US 20190354446A1

a2y Patent Application Publication o) Pub. No.: US 2019/0354446 A1

a9y United States

Gurajada 43) Pub. Date: Nov. 21, 2019
(54) RECOVERY OF IN-MEMORY DATABASES Publication Classification
USING A BACKWARD SCAN OF THE (51) Int. Cl
DATABASE TRANSACTION LOG GO6F 11/14 (2006.01)
S (52) US. CL
(71) Applicant: SAP SE, Walldorf (DE) CPC ... GOGF 11/1469 (2013.01); GOGF 2201/84
(72) Inventor: Aditya Gurajada, Hyderabad (IN) (2013.01); GO6F 11/1474 (2013.01)
57 ABSTRACT
Data recovery in a database includes performing a backward
(21) Appl. No.: 16/006,513 scan of a transaction log that records transactions made on
the database. The backward scan includes traversing log
records starting from a latest-in-time log record toward the
(22) Filed: Jun. 12, 2018 beginning of the transaction log. Each log record can be
replayed to recover data for a database row associated with
(30) Foreign Application Priority Data the log record. An earlier-in-time log record is skipped if the
associate database row has been recovered by later-in-time
May 15, 2018 (IN) .ececverevevereeeeee 201811018113 log record.
—
—— - page store, 124 aamin user, 14
DB user, 10 o E
F——————
:) = 8
s IMRS, 122 5
DB user, 10 § database system, 112 g
§ ‘ ’ 8
é g
IMRS log
) 114
page store log
DB user, 10 116
{
102 computer system, 100 104

logs changes done
i to rows in the IMRS
database transactions, 12

logs changes done to
rows in the page store

US 2019/0354446 A1l

Nov. 21,2019 Sheet 1 of 14

Patent Application Publication

alois abed ayi ui smol
0} auop sebueyo sboj

N

| "Old

SHIN| 2Ul Ul SMoJ 0}
auop sabueys sboj

/

7| ‘suonoesuel) esegeyep

71 ‘Jasn uiwpe

L =

<t
Q
~

Buisesoid Aianooal

AN

00T ‘waisAs soyndwod

91
Bo| su03s abed

Ll
Boj SHI

211 ‘welshs sseqelep

22zl ‘SN

2| ‘eJ01s sbed

N
O
-

Buissanouid uonoesues; g

v
0l “4esn gg

—— Q

0l Jesngq

—— Q

0l Jesn ga

— O

US 2019/0354446 A1l

Nov. 21,2019 Sheet 2 of 14

¢ b4
[724 ve
(s)ooirsp Indul (s)ao1A8p Indino
opZ ‘ebelols
BIEp [BUISIX® L—, ;—y
cec
aoByBIUI O/
A X 2C ‘'shg wesAs P

0¢cc ‘eoeuajul gl¢ ‘ebeliois ¥1ic ‘Alowsw FAYA
uonEe2IuUNWIWOD BlEp |eussiul (urew) weysAs nun Buissaooud

so|Inpow WolsAs

“ ﬁ 8eC w H T ‘eep w Hﬁ_mco_ao_a%u m ZE2 SO w L~oez
|

Oc¢ ‘weisAs Bunndwoo

Patent Application Publication

¢ Old —
vil
Bol S

aielll

[Ppg—— - ~

ek seung g
ZLS ‘smol I

aolasp abelols

91T ‘bo

adinep abelo)s a10)s obed

US 2019/0354446 A1l

M ~

— 1€ ‘sebed _ _

: CHE) | _

3 _ _

2 ai0)s sbed | l

= 0} Yoeq Mol yoed o] . aol
- N = X A I I] SHINI
— = N I\

m o // N / |]

17 L _

~

> _ _

= e

z. ;wom 8yoed A ')

N AN
N/
2| ‘elois ebed //\

‘Xapul
Zhl A c0e
‘WajsAs aseqelep

w

Patent Application Publication

¥ Old

US 2019/0354446 A1l

awi Buiseaoul Jo UoNIBIIP

0
= 1< _
= _
=]
-
~N—
& Ay “DBIILLLLIOD ﬁ
7 woi 3001 Aiing ¥se FPHPX Hesulysaplo Y sl
e
(=]
(o]
1’ f
N L~ {1 | ‘Bol SHWI
3
2 g) % g! o)
1\ A N J
= Y Y Y
0 13 13 13
E= , 90 'uoibal payiwodun 0p ‘uolbau papIlWod, 2oy uoibai SAyose
5 Airepusiod 1%
w / L sjuswbes 60|
P \ Y e Y \
= | L Jut JUJ
=
~
=
2
= h Y /N Y /
< qziy ‘wewbas Hoj jusNd ezl ‘sjuswbes Boj psaiysle
=
&
=
A

US 2019/0354446 A1l

Nov. 21,2019 Sheet 5 of 14

Patent Application Publication

G Old

05 ‘spJooal Boj
A

ayos ‘plooss boj uonessdo

By0S ‘piooal Bo mem\ //
k A

VA

BH0G ‘piodad Boj soxew

aN3 | Ydo ¢do | 'do | NOE | ¥aH |}~—20s ‘(X) 1¥0]q uonoesuel 90
e y
Tl /
:l:l}l \s
>__EVA ,U@ﬁ._EEOO lll:lll «m@E\ﬁ“ h
1004y 900 Ajny 18| T % X Hesulisep|o iy 8.1y
Tran J :
h ﬁ l’ll'llll H \\\\ R b
¥/
P
L L~ t71 | ‘Bol SN
]
Tl I
! - 2! 3 g 9
z ola|Z 0|5 z ola|Z I 05| ‘$3120}¢ uonoesuel
G zZ|3|S Tt z|=® 5] z|%|S z|2|S Q1% clg Iq uol)
. A\ J . A\ AN J
Y Y Y Y Y
"X ad vix ga ' aa X da X gaa

US 2019/0354446 A1l

Nov. 21,2019 Sheet 6 of 14

Patent Application Publication

] «

L Old

awin BuiseaJoul Jo UoOBIIP

90/ ‘uoibas papiwwodun

Allenualod 0. ‘uoibas paRIwwWod
A A
s N N
J0orye vy z_ex 158P10y S s
_~{1| ‘Dol SHNI
V) €, h 0
ueos plemyoeq > ueos pieamyoeq >
N VLN J
Y Y
opaJ/ajiouooal opau a|dwis
9 9Ol
(0L©14) SHINI @Y} Ul eyep (8 '©I4) SHINI 8Us Ul BIEP $)00|q
JBA008I 0} uoibal papIWwWoD JaA028) 0} uoibal papiwwosun uonoesued; piiea Ajjuspl o} 6o)

BU} Ui UBDS plemyoeq
wioped — opal sjdwis

//moo

Ajjenusiod ayj Ul UBJS plemyoeq SHINI 84 Ul uoifial papiwwodun
wJuoped - opal/e|iouoos. Allenusiod ayj ueds — Xij

/vow N ¢09

Patent Application Publication Nov. 21,2019 Sheet 7 of 14 US 2019/0354446 A1

current transaction block « latest valid transaction block
in the list of valid transaction blocks

802 S

current
transaction block
committed?

perform backward scan of log records to recover data
from the current transaction block (FIG. 11)

806/ l

end of valid list?

current transaction block < next earlier-in-time
valid transaction block in the valid list

810/
(done)

FIG. 8

potentially uncommitted region, 908
A

Kiuty
4 A\

IMRS log, ___ S

114

T

Xa b Y Koot
list of valid transaction blocks, 902

(some of which are committed, some of which are not committed)

FIG. 9

Patent Application Publication Nov. 21,2019 Sheet 8 of 14 US 2019/0354446 A1

1002
™

current transaction block <« latest fully committed
transaction block in the committed region

1004
™

perform backward scan of log records to recover data
from the current transaction block (FIG. 11)

1006

end of
committed

region?

1008
™

current transaction block « next earlier-in-time

fully committed transaction block in the committed region

(e

FIG. 10

Patent Application Publication Nov. 21,2019 Sheet 9 of 14 US 2019/0354446 A1

current log record « latest log record
in the current transaction block

1102/

DB row
previously

recovered?
1104

recover DB row from current log record

1106/ l

another

log record?

1108

current log record <« next earlier-in-time log record

in the current transaction block

1110/

a2’

FIG. 11

transaction block, 1200

last log record to process

first log record to process

= HDR | BGN

op4

Op2

OPn

END H

~
log records, 1202

direction of increasing time

>

FIG. 12

backward scan direction
for IMRS recovery

Patent Application Publication

database transaction, 1302

Nov. 21,2019 Sheet 10 of 14 US 2019/0354446 A1

X1

T1

insert t1_delrow_pack

select * from master..sysmessages
where error between 100 and 110

direction of increasing time

T1—

IMRS_ENDXACT

1318

IMRS_INSERT(110)

IMRS_INSERT(109)

IMRS_INSERT(108)

IMRS_INSERT(107)

> 1316

transaction block, 1304
A

IMRS_INSERT(100)

IMRS_BEGINXACT

—~1314

IMRS_HEADER

1312

FIG. 13

Patent Application Publication Nov. 21,2019 Sheet 11 of 14 US 2019/0354446 A1

database transaction, 1402

x2 | update t1_delrow_pack
@ set description = "Upd-1"
T2 | where error = 107

IMRS_ENDXACT

IMRS_INSERT(107): Upd-1 |~—~1406

IMRS_PURGE(rid-107)

IMRS_BEGINXACT

direction of increasing time
transaction block, 1404
A

IMRS_HEADER

T2—— =mmmmm -

FIG. 14

database transaction, 1502

X3 | update t1_delrow_pack
@ set description = "Upd-2"
T3 | where error = 107

IMRS_ENDXACT

IMRS_INSERT(107): Upd-2 1506

IMRS_PURGE(rid-107)

IMRS_BEGINXACT

direction of increasing time
transaction block, 1504
A

IMRS_HEADER

T3—— -=---- -

FIG. 15

Patent Application Publication Nov. 21,2019 Sheet 12 of 14 US 2019/0354446 A1

t
A
r—_— :
! IMRS_ENDXACT ~1602
1]
1]
]
i| IMRS_INSERT(107): upd-2 ————recovered
1]
1]
X3 < E IMRS_PURGE (rid-107) <—§—skip
i 1
1]
' IMRS_BEGINXACT v‘:,\ 1604
i
i]
1 1
! IMRS_HEADER :
T3—— —coeee- S :
- H
! IMRS_ENDXACT 4~ 1606
1 i
] 1
1
E IMRS_INSERT(107): upd-1 fé—————skip
E ! o
X2< 1| IMRS_PURGE(iid-107) [er———skip Q
! : 5
' IMRS_BEGINXACT L~ 1608 a
i ‘ @
1 ! Y]
; IMRS_HEADER : 5
T2—— oo I '
r j' """""""""""""" 1
; IMRS_ENDXACT ;
1 i
1 i
s IMRS_INSERT(110) « recovered
i
i 1
1 1
: IMRS_INSERT(109) e-————— recovered
1 1
1 1
1
| IMRS_INSERT(108) +§—recovered
] 1
i 1
X1 < 5 IMRS_INSERT(107) +§——skip
E . i
3 . : v
: H recovered
1
1
: IMRS_INSERT (100) 5
] i
1 1
E IMRS_BEGINXACT E
i 1
i 1
i IMRS_HEADER !
o 1
T'] _— == 5, 1
0

FIG. 16

Patent Application Publication Nov. 21,2019 Sheet 13 of 14 US 2019/0354446 A1

t
A
I e |
! IMRS_ENDXACT !
]]
]]
]
| |IMRS_INSERT(INS_FOR_DEL)| !
]]
]]
X2 < i IMRS_PURGE(rid-107) 1—5— skip
]]
]]
! IMRS_BEGINXACT :
]]
1] O
1 1 (@]
| IMRS_HEADER : 2
¥ - z
T2—— -------- e G -1 2
(N ° ®
! IMRS_ENDXACT ! §
]]
]]
]
i IMRS_INSERT(107): Upd-1 [#————— skip
]]
]]
X1 < i IMRS_PURGE(rid-107) +§— skip
]]
]]
! IMRS_BEGINXACT i v
]
]]
]]
: IMRS_HEADER :
. ! |
T'] —_—t - gy]
0

FIG. 17

US 2019/0354446 A1l

Nov. 21,2019 Sheet 14 of 14

Patent Application Publication

8l Old

(opay/ajiouoal) (opaJ) (opaJ) (opey) (opau)
8a ANINO guesl AvOT guel] avoT Luell Avol 80 avo™
A A A A A
4 Y Y Y Y A
l
v I V | V I v [v
<)
100/ €X04 Zx04 IXD4 0XD4 1l
7 Juswbes € Wwawbes Z uewbas | Juswbas 0 awbes 2081 ‘sdwnp

Bo| uonoesue.

11 ‘Bol SHINI

US 2019/0354446 Al

RECOVERY OF IN-MEMORY DATABASES
USING A BACKWARD SCAN OF THE
DATABASE TRANSACTION LOG

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] Pursuant to 35 U.S.C. § 119(a), this application is
entitled to and claims the benefit of the filing date of Indian
Patent Application No. 201811018113, filed May 15, 2018
in the Indian Patent Office, the content of which is incor-
porated herein by reference in its entirety for all purposes.
[0002] This application is related to U.S. application Ser.
No. 15/859,181 filed Dec. 29, 2017, the content of which is
incorporated herein by reference in its entirety for all pur-
poses.

BACKGROUND

[0003] In-memory database (IMDB) systems leverage the
availability of high-memory systems. Performance in such
databases is extremely high in comparison to disk-resident
databases, as all access and changes to data is fully in-
memory.

[0004] Persistence to changed and committed data in
in-memory databases is typically done through an operation
called “logging.” Logging involves writing to disk storage
some information, referred to as “log records” that can be
used to re-create the final state of committed in-memory
data. The disk device to which the logging information is
stored is typically referred to as the transaction log. Upon a
system or server crash, the final committed contents of the
in-memory data can be re-instantiated by a process known as
“recovery,” using the information saved in the transaction
log.

[0005] In the case where the IMDB has a large amount of
memory, say for example, 100 GB, the associated transac-
tion log can also be very big. The size of the transaction log
can greatly increase far beyond the in-memory data itself if
the data was constantly changed, updated, and deleted.
Merely to illustrate this point, the 100 GB of in-memory data
could well have a transaction log of size 500 GB, or even
more.

SUMMARY

[0006] A {facility is disclosed for data recovery in an
in-memory database. The facility can include methods,
non-transitory computer-readable storage media that
embody the methods, and apparatus for accessing a trans-
action log having stored therein a plurality of transaction
blocks. Each transaction block can be associated with a
database transaction and can comprise a plurality of log
records corresponding to operations of the associated data-
base transaction. The plurality of transaction blocks can be
ordered according to when their corresponding database
transactions were completed. The plurality of log records in
each transaction block can be ordered according to when
their corresponding operations were performed on the data-
base.

[0007] The facility can include recovering data in the
database, including accessing a range of transaction blocks
in the transaction log in reverse chronological order, starting
from a latest transaction block and ending with an earliest
transaction block that occurs earlier in time than the latest
transaction block.

Nov. 21, 2019

[0008] The facility can include, for each transaction block
accessed from the range of transaction blocks, recovering
database rows in the database that were acted on by the
database transaction that generated the accessed transaction
block, including accessing log records comprising the
accessed transaction block in reverse chronological order,
starting with a latest log record and ending with an earliest
log record that occurs earlier in time than the latest log
record.

[0009] The facility can include, for each log record
accessed, skipping processing of the accessed log record,
when a database row associated with an operation that
corresponds to the accessed log record has been previously
recovered, and when the database row has not been previ-
ously recovered, then processing the accessed log record to
recover the database row according to the accessed log
record.

[0010] The following detailed description and accompa-
nying drawings provide further understanding of the nature
and advantages of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] With respect to the discussion to follow and in
particular to the drawings, it is stressed that the particulars
shown represent examples for purposes of illustrative dis-
cussion, and are presented in the cause of providing a
description of principles and conceptual aspects of the
present disclosure. In this regard, no attempt is made to show
implementation details beyond what is needed for a funda-
mental understanding of the present disclosure. The discus-
sion to follow, in conjunction with the drawings, makes
apparent to those of skill in the art how embodiments in
accordance with the present disclosure may be practiced.
Similar or same reference numbers may be used to identify
or otherwise refer to similar or same elements in the various
drawings and supporting descriptions. In the accompanying
drawings:

[0012] FIG. 1 shows a high level representation of a
database system in accordance with some embodiments.
[0013] FIG. 2 is an illustrative computer system that can
be configured in accordance with the present disclosure.
[0014] FIG. 3 shows details of the database in accordance
with some embodiments.

[0015] FIG. 4 shows details of a transaction log in accor-
dance with some embodiments.

[0016] FIG. 5 shows details of a transaction block in
accordance with some embodiments.

[0017] FIGS. 6 and 7 illustrate a high level flow of
backward scanning in accordance with some embodiments.
[0018] FIGS. 8 and 9 illustrate a high level flow of
reconcile/redo processing in accordance with some embodi-
ments.

[0019] FIG. 10 illustrates a high level flow of simple redo
processing in accordance with some embodiments.

[0020] FIGS. 11 and 12 high level flow of backward
scanning of log records in a transaction block in accordance
with some embodiments.

[0021] FIGS. 13, 14, and 15 illustrate examples of data-
base transactions and corresponding transaction blocks.
[0022] FIG. 16 illustrates a segment of the IMRS log
comprising the transaction blocks from FIGS. 13-15.
[0023] FIG. 17 illustrates another example of an IMRS log
segment comprising transaction blocks.

[0024] FIG. 18 illustrates examples of non-crash recovery.

US 2019/0354446 Al

DETAILED DESCRIPTION

[0025] Conventional implementations of recovery of in-
memory data from the transaction log involves replaying the
entire set of log records comprising the transaction log from
the beginning of the transaction log through to the end,
going through the same sequence of changes done to the data
at run-time while it was in-memory. As an example, if a new
row was inserted, and updated 5 times, this will generate 5
log records: one for the insert and one each for the update
operations. Conventional recovery schemes will replay each
of the log record, which involves a total of 6 operations
re-done in the system during recovery. “Re-do” of a log
record involves allocating memory, and copying the con-
tents of the data row from the log record to the allocated
memory. Re-do involves working with the in-memory data-
base, which can be an expensive operation.

[0026] The performance of conventional recovery of in-
memory data from a transaction log can be very challenging
and slow in some cases. This results in a slow re-start time
after a crash or planned shutdown of the database engine.
Slow recovery times results in loss of data availability,
thereby, impacting business applications which have to be
delayed until the data is fully recovered.

[0027] Embodiments in accordance with the present dis-
closure provide a transaction log and processing of the
transaction log backward, by processing log records from
the tail end of the transaction log toward the beginning of the
transaction log. In one embodiment with the present disclo-
sure, only changes from committed transactions affecting
in-memory data are written as log records to the transaction
log. In other words, no changes from partially completed
transactions are ever written to the transaction log; thereby
no undo of incomplete work is ever necessary during
recovery. As log records are committed in the transaction log
in time-order of their occurrence, the version of the row after
the latest update will be found first by doing a backward scan
of'the log. Only this event is actually redone, to re-instate the
final copy of the changed row in-memory, as the log record
is known to be due to a committed update.

[0028] Recovery in accordance with the present disclosure
can result in a computer system having a significant
improvement in re-start times after a crash or planned
shutdown of the database engine. The faster recovery times
results in greater data availability for user, and can reduce
the impact on business applications that have to wait until
the data is fully recovered. The present disclosure is directed
to improvements in data recovery in a computer system that
lead to faster recovery of in-memory data (e.g., in-memory
row store, IMRS) and more efficient use of memory of the
IMRS which can lead to lower fragmentation of memory
and improved memory layout post-recovery.

[0029] In the following description, for purposes of expla-
nation, numerous examples and specific details are set forth
in order to provide a thorough understanding of the present
disclosure. It will be evident, however, to one skilled in the
art that the present disclosure as expressed in the claims may
include some or all of the features in these examples, alone
or in combination with other features described below, and
may further include modifications and equivalents of the
features and concepts described herein.

System Architecture

[0030] FIG. 1 shows a computer system 100 in accordance
with embodiments of the present disclosure to host a data-

Nov. 21, 2019

base system 112 to store and maintain a database of infor-
mation (“database”). The computer system 100 can include
a database transaction processing module 102 to provide
functionality that allows database users 10 to store and
access data to and from the database system 112. The
database transaction processing module 102 can provide
suitable interfaces for the database users 10 to access the
database system 112. Database users 10 can interact with the
database system 112 via database transactions 12.

[0031] The computer system 100 can include a recovery
processing module 104 to provide functionality that allows
administrative users 14a to perform various recovery opera-
tions on the database system 112 in accordance with the
present disclosure. In some embodiments, the recovery
processing module 104 can perform crash recovery after a
system crash. The recovery processing module 104 can load
the database system 112 from archived data (referred to as
load database recovery), and particular from an archived
transaction log. In some embodiments, the recovery pro-
cessing module 104 can load several archived transaction
logs in a process referred to a load transaction recovery.
[0032] The database system 112 can store its database in
the form of data tables. In some embodiments, the database
system 112 can include an in-memory row store (IMRS)
database component 122 and a page store database compo-
nent 124. The page store 124 can include a disk storage
system to provide page-based storage of the data comprising
the database. Rows in the data tables can be stored on a data
page in the page store 124. The IMRS 122 is memory
resident (i.e., the row store table is entirely in memory (e.g.,
RAM) as compared to being stored on disk), and thus can
provide a high-performance storage repository for active
(“hot”) data. As will be explained below, the IMRS 122 can
store active portions of the database.

[0033] The computer system 100 can include a transaction
log called the IMRS log 114 (in some embodiments, this can
be referred to as “sysimrslogs™) to record information from
each database transaction 12 received from a database user
10 that affects the IMRS 122. In some embodiments, for
example, the database transaction processing module 102
can record operations in the IMRS log 114 that involve
updates to a database row in the IMRS 122, insertion of new
database rows, deletion of existing database rows, and the
like. In accordance with the present disclosure, in some
embodiments, the recovery processing module 104 can use
the IMRS log 114 to recover the IMRS component 122 of
the database system 112, which is discussed below.

[0034] The computer system 100 can include a transaction
log called the page store log 116 (in some embodiments, this
can be referred to as “syslogs™) to record information from
each database transaction 12 received from a database user
10 that affects the page store 124. Some database transac-
tions 12 may affect only the IMRS 122, or only the page
store 124, or both. In some embodiments, for example, the
database transaction processing module 102 can record
operations in the page store log 116 when updates are made
to the page sore 124. In accordance with the present disclo-
sure, in some embodiments, the recovery processing module
104 can use the page store log 116 to recover the page store
component 124 of the database system 112, discussed below.
[0035] FIG. 2 is a simplified block diagram of an illustra-
tive computing system 202 for implementing one or more of
the embodiments described herein (e.g., computer system
100, FIG. 1). For example, the computing system 202 can

US 2019/0354446 Al

perform and/or be a means for performing, either alone or in
combination with other elements, operations in accordance
with the present disclosure. Computing system 202 can also
perform and/or be a means for performing any other steps,
methods, or processes described herein.

[0036] Computing system 202 can include any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of
computing system 202 include, for example, workstations,
servers, distributed computing systems, handheld devices,
and the like. In a basic configuration, computing system 202
can include at least one processing unit 212 and a system
(main) memory 214.

[0037] Processing unit 212 can comprise any type or form
of processing unit capable of processing data or interpreting
and executing instructions. The processing unit 212 can be
a single processor configuration in some embodiments, and
in other embodiments can be a multi-processor architecture
comprising one or more computer processors. In some
embodiments, processing unit 212 can receive instructions
from program and data modules 230. These instructions can
cause processing unit 212 to perform operations in accor-
dance with the present disclosure, for example, as described
herein below or as set forth in the disclosed process flow
diagrams. In some embodiments, for example, the program
and data modules 230 can include the data processing
module 102 and the recovery processing module 104.

[0038] System memory 214 (sometimes referred to as
main memory) can be any type or form of volatile or
non-volatile storage device or medium capable of storing
data and/or other computer-readable instructions. Examples
of system memory 214 include, for example, random access
memory (RAM), read only memory (ROM), flash memory,
or any other suitable memory device. Although not required,
in some embodiments computing system 202 can include
both a volatile memory unit (such as, for example, system
memory 214) and a non-volatile storage device (e.g., data
storage 216, 246). In some embodiments, system memory
214 can host the IMRS 122 (FIG. 1).

[0039] In some embodiments, computing system 202 can
also include one or more components or elements in addition
to processing unit 212 and system memory 214. For
example, as illustrated in FIG. 2, computing system 202 can
include internal data storage 216, a communication interface
220, and an I/O interface 222 interconnected via a system
bus 224. System bus 224 can include any type or form of
infrastructure capable of facilitating communication
between one or more components comprising computing
system 202. Examples of system bus 224 include, for
example, a communication bus (such as an ISA, PCI, PCle,
or similar bus) and a network.

[0040] Internal data storage 216 can comprise non-transi-
tory computer-readable storage media to provide nonvolatile
storage of data, data structures, computer-executable
instructions, and so forth to operate computing system 202
in accordance with the present disclosure. For instance, the
internal data storage 216 can store various program and data
modules 230, including for example, operating system 232,
one or more application programs 234, program data 236,
and other program/system modules 238. In some embodi-
ments, for example, the internal data storage 216 can com-
prise disk storage subsystems for the page store 124, the
IMRS log 114, and/or the page store log 116.

Nov. 21, 2019

[0041] Communication interface 220 can include any type
or form of communication device or adapter capable of
facilitating communication between computing system 202
and one or more additional devices. For example, in some
embodiments communication interface 220 can facilitate
communication between computing system 202 and a pri-
vate or public network including additional computing sys-
tems, for example, to provide database users 10 with access
to the computing system. Examples of communication inter-
face 220 include, for example, a wired network interface
(such as a network interface card), a wireless network
interface (such as a wireless network interface card), a
modem, and any other suitable interface.

[0042] In some embodiments, communication interface
220 can also represent a host adapter configured to facilitate
communication between computing system 202 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, for example, SCSI host adapters, USB host adapt-
ers, IEEE 1394 host adapters, SATA and eSATA host adapt-
ers, ATA and PATA host adapters, Fibre Channel interface
adapters, Ethernet adapters, or the like.

[0043] Computing system 202 can also include at least one
output device 242 (e.g., a display) coupled to system bus 224
via /O interface 222. The output device 242 can include any
type or form of device capable of visual and/or audio
presentation of information received from I/O interface 222.

[0044] Computing system 202 can also include at least one
input device 244 coupled to system bus 224 via I/O interface
222. Input device 244 can include any type or form of input
device capable of providing input, either computer or human
generated, to computing system 202. Examples of input
device 244 include, for example, a keyboard, a pointing
device, a speech recognition device, or any other input
device.

[0045] Computing system 202 can also include external
data storage 246 coupled to system bus 224. External data
storage 246 can be any type or form of storage device or
medium capable of storing data and/or other computer-
readable instructions. For example, external data storage 246
can be a magnetic disk drive (e.g., a so-called hard drive), a
solid state drive, a floppy disk drive, a magnetic tape drive,
an optical disk drive, a flash drive, or the like. In some
embodiments, the external data storage 246 can comprise
disk storage subsystems for the page store 124, the IMRS
log 114, and/or the page store log 116.

In-Memory Row Store (IMRS) Detail

[0046] FIG. 3 illustrates details of database system 112 in
accordance with some embodiments. The database system
112 can store its database in the form of data tables, and can
comprise an IMRS component 122 and a page store com-
ponent 124. As explained above, rows in a data table can be
stored on a data page in the page store 124. A page-oriented
buffer cache 304 can be used to provide fast access to a
subset of these pages. The page store 124 can be used to
store data tables in the database system 112 that do not
require the high availability access (e.g., insert, select,
update, delete) that the IMRS 122 can provide. Such data
tables can be organized as pages 314 that reside permanently
on the disk storage device(s) of the page store 124. The page
store 124 can also receive database rows 312 from data
tables in the IMRS 122, for example, that have been relo-

US 2019/0354446 Al

cated, or “packed,” from the IMRS 122 to the page store
because they no longer active.

[0047] The IMRS 122, on the other hand, is stored in the
main memory (e.g., system memory 214, FIG. 2) and is
suitable for data that are active. For example, some users can
store data in IMRS 122 for “extreme” online transaction
processing (OLTP), which can require processing of high
volumes of complex data sets. Other users can store data in
IMRS 122 to provide multiversion concurrency control
(MVCC), a concurrency control method used to support
concurrent access to the database, and so on. The IMRS 122
is row-oriented instead of being page-based, comprising
database rows (“rows”) 312 that can be uniquely identified
by row identifiers (RIDs, not shown). In some embodiments,
the IMRS 122 can store a subset of a given data table that
is persisted in the page store 124. The subset can be
“dynamic” in that the rows of the given data table that are
stored in IMRS 122 can vary. For example, a newly-inserted
row can be inserted directly into IMRS 122 so that the row
is found there, and nowhere else. On the other hand, when
an already existing row in a data table is updated, the update
is done in the IMRS 122 and not the page store 124 so that
a stale copy of the row exists in the page store 124 and a
current copy of the row exists in the IMRS 122. Over time,
rows in the IMRS 122 can be returned to page store 124 as
they become less active.

[0048] The database system 112 can include an index 302
that indexes the IMRS 122 and the page store 124. In some
embodiments, for example the index 302 can be a B-tree
index, but any suitable indexing structure can be used. The
index 302 can provide locate any data (e.g., row) required by
a database transaction 12, regardless of whether the data is
located in the IMRS 122 and/or the page store 124.

[0049] FIG. 3 shows that in some embodiments, logging to
the IMRS log 114 and the page store log 116 can use
buffered I/O. For example, transaction logs can be written to
respective buffers 324, 326 before being flushed to the
respective storage devices.

[0050] FIG. 4 illustrates details of the IMRS log 114. In
some embodiments, the IMRS log 114 can represent frag-
ments in the database that existed in the IMRS 122. The
IMRS log 114 can comprise a set of log segments (dumps)
412. Each log segment 412 corresponds to a period of time
for each instance of the IMRS 122, containing logged
database transactions made to that instance of the IMRS 122.
Separate instances of the IMRS 122 can result, for example,
when a crash or database shutdown occurs and the IMRS
122 is re-instantiated during recovery. Archived log seg-
ments 412a contain prior logged database transactions made
to previous instances of the IMRS 122. FIG. 4, for example,
shows that the first transaction Xg,,, made in the first
instance of the IMRS 122 occurred at time t,. The current
log segment 4125 contains logs of the database transactions
(called transaction blocks) made in the current instance of
the IMRS 122. FIG. 4, for example, shows that the first
transaction X, .., performed on the current instance of the
IMRS 122 occurred at time t,. The “X” notation will be used
to refer to both the database transactions themselves and to
their associated transaction blocks.

[0051] The IMRS log 114 can be divided into several
regions. The archive region 402 represents that portion of
the IMRS log 114 that corresponds to the previous instances
of the IMRS 122. The committed region 404 and the
potentially uncommitted region 406 are regions in the IMRS

Nov. 21, 2019

log 114 that correspond to the current instance of the IMRS
122. The committed region 402 is demarcated by X ..,
which represents the earliest transaction made in the com-
mitted region 402, and by X ,,, which represents the last
fully committed transaction in the committed region 402.
The potentially uncommitted region 406 is demarcated by
the first transaction following X, and the last transaction
X, 00: made to the IMRS 122. FIG. 4, shows the direction of
increasing time for reference.

[0052] The committed region 404 of the IMRS log 114 can
represent those transactions that are deemed “fully commit-
ted.” A transaction that only affects row(s) in the IMRS 122
need only be logged in IMRS log 114. A transaction block
is formulated and stored (logged) to a buffer 324 of the
IMRS log 114 only after all updates to the database row(s)
in the IMRS 122 affected by the transaction are completed.
In this way, database transactions are logged in the IMRS
log 114 in the same time order as when the database rows are
updated. The transaction is considered “fully” committed
only when a flush of the buffer 324 to the storage device of
the IMRS logs 114 has completed. This means that fully
committed transactions are guaranteed to occur in the same
time order in the IMRS log 114 as when updates were made
to the IMRS 122 by their corresponding database transac-
tions. This kind of logging can be referred to as commit-
time, logging. In FIG. 4, the last fully committed transaction
X1, Tepresents the point in IMRS log 114 up to which the
log 1s known to be fully consistent.

[0053] A transaction that makes changes only to the page
store 124 is logged only in the page store log 116. In various
embodiments, the page store log 116 employs a conven-
tional technique referred to as write-ahead logging (WAL),
whereby the transaction log is first flushed to disk before the
changed (or, in technical terms, “dirty”) page is written to
disk. Due to the physical nature of storage of multiple rows
in the page store 124, and the fact that different transactions
can be changing different data rows on the same page,
coupled with WAL protocols, we end-up with what is
commonly referred to as an unordered sequence of changes
written to the page store log 116. By “unordered” we mean
change(s) that were done to row-B *after* changes were
done by some other concurrently executing transaction to
row-A (from the same table), may end up with log records
in the for row-B appearing *before* log records for row-A
in the page store log 116.

[0054] A transaction, referred to as a cross-log transaction,
may make changes to row(s) in the IMRS 122 and to pages
in the page store 124. Changes to IMRS 122 would be
logged in IMRS log 114 and changes to the page store 124
would be logged in page store log 116. As with non cross-log
transactions, the commit of a cross-log transaction is done
by flushing the IMRS log 114 and the page store log 116,
which can occur asynchronously. In accordance with some
embodiments, a cross-log transaction that is logged in the
IMRS log 114 is considered “fully” committed only when
the flush of both logs has completed. In some embodiments,
the transaction logs in IMRS log 114 and in page store log
116 for cross-log transactions are tied together; for example,
by sharing a session identifier of the cross-log transaction
between the logs.

[0055] The potentially uncommitted region 406 of the
IMRS log 114 can contain those transactions that are not
deemed fully committed; in other words, are “uncommit-
ted.” An uncommitted non cross-log transaction can be a

US 2019/0354446 Al

transaction in which not all the rows in the IMRS 122 that
are targeted by the transaction have completed, or if com-
pleted, where the buffer of the IMRS log 114 is not fully
flushed. Likewise, in the case of a cross-log transaction, the
transaction is uncommitted if data updates in either or both
the IMRS 122 and the page store 124 are still in progress, or
if completed, where the buffers for either or both the IMRS
log 114 and the page store log 116 have not fully flushed.

[0056] FIG. 5 shows details a transaction block in accor-
dance with some embodiments. Transactions are logged in
the IMRS log 114 in units called transaction blocks 502. A
transaction block 502 for transaction X, can comprise a set
of log records 504. Marker log records 504a demarcate one
transaction block 502 from another. Operation log records
5045 correspond to the operations that comprise the trans-
action. In accordance with some embodiments, the log
records 504 are ordered in time. For example, a header
(HDR) marker log record is the first (earliest in time) log
record written into the transaction block. The next log record
is a begin (BGN) marker log record, followed by one or
more operation log records 5045. Each operation log record
5045 is written in the same order time wise as the operation
is performed on the IMRS 122. The last log record (latest in
time) in the transaction block 502 is an end (END) marker
log record. FIG. 5 shows an example of an arbitrary set of
transaction blocks 512 in the IMRS log 114 associated with
transaction DB X, to DB X,,, where the transaction block for
transaction DB X, occurs earlier in time than the transaction
block for transaction DB X,, the transaction block for
transaction DB X, occurs earlier in time than the transaction
block for transaction DB X, and so on. Note that the size of
the transaction block (i.e., number of operation log records
504b) can vary from one to another depending on the
number of operation logs for the associated transaction.

Recovery Processing

[0057] The discussion will now turn to processing to
recover data in the IMRS 122. Recovery processing is
typically associated with a system crash to recover the IMRS
122. However, recovery processing called “load database
recovery” can be performed to load a backup copy of a
previously “dumped” database. A recovery process call
“load transaction recovery” can be performed to load a
backup copy of a previously dumped transaction log.
[0058] Online database recovery is a process of recovering
a previously dumped database (load database recovery)
along with recovering zero or more previously dumped
transaction logs, and then marking the database available for
public use. For example, load database recovery restores the
database, but otherwise indicates the database is offline. In
some embodiments, performing an “online database” opera-
tion can simply involve turning on a status bit to indicate the
database is now online.

[0059] Referring to FIG. 6, the discussion will now turn to
a high level description of processing in the recovery
processing module 104 for recovering data in the IMRS 122
after a system crash in accordance with the present disclo-
sure. In some embodiments, for example, the recovery
processing module 104 may include computer executable
program code, which when executed by a computer system
(e.g., 100, FIG. 1, 202, FIG. 2), may cause the computer
system to perform the processing in accordance with FIG. 6.
The flow of operations performed by the computer system is
not necessarily limited to the order of operations shown.

Nov. 21, 2019

Reference will be made to FIG. 7 in the following descrip-
tion, showing details of an example of the IMRS log 114 to
illustrate the discussion.

[0060] At operation 602, the computer system can begin
recovery processing by fixing the transaction blocks in the
potentially uncommitted region (706, FIG. 7) of the IMRS
log 114; this can be referred to as the “fix phase” of recovery.
As explained above, the potentially uncommitted region 704
can comprise a mixture of valid committed transactions and
invalid (uncommitted, or incomplete) transactions. In some
embodiments, the computer system can scan the transaction
blocks in the potentially uncommitted region 704, starting
from the first transaction block (X, at time t;) that imme-
diately follows the last fully committed transaction block
(Xsa,) In a time wise increasing direction to the last
transaction block in the potentially uncommitted region
(X, o) to identify invalid transaction blocks. In some
embodiments, invalid transaction blocks can include trans-
action blocks whose associated transactions have not com-
pleted in terms of updating the IMRS 122. At the time of the
crash, the potentially uncommitted region will contain a
combination of valid and invalid transaction blocks. The fix
phase “fixes” transaction blocks in the potentially uncom-
mitted region by linking together only those transaction
blocks whose associated transactions are complete and com-
mitted, for example, thus defining a list of valid transaction
blocks.

[0061] At operation 604, the computer system can recover
data in the IMRS 122 by scanning the fixed, and therefore
now valid, transaction blocks in the potentially uncommitted
region of the IMRS log 114; this can be referred to as the
“reconcile/redo phase” of recovery. In this phase, the final
committed state of a valid cross-logged transaction block is
determined by consulting the state of the transaction in the
syslogs leg. The IMRS leg of a cross-log transaction is
deemed complete and committed if and only if the syslogs
leg of the transaction is committed. This aspect of deter-
mining the final committed state of a valid transaction block
in the IMRS log by cross-check the transactions’ state in
syslogs is what is meant by “Reconcile-Redo” phase.

[0062] Inaccordance with the present disclosure, the com-
puter system can process each transaction block in the list of
valid transaction blocks by scanning the list in reverse
chronological order (backward scan), starting from the last
log record in a latest transaction block that is latest in time
and ending with the first log record in an earliest transaction
block that is the earliest in time. Merely as an illustrative
example, a backward scan would be to start from the
transaction block X, . at time t, and end with transaction
block X, at time t; (<t,). Details of this aspect of the
recovery process are discussed below.

[0063] At operation 606, the computer system can con-
tinue recovering data in the IMRS 122 by scanning the
transaction blocks in the committed region 704 of the IMRS
log 114; this can be referred to as the “simple redo phase”
of recovery. In accordance with the present disclosure, the
computer system can process each transaction block in the
committed region 704 by scanning the transaction blocks in
reverse chronological order (backward scan), starting from
the last log record in the last transaction block, namely X ;,,
at time t, (the latest transaction block) and ending with the
first log record in the oldest (earliest) transaction block,
namely X, ., at time t,. In this region, all transactions are

US 2019/0354446 Al

fully committed, so the fix phase described above need not
be performed. Details of this aspect of the recovery process
are discussed below.

[0064] Referring to FIG. 8, the discussion will now turn to
a high level description of processing in the recovery
processing module 104 for performing the reconcile/redo
phase, discussed above in operation 604, in accordance with
the present disclosure. In some embodiments, for example,
the recovery processing module 104 may include computer
executable program code, which when executed by a com-
puter system (e.g., 100, FIG. 1, 202, FIG. 2), may cause the
computer system to perform the processing in accordance
with FIG. 8. The flow of operations performed by the
computer system is not necessarily limited to the order of
operations shown. Reference will be made to FIG. 9 in the
following description, showing details of an example of the
potentially uncommitted region 908 of IMRS log 114 and
the valid list 902 to illustrate the discussion.

[0065] At operation 802, the computer system can start the
process by setting a first transaction block from the list 902
of'valid transaction blocks (valid list determined at operation
602) as the current transaction block to be processed. As
explained above, the valid list 902 is scanned in reverse
chronological order, so that processing begins with the
transaction block that is latest in time, which in the example
is transaction block X,. Thus, the current transaction is set
to transaction block X as the first transaction block from the
list 902.

[0066] At operation 804, the computer system can deter-
mine whether the current transaction block, which is valid,
is also fully committed. In our example, the current trans-
action block at this point is transaction block X,. Where the
transaction associated with transaction block X only oper-
ates on row(s) in the IMRS 122, then the transaction block
X, is deemed fully committed when the buffer for the IMRS
log 114 is fully flushed. If the transaction operates on row(s)
in the IMRS 122 and on data in the page store 124, then the
transaction block X, is deemed fully committed when both
the buffer for the IMRS log 114 and the buffer for the page
store log 116 are fully flushed. Processing can proceed to
operation 806 in the case of a fully committed transaction
block, and to operation 808 otherwise.

[0067] At operation 806, the computer system can recover
data for one or more rows in the IMRS 122 affected by the
transaction associated with the current transaction block. In
accordance with the present disclosure, the computer system
can process each log record in the current transaction block
by scanning the log records in reverse chronological order
(backward scan), starting from a latest log record that is
latest in time and ending with an earliest log record that is
the earliest in time. This aspect of the present disclosure is
discussed below.

[0068] At operation 808, the computer system can deter-
mine whether we are at the end of the list of valid transaction
blocks. If so, the recovery processing to recover data from
the potentially uncommitted region of the IMRS log 114 can
be deemed complete. If there are more transaction blocks in
the list of valid transaction blocks to process, the processing
in the computer system can proceed to operation 810.
[0069] At operation 810, the computer system can set the
current transaction block to the next transaction block in the
valid list in reverse chronological order, namely the next
earlier-in-time transaction block in the valid list. At this
point in our example that would be transaction block X5. The

Nov. 21, 2019

computer system can return to operation 804 to repeat the
process of recovering data with the newly set current trans-
action block. The reconcile/redo process is thus performed
on each transaction block in the valid list 902 in reverse
chronological order, namely X, X5, X,, X35, X,, X.
[0070] Referring to FIG. 10, the discussion will now turn
to a high level description of processing in the recovery
processing module 104 for performing the simple redo
phase, discussed above in operation 606, in accordance with
the present disclosure. In some embodiments, for example,
the recovery processing module 104 may include computer
executable program code, which when executed by a com-
puter system (e.g., 100, FIG. 1, 202, FIG. 2), may cause the
computer system to perform the processing in accordance
with FIG. 10. The flow of operations performed by the
computer system is not necessarily limited to the order of
operations shown. Reference will be made back to FIG. 7 in
the following description to illustrate the discussion.
[0071] At operation 1002, the computer system can start
the process by setting a transaction block in the committed
range 704 as the current transaction block to be processed.
As explained above, the committed range 704 is scanned in
reverse chronological order, so that processing begins with
the transaction block that is latest in time, namely transac-
tion block X ;.. Accordingly, the current transaction is set
to transaction block X, as the first transaction block in the
committed range 704 to be processed. As all transactions in
this committed region are known to be committed, even for
any cross-log transaction no cross-check of the transaction’s
committed state on the syslogs leg is needed here. Hence this
phase is referred to as “Simple-Redo” phase (i.e. no recon-
ciliation is needed).

[0072] At operation 1004, the computer system can
recover data for one or more rows in the IMRS 122 affected
by the transaction associated with the current transaction
block. In accordance with the present disclosure, the com-
puter system can process each log record in the current
transaction block by scanning the log records in reverse
chronological order (backward scan), starting from a latest
log record that is latest in time and ending with an earliest
log record that is the earliest in time. This aspect of the
present disclosure is discussed below.

[0073] At operation 1006, the computer system can deter-
mine whether we are at the end of the committed region 704
of the IMRS log 114. If so, the recovery processing to
recover data from the committed region 704 can be deemed
complete. If there are more transaction blocks to process, the
processing in the computer system can proceed to operation
1008.

[0074] At operation 1008, the computer system can set the
current transaction block to the next transaction block in the
committed region 704 in reverse chronological order. At this
point in our example that would be the transaction block
immediately preceding X,,. The computer system can
return to operation 1004 to repeat the process of recovering
data with the newly set current transaction block. Since
transactions blocks in the committed region 704 are by
definition fully committed, the simple redo process is per-
formed on each transaction block in the committed region
704, albeit in reverse chronological order, starting from
X, and ending with X,z

[0075] Referring to FIG. 11, the discussion will now turn
to a high level description of processing in the recovery
processing module 104 for performing the simple redo

US 2019/0354446 Al

phase, discussed above in operation 606, in accordance with
the present disclosure. In some embodiments, for example,
the recovery processing module 104 may include computer
executable program code, which when executed by a com-
puter system (e.g., 100, FIG. 1, 202, FIG. 2), may cause the
computer system to perform the processing in accordance
with FIG. 10. The flow of operations performed by the
computer system is not necessarily limited to the order of
operations shown. Reference will be made to FIG. 12 in the
following description to illustrate the discussion, showing
details of a transaction block.

[0076] At operation 1102, the computer system can start
the process by setting a log record in the target transaction
block as the current transaction block to be processed in
order to recover data for one or more rows in the IMRS 122
affected by the transaction. As explained above, the log
records are scanned in reverse chronological order, so that
processing begins with the last (latest-in-time) log record.
FIG. 12 shows a transaction block 1200, showing the log
records 1202 written in order of increasing time starting with
a HDR marker log record, then a BGN marker log record,
operation log records op, -op,,, and terminating with an END
marker log record. Accordingly, the current log record is set
to the END marker log record as the first log record to be
processed.

[0077] At operation 1104, the computer system can deter-
mine if the database row associated with the current log
record has been previously recovered. In some embodi-
ments, for example, the computer system can maintain a
lookup table (not shown) of row IDs of recovered database
rows, referred to herein as a RID map. The computer system
can search the RID map for the RID associated with the
current log record. If the RID is not found in the RID map,
that can mean the database row has not been previously
recovered and processing of the current log record can
continue at operation 1106; otherwise, the computer system
can skip processing of the current log record and can
continue to operation 1108.

[0078] At operation 1106, the computer system can
recover the database row from the current log record. Details
for data recovery for the different log records are discussed
below. In some embodiments, a hash table can be used to
accelerate recovery performance. For example, when a
database row is recovered its RID can be added to the hash
table. The RID map referred to in operation 1104 can be this
hash table. The determination made in operation 1104 can be
accelerated by checking for the presence/absence of the RID
in the hash table.

[0079] At operation 1108, the computer system can deter-
mine if there is another log record to process. If not,
recovery processing to recover data from the transaction
block 1200 can be deemed complete. If there are more log
records to process, the processing can continue with opera-
tion 1110.

[0080] At operation 1110, the computer system can set the
current log record to the next earlier log record in reverse
chronological order. At this point in our example, that would
be the operation log record op,,. The computer system can
return to operation 1104 to repeat the process of recovering
data with the newly set current log record. The process can
continue for operation log records op,,_;, 0p,,.25 - - - P35 OP;-
In accordance with some embodiments, the BGN marker log
record can be the last log record to process.

Nov. 21, 2019

Log Record Examples

[0081] The discussion will now turn to a description of log
records generated for various data manipulation language
(DML) operations affecting database rows in the IMRS 122
associated with some illustrative examples of database trans-
actions.

[0082] FIG. 13 shows a database transaction (X1) 1302
made at time T1, and the corresponding transaction block
1304 of log records comprising associated DML operations.
The HDR marker log record 1312 (IMRS_HEADER) can
include control information such as a session ID for the
transaction, information about each row affected by the
database transaction 1302, and so on. The BGN marker log
record 1314 (IMRS_BEGINXACT) can signify start of a
block of log records for a transaction. The BGN marker log
record 1314 can include a session ID of the database
transaction 1302 in the page store log 116 in the case of
cross-log transactions. The END marker log record 1318
(IMRS_ENDXACT) can signify the end of a block of log
records for a transaction. The operation log records 1316 can
include IMRS_INSERT, IMRS_PURGE, and IMRS_
PURGED_ROWS, although FIG. 13 only shows IMRS_
INSERT log records.

[0083] An IMRS_INSERT log record is used when a row
is inserted into the IMRS 122, and can include information
such as the RID of the affected database row and contents of
the row being inserted (although not shown in the example).
The database transaction 1302 affects database rows 100-
110 in the IMRS 122.

[0084] An IMRS_PURGE log record is used when a row
is purged (removed) from the IMRS 122, and can include the
RID of the purged row. The database row can be moved (or
“packed”) back to the page store 124.

[0085] An IMRS_PURGED_ROWS log record can be
written to record a number of rows from one table that are
purged from the IMRS 122. The log record can contain the
RIDs of the rows that are purged. This log record may be
logged as part of massive purge (such as from some utility
operations, or dropping a user table).

[0086] The IMRS_PURGE and IMRS_INSERT log
records can occur in pairs when a row is updated in the
IMRS 122. When an update of a row happens in the IMRS
122, for example, a new row version with the updated row
can be created and linked to the row header. Upon commit,
apair of IMRS_PURGE and IMRS_INSERT records will be
logged for the update of the row. The IMRS_INSERT will
have a status bit indicating that it is logged for an update, and
it will contain the new row data.

[0087] The database transaction X1 will create rows 100-
110 in the IMRS 122 at time T1. FIG. 14 shows a database
transaction (X2) 1402 made subsequent to the database
transaction X1 at time T2>T1, showing the transaction block
1404 for an update (Upd-1) made to database row 107,
which can include updates made to one or more data fields
that comprise the database row. In some embodiments, the
IMRS_INSERT log record 1406 can include a copy of the
entirety of database row 107 representing the current state of
the database row after update Upd-1 was made. FIG. 15
shows yet another a database transaction (X3) 1502 made
subsequent to the database transaction X2 at time T3>T2,
showing the transaction block 1504 for another update
(Upd-2) made to database row 107; and the IMRS_INSERT
log record 1506 can include a copy of the entirety of

US 2019/0354446 Al

database row 107 representing the state of the database row
after update Upd-2 was made.

Recovering Database Rows from Log Records

[0088] FIG. 16 shows a portion of the IMRS log 114
comprising the log records from the sequential execution of
transaction blocks X1, X2, X3 from FIGS. 13-15 arranged
along a common timeline. As explained above, a backward
scan of the IMRS log 114 in accordance with the present
disclosure includes a backward scan of the transaction
blocks, which includes processing transaction block X3,
then transaction block X2, then transaction block X1. More-
over, the log records comprising a transaction block are also
processed by backward scanning. Putting it all together, a
backward scan in accordance with the present disclosure of
the portion of the IMRS log 114 comprising the transaction
blocks X1, X2, X3 includes processing the log records of
transaction block X3 in reverse chronological order, starting
with the IMRS_ENDXACT log record 1602 and ending
with the IMRS_BEGINXACT log record 1604, then pro-
cessing the log records of transaction block X2 in reverse
chronological order, starting with the IMRS_ENDXACT
marker log record 1606 and ending with the IMRS_BE-
GINXACT marker log record 1608, and so on.

[0089] The data recovery process varies for each kind
(marker vs. operation) of log record and for each type of
operation log record. A log record can be associated with a
database row that is affected by the corresponding operation.
[0090] A. IMRS_ENDXACT

[0091] This log record signals a completed transaction.
Recovery includes re-creating a XIMRS, which is an in-
memory representation of an active transaction, to reflect the
state of a transaction being recovered in the IMRS 122. As
transactions are “seen” in reverse order of completion, this
XIMRS is prepended to the queue of XIMRS’s maintained
in XID-order queue, so that upon completion of the log scan,
the XIMRS for the oldest transaction appears at the head of
the queue. The log records IMRS_BEGINXACT (discussed
below) and IMRS_ENDXACT are placeholder log records
for the begin and end of a transaction. The backwards scan
recovery process can use these log records to maintain
metadata information for transactions that are recovered.
[0092] B. IMRS_PURGE

[0093] This log record represents a pack operation when
the database row is removed from the IMRS 122 and moved
back to the page store 124. The computer system can
maintain a lookup table (not shown) to track purged rows
(e.g., by their RID), referred to herein as a RID-hash table.
The database row can undergo more that one sequence of a
purge followed by a re-insert to the IMRS 122, eventually
ending with a final purge operation when the row is finally
removed from the IMRS 122. If this database row already
exists in the RID-hash table (vis-a-vis its RID), that means
the row was purged from the IMRS 122, and therefore, no
further recovery is needed. If this database row does not
appear in the RID-hash table, that means this is the final
purge of the row from the IMRS 122, and its RID can be
recorded in the RID-hash table to record that this row was
eventually removed from the IMRS.

[0094] C.IMRS_PURGED_ROWS

[0095] This log record represents a bulk-purge operation,
e.g. a DROP TABLE operation, a TRUNCATE TABLE
operation, and so on, where rows are purged in bulk from the
IMRS 122. The IMRS_PURGED_ROWS log record carries
with it the list of row-IDs of the rows that were bulk-purged.

Nov. 21, 2019

This type of operation log record can be processed in the
same way as for IMRS_PURGE, with an additional iteration
around each affected RID tracked by this log record.
[0096] D. IMRS_INSERT

[0097] For insert operations, the recovery processing can
differ depending on the order of inserts:

[0098] Multiple insert log records may be seen for the
same row when the row is updated multiple times in the
IMRS 122.

[0099] A series of one or more inserts may be followed
by an IMRS_PURGE log record when the row is
purged from the IMRS 122, or an IMRS_PURGED_
ROWS log record tracking this row, when the row is
removed from the IMRS 122 due to a utility such as
DROP TABLE or TRUNCATE TABLE that removes
the partition/table from the database.

[0100] An IMRS_INSERT marked with INS_FOR_
DELETE signals the deletion of the row from the
IMRS 122.

The recovery processing is handled as follows:

[0101] Ifthe insert is for a delete operation (INS_FOR_
DELETE), ignore this log record as the row is (was)
deleted from the IMRS 122. Add the RID to the RID
map.

[0102] Check if the RID is already found in the RID-
hash table. If found, it means this row was subsequently
purged or bulk-purged from the IMRS 122, so the prior
insert operation(s) is (are) not interesting. Skip pro-
cessing of (discard) this log record.

[0103] If not found in the RID-hash table, check if the
row has been previously recovered, by looking up the
RID-map lookup table. If so then we can skip process-
ing of (discard) this log record, as it is being over-
written by a later update (insert). If the row has not been
previously recovered, then insert the row to the IMRS
122 as this is the latest version of the row that needs to
be retained and add the RID to the RID map.

[0104] E. IMRS_BEGINXACT

[0105] This log record provides a hook to manage the
XIMRS. If no new row versions were “created” in this
transaction, i.e., no new row versions are found hanging off
of the XIMRS, it can be torn down as part of the processing
for this log record. If any new row versions were recovered
in this backward scan, the XIMRS representing this recov-
ered transaction block is tracked in-memory for book-
keeping.

[0106] Referring again to FIG. 16, when performing crash
recovery, the IMRS 114 is initially empty. Backward scan
processing of the transaction blocks X1, X2, X3 would first
process transaction block X3. When the log record IMRS_
INSERT(107): upd-2 is encountered, database row 107 with
the content of “Upd-2” will be created in IMRS 122, thus
recovering database row 107 in accordance with the log
record. Processing of the next earlier-in-time log record
IMRS_PURGE(rid-107) is skipped since database row 107
has been previously recovered.

[0107] When processing continues to the next earlier-in-
time transaction block X2, processing of the log record
IMRS_INSERT(107): upd-1 will be skipped, because data-
base row 107 has been previously recovered. Likewise,
processing of the log record IMRS_PURGE(rid-107): upd-1
will be skipped, again because database row 107 has been
previously recovered.

US 2019/0354446 Al

[0108] When processing continues to the next earlier-in-
time transaction block X1, the log records IMRS_INSERT
(110), IMRS_INSERT(109), IMRS_INSERT(108) will be
processed in the order shown (reverse chronological order)
to create database rows 110, 109, and 108 in IMRS 122, thus
recovering database rows 110, 109, and 108 in accordance
with their respective log records. Processing of the log
record IMRS_INSERT(107), however, will be skipped since
database row 107 has been previously recovered.

[0109] FIG.17, illustrates recovery processing when a row
is deleted. At time T1, the transaction block X1 is logged,
indicating the database row 107 was inserted into the IMRS
122 and updated with content “Upd-1". At time T2>T1, the
transaction block X2 is logged, indicating that the database
row 107 has been deleted from the IMRS 122.

[0110] During crash recovery, backward scan will first
process transaction block X2. Data recovery in accordance
with the log record IMRS_INSERT(INS_FOR_DEL) will
not change the state of the IMRS 122 (i.e., no database row
is added) because the operation is a delete operation. The
row id for database row 107 can be added to the RID map
to indicate this row has been previously “recovered.” Pro-
cessing of the next earlier-in-time log record IMRS_PURGE
(rid-107) can be skipped since it is deemed to have been
previously recovered. Continuing with the next earlier-in-
time transaction block X1, processing of the log records
IMRS_INSERT(107): Upd-1 and IMRS_PURGE(rid-107)
for database row 107 can be skipped, again because that
database row has been previously recovered.

[0111] It can be appreciated from the foregoing that the
earlier-in-time operations on the database row 107 can be
avoided (skipped) when the IMRS log 114 is backward
scanned in accordance with the present disclosure. This can
represent significant savings in time in typical crash recov-
ery use cases, where many 100’s to 1000’s of updates can
occur among the database rows in an in-memory row store
database (IMRS DB). While conventional crash recovery
processing can redo the insert of a row followed by the 100’s
to 1000’s of subsequent updates made to that row to recov-
ery the row, crash recovery processing in accordance with
the present disclosure can recover the row in roughly a
single update.

[0112] The situation can be exacerbated in a situation
where 1000’s of update are made to row in the IMRS DB,
and then the row is packed (or moved) to page store because
it has become “cold” (i.e., inactive). In conventional crash
processing, the process will go through the entire life-cycle
of the row, instantiate all the intermediate versions only to
eventually pack (remove) the row from the IMRS DB to the
page store. From the point of re-instantiating the contents of
the IMRS, re-doing these operations is inefficient because it
is unnecessary and wastes execution resources. By compari-
son, recovery processing in accordance with the present
disclosure can detect that the database row is eventually
packed, and will skip all earlier-in-time log records involv-
ing the packed row.

[0113] A similar inefficiency occurs for volatile transac-
tions, where a row is inserted, updated multiple times, and
then deleted. Conventional crash recovery using a forward
scan of the IMRS log will again go through the row’s
life-cycle, creating the row, creating its multiple intermedi-
ate versions and then eventually redo the delete to remove
the row from the cache. From the objective of re-instanti-
ating the final contents of an IMRS, re-doing all the stages

Nov. 21, 2019

of'the life-cycle of this row is unnecessary. All that is needed
is to ensure that no footprint of the row is recovered back to
the IMRS. By comparison, recovery processing in accor-
dance with the present disclosure can detect that the newly
inserted database row is eventually deleted, and will skip all
earlier-in-time log records involving the deleted row.
Recovery from Database Dumps

[0114] Unlike recovering from a crashed database, recov-
ering from a controlled dump of the IMRS log 114 need only
involve performing the simple redo phase of recovery (e.g.,
operation 606, FIG. 6) described above. For example, the
load database recovery process can be performed to load a
backup copy of a previously “dumped” database. Since a
dumped database is performed in a controlled manner, only
fully-committed transactions are recovered. Likewise for
when the IMRS log 114 is periodically dumped. For the
online database operation, however, fix phase and reconcile/
redo phases are all that are required to be performed before
bringing the database online.

[0115] The phases for the various load operations are
illustrated in FIG. 18, showing the transaction dumps 1802
for a set transaction log segments 0-4 (chunks) of the IMRS
log 114. FCX stands for Fully Committed Transaction
marker. Transaction log segment 0 is initially processed with
a LOAD DB operation, and loaded using only simple redo
and backward scan of segment 0. At the end of LOAD DB
operation, the region of the IMRS log 114 beyond FCXO is
still active, but is left unrecovered. Subsequent transaction
log segments 1-3 can be processed by LOAD TRAN opera-
tions. In the subsequent LOAD TRAN operations, this
region of the IMRS log 114 beyond FCXO is over-laid with
the transaction log segments captured in the transaction
dumps 1802. The region between FCX0 and FCXI1 is
recovered using simple redo, backward scan of transaction
log segment 1. This process continues for each subsequent
LOAD TRAN until the final recovery is done for ONLINE
DB on the last transaction log segment 4. Processing on the
last transaction log segment 4 includes the fix phase and
reconcile/redo phase.

Recovery Across Transaction Log Segments

[0116] When recovering the next chunk of the IMRS log
114, the same row may have been updated several more
times, resulting in a, yet, another latest version of the row
found in this chunk of the IMRS log 114. The term “trans-
action log chunk” refers to the piece of the IMRS log 114
that is being recovered. For example, in the scenario
depicted in FIG. 18, the sections (FCXO0, FCX1), (FCX1,
FCX2) recovered using a backwards scan Simple-redo fol-
lowing a LOAD TRAN are transaction log chunks.

[0117] Changes done to a row will be recovered as part of
LOAD DB or the initial LOAD TRAN (e.g., LOAD Tran 1),
per the rules of crash recovery. For example, in the case of
LOAD DB, if a row has multiple log records, then as part of
the backward scan, the very first IMRS_INSERT log record
encountered (i.e. the very last committed update to this row)
is recovered, and the row will be inserted to the IMRS 122.
Other IMRS_INSERT log records seen subsequently in this
transaction chunk will be discarded per the crash-recovery
logic of the present disclosure.

[0118] As new log records affecting the same row are seen
in a subsequent LOAD TRAN’s transaction log chunk, they
are handled specially. If the first log record encountered for
this row in the next transaction chunk is an IMRS_INSERT,

US 2019/0354446 Al

it will be redone; i.e., replace the existing row in the IMRS
122 with this version. If that log record is instead an
IMRS_PURGE log record, then this event is replayed to
purge the row from the IMRS 122, and the RID is registered
in the RID-hash table to mark that the row was eventually
purged from the IMRS 122. In both cases, any older log
records for the same row are essentially discarded without
re-doing them.

[0119] Therefore, the following can be performed in
accordance with the present disclosure:

[0120] a) Recognize the very last log record that pro-
duces the latest insert version of a row. Replace the
existing latest-version of the row, if any, in the IMRS
122 (which may have been inserted to the IMRS 122 by
the redo-recovery of some prior transaction log chunk)
with the latest version found in the transaction log
chunk being recovered, call this the current transaction
log chunk.

[0121] b) All other older versions of the row found in
the current transaction log chunk have to be ignored
and should not be replacing the version in the IMRS
122.

[0122] c¢) In order to correctly perform (b), the row
inserted in or purged from the IMRS 122 at (a) is
marked or otherwise indicates as coming from the
current transaction log chunk. Then, all other older log
records affecting this same row can use this information
to skip the log record.

[0123] d) If the latest log record affecting a row is a
purge operation, and the row does not already exist in
the IMRS 122, then record the purged row’s RID in the
RID-hash table. All older log records seen in the current
transaction log chunk will consult the RID-hash table to
see if the latest state of the row was purged. If so, then
those log records are discarded.

[0124] e) Inserts followed by a Purge operation: Sup-
pose recovery of a previous transaction log chunk
inserted the latest version of a row in the IMRS. In a
subsequent transaction log chunk, the row may have
been eventually packed, thereby the purged row is the
latest log record affecting this row. The previously
inserted row is purged from the IMRS 122 and the
purged row’s RID is added to the RID-hash lookup
table.

[0125] f) Minor subtle point: While scanning the log
backwards, redo will stop at the ENDXACT of the
previous-fully-committed transaction marker, which is
the stopping point for the backwards scan. This trans-
action would already have been redone as part of the
previous LOAD TRAN, so recovery of the subsequent L.oaD
TRaN Will skip this transaction.

[0126] The above description illustrates various embodi-
ments of the present disclosure along with examples of how
aspects of the particular embodiments may be implemented.
The above examples should not be deemed to be the only
embodiments, and are presented to illustrate the flexibility
and advantages of the particular embodiments as defined by
the following claims. Based on the above disclosure and the
following claims, other arrangements, embodiments, imple-
mentations and equivalents may be employed without
departing from the scope of the present disclosure as defined
by the claims.

Nov. 21, 2019

What is claimed is:
1. A method for data recovery in a database, the method
comprising:
accessing a transaction log having stored therein a plu-
rality of transaction blocks, each transaction block
associated with a database transaction and correspond-
ing operations that comprise the database transaction,
the plurality of transaction blocks ordered according to
when their corresponding database transactions were
completed, the plurality of log records in each trans-
action block ordered according to when their corre-
sponding operations were performed on the database;

accessing a range of transaction blocks in the transaction
log in reverse chronological order, starting from a latest
transaction block and ending with an earliest transac-
tion block that occurs earlier in time than the latest
transaction block; and

recovering data in the database from each of the transac-

tion blocks accessed in reverse chronological order by
recovering database rows in the database that were
acted on by database transactions associated with the
accessed transaction blocks.

2. The method of claim 1, wherein recovering data in the
database from each of the transaction blocks accessed in
reverse chronological order includes, for each accessed
transaction block:

accessing log records comprising the accessed transaction

block in reverse chronological order, starting with a
latest log record and ending with an earliest log record
that occurs earlier in time than the latest log record, the
log records corresponding to the operations that com-
prise the database transaction associated with the
accessed transaction block; and

for each log record accessed in reverse chronological

order:

skipping processing of the accessed log record, when a
database row associated with an operation that cor-
responds to the accessed log record has been previ-
ously recovered; and

when the database row has not been previously recov-
ered, then processing the accessed log record to
recover the database row according to the accessed
log record.

3. The method of claim 2, further comprising:

storing a row identifier (RID) of a database row in a RID

hash table when the database row is recovered; and

using the RID hash table to determine whether or not a

database row has been previously recovered.

4. The method of claim 1, wherein the range of transaction
blocks comprising the latest transaction block to the earliest
transaction block is a first range of transaction blocks in the
transaction log, the method further comprising identifying
valid transaction blocks and invalid transaction blocks in a
second range of transaction blocks in the transaction log,
wherein recovering data in the database further includes:

accessing valid transaction blocks in the second range of

transaction blocks in reverse chronological order, start-
ing from a latest transaction block and ending with an
earliest transaction block that occurs earlier in time
than the latest transaction block; and

recovering data in the database from selected ones of the

valid transaction blocks accessed in reverse chrono-
logical order by recovering database rows in the data-
base that were acted on by database transactions asso-
ciated with the selected transaction blocks.

US 2019/0354446 Al

5. The method of claim 4, wherein the transaction log is
a first transaction log, the method further comprising, for
each valid transaction log, accessing a second transaction
log to determine whether the valid transaction block is a
committed transaction block; and processing only valid
transaction blocks that are deemed committed.

6. The method of claim 1, wherein the transaction log is
a first transaction log segment, the method further compris-
ing processing a plurality of subsequent transaction log
segments to recover data in the database, including for each
of the subsequent transaction log segments:

accessing a range of transaction blocks in the subsequent
transaction log segment in reverse chronological order,
starting from a latest transaction block and ending with
an earliest transaction block that occurs earlier in time
than the latest transaction block; and

recovering data in the database from each of the transac-
tion blocks accessed in reverse chronological order by
recovering database rows in the database that were
acted on by database transactions associated with the
accessed transaction blocks.

7. The method of claim 6, further comprising processing
a last transaction log segment to recover data in the database,
including:
identifying valid transaction blocks and invalid transac-
tion blocks in the last transaction log segment; and

recovering data in the database by accessing only the
valid transaction blocks in reverse chronological order,
starting from a latest valid transaction block and ending
with an earliest valid transaction block that occurs
earlier in time than the latest valid transaction block,
and recovering database rows in the database that were
acted on by database transactions associated only with
those valid transaction blocks that are deemed to be
fully committed.

8. A non-transitory computer-readable storage medium
having stored thereon computer executable instructions,
which when executed by a computer device, cause the
computer device to:

access a transaction log having stored therein a plurality
of transaction blocks, each transaction block associated
with a database transaction and corresponding opera-
tions that comprise the database transaction, the plu-
rality of transaction blocks ordered according to when
their corresponding database transactions were com-
pleted, the plurality of log records in each transaction
block ordered according to when their corresponding
operations were performed on the database;

access a range of transaction blocks in the transaction log
in reverse chronological order, starting from a latest
transaction block and ending with an earliest transac-
tion block that occurs earlier in time than the latest
transaction block; and

recover data in the database from each of the transaction
blocks accessed in reverse chronological order by
recovering database rows in the database that were
acted on by database transactions associated with the
accessed transaction blocks.

9. The non-transitory computer-readable storage medium
of claim 8,

wherein when the computer device recovers data in the

database from each of the transaction blocks accessed

Nov. 21, 2019

in reverse chronological order, the computer device
performs operations for each accessed transaction
block, including:

accessing log records comprising the accessed transaction

block in reverse chronological order, starting with a
latest log record and ending with an earliest log record
that occurs earlier in time than the latest log record, the
log records corresponding to the operations that com-
prise the database transaction associated with the
accessed transaction block; and

for each log record accessed in reverse chronological

order:

skipping processing of the accessed log record, when a
database row associated with an operation that cor-
responds to the accessed log record has been previ-
ously recovered; and

when the database row has not been previously recov-
ered, then processing the accessed log record to
recover the database row according to the accessed
log record.

10. The non-transitory computer-readable storage
medium of claim 9, wherein the computer executable
instructions, which when executed by the computer device,
further cause the computer device to:

store a row identifier (RID) of a database row in a RID

hash table when the database row is recovered; and

use the RID hash table to determine whether or not a

database row has been previously recovered.

11. The non-transitory computer-readable storage
medium of claim 8,

wherein the range of transaction blocks comprising the

latest transaction block to the earliest transaction block
is a first range of transaction blocks in the transaction
log,

wherein the computer executable instructions, which

when executed by the computer device, further cause
the computer device to identify valid transaction blocks
and invalid transaction blocks in a second range of
transaction blocks in the transaction log,

wherein when the computer device recovers data in the

database, the computer device:

accesses valid transaction blocks in the second range of
transaction blocks in reverse chronological order,
starting from a latest transaction block and ending
with an earliest transaction block that occurs earlier
in time than the latest transaction block; and

recovers data in the database from selected ones of the
valid transaction blocks accessed in reverse chrono-
logical order by recovering database rows in the
database that were acted on by database transactions
associated with the selected transaction blocks.

12. The non-transitory computer-readable storage
medium of claim 8, wherein the transaction log is a first
transaction log, wherein the computer executable instruc-
tions, which when executed by the computer device, further
cause the computer device to perform operations for each
valid transaction log, including:

accessing a second transaction log to determine whether

the valid transaction block is a committed transaction
block; and

processing only valid transaction blocks that are deemed

committed.

13. The non-transitory computer-readable storage
medium of claim 8, wherein the transaction log is a first

US 2019/0354446 Al

transaction log segment, wherein the computer executable
instructions, which when executed by the computer device,
further cause the computer device to process a plurality of
subsequent transaction log segments to recover data in the
database, including for each of the subsequent transaction
log segments:
accessing a range of transaction blocks in the subsequent
transaction log segment in reverse chronological order,
starting from a latest transaction block and ending with
an earliest transaction block that occurs earlier in time
than the latest transaction block; and
recovering data in the database from each of the transac-
tion blocks accessed in reverse chronological order by
recovering database rows in the database that were
acted on by database transactions associated with the
accessed transaction blocks.
14. The non-transitory computer-readable storage
medium of claim 8, wherein the computer executable
instructions, which when executed by the computer device,
further cause the computer device to process a last transac-
tion log segment to recover data in the database, including:
identifying valid transaction blocks and invalid transac-
tion blocks in the last transaction log segment; and

recovering data in the database by accessing only the
valid transaction blocks in reverse chronological order,
starting from a latest valid transaction block and ending
with an earliest valid transaction block that occurs
earlier in time than the latest valid transaction block,
and recovering database rows in the database that were
acted on by database transactions associated only with
those valid transaction blocks that are deemed to be
fully committed.

15. An apparatus comprising:

one or more computer processors; and

a computer-readable storage medium comprising instruc-

tions for controlling the one or more computer proces-
sors to be operable to:

access a transaction log having stored therein a plurality

of transaction blocks, each transaction block associated
with a database transaction and corresponding opera-
tions that comprise the database transaction, the plu-
rality of transaction blocks ordered according to when
their corresponding database transactions were com-
pleted, the plurality of log records in each transaction
block ordered according to when their corresponding
operations were performed on the database;

access a range of transaction blocks in the transaction log

in reverse chronological order, starting from a latest
transaction block and ending with an earliest transac-
tion block that occurs earlier in time than the latest
transaction block; and

recover data in the database from each of the transaction

blocks accessed in reverse chronological order by
recovering database rows in the database that were
acted on by database transactions associated with the
accessed transaction blocks.

16. The apparatus of claim 15, wherein when the one or
more computer processors recover data in the database from
each of the transaction blocks accessed in reverse chrono-
logical order, the one or more computer processors perform
operations for each accessed transaction block, including:

accessing log records comprising the accessed transaction

block in reverse chronological order, starting with a
latest log record and ending with an earliest log record

Nov. 21, 2019

that occurs earlier in time than the latest log record, the
log records corresponding to the operations that com-
prise the database transaction associated with the
accessed transaction block; and

for each log record accessed in reverse chronological

order:

skipping processing of the accessed log record, when a
database row associated with an operation that cor-
responds to the accessed log record has been previ-
ously recovered; and

when the database row has not been previously recov-
ered, then processing the accessed log record to
recover the database row according to the accessed
log record.

17. The apparatus of claim 15,

wherein the range of transaction blocks comprising the

latest transaction block to the earliest transaction block
is a first range of transaction blocks in the transaction
log,

wherein the computer-readable storage medium further

comprises instructions for controlling the one or more
computer processors to be operable to identify valid
transaction blocks and invalid transaction blocks in a
second range of transaction blocks in the transaction
log,

wherein when the one or more computer processors

recover data in the database, the one or more computer

processors:

access valid transaction blocks in the second range of
transaction blocks in reverse chronological order,
starting from a latest transaction block and ending
with an earliest transaction block that occurs earlier
in time than the latest transaction block; and

recover data in the database from selected ones of the
valid transaction blocks accessed in reverse chrono-
logical order by recovering database rows in the
database that were acted on by database transactions
associated with the selected transaction blocks.

18. The apparatus of claim 15, wherein the transaction log
is a first transaction log, wherein the computer-readable
storage medium further comprises instructions for control-
ling the one or more computer processors to be operable to
perform operations for each valid transaction log, including:

accessing a second transaction log to determine whether

the valid transaction block is a committed transaction
block; and

processing only valid transaction blocks that are deemed

committed.

19. The apparatus of claim 15, wherein the transaction log
is a first transaction log segment, wherein the computer-
readable storage medium further comprises instructions for
controlling the one or more computer processors to be
operable to process a plurality of subsequent transaction log
segments to recover data in the database, including for each
of the subsequent transaction log segments:

accessing a range of transaction blocks in the subsequent

transaction log segment in reverse chronological order,
starting from a latest transaction block and ending with
an earliest transaction block that occurs earlier in time
than the latest transaction block; and

recovering data in the database from each of the transac-

tion blocks accessed in reverse chronological order by
recovering database rows in the database that were

US 2019/0354446 Al Nov. 21, 2019
13

acted on by database transactions associated with the
accessed transaction blocks.
20. The apparatus of claim 15, wherein the computer-
readable storage medium further comprises instructions for
controlling the one or more computer processors to be
operable to process a last transaction log segment to recover
data in the database, including:
identifying valid transaction blocks and invalid transac-
tion blocks in the last transaction log segment; and

recovering data in the database by accessing only the
valid transaction blocks in reverse chronological order,
starting from a latest valid transaction block and ending
with an earliest valid transaction block that occurs
earlier in time than the latest valid transaction block,
and recovering database rows in the database that were
acted on by database transactions associated only with
those valid transaction blocks that are deemed to be
fully committed.

#* #* #* #* #*

