidence value for the second type of sensor’s
rectified-preliminary detection results is measured as:

1 5 (©)]
€= (WB,CLS * CB'CLS] * Z (W_B‘ * CB‘]

i=1

if C>Cp, then the detection from the first type of sensor’s
classifier would be kept; otherwise, the detection from the
second type of sensor’s classifier would be kept.

[0068] For case 2, if classes of the BBs from the first type
of sensor’s classifier and the second type of sensor’s clas-
sifier are not the same, then the final confidence values for
the first type of sensor’s rectified-preliminary detection
results are measured as:

] (10A)

5
XCACLS]+Z(W_ XCa,
A

=1

5
XCBCLS]“’Z(W_XCAx
A

i=

1
Car =
Wa,cLs

(10B)
cu(i |

and the final confidence values for the second type of
sensor’s rectified-preliminary detection results are measured
as:

1 (11A)
(_ * CBJ]
wa,i

e

1
Cp1 =(
wg.cLs

Cpp = (

X CB,CLg] +

s (11B)
XCy CLS]“'Z(W XCB;]

i=

if C,y,+Cp,>C, ,+Cp ,, then the class from the firs type of
sensor’s classifier is used; otherwise, class from the second
type of sensor’s classifier is used. After that, the process
would proceed to case 1.
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[0069] For case 3, if one of the classifiers has no recog-
nition function (C4 ;/Cz ;. s=0), then the final confidence
values for the first type of sensor’s rectified-preliminary
detection results is measured as:

] (12

5
Z(WXCA‘
i

and the final confidence values for the second type of
sensor’s rectified-preliminary detection results is measured
as:

] a3

5
o=3 (5 xm

if C,>Cg, then the detection from first type of sensor’s
classifier would be kept; otherwise, the detection from the
second type of sensor’s classifier would be kept.

[0070] FIG. 9 illustrates the FOVs of sensor candidates to
be used by an autonomous vehicle as well as each possible
detection cases in accordance with one of the exemplary
embodiments of the disclosure. Referring to Table 2 which
describes predefined constants of the proposed framework
below, to increase the clarity of the proposed framework, the
rest of this section will briefly discuss the performance of the
proposed framework as well as few exemplary demonstra-
tions of the proposed object detection framework. In an
experiment, the proposed framework was implemented by
using two 16-beams LiDAR, one 32-beams LiDAR, and one
RGB camera.

TABLE 2
Predefined Constants Value Predefined Constants Value
a 0.8 0 0.3
B 0.7 @ 0.6
v 0.9 w, 5
Wqi=Wpg; 6 Wa.cLs = WacLs 6
[0071] Based on these experimental setup, a performance

assessment was conducted mainly on 976 frames which are
acquired from the overlapping field of view. The true
positive rate (TPR), precision (PPV), accuracy (ACC), and
harmonic mean of precision and accuracy (F,) were mea-
sured and presented in Table 3 which shows Quantitative
Observation of the Proposed Framework below.

TABLE 3
LiDAR-based

Metric (SVM) Camera-based (YOLO)  Decision Fusion
TPR 0.400 0.894 0.918

PPV 0.905 0.965 0.999

ACC 0.385 0.872 0.918

T, 0.554 0.928 0.957
[0072] According to Table 3, the proposed framework is

shown to be able to enhance the performance of various
object detection algorithms substantially especially when
compared to the LiDAR-based detection algorithm. In addi-
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tion, the computational cost for the proposed framework is
considered as efficient that is 43.227 ms in an Intel i7 with
4G of RAM. To emphasize on the contributions from the
proposed framework, the following elaborations as shown in
FIG. 10A-FIG. 12B describe the scenarios as shown in FIG.
9.

[0073] In a first example which corresponds to FIG. 10A-
FIG. 10B, suppose that there are the following rectified-
preliminary detection results as shown in Table 4 below.

TABLE 4
D X y W h MOD CLS
0 546 354 101 103 camera 3
1 549 364 165 104 LiDAR 3
2 120 373 68 44 camera 3

[0074] In Table 4 as subsequent tables, the x and y values
denote the coordinate of the top-left corner of the corre-
sponding 2D bounding box in Cartesian system. The w and
h denote the width and height of the corresponding 2D
bounding box in pixel units (i.e. Cartesian), respectively.
The MOD represents the modality of sensor, by which the
corresponding bounding box is produced (e.g. either from
camera or from LiDAR). The CLS represents the class index
of the corresponding bounding box. In this and subsequent
exemplary embodiments, the object detection algorithms
from either camera-based or LiIDAR-based could demarcate
detected objects into four or more classes where “0” stands
for pedestrian objects, “1” stands for scooter objects, “2”
stands for car objects, and “3” stands for truck objects.
[0075] As shownin FIG. 10A, after overlapping-cluttering
analysis, it had been known that bounding boxes ID=0 and
ID=1 were sent to the Dempster-Shafer module and bound-
ing box ID=2 was sent to the parameter filter module.
Consequently, since bounding box ID=2 had been sent to the
parameter filter; a pseudo bounding box ID=2' was created
with similar specifications and constraints of bounding box
ID=2 but with the complementing modality (MOD). From
the image, it can be seen that the environmental conditions
of FIG. 10A includes high lux and mid local intensities, good
weather, and some presences of under-exposures and over-
exposures. Therefore, the environment-based constrains
were calculated for each bounding box as Table 5 shown
below.

TABLE 5
D I W/L o) U D
0 0.989 11 0.327 0.310 0.321
1 0.837 11 0.751 0.000 0.327
2 0.325 11 0.000 0.000 0421
2 0.325 11 0.000 0.000 0421
[0076] These constraints are then normalized and pro-

cessed to find the final confidence value of each bounding
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TABLE 6-continued

D C c, c, C, Cs Ceps C

2 0.238 1.000 0.893 0.838 0.375 0.500 0.334
2' 0.761 1.000 1.000 0.914  0.800 0.500 0.447

[0077] According to the above data, the bounding box
ID=0 was preserved, while bounding box ID=1 was elimi-
nated. For bounding box ID=2 that was sent to the parameter
filter was not preserved since the final confidence did favor
the pseudo-version of the bounding box. The results can be
seen in FIG. 10B.

[0078] In a second example, suppose that there are the
following preliminary detection results as shown in Table 7
below:

TABLE 7
D X y W h Mod CLS
0 351 396 110 81 camera 2
1 354 396 113 89 LiDAR 3
2 541 396 74 98 LiDAR 3

[0079] As shownin FIG. 11A, after overlapping-cluttering
analysis, it had been known that bounding boxes ID=0 and
ID=1 were sent to the Dempster-Shafer module and bound-
ing box ID=2 was sent to the parameter filter module.
Consequently, since bounding box ID=2 had been sent to the
parameter filter; a pseudo bounding box ID=2' was created
with similar specifications and constraints of bounding box
ID=2 but with the complementing modality (MOD). From
the image, it can be seen that the environment conditions of
FIG. 11A would include high lux and mid local intensities,
good weather, and some presences of under-exposures and
over-exposures. Therefore, the environment-based con-
strains were calculated for each bounding box as shown in
Table 8 below.

TABLE 8
D I W/L O U D
0 0.090 171 0.000 0.302 0.332
1 0.090 171 0.000 0.000 0.351
2 0.090 171 0.000 0.000 0.411
2 0.090 171 0.000 0.829 0.411

[0080] These constraints are then normalized and pro-
cessed to find the final confidence value of each BB as
shown in Table 9 below.

TABLE 9

ID C C, C, C, Cs Cers C

: 0 0006 1.000 0946 0976 0561 0900 0.731
box as shown in Table 6 below. 1 0993 1.000 1.000 0991  0.800 0900 0947
20993  1.000 0800 0935 0800 0.800  0.756
TABLE 6 2" 0.006 1.000 00982 0.854 0.876 0.200  0.148
ID C, C, C, C, Cs Cews C
0 0993 1.000 0988 0984 0911 0900 0962 [0081] According to the above data, the bounding box

1 0.012 1.000 0.986 0.996 0.800 0.900 0.782

ID=1 was preserved, while bounding box ID=0 was elimi-
nated. For bounding box ID=2 that was sent to the parameter
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filter was preserved since the final confidence did not favor
the pseudo-version of the bounding box. The results can be
seen in FIG. 11B.

[0082] In a third a third example, suppose that suppose
that there are the following rectified-preliminary detection
results as shown in Table 10 below.

TABLE 10
D X y w h  MOD CLS
0 692 339 25 26 LiDAR 2

[0083] As seen in FIG. 12A, after overlapping-cluttering
analysis, it had been known that bounding box ID=0 was
sent to the parameter filter module. Consequently, since
bounding box ID=0 had been sent to the parameter filter; a
pseudo bounding box ID=0" was created with similar speci-
fications and constraints of bounding box ID=0 but with the
complementing modality (MOD). From the image, it can be
seen that the environment condition of FIG. 12A would
include high lux and mid local intensities, good weather, and
some presences of over-exposures. Therefore, the environ-
ment-based constrains were calculated for each bounding
box as shown in Table 11 below.

TABLE 11
ID I W/L o) U D
0 0.372 111 0.000 0.000 0.627
o 0.372 11 0.000 0.000 0.627

[0084] These constraints are then normalized and pro-
cessed to find the final confidence value of each bounding
box as shown in Table 12.

TABLE 12

ID c, C, C, C, Cs Cers C

0 0.365 1.000 1.000 0.750 0.890 0.700 0.560
0’ 0.634 1.000 1.000 0.074 0.800 0.300 0.210

[0085] According to the above data, the bounding box
ID=0 that was sent to the parameter filter was preserved
since the final confidence did not favor the pseudo-version
of the bounding box. The results can be seen in FIG. 12B.
[0086] In view of the aforementioned descriptions, the
disclosure provides an object detection system that is suit-
able for being used in an autonomous vehicle. Specifically,
the purposes of the disclosure may include: improving the
detection rate of classifiers from each sensor by using the
provided decision fusion, designing the provided decision
fusion by considering each sensor’s characteristics and
behaviors, and providing final detection results that includes
bounding box locations (in pixels and in meters), object
classes, and detection confidences. In this way, the accuracy
of the object detections can be improved.

[0087] No element, act, or instruction used in the detailed
description of disclosed embodiments of the present appli-
cation should be construed as absolutely critical or essential
to the present disclosure unless explicitly described as such.
Also, as used herein, each of the indefinite articles “a” and
“an” could include more than one item. If only one item is
intended, the terms “a single” or similar languages would be
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used. Furthermore, the terms “any of” followed by a listing
of a plurality of items and/or a plurality of categories of
items, as used herein, are intended to include “any of”, “any
combination of”, “any multiple of”, and/or “any combina-
tion of multiples of the items and/or the categories of items,
individually or in conjunction with other items and/or other
categories of items. Further, as used herein, the term “set” is
intended to include any number of items, including zero.
Further, as used herein, the term “number” is intended to
include any number, including zero.
[0088] It will be apparent to those skilled in the art that
various modifications and variations can be made to the
structure of the disclosed embodiments without departing
from the scope or spirit of the disclosure. In view of the
foregoing, it is intended that the disclosure cover modifica-
tions and variations of this disclosure provided they fall
within the scope of the following claims and their equiva-
lents.
What is claimed is:
1. An object detection system comprising:
a first type of sensor for generating a first sensor data;
a second type of sensor for generating a second sensor
data; and
a processor coupled to the first type of sensor and the
second type of sensor and configured at least for:
processing the first sensor data by using a first plurality
of object detection algorithms to generate first pre-
liminary detection results which correspond to the
first type of sensor;
processing the second sensor data by using a second
plurality of object detection algorithms to generate
second preliminary detection results which corre-
spond to the second type of sensor;
applying a parameter detection algorithm which com-
prises a plurality of environmental parameters for
each of the first preliminary detection results and the
second preliminary detection results to generate a
plurality of confidence values with each confident
value corresponding to a different environmental
parameter of the plurality of environmental param-
eters; and
determining a detected object based on characteristics
of the first type of sensor, characteristics of the
second type of sensor, relationships among the first
preliminary detection results and the second prelimi-
nary detection results, and the plurality of confidence
values.
2. The object detection system of claim 1, wherein the
processor is further configured for:
fusing the first preliminary detection results and the
second preliminary detection results to generate a fused
preliminary detection results;
pairing two bounding boxes; and
performing an overlap and clutter analysis from the fused
preliminary detection results by determining whether
two bounding boxes are overlapping above a predeter-
mined overlapping threshold and are separated above a
predetermined distance threshold.
3. The object detection system of claim 2, wherein the
processor is further configured for:
using a Dempster-Shafer module when both the predeter-
mined overlapping threshold and the predetermined
distance threshold are exceeded.
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4. The object detection system of claim 2, wherein the
processor is further configured for:

using a parameter filtering module when one of the

predetermined overlapping threshold and the predeter-
mined distance threshold are not exceeded.

5. The object detection system of claim 3, wherein the
processor is further configured for:

preserving a first bounding box which is determined as

being more reliable of the paired bounding boxes and
discarding the other bounding box of the pair bounding
boxes based on at least the plurality of confidence
values.

6. The object detection system of claim 4, wherein the
processor is further configured for:

determining a pseudo bounding box; and

determining whether each bounding box from the fused

preliminary detection results is preserved or removed
based on at least the plurality of confidence values.

7. The object detection system of claim 1, wherein the
plurality of environmental parameters comprises at least one
of a weather condition, a local intensity measurement, an
over-exposure detection, an under-exposure detection, rela-
tive distance of an object, angular position of the object, and
a classifier’s confidence of the object.

8. The object detection system of claim 7, wherein the
plurality of environmental parameters are normalized to
conform to the ranges of the first type of sensor and the
second type of sensor.

9. The object detection system of claim 2, wherein the
paired bounding box is determined as being either indepen-
dent or dependent based on at least a spatial distance
between the paired bounding boxes, depth information of
the bounding boxes, and class values.

10. The object detection system of claim 2, wherein the
first type of sensor comprises a RaDAR sensor, and the
second type of sensor comprises a camera.

11. An autonomous vehicle comprising:

an object detection system comprising:

a first type of sensor for generating a first sensor data;
a second type of sensor for generating a second sensor
data; and
a processor coupled to the first type of sensor and the
second type of sensor and configured at least for:
processing the first sensor data by using a first
plurality of object detection algorithms to generate
first preliminary detection results which corre-
spond to the first type of sensor;
processing the second sensor data by using a second
plurality of object detection algorithms to generate
second preliminary detection results which corre-
spond to the second type of sensor;
applying a parameter detection algorithm which
comprises a plurality of environmental parameters
for each of the first preliminary detection results
and the second preliminary detection results to
generate a plurality of confidence values with each
confident value corresponding to a different envi-
ronmental parameter of the plurality of environ-
mental parameters; and
determining a detected object based on characteris-
tics of the first type of sensor, characteristics of the
second type of sensor, relationships among the
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first preliminary detection results and the second
preliminary detection results, and the plurality of
confident values.
12. An object detection method used by an autonomous
vehicle, the method comprising:
generating, by using a first type of sensor, a first sensor
data;
generating, by using a second type of sensor, a second
sensor data;
processing the first sensor data by using a first plurality of
object detection algorithms to generate first preliminary
detection results which correspond to the first type of
sensor;
processing the second sensor data by using a second
plurality of object detection algorithms to generate
second preliminary detection results which correspond
to the second type of sensor;
applying a parameter detection algorithm which com-
prises a plurality of environmental parameters for each
of the first preliminary detection results and the second
preliminary detection results to generate a plurality of
confidence values with each confident value corre-
sponding to a different environmental parameter of the
plurality of environmental parameters; and
determining a detected object based on characteristics of
the first type of sensor, characteristics of the second
type of sensor, relationships among the first preliminary
detection results and the second preliminary detection
results, and the plurality of confident values.
13. The object detection method of claim 12 further
comprising:
fusing the first preliminary detection results and the
second preliminary detection results to generate a fused
preliminary detection results;
pairing two bounding boxes; and
performing an overlap and clutter analysis from the fused
preliminary detection results by determining whether
two bounding boxes are overlapping above a predeter-
mined overlapping threshold and are separated above a
predetermined distance threshold.
14. The object detection method of claim 13 further
comprising:
using a Dempster-Shafer module when both the predeter-
mined overlapping threshold and the predetermined
distance threshold are exceeded.
15. The object detection method of claim 13 further
comprising:
using a parameter filtering module when one of the
predetermined overlapping threshold and the predeter-
mined distance threshold are not exceeded.
16. The object detection method of claim 14 further
comprising:
preserving a first bounding box which is determined as
being more reliable of the paired bounding boxes and
discarding the other bounding box of the pair bounding
boxes based on at least the plurality of confidence
values.
17. The object detection method of claim 15 further
comprising:
determining a pseudo bounding box; and
determining whether each bounding box from the fused
preliminary detection results is preserved or removed
based on at least the plurality of confidence values.
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18. The object detection method of claim 12, wherein the
plurality of environmental parameters comprises at least one
of a weather condition, a local intensity measurement, an
over-exposure detection, an under-exposure detection, rela-
tive distance of an object, angular position of the object, and
a classifier’s confidence of the object.

19. The object detection method of claim 18, wherein

the plurality of environmental parameters are normalized

to conform to the ranges of the first type of sensor and
the second type of sensor.

20. The object detection method of claim 13, wherein the
paired bounding box is determined as being either indepen-
dent or dependent based on at least a spatial distance
between the paired bounding boxes, depth information of
the bounding boxes, and class values.
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