
US 20190354839A1
IND IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2019/0354839 A1

Meshi et al . (43) Pub . Date : Nov. 21 , 2019

(54) SYSTEMS AND METHODS FOR SLATE
OPTIMIZATION WITH RECURRENT
NEURAL NETWORKS

GOON 20/00
G06F 17/18
G06F 17/16

(2006.01)
(2006.01)
(2006.01)

(71) Applicant : Google LLC , Mountain View , CA (US) (52) U.S. CI .
CPC

(72) Inventors : Ofer Pinhas Meshi , San Jose , CA
(US) ; Irwan Bello , Mountain View , CA
(US) ; Sayali Kulkarni , Mountain View ,
CA (US) ; Sagar Jain , Mountain View ,
CA (US)

GOON 3/0454 (2013.01) ; GO6N 37084
(2013.01) ; G06F 17/16 (2013.01) ; GO6N
20/00 (2019.01) ; G06F 17/18 (2013.01) ;

G06N 370472 (2013.01)

ABSTRACT (21) Appl . No .: 16 / 415,854 (57)

(22) Filed : May 17 , 2019

Related U.S. Application Data
(60) Provisional application No. 62 / 673,821 , filed on May

18 , 2018

Systems and methods for generating a slate of ranked items
are provided . In one example embodiment , a computer
implemented method includes inputting a sequence of can
didate items into a machine learned model , and obtaining , in
response to inputting the sequence of candidate items into
the machine learned model , an output of the machine
learned model that includes a ranking of the candidate items
that presents a diverse set of the candidate items at the top
positions in the ranking such that one or more highly
relevant candidate items can be demoted in the ranking .

Publication Classification

(51) Int . Ci .
GOON 3/04 (2006.01)
GO6N 3/08 (2006.01)

400

402

OBTAIN INPUT SEQUENCE OF CANDIDATE ITEMS

404

PROVIDE INPUT TO AN ENCODER NETWORK

406
PROVIDE OUTPUT OF THE ENCODER NETWORK TO A

DECODER NETWORK

408
PROVIDE OUTPUT OF DECODER NETWORK TO

ATTENTION NETWORK

410
FEEDBACK OUTPUT OF ATTENTION NETWORK INTO

THE DECODER NETWORK

412
PROVIDE OUTPUT OF A SLATE OF RANKED ITEMS

FROM THE CANDIDATE ITEMS

102

100

130

User Computing Device

Server Computing System

112

132

Processor (s)

Processor (s)

114

134

Memory

Patent Application Publication

Memory

136

Data

Data

Instructions

138

Instructions

120

seq2slate Model (s)

Seq2slate Model (s)

122

180

User Input Component

Nov. 21 , 2019 Sheet 1 of 5

150

Training Computing System Processor (s)

152 154

Memory

1

Figure 1

156

Data

158

Instructions

US 2019/0354839 A1

Model Trainer

162

Training Data

200

202
Input Data

seq2slate Model

Output Data

Patent Application Publication

po
Figure 2

204

208

210

206

209

seq2slate Model

202

214

Nov. 21 , 2019 Sheet 2 of 5

Input Data

encoder

decoder

attention function

Output Data

212

US 2019/0354839 A1

Figure 3

Patent Application Publication Nov. 21 , 2019 Sheet 3 of 5 US 2019/0354839 A1

400

402

OBTAIN INPUT SEQUENCE OF CANDIDATE ITEMS

404

PROVIDE INPUT TO AN ENCODER NETWORK

406

PROVIDE OUTPUT OF THE ENCODER NETWORK TO A
DECODER NETWORK

408
PROVIDE OUTPUT OF DECODER NETWORK TO

ATTENTION NETWORK

FEEDBACK OUTPUT OF ATTENTION NETWORK INTO
THE DECODER NETWORK

999999999

412
PROVIDE OUTPUT OF A SLATE OF RANKED ITEMS

FROM THE CANDIDATE ITEMS

Figure 4

Patent Application Publication Nov. 21 , 2019 Sheet 4 of 5 US 2019/0354839 A1

500

502
OBTAIN TRAINING EXAMPLE THAT INCLUDES CLICK

THROUGH DATA

504
TRAIN SEQ2SLATE MODEL USING THE CLICK

THROUGH DATA

Figure 5

Patent Application Publication Nov. 21 , 2019 Sheet 5 of 5 US 2019/0354839 A1

HHHH HHHH
601

Figure 6

US 2019/0354839 Al Nov. 21 , 2019
1

SYSTEMS AND METHODS FOR SLATE
OPTIMIZATION WITH RECURRENT

NEURAL NETWORKS

PRIORITY CLAIM
[0001] The present application claims the benefit of pri
ority of U.S. Provisional Patent Application No. 62 / 673,821
filed May 18 , 2018 , entitled “ Systems And Methods For
Slate Optimization with Recurrent Neural Networks . ” The
above - referenced patent application is incorporated herein
by reference .

FIELD

[0002] The present disclosure relates generally to gener
ating a slate of ranked items .

BACKGROUND

[0003] Ranking is a central task in machine learning and
information retrieval . In this task , it is especially important
to present the user with a slate of items that is useful .

SUMMARY

[0004] Aspects and advantages of the present disclosure
will be set forth in part in the following description , or may
be learned from the description , or may be learned through
practice of the embodiments .
[0005] One example embodiment of the present disclosure
is directed to a computer system that includes one or more
processors , and one or more non - transitory computer read
able media that collectively store a machine learned pointer
network for generating an output sequence from a list of
candidate items . The machine learned pointer network can
include an encoder network configured to receive the list of
candidate items and provide an output that includes a
sequence of latent memory states . The machine learned
pointer network can include a decoder network configured to
receive a previously - selected candidate item for the output
sequence and provide an output vector based at least in part
on the previously - selected candidate item . The machine
learned pointer network can include an attention network
configured to receive the sequence of latent memory states
and a query including the output vector from the decoder
network , and produce a probability distribution associated
with a next candidate item to include in the output sequence .
The attention network can produce the probability distribu
tion based at least in part on candidate items that already
appear in the output sequence . The machine learned pointer
network can include instructions that , when executed by the
one or more processors , cause the computer system to
perform operations . The operations can include providing an
input associated with the list of candidate items to the
machine learned pointer network . The operations can
include implementing the machine learned pointer network
to process the list of candidate items . The operations can
include receiving an output generated by the machine
learned pointer network as a result of processing the list of
candidate items . The operations can include selecting the
next candidate item to include in the output sequence based
at least in part on the probability distribution .
[0006] Another example embodiment of the present dis
closure is directed to a computer - implemented method to
train a machine learned pointer network for generating an
output sequence from a list of candidate items . The method

can include obtaining , by one or more computing devices ,
data descriptive of the machine learned pointer network .
The machine learned pointer network can include an
encoder network configured to receive the list of candidate
items and provide an output that includes a sequence of
latent memory states , a decoder network that operates over
a plurality of decoding steps and is configured to receive a
previously - selected candidate item for the output sequence
and provide an output vector based at least in part on the
previously - selected candidate item , and an attention network
configured to receive the sequence of latent memory states
and a query including the output vector from the decoder
network . The attention network can be configured to pro
duce a probability distribution associated with a next can
didate item to include in the output sequence .
[0007] The method can include training , by the one or
more computing devices , the machine learned pointer net
work based on a set of training data . The training , by the one
or more computing devices , can include determining , by the
one or more computing devices , a per - step loss for two or
more of the plurality of decoding steps , the per - step loss
representing a performance evaluation of the machine
learned pointer network based on the set of training data .
The training can include modifying , by the one or more
computing devices , one or more parameters of the machine
learned pointer network based at least in part on the per - step
loss .
[0008] Another example embodiment of the present dis
closure is directed to a computer - implemented method to
generate an output sequence from a list of candidate items .
The method can include ranking , by one or more computing
devices , the list of candidate items to generate an initial
sequence of candidate items . The method can include input
ting , by the one or more computing devices , the initial
sequence of candidate items into an encoder network con
figured to receive the initial sequence of candidate items and
provide an output that includes a sequence of latent memory
states . The method can include inputting , by the one or more
computing devices , a previously - selected candidate item for
the output sequence into a decoder network configured to
receive the previously - selected candidate item and provide
an output vector based at least in part on the previously
selected candidate item . The method can include inputting
the sequence of latent memory states and a query including
the output vector from the decoder network into an attention
network configured to receive the sequence of latent
memory states and the query including the output vector
from the decoder network . The attention network can be
configured to produce a probability distribution associated
with a next candidate item to include in the output sequence .
[0009] Another example embodiment of the present dis
closure is directed to a computer - implemented method for
generating a slate of ranked items . The method includes
inputting , by a computing system , a sequence of candidate
items into a machine learned model . The method includes
obtaining , by the computing system , in response to inputting
the sequence of candidate items into the machine learned
model , an output of the machine learned model that includes
a ranking of the candidate items that presents a diverse set
of the candidate items at the top positions in the ranking such
that one or more highly relevant candidate items are
demoted in the ranking .
[0010] Another example embodiment of the present dis
closure is directed to a computer - implemented method for

US 2019/0354839 A1 Nov. 21 , 2019
2

[0021] FIG . 6 depicts a block diagram of an example
pointer network architecture according to example embodi
ments of the present disclosure .
[0022] Reference numerals that are repeated across plural
figures are intended to identify the same features in various
implementations .

DETAILED DESCRIPTION

training a machine learned model to generate a slate of
ranked items . The method includes obtaining , by a comput
ing system , a training example that includes a sequence of
items and a plurality of binary labels , each binary label
corresponding to an item in the sequence of items , wherein
the binary labels represent user feedback for the correspond
ing item in the sequence . The method includes training , by
the computing system , a machine learned model with the
training example by using the binary labels corresponding to
the sequence of items as ground - truth for the sequence .
[0011] Another example embodiment of the present dis
closure is directed to a computer - implemented method for
generating a slate of ranked items . The method includes
inputting , by a computing system , a list of candidate items
into a machine - learned model . The method includes obtain
ing , by the computing system , in response to inputting the
list of candidate items into the machine learned model , an
output of the machine - learned model that includes a ranking
of the candidate items , wherein a placement of at least one
candidate item in the ranking is based at least partially on a
placement of at least one other candidate item in the ranking .
[0012] Another example embodiment of the present dis
closure is directed to one or more non - transitory computer
readable media that store a machine learned model . The
machine learned model can include one or more neural
networks . At least one of the neural network (s) is configured
to predict , from a list of items , a next item to place in a
ranking of items . The next item is selected based at least in
a part on one or more items already placed in the raking of
items .
[0013] Other example aspects of the present disclosure are
directed to systems , methods , vehicles , apparatuses , tan
gible , non - transitory computer - readable media , and memory
devices for slate optimization with recurrent neural net
works .
[0014] These and other features , aspects , and advantages
of various embodiments will become better understood with
reference to the following description and appended claims .
The accompanying drawings , which are incorporated in and
constitute a part of this specification , illustrate embodiments
of the present disclosure and , together with the description ,
serve to explain the related principles .

[0023] Generally , the present disclosure is directed to
systems and methods for generating a slate of ranked items
that is appealing as a whole . According to some example
aspects , a machine learned pointer network is provided that
is trained to point to items of an input sequence , rather than
predict an index from a fixed - sized vocabulary . The model
can , in some examples , produce a probability distribution
based at least in part on candidate items that already appear
in an output sequence . A candidate item can be selected for
the output sequence based at least in part on the probability
distribution . The decoder network can be configured to
allow the score of items to change based on previously
selected items . Items that already appear in the output
sequence can be assigned a score that can enforce the model
to output permutations . In this manner , the model can
account for high - order interactions in a manner that can be
both natural and scalable . In some examples , a machine
learned pointer network can be trained by providing feed
back to the model at each decoder step .
[0024] Ranking a set of candidate items is a central task in
machine learning and information retrieval . Most existing
ranking systems are based on pointwise estimators , where
the model assigns a score to each item in a candidate set and
the result is obtained by sorting the list according to item
scores . Such models are usually trained from click - through
data to optimize an appropriate loss function . This simple
approach is computationally attractive as it only requires a
sort operation over the candidate set at test time , and can
therefore scale up to large problems . On the other hand , in
terms of modeling , pointwise rankers cannot easily express
dependencies between ranked items . In particular , the score
of an item (e.g. , probability of being clicked) often depends
on the other items in the set and their joint placement . Such
interactions between items can be especially dominant in the
common case where display area is limited or when strong
position bias is present , so only few highly ranked items get
the user's attention . In this case it may be better , for
example , to choose a diverse set of items to present at the top
positions in order to cover a wider range of user interests ,
although this could mean that some highly relevant candi
dates are demoted .
[0025] Traditional work on learning - to - rank only consid
ers interactions between ranked items when training the
model , however the ranking function itself is pointwise so at
inference time the model still assigns a score to each item
which does not depend on scores of other items .
[0026] There has been some work on trying to capture
interactions between items in the ranking scores . In this case
it is possible , for example , to encourage a pair of items to
appear next to (or far from) each other in the resulting
ranking . Approaches in this category often restrict the func
tional form of the relational terms to simple functions (e.g. ,
submodular) in order to obtain tractable inference and
learning algorithms . Unfortunately , this comes at the
expense of the model's expressive power . Alternatively ,

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Detailed discussion of embodiments directed to
one of ordinary skill in the art is set forth in the specification ,
which makes reference to the appended figures , in which :
[0016] FIG . 1 depicts a block diagram of an example
computing system that can generate a slate of ranked items
that is appealing as a whole according to example embodi
ments of the present disclosure ;
[0017] FIG . 2 depicts a block diagram of an example
SEQ2SLATE model according to example embodiments of
the present disclosure ;
[0018] FIG . 3 depicts a block diagram of an example
SEQ2SLATE model according to example embodiments of
the present disclosure ;
[0019] FIG . 4 depicts a flow chart diagram of an example
method to generate a slate of ranked items that is appealing
as a whole according to example embodiments of the present
disclosure ;
[0020] FIG . 5 depicts a flow chart diagram of an example
method to train a SEQ2SLATE model according to example
embodiments of the present disclosure ; and

US 2019/0354839 A1 Nov. 21 , 2019
3

some greedy or approximate procedure is used for inference ,
which can still be quite computationally expensive .
[0027] Aspects of the present disclosure provide for a
sequence - to - sequence model for ranking called
SEQ2SLATE . In each step , the model predicts the next item
to place on the slate given the items already chosen .
Thereby , complex dependencies between items can be cap
tured directly in a flexible and scalable way that naturally
accounts for high - order interactions . In particular , a
sequence - to - sequence (seq2seq) model is used , where the
input is the list of candidate items and the output is the
resulting ordering . Since the output sequence corresponds to
ranked items on the slate , the model is called SEQ2SLATE .
[0028] Aspects of the present disclosure provide for end
to - end training of the SEQ2SLATE model to directly opti
mize several commonly used ranking measures . In particu
lar , the training can use weak supervision in the form of
click - through logs that are easy to obtain instead of relying
on relevance scores or ground - truth rankings , which can be
more expensive to obtain .
[0029] Aspects of the present disclosure provide for the
SEQ2SLATE model to include a machine learned pointer
network for generating an output sequence from a list of
candidate items in some examples . In some implementa
tions , the machine learned pointer network can include an
encoding network configured to receive the list of candidate
items and provide an output that includes a sequence of
latent memory states , a decoder network configured to
receive a previously - selected candidate item for the output
sequence and provide an output vector based at least in part
on the previously - selected candidate item , and an attention
network configured to receive the sequence of latent
memory states and a query including the output vector from
the decoder network to produce a probability distribution
associated with a next candidate item to include in the output
sequence . In some implementations , a computing system
can provide an input with the list of candidate items to the
machine learned pointer network , implement the machine
learned pointer network to process the list of candidate
items , receive an output generated by the machine learned
pointer network as a result of processing the list of candidate
items ; and select the next candidate item to include in the
output sequence based at least in part on the probability
distribution . In some implementations , the list of candidate
items can include a sequence of features associated with the
list of candidate items . In some implementations , the
machine learned pointer network can be trained to point to
candidate items in the list of candidate items based on a
plurality of learned parameters .
[0030] In some implementations , the attention network
can assign scores to the list of candidate items as part of
producing the probability distribution , and the scores
assigned to candidate items that already appear in the output
sequence can be lower than the scores assigned to candidate
items that do not already appear in the output sequence . The
scores assigned to candidate items that already appear in the
output sequence can enforce the attention network to output
permutations .
[0031] In some implementations , the decoder network can
operate over a plurality of decoding steps . In particular , a
learned vector can be provided as an input to a first decoding
step of the decoder network , and in response the decoder
network can provide an output vector based at least in part
on the learned vector . For a second decoding step of the

decoder network , an embedding that corresponds to the
previously - selected candidate item can be provided as an
input .
[0032] In some implementations , the encoder network can
include a first recurrent neural network that utilizes long
short - term memory cells , and the decoder network can
include a second recurrent neural network that utilizes long
short - term memory cells .
[0033] Aspects of the present disclosure provide for train
ing a machine learned pointer network for generating an
output sequence from list of candidate items . In some
implementations , the machine learned pointer network can
be trained by a model trainer that is configured to train the
machine learned pointer network based on a set of training
data . In particular , the model trainer can include one or more
computing devices that can obtain data descriptive of the
machine learned pointer network . The machine learned
pointer network can include an encoder network configured
to receive the list of candidate items and provide an output
that includes a sequence of latent memory states , a decoder
network that operates over a plurality of decoding steps and
is configured to receive a previously - selected candidate item
for the output sequence and provide an output vector based
at least in part on the previously - selected candidate item , and
an attention network configured to receive the sequence of
latent memory states and a query including the output vector
from the decoder network . The attention network can pro
duce a probability distribution associated with a next can
didate item to include in the output sequence .
[0034] In some implementations , the model trainer (e.g. ,
the one or more computing devices) can train the machine
learned pointer network by determining a per - step loss for
two or more of the plurality of decoding steps , and modify
one or more parameters of the machine learned pointer
network based at least in part on the per - step loss . The
per - step loss can represent a performance evaluation of the
machine learned pointer network based on the set of training
data . In some implementations , the model trainer can
enforce a permutation constraint on an output of the
machine learned pointer network . In some implementations ,
the model trainer can modify the one or more parameters of
the machine learned pointer network by backpropagating
the per - step loss to train the machine - learned pointer net
work end - to - end . In some implementations , the model
trainer can provide feedback based on the per - step loss to the
machine learned pointer network at each of the plurality of
decoding steps of the decoder network .
[0035] Aspects of the present disclosure provide for gen
erating an output sequence from a list of candidate items . In
particular , the list of candidate items can be ranked to
generate an initial sequence of candidate items . The initial
sequence of candidate items can be input into an encoder
network configured to receive the initial sequence of can
didate items and provide an output that includes a sequence
of latent memory states . A previously - selected candidate
item for the output sequence can be input into a decoder
network configured to receive the previously - selected can
didate item and provide an output vector based at least in
part on the previously - selected candidate item . The
sequence of latent memory states and a query including the
output vector from the decoder network can be input into an
attention network configured to receive the sequence of
latent memory states and the query including the output
vector from the decoder network , and produce a probability

US 2019/0354839 A1 Nov. 21 , 2019
4

one or more

distribution associated with a next candidate item to include
in the output sequence . In some implementations , the list of
candidate items can include a sequence of features associ
ated with the list of candidate items . In some implementa
tions , the encoder network can include a first recurrent
neural network that utilizes long short - term memory cells ,
and the decoder network can include a second recurrent
neural network that utilizes long short - term memory cells . In
some implementations , the encoder network , the decoder
network , and the attention network can be part of a machine
learned pointer network that is trained to point to candidate
items in the list of candidate items based on a plurality of
learned parameters .
[0036] In some implementations , the decoder network can
operate over a plurality of decoding steps including a first
decoding step and a second decoding step . A learned vector
can be provided as an input to the first decoding step , and in
response the decoder network can provide an output vector
based at least in part on the learned vector . An embedding
that corresponds to the previously - selected candidate item
can be input into the second decoding step of the decoder
network .
[0037] In some implementations , the attention network
can be configured to produce the probability distribution
based at least in part on candidate items that already appear
in the output sequence . A score assigned to each candidate
item that already appears in the output sequence can enforce
the attention network to output permutations .
[0038] With reference now to the Figures , example
embodiments of the present disclosure will be discussed in
further detail .

types of machine learned models , including non - linear mod
els and / or linear models . Neural networks can include feed
forward neural networks , recurrent neural networks (e.g. ,
long short - term memory recurrent neural networks) , convo
lutional neural networks or other forms of neural networks .
Example SEQ2SLATE models 120 are discussed with ref
erence to FIGS . 2 and 3 .

[0043] In some implementations , the
SEQ2SLATE models 120 can be received from the server
computing system 130 over network 180 , stored in the user
computing device memory 114 , and then used or otherwise
implemented by the one or more processors 112. In some
implementations , the user computing device 102 can imple
ment multiple parallel instances of a single SEQ2SLATE
model 120 (e.g. , to perform parallel ranking across multiple
instances of input sequences) .
[0044] More particularly , the SEQ2SLATE models 120
can provide a general and scalable approach to ranking ,
which naturally accounts for high - order interactions . The
SEQ2SLATE models 120 can include Recurrent Neural
Networks (RNNs) that can capture rich dependencies
between ranked items , while keeping the computational cost
of inference manageable . In order to support variable - size
input sequences , the SEQ2SLATE models 120 can use
pointer - networks , which are seq2seq models with an atten
tion mechanism for pointing at positions in the input . In each
step , the SEQ2SLATE models 120 predict the next item to
place on a slate of ranked items given the items already
chosen . Thereby , complex dependencies between items in an
input sequence can be captured directly in a flexible and
scalable way .
[0045] Additionally or alternatively , one
SEQ2SLATE models 140 can be included in or otherwise
stored and implemented by the server computing system 130
that communicates with the user computing device 102
according to a client - server relationship . For example , the
SEQ2SLATE models 140 can be implemented by the server
computing system 140 as a portion of a web service (e.g. , a
search engine service) . Thus , one or more models 120 can be
stored and implemented at the user computing device 102
and / or one or more models 140 can be stored and imple
mented at the server computing system 130 .
[0046] The user computing device 102 can also include
one or more user input component 122 that receives user
input . For example , the user input component 122 can be a
touch - sensitive component (e.g. , a touch - sensitive display
screen or a touch pad) that is sensitive to the touch of a user
input object (e.g. , a finger or a stylus) . The touch - sensitive
component can serve to implement a virtual keyboard . Other
example user input components include a microphone , a
traditional keyboard , or other means by which a user can
provide user input .
[0047] The server computing system 130 includes one or
more processors 132 and a memory 134. The one or more
processors 132 can be any suitable processing device (e.g. ,
a processor core , a microprocessor , an ASIC , a FPGA , a
controller , a microcontroller , etc.) and can be one processor
or a plurality of processors that are operatively connected .
The memory 134 can include one or more non - transitory
computer - readable storage mediums , such as RAM , ROM ,
EEPROM , EPROM , flash memory devices , magnetic disks ,
etc. , and combinations thereof . The memory 134 can store

or
Example Devices and Systems

[0039] FIG . 1 depicts a block diagram of an example
computing system 100 that can rank an input sequence of
items according to example embodiments of the present
disclosure . The system 100 includes a user computing
device 102 , a server computing system 130 , and a training
computing system 150 that are communicatively coupled
over a network 180 .
[0040] The user computing device 102 can be any type of
computing device , such as , for example , a personal com
puting device (e.g. , laptop or desktop) , a mobile computing
device (e.g. , smartphone or tablet) , a gaming console or
controller , a wearable computing device , an embedded com
puting device , or any other type of computing device .
[0041] The user computing device 102 includes one or
more processors 112 and a memory 114. The one or more
processors 112 can be any suitable processing device (e.g. ,
a processor core , a microprocessor , an ASIC , a FPGA , a
controller , a microcontroller , etc.) and can be one processor
or a plurality of processors that are operatively connected .
The memory 114 can include one or more non - transitory
computer - readable storage mediums , such as RAM , ROM ,
EEPROM , EPROM , flash memory devices , magnetic disks ,
etc. , and combinations thereof . The memory 114 can store
data 116 and instructions 118 which are executed by the
processor 112 to cause the user computing device 102 to
perform operations .
(0042] In some implementations , the user computing
device 102 can store or include one or more SEQ2SLATE
models 120. For example , the SEQ2SLATE models 120 can
be or can otherwise include various machine learned models
such as neural networks (e.g. , deep neural networks) or other

more

US 2019/0354839 A1 Nov. 21 , 2019
5

data 136 and instructions 138 which are executed by the
processor 132 to cause the server computing system 130 to
perform operations .
[0048] In some implementations , the server computing
system 130 includes or is otherwise implemented by one or
more server computing devices . In instances in which the
server computing system 130 includes plural server com
puting devices , such server computing devices can operate
according to sequential computing architectures , parallel
computing architectures , or some combination thereof .
[0049] As described above , the server computing system
130 can store or otherwise include one or more machine
learned SEQ2SLATE models 140. For example , the models
140 can be or can otherwise include various machine
learned models . Example machine learned models include
neural networks or other multi - layer non - linear models .
Example neural networks include feed forward neural net
works , deep neural networks , recurrent neural networks , and
convolutional neural networks . Example models 140 are
discussed with reference to FIGS . 2 and 3 .
[0050] The user computing device 102 and / or the server
computing system 130 can train the models 120 and / or 140
via interaction with the training computing system 150 that
is communicatively coupled over the network 180. The
training computing system 150 can be separate from the
server computing system 130 or can be a portion of the
server computing system 130 .
[0051] The training computing system 150 includes one or
more processors 152 and a memory 154. The one or more
processors 152 can be any suitable processing device (e.g. ,
a processor core , a microprocessor , an ASIC , a FPGA , a
controller , a microcontroller , etc.) and can be one processor
or a plurality of processors that are operatively connected .
The memory 154 can include one or more non - transitory
computer - readable storage mediums , such as RAM , ROM ,
EEPROM , EPROM , flash memory devices , magnetic disks ,
etc. , and combinations thereof . The memory 154 can store
data 156 and instructions 158 which are executed by the
processor 152 to cause the training computing system 150 to
perform operations . In some implementations , the training
computing system 150 includes or is otherwise implemented
by one or more server computing devices .
[0052] The training computing system 150 can include a
model trainer 160 that trains the machine learned models
120 and / or 140 stored at the user computing device 102
and / or the server computing system 130 using various
training or learning techniques , such as , for example , back
wards propagation of errors . In some implementations ,
performing backwards propagation of errors can include
performing truncated backpropagation through time . The
model trainer 160 can perform a number of generalization
techniques (e.g. , weight decays , dropouts , etc.) to improve
the generalization capability of the models being trained .
[0053] In particular , the model trainer 160 can train the
SEQ2SLATE models 120 and / or 140 based on training data
162. The training data 162 can include , for example , click
through logs . The click - through logs can be collected by
running the SEQ2SLATE models 120 and / or 140 in the wild .
This kind of training data can be collected with little cost , in
contrast to human - curated labels / rankings . However , this
and other types of training data can additionally and / or
alternatively be used . In particular , the training data 162 can
include a plurality of training examples . Each training
example in the training data 162 can include an input

sequence of items { x1 , . xn } and binary labels (y1 , ...
, Yn) with y ; E { 0 , 1 } representing user feedback (e.g. ,
click / no - click) . The input sequence can be ordered by a base
ranker , and when possible will include the per - item score of
the base ranker as an additional feature in x ;:
[0054] The training data can be generated by training the
base (e.g. , pointwise) ranker from raw data to rank items and
simulate a user cascading through the results and clicking on
items . Each item in the result can be observed with decaying
probability , such that if an item is observed and its ground
truth relevance score is above a threshold , then a click is
generated , otherwise no click is generated . Additionally ,
introduce high - order interactions , if an item is too similar to
a previously clicked item , then no click is generated even
when observing a relevant item .
[0055] In some implementations , if the user has provided
consent , the training examples can be provided by the user
computing device 102. Thus , in such implementations , the
model 120 provided to the user computing device 102 can be
trained by the training computing system 150 on user
specific data received from the user computing device 102 .
In some instances , this process can be referred to as per
sonalizing the model .
[0056] The model trainer 160 includes computer logic
utilized to provide desired functionality . The model trainer
160 can be implemented in hardware , firmware , and / or
software controlling a general purpose processor . For
example , in some implementations , the model trainer 160
includes program files stored on a storage device , loaded
into a memory , and executed by one or more processors . In
other implementations , the model trainer 160 includes one
or more sets of computer - executable instructions that are
stored in a tangible computer - readable storage medium such
as RAM hard disk or optical or magnetic media .
[0057] The network 180 can be any type of communica
tions network , such as a local area network (e.g. , intranet) ,
wide area network (e.g. , Internet) , or some combination
thereof and can include any number of wired or wireless
links . In general , communication over the network 180 can
be carried via any type of wired and / or wireless connection ,
using a wide variety of communication protocols (e.g. ,
TCP / IP , HTTP , SMTP , FTP) , encodings or formats (e.g. ,
HTML , XML) , and / or protection schemes (e.g. , VPN ,
secure HTTP , SSL) .
[0058] FIG . 1 illustrates one example computing system
that can be used to implement the present disclosure . Other
computing systems can be used as well . For example , in
some implementations , the user computing device 102 can
include the model trainer 160 and the training data 162. In
such implementations , the models 120 can be both trained
and used locally at the user computing device 102. In some
of such implementations , the user computing device 102 can
implement the model trainer 160 to personalize the models
120 based on user - specific data .

Example Model Arrangements
[0059] FIG . 2 depicts a block diagram of an example
SEQ2SLATE model 200 according to example embodi
ments of the present disclosure . In some implementations ,
the SEQ2SLATE model 200 is trained to receive input data
202 descriptive of a sequence of candidate items and , as a
result of receipt of the input data 202 , provide output data
214 that includes a slate of ranked items from the sequence
of candidate items . In some implementations , the

US 2019/0354839 A1 Nov. 21 , 2019
6

loss) with the binary label that corresponds to an input item
as a ground - truth for the item . The model trainer 160 can
allow the binary labels to change in each step , depending on
previous predictions , so they do not incur a loss after that
step . The model trainer 160 can optimize the SEQ2SLATE
model 300 for a particular slate size k by only computing the
loss for the first k output steps of the SEQ2SLATE model
300 .

SEQ2SLATE model 200 can receive input data 202 descrip
tive of a list of candidate items , as a result of receipt of the
input data 202 , determine a sequence of the candidate items ,
and provide output data 214 that includes a slate of ranked
items from the sequence of candidate items .
[0060] FIG . 3 depicts a block diagram of an example
SEQ2SLATE model 300 according to example embodi
ments of the present disclosure . The SEQ2SLATE model
300 is similar to SEQ2SLATE model 200 of FIG . 2 except
that SEQ2SLATE model 300 further includes an encoder
204 , decoder 208 , and attention function 210. The encoder
204 and the decoder 208 can each consist of a recurrent
neural network (RNN) that uses Long Short Term Memory
cells . The attention function can include a pointer network
architecture that uses non - parametric softmax modules , and
learns to point to items of its input sequence .
[0061] In some implementations , the SEQ2SLATE model
300 is trained to receive input data 202 descriptive of a
sequence of candidate items and , as a result of receipt of the
input data 202 , provide output data 214 that includes a slate
of ranked items from the candidate items . In particular , the
SEQ2SLATE model 300 can provide the input data 202 into
the encoder 204. The encoder 204 can read each item of the
sequence of candidate items in the input data 202 sequen
tially , and at each encoding step the encoder can output a
d - dimensional vector for the item , thus transforming the
input sequence of candidate items into a sequence of latent
memory states 206. The SEQ2SLATE model 300 can pro
vide the sequence of latent memory state 206 into the
decoder 208. At each decoding step , the decoder 208 can
output a d - dimensional vector 209 which is used as a query
in the attention function 210. The attention function 210 can
take as input the vector 209 output by the decoder 208 and
the latent memory states 206. The attention function 210 can
output a probability distribution over the next item from the
input sequence of candidate items to include in a sequence
of ranked items in the output data 214. The probability
distribution can represent the degree to which the
SEQ2SLATE model 300 is pointing at a particular input
item in the input data 202 at a particular decoding step of the
decoder 208. Once the next item to include in the sequence
of ranked items in the output data 214 is selected , an
embedding 212 of the next item is fed as input to the next
decoder step of the decoder 208. The input of the first
decoder step can include a learned d - dimensional vector that
is shared for all inputs in the input data 202 .
[0062] In some implementations , the SEQ2SLATE model
300 can be trained by the model trainer 160 using the
training data 162. The goal of the model trainer 160 can be
to learn the parameters of the SEQ2SLATE model 300 such
that a slate of ranked items that corresponds to a “ good ”
ranking is assigned a high probability , and a slate of ranked
items in which the positive labels rank higher is considered
better . The model trainer 160 can train the SEQ2SLATE
model 300 to predict the positive labels at the beginning of
the output sequence . In particular , the model trainer 160 can
input a sequence of items associated with a training example
in the training data 162 into the SEQ2SLATE model 300 .
The model trainer 160 can train the SEQ2SLATE model 300
directly from the binary labels corresponding to the input
sequence of items . For each output step of the SEQ2SLATE
model 300 , the model trainer 160 can obtain a score for each
item in the input sequence of items . The model trainer 160
can define a per - step loss (e.g. , a multi - label classification

Example Methods
[0063] FIG . 4 depicts a flow chart diagram of an example
method 400 to generate a slate of ranked items that is
appealing as a whole according to example embodiments of
the present disclosure . Although FIG . 4 depicts steps per
formed in a particular order for purposes of illustration and
discussion , the methods of the present disclosure are not
limited to the particularly illustrated order or arrangement .
The various steps of the method 400 can be omitted ,
rearranged , combined , and / or adapted in various ways with
out deviating from the scope of the present disclosure .
[0064] At 402 , a computing system can receive an input
sequence of candidate items . For example , the computing
system 102/130 can obtain input data 202 that includes a
sequence of candidate items . In some implementations , the
computing system 102/130 can obtain a list of candidate
items , and the computing system 102/130 can determine the
sequence of candidate items based on the list by ranking the
candidate items in the list using a base ranker .
[0065] At 404 , the computing system can provide the
input to an encoder network . For example , the computing
system 102/130 can input the input data 202 into the
SEQ2SLATE model 120/140 . In particular , the computing
system 102/130 can input the sequence of candidate items in
the input data 202 into the encoder 204 that consists of a
recurrent neural network .
[0066] At 406 , the computing system can provide an
output of the encoder network to a decoder network . For
example , the computing system 102/130 can obtain , in
response to inputting the sequence of candidate items in the
input data 202 into the encoder 204 , an output of the encoder
204 that includes a sequence of latent memory states 206 .
The computing system 102/130 can input the sequence of
latent memory states 206 into the decoder 208 that consists
of a recurrent neural network .
[0067] At 408 , the computing system can provide an
output of the decoder network to an attention network . For
example , the computing system 102/130 can obtain , in
response to inputting the latent memory states 206 and an
embedding 212 that corresponds to a candidate item selected
in response to a previous decoding step of the decoder 208 ,
an output of the decoder 208 that includes an output vector
209. The computing system 102/130 can input a learned
vector that is shared for all the candidate items in the input
data 202 for a first decoding step of the decoder 208. The
computing system 102/130 can input the output vector 209
and the latent memory states 206 into the attention function
210 that consists of a pointer network that points to items of
its input sequence .
[0068] At 410 , the computing system can feedback an
output of the attention network into the decoder network .
For example , the computing system 102/130 can obtain , in
response to inputting the output vector 209 and the latent
memory states 206 into the attention function 210 , an output
of the attention function that includes a probability distri

US 2019/0354839 A1 Nov. 21 , 2019
7

seq2seq framework , the joint probability of the outputs
given the inputs can be expressed as a product of conditional
probabilities according to the chain rule :

(1)
p (t | x) = P (74 ; 71 , ... , 77j - 1 , x) ,

j = 1

bution over one or more candidate items . The computing
system 102/130 can select a candidate item to include in a
ranking of the candidate items based at least in part on the
output of the attention function 210. The computing system
102/130 can input an embedding that corresponds to the
selected candidate item into the decoder 208 for use in a next
decoder step .
[0069] At 412 , the computing system can provide an
output of a slate of ranked items from the candidate items .
For example , the computing system 102/130 can obtain in
response to inputting the input data 202 into the
SEQ2SLATE model 120/140 , an output of the SEQ2SLATE
model 120/140 that includes a ranking of the candidate
items . The ranking of the candidate items can include a
diverse set of the candidate items at the top positions in the
ranking such that one or more highly relevant candidate
items are demoted in the ranking . The computing system
102/130 can provide the ranking of the candidate items as a
slate of ranked items in the output data 214 .
[0070] FIG . 5 depicts a flow chart diagram of an example
method 500 to train a machine learned model to generate a
slate of ranked items that is appealing as a whole according
to example embodiments of the present disclosure . Although
FIG . 5 depicts steps performed in a particular order for
purposes of illustration and discussion , the methods of the
present disclosure are not limited to the particularly illus
trated order or arrangement . The various steps of the method
500 can be omitted , rearranged , combined , and / or adapted in
various ways without deviating from the scope of the present
disclosure .
[0071] At 502 , the computing system can obtain a training
example that includes click - through data . For example , the
computing system 150 can obtain training data 162 that
includes one or more training examples . Each training
example can include a sequence of items and a plurality of
binary labels , each binary label corresponding to an item in
the sequence of items . The plurality of binary labels can
represent user feedback for the corresponding item in the
sequence .
[0072] At 504 , the computing system can train a
SEQ2SLATE model using the click - through data . For
example , the computing system 150 can train the
SEQ2SLATE model 120/140 with a training example in the
training data 162. In particular , the model trainer 160 can
input a sequence of items associated with the training
example into the SEQ2SLATE model 120/140 . In response
to inputting the sequence of items , for each output step of the
SEQ2SLATE model 120/140 , the model trainer 160 can
obtain an output of the SEQ2SLATE model 120/140 that
includes a score for each item in the input sequence and a
prediction of a positive item from the input sequence of
items . The model trainer 160 can evaluate a loss associated
with the score for each input item by using the binary label
that corresponds to the input item as ground - truth , and adjust
the binary label corresponding to the predicted item such
that the label does not incur a loss in a subsequent step .

The conditional p (t ; = . \ T < j > X) EA ” (a point in the n - dimen
sional simplex) models the probability of each item to be at
the j'th position in the ranking given the items already placed
in previous positions , and captures the high - order depen
dencies between items in the ranked list . The SEQ2SLATE
model provides for inputs of variable size and an output
vocabulary size that is not fixed , so n can vary per instance .
To address this , a pointer network architecture is used to
model the conditional p (st ; IT_j? x) . An example pointer
network architecture for ranking in the SEQ2SLATE model
is shown in FIG . 6. The pointer network can use non
parametric softmax modules , and learn to point to items of
its input sequence rather than predicting an index from a
fixed sized vocabulary .
[0074] The SEQ2SLATE model can include two recurrent
neural networks (RNN) : an encoder and a decoder , both of
which can use long short - term memory (LSTM) cells . At
each encoding step i , the encoder RNN can read the input
vector x ; and output a d - dimensional vector e ;, thus trans
forming the input sequence { x ; } ; = ? into a sequence of latent
memory states { e ; } i = 1 • At each decoding step j , the decoder
RNN outputs a d - dimensional vector d , which is used as a
query in the attention function . The attention function takes
as input the query d , ER " and the set of latent memory states
computed by the encoder { e ; } z = 1 " and produces a probability
distribution over the next item to include in the output
sequence as follows :

- (2) . = { if T?p = i for any j < j
I w.tanh (We Yenc ® ; + Wdec.d ;) otherwise

pe (T ; = i | A < j , x) = softmax (s) ; = pi ,

ency where W W Idee ER dxd and veRd are learned parameters
in the network , denoted as 0 , and softmax (s) ; = e * Eyes . The probability distribution peq = ile , x) represents the degree to
which the model is pointing at input i at decoding step j . The
scores s are set to -o for items i that already appear in the
slate thus enforcing the model to output permutations . Once
the next item n ; is selected , typically greedily or by sam
pling , its embedding xn , is fed as input to the next decoder
step . The input of the first decoder step is a learned d - di
mensional vector shared for all inputs (e.g. , label 601 in FIG .
6) .
[0075] The computational cost of inference is dominated
by the sequential decoding procedure , and is O (n) Addi
tionally , a computationally cheaper single - step decoder with
linear cost O (n) is considered , which outputs a single output
vector pl , rom which a obtained by sorting values
(similarly to pointwise ranking) .
[0076] According to aspects of the present disclosure , the
seq2slate model can be trained from data in which each
training example consists of a sequence of items { x1 , ... ,

Example Pointer Network
[0073] Aspects of the present disclosure provide for for
malizing the ranking task as follows . Given a set of n items ,
each represented by a feature vector x , ER " , let TENI denote
a permutation of the items , where each t , E { 1 , ... , n }
denotes the index of the item in position j . The goal is to
predict the output ranking it given the input items x . In the

US 2019/0354839 A1 Nov. 21 , 2019
8

functions of the scores s . To improve convergence , a smooth
version of the hinge loss can be used to replace the maxi
mum and minimum by their smooth counterparts

(0.8 . , smooth – max (s ; y) = -logers) .

xn } and binary labels (Y1 , , yn) , with y , E { 0 , 1 } ,
representing user feedback (e.g. , click / no - click) . This
approach can easily extend to more informative feedback ,
such as the level of user engagement within the chosen item .
The input sequence x can be ordered by a base ranker (e.g. ,
an existing recommender) . The input sequence can also
include per - item scores from the base ranker as an additional
feature for each x ;. The goal is to learn the parameters 0 of
pe (T , IT « , x) (Eq . (2)) such that permutations et correspond
ing to good rankings are assigned high probabilities . Various
ranking metrics R (ht , y) , such as mean - average - precision
(MAP) precision at k , or normalized - discounted - cumula
tive - gains at k (NDCG @ k) can be used to measure the
quality of a given the labels y . Generally , permutations
where the positive labels rank higher are considered better .
[0077] In some implementations , reinforcement learning
(RL) can be used to directly optimize for the ranking
measure R (st , y) . The objective is to maximize the expected
(cumulative) ranking score obtained by sequences sampled
from the model : J (0] x , y) = E T - P8 (, \ x) R (n , y) . Policy gradients
and stochastic gradient descent can be used to optimize 0 .
The gradient can be formulated using REINFORCE update
and can be approximated via Monte - Carlo sampling as
follows :

The smooth minimum can be defined similarly , using min ;
(s ;) = - max , (- s ;) . Instead of simply applying a per - step ss
from Eq . (3) to all steps of the output sequence while reusing
the same labels y at each step , y can be allowed to change
at each decoding step and labels of already chosen items can
be set to zero so they do not incur loss after that step :

o if t ; = i for any j < j
? (y , T) ; = { yi otherwise

[0079] Once all positive labels are predicted , ? = 0 and
1 (s , ?) = 0 for all S. In order to match the model behavior at
training to the behavior of inference , the scores S are set to
-oo which enforces a permutation constraint on the output .
The corresponding label is also set to 0 so that the loss will
not be unbounded . The overall sequence loss is then :

VAJ (@ | x , y) = Ex - pol- \ x) [R (1 , y) Velog po (t | x)] ?
B 11 (Rifk , Yk) – b (xk)) Velog petak | xk) , (4) L (S , y) = w ; l (s !, (y , (S)) ,

j = 1

W ; = 1 /

where S = { { s ') } ; - i " , and Ý (y , c (S)) refers to the adjusted
labels . A per - step weight w ; can be used to encourage better
performance at the beginning of the sequence (e.g. , w
log ()) . If optimizing for a particular slate size k , this loss can
be computed only for the first k output steps . Using the
sequence loss in Eq . (4) , the SEQ2SLATE model can be
trained end - to - end using back - propagation .

Additional Disclosure

where k indexes ranking instances in a batch size of B and
b (x) denotes a baseline function that estimates the expected
rewards to reduce the variance of the gradients .
[0078] In some implementations , supervised learning can
be used to optimize for the ranking measure R ? (t , y) . The
seq2seq model can be trained to maximize a likelihood of a
target sequence of tokens given an input . Using Eq . (1) , this
can be done by maximizing the likelihood for each target
token given the previous target tokens . Instead , the seq2slate
model can be trained directly from the binary labels y (e.g. ,
clicks) . The goal in ranking in some examples is to train the
model to predict the positive labels at the beginning of the
output sequence . Rather than waiting until the end of the
output sequence , as in RL , the model can be given feedback
at each decoder step . For example , at the first step , the model
can assign a score s ; to each item in the input . A per - step loss
1 (s , y) can be defined which acts as a multi - label classifica
tion loss with labels y as ground - truth , such as cross - entropy
loss and hinge loss :

[0080] The systems and methods discussed herein may
provide a number of technical effects and benefits . For
instance , the disclosed techniques enable a model (e.g. ,
SEQ2SLATE) that can predict a next item to place on a slate
given the items already chosen from a list of candidate
items . By capturing complex dependencies between candi
date items that accounts for high - order interactions between
the items , a diverse set of items can be presented at the top
positions on the slate (as opposed to presenting items based
solely on a ranking score) . This can be advantageous when ,
for example , a ranking score of an item depends on other
items in the candidate list and their joint placement . Such
interactions between items can be especially dominant
where display area is limited (and fewer items can be
presented) or when a strong position bias is present . In these
cases only a few highly ranked items may get the user's
attention . By presenting a more diverse set of items , a wider
range of user interests can be represented , thus improving
the user experience . Moreover , computational resources can
be conserved by efficient encoding and decoding techniques
as well as the use of an attention network .

{ xent (s , y) = -ýlogp : (3)

lninge (s , y) = max { 0 , 1 min S ; + max S ;
1 : y ; = 1 j : y ; = 0

where ? y ; / ; y ; and p ; is defined in Eq . (2) . The cross
entropy loss can assign high sores to positive labels , and the
hinge loss is minimized when scores of positive labels are
higher than scores of negative labels . Both losses are convex

US 2019/0354839 A1 Nov. 21 , 2019
9

[0081] Additionally , the present disclosure enables the
SEQ2SLATE model to consider the dependencies between
candidate times in a flexible and scalable manner that
naturally accounts for high - order interactions . In this way ,
the model can consider the inter - item dependences at infer
ence time (as opposed to only when training the model)
without restricting the functional form of the relational terms
to simple functions (e.g. , submodular) in order to obtain
tractable inference and learning algorithms . Thus , the mod
el's expressive power can be maintained , allowing the
model to capture rich dependencies between ranked items ,
while keeping the computational cost of inference manage
able .
[0082] The present disclosure further enables the
SEQ2SLATE model to be trained end - to - end using weak
supervision in the form of binary click - through logs . Such
click - through logs are generally easier to obtain end less
expensive than relying on relevance scores or ground - truth
rankings . By enabling a model that can be trained using
binary click - through logs , more training data at lower cost
can be used to train the model , thus improving both training
efficiency and the model's efficacy .
[0083] The technology discussed herein makes reference
to servers , databases , software applications , and other com
puter - based systems , as well as actions taken and informa
tion sent to and from such systems . The inherent flexibility
of computer - based systems allows for a great variety of
possible configurations , combinations , and divisions of tasks
and functionality between and among components . For
instance , processes discussed herein can be implemented
using a single device or component or multiple devices or
components working in combination . Databases and appli
cations can be implemented on a single system or distributed
across multiple systems . Distributed components can oper
ate sequentially or in parallel .
[0084] While the present subject matter has been
described in detail with respect to various specific example
embodiments thereof , each example is provided by way of
explanation , not limitation of the disclosure . Those skilled in
the art , upon attaining an understanding of the foregoing ,
can readily produce alterations to , variations of , and equiva
lents to such embodiments . Accordingly , the subject disclo
sure does not preclude inclusion of such modifications ,
variations and / or additions to the present subject matter as
would be readily apparent to one of ordinary skill in the art .
For instance , features illustrated or described as part of one
embodiment can be used with another embodiment to yield
a still further embodiment . Thus , it is intended that the
present disclosure cover such alterations , variations , and
equivalents .
What is claimed is :
1. A computer system comprising :
one or more processors ; and
one or more non - transitory computer readable media that

collectively store :
a machine learned pointer network for generating an

output sequence from a list of candidate items , the
machine learned pointer network comprising :
an encoder network configured to receive the list of

candidate items and provide an output that includes
a sequence of latent memory states ;

a decoder network configured to receive a previously
selected candidate item for the output sequence and

provide an output vector based at least in part on the
previously - selected candidate item ; and

an attention network configured to receive the sequence
of latent memory states and a query including the
output vector from the decoder network , the atten
tion network configured to produce a probability
distribution associated with a next candidate item to
include in the output sequence , wherein the attention
network produces the probability distribution based
at least in part on candidate items that already appear
in the output sequence ; and

instructions that , when executed by the one or more
processors , cause the computer system to perform
operations , the operations comprising :
providing an input associated with the list of candidate

items to the machine learned pointer network ;
implementing the machine learned pointer network to

process the list of candidate items ;
receiving an output generated by the machine - learned

pointer network as a result of processing the list of
candidate items ; and

selecting the next candidate item to include in the
output sequence based at least in part on the prob
ability distribution .

2. The computing system of claim 1 , wherein :
the attention network assigns scores to the list of candi

date items as part of producing the probability distri
bution ; and

the scores assigned to candidate items that already appear
in the output sequence are lower than the scores
assigned to candidate items that do not already appear
in the output sequence .

3. The computing system of claim 2 , wherein :
the scores assigned to candidate items that already appear

in the output sequence enforces the attention network to
output permutations .

4. The computer system of claim 1 , wherein :
the decoder network operates over a plurality of decoding

steps including a first decoding step ; and
a learned vector is provided as an input to the first

decoding step , and in response the decoder network
provides an output vector based at least in part on the
learned vector .

5. The computer system of claim 4 , wherein :
the plurality of decoding steps includes a second decoding

step ; and
the operations further comprise inputting an embedding

that corresponds to the previously - selected candidate
item into the second decoding step of the decoder
network .

6. The computer system of claim 1 , wherein the list of
candidate items comprises a sequence of features associated
with the list of candidate items .

7. The computer system of claim 1 , wherein :
the encoder network includes a first recurrent neural

network that utilizes long short - term memory cells ; and
the decoder network includes a second recurrent neural

network that utilizes long short - term memory cells .
8. The computer system of claim 1 , wherein the machine

learned pointer network is trained to point to candidate items
in the list of candidate items based on a plurality of learned
parameters .

US 2019/0354839 A1 Nov. 21 , 2019
10

candidate items and provide an output that includes a
sequence of latent memory states ;

inputting , by the one or more computing devices , a
previously - selected candidate item for the output
sequence into a decoder network configured to receive
the previously - selected candidate item and provide an
output vector based at least in part on the previously
selected candidate item ; and

inputting the sequence of latent memory states and a
query including the output vector from the decoder
network into an attention network configured to receive
the sequence of latent memory states and the query
including the output vector from the decoder network ,
the attention network configured to produce a probabil
ity distribution associated with a next candidate item to
include in the output sequence .

14. The computer - implemented method of claim 13 ,
wherein :

the decoder network operates over a plurality of decoding
steps including a first decoding step ; and

a learned vector is provided as an input to the first
decoding step , and in response the decoder network
provides an output vector based at least in part on the
learned vector .

15. The computer - implemented method of claim 14 ,
wherein :

the plurality of decoding steps includes a second decoding

9. A computer - implemented method to train a machine
learned pointer network for generating an output sequence
from a list of candidate items , the method comprising :

obtaining , by one or more computing devices , data
descriptive of the machine learned pointer network ,
wherein the machine learned pointer network com
prises an encoder network configured to receive the list
of candidate items and provide an output that includes
a sequence of latent memory states , a decoder network
that operates over a plurality of decoding steps and is
configured to receive a previously - selected candidate
item for the output sequence and provide an output
vector based at least in part on the previously - selected
candidate item , and an attention network configured to
receive the sequence of latent memory states and a
query including the output vector from the decoder
network , wherein the attention network is configured to
produce a probability distribution associated with a
next candidate item to include in the output sequence ;

training , by the one or more computing devices , the
machine learned pointer network based on a set of
training data , wherein training , by the one or more
computing devices , the machine learned pointer net
work comprises :

determining , by the one or more computing devices , a
per - step loss for two or more of the plurality of decod
ing steps , the per - step loss representing a performance
evaluation of the machine learned pointer network
based on the set of training data ; and

modifying , by the one or more computing devices , one or
more parameters of the machine learned pointer net
work based at least in part on the per - step loss .

10. The computer - implemented method of claim 9 ,
wherein training , by the one or more computing devices , the
machine learned pointer network comprises :

enforcing a permutation constraint on an output of the
machine learned pointer network .

11. The computer - implemented method of claim 9 ,
wherein modifying , by the one or more computing devices ,
one or parameters of the machine - learned pointer network
comprises backpropagating the per - step loss to train the
machine learned pointer network end - to - end .

12. The computer - implemented method of claim 9 ,
wherein feedback based on the per - step loss is provided to
the machine learned pointer network at each of a plurality of
decoding steps of the decoder network .

13. A computer - implemented method to generate an out
put sequence from a list of candidate items , the method
comprising :

ranking , by one or more computing devices , the list of
candidate items to generate an initial sequence of
candidate items ;

inputting , by the one or more computing devices , the
initial sequence of candidate items into an encoder
network configured to receive the initial sequence of

step ; and
the method further comprises inputting an embedding that

corresponds to the previously selected candidate item
into the second decoding step of the decoder network .

16. The computer - implemented method of claim 13 ,
wherein the list of candidate items comprises a sequence of
features associated with the list of candidate items .

17. The computer - implemented method of claim 13 ,
wherein :

the encoder network includes a first recurrent neural
network that utilizes long short - term memory cells ; and

the decoder network includes a second recurrent neural
network that utilizes long short - term memory cells .

18. The computer - implemented method of claim 13 ,
wherein the encoder network , the decoder network , and the
attention network are part of a machine - learned pointer
network that is trained to point to candidate items in the list
of candidate items based on a plurality of learned param
eters .

19. The computer - implemented method of claim 13 ,
wherein the attention network is configured to produce the
probability distribution based at least in part on candidate
items that already appear in the output sequence .

20. The computer - implemented method of claim 13 ,
wherein a score assigned to each candidate item that already
appears in the output sequence enforces the attention net
work to output permutations .

