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SYSTEMS AND METHODS FOR SLATE 
OPTIMIZATION WITH RECURRENT 

NEURAL NETWORKS 

PRIORITY CLAIM 
[ 0001 ] The present application claims the benefit of pri 
ority of U.S. Provisional Patent Application No. 62 / 673,821 
filed May 18 , 2018 , entitled “ Systems And Methods For 
Slate Optimization with Recurrent Neural Networks . ” The 
above - referenced patent application is incorporated herein 
by reference . 

FIELD 

[ 0002 ] The present disclosure relates generally to gener 
ating a slate of ranked items . 

BACKGROUND 

[ 0003 ] Ranking is a central task in machine learning and 
information retrieval . In this task , it is especially important 
to present the user with a slate of items that is useful . 

SUMMARY 

[ 0004 ] Aspects and advantages of the present disclosure 
will be set forth in part in the following description , or may 
be learned from the description , or may be learned through 
practice of the embodiments . 
[ 0005 ] One example embodiment of the present disclosure 
is directed to a computer system that includes one or more 
processors , and one or more non - transitory computer read 
able media that collectively store a machine learned pointer 
network for generating an output sequence from a list of 
candidate items . The machine learned pointer network can 
include an encoder network configured to receive the list of 
candidate items and provide an output that includes a 
sequence of latent memory states . The machine learned 
pointer network can include a decoder network configured to 
receive a previously - selected candidate item for the output 
sequence and provide an output vector based at least in part 
on the previously - selected candidate item . The machine 
learned pointer network can include an attention network 
configured to receive the sequence of latent memory states 
and a query including the output vector from the decoder 
network , and produce a probability distribution associated 
with a next candidate item to include in the output sequence . 
The attention network can produce the probability distribu 
tion based at least in part on candidate items that already 
appear in the output sequence . The machine learned pointer 
network can include instructions that , when executed by the 
one or more processors , cause the computer system to 
perform operations . The operations can include providing an 
input associated with the list of candidate items to the 
machine learned pointer network . The operations can 
include implementing the machine learned pointer network 
to process the list of candidate items . The operations can 
include receiving an output generated by the machine 
learned pointer network as a result of processing the list of 
candidate items . The operations can include selecting the 
next candidate item to include in the output sequence based 
at least in part on the probability distribution . 
[ 0006 ] Another example embodiment of the present dis 
closure is directed to a computer - implemented method to 
train a machine learned pointer network for generating an 
output sequence from a list of candidate items . The method 

can include obtaining , by one or more computing devices , 
data descriptive of the machine learned pointer network . 
The machine learned pointer network can include an 
encoder network configured to receive the list of candidate 
items and provide an output that includes a sequence of 
latent memory states , a decoder network that operates over 
a plurality of decoding steps and is configured to receive a 
previously - selected candidate item for the output sequence 
and provide an output vector based at least in part on the 
previously - selected candidate item , and an attention network 
configured to receive the sequence of latent memory states 
and a query including the output vector from the decoder 
network . The attention network can be configured to pro 
duce a probability distribution associated with a next can 
didate item to include in the output sequence . 
[ 0007 ] The method can include training , by the one or 
more computing devices , the machine learned pointer net 
work based on a set of training data . The training , by the one 
or more computing devices , can include determining , by the 
one or more computing devices , a per - step loss for two or 
more of the plurality of decoding steps , the per - step loss 
representing a performance evaluation of the machine 
learned pointer network based on the set of training data . 
The training can include modifying , by the one or more 
computing devices , one or more parameters of the machine 
learned pointer network based at least in part on the per - step 
loss . 
[ 0008 ] Another example embodiment of the present dis 
closure is directed to a computer - implemented method to 
generate an output sequence from a list of candidate items . 
The method can include ranking , by one or more computing 
devices , the list of candidate items to generate an initial 
sequence of candidate items . The method can include input 
ting , by the one or more computing devices , the initial 
sequence of candidate items into an encoder network con 
figured to receive the initial sequence of candidate items and 
provide an output that includes a sequence of latent memory 
states . The method can include inputting , by the one or more 
computing devices , a previously - selected candidate item for 
the output sequence into a decoder network configured to 
receive the previously - selected candidate item and provide 
an output vector based at least in part on the previously 
selected candidate item . The method can include inputting 
the sequence of latent memory states and a query including 
the output vector from the decoder network into an attention 
network configured to receive the sequence of latent 
memory states and the query including the output vector 
from the decoder network . The attention network can be 
configured to produce a probability distribution associated 
with a next candidate item to include in the output sequence . 
[ 0009 ] Another example embodiment of the present dis 
closure is directed to a computer - implemented method for 
generating a slate of ranked items . The method includes 
inputting , by a computing system , a sequence of candidate 
items into a machine learned model . The method includes 
obtaining , by the computing system , in response to inputting 
the sequence of candidate items into the machine learned 
model , an output of the machine learned model that includes 
a ranking of the candidate items that presents a diverse set 
of the candidate items at the top positions in the ranking such 
that one or more highly relevant candidate items are 
demoted in the ranking . 
[ 0010 ] Another example embodiment of the present dis 
closure is directed to a computer - implemented method for 
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[ 0021 ] FIG . 6 depicts a block diagram of an example 
pointer network architecture according to example embodi 
ments of the present disclosure . 
[ 0022 ] Reference numerals that are repeated across plural 
figures are intended to identify the same features in various 
implementations . 

DETAILED DESCRIPTION 

training a machine learned model to generate a slate of 
ranked items . The method includes obtaining , by a comput 
ing system , a training example that includes a sequence of 
items and a plurality of binary labels , each binary label 
corresponding to an item in the sequence of items , wherein 
the binary labels represent user feedback for the correspond 
ing item in the sequence . The method includes training , by 
the computing system , a machine learned model with the 
training example by using the binary labels corresponding to 
the sequence of items as ground - truth for the sequence . 
[ 0011 ] Another example embodiment of the present dis 
closure is directed to a computer - implemented method for 
generating a slate of ranked items . The method includes 
inputting , by a computing system , a list of candidate items 
into a machine - learned model . The method includes obtain 
ing , by the computing system , in response to inputting the 
list of candidate items into the machine learned model , an 
output of the machine - learned model that includes a ranking 
of the candidate items , wherein a placement of at least one 
candidate item in the ranking is based at least partially on a 
placement of at least one other candidate item in the ranking . 
[ 0012 ] Another example embodiment of the present dis 
closure is directed to one or more non - transitory computer 
readable media that store a machine learned model . The 
machine learned model can include one or more neural 
networks . At least one of the neural network ( s ) is configured 
to predict , from a list of items , a next item to place in a 
ranking of items . The next item is selected based at least in 
a part on one or more items already placed in the raking of 
items . 
[ 0013 ] Other example aspects of the present disclosure are 
directed to systems , methods , vehicles , apparatuses , tan 
gible , non - transitory computer - readable media , and memory 
devices for slate optimization with recurrent neural net 
works . 
[ 0014 ] These and other features , aspects , and advantages 
of various embodiments will become better understood with 
reference to the following description and appended claims . 
The accompanying drawings , which are incorporated in and 
constitute a part of this specification , illustrate embodiments 
of the present disclosure and , together with the description , 
serve to explain the related principles . 

[ 0023 ] Generally , the present disclosure is directed to 
systems and methods for generating a slate of ranked items 
that is appealing as a whole . According to some example 
aspects , a machine learned pointer network is provided that 
is trained to point to items of an input sequence , rather than 
predict an index from a fixed - sized vocabulary . The model 
can , in some examples , produce a probability distribution 
based at least in part on candidate items that already appear 
in an output sequence . A candidate item can be selected for 
the output sequence based at least in part on the probability 
distribution . The decoder network can be configured to 
allow the score of items to change based on previously 
selected items . Items that already appear in the output 
sequence can be assigned a score that can enforce the model 
to output permutations . In this manner , the model can 
account for high - order interactions in a manner that can be 
both natural and scalable . In some examples , a machine 
learned pointer network can be trained by providing feed 
back to the model at each decoder step . 
[ 0024 ] Ranking a set of candidate items is a central task in 
machine learning and information retrieval . Most existing 
ranking systems are based on pointwise estimators , where 
the model assigns a score to each item in a candidate set and 
the result is obtained by sorting the list according to item 
scores . Such models are usually trained from click - through 
data to optimize an appropriate loss function . This simple 
approach is computationally attractive as it only requires a 
sort operation over the candidate set at test time , and can 
therefore scale up to large problems . On the other hand , in 
terms of modeling , pointwise rankers cannot easily express 
dependencies between ranked items . In particular , the score 
of an item ( e.g. , probability of being clicked ) often depends 
on the other items in the set and their joint placement . Such 
interactions between items can be especially dominant in the 
common case where display area is limited or when strong 
position bias is present , so only few highly ranked items get 
the user's attention . In this case it may be better , for 
example , to choose a diverse set of items to present at the top 
positions in order to cover a wider range of user interests , 
although this could mean that some highly relevant candi 
dates are demoted . 
[ 0025 ] Traditional work on learning - to - rank only consid 
ers interactions between ranked items when training the 
model , however the ranking function itself is pointwise so at 
inference time the model still assigns a score to each item 
which does not depend on scores of other items . 
[ 0026 ] There has been some work on trying to capture 
interactions between items in the ranking scores . In this case 
it is possible , for example , to encourage a pair of items to 
appear next to ( or far from ) each other in the resulting 
ranking . Approaches in this category often restrict the func 
tional form of the relational terms to simple functions ( e.g. , 
submodular ) in order to obtain tractable inference and 
learning algorithms . Unfortunately , this comes at the 
expense of the model's expressive power . Alternatively , 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0015 ] Detailed discussion of embodiments directed to 
one of ordinary skill in the art is set forth in the specification , 
which makes reference to the appended figures , in which : 
[ 0016 ] FIG . 1 depicts a block diagram of an example 
computing system that can generate a slate of ranked items 
that is appealing as a whole according to example embodi 
ments of the present disclosure ; 
[ 0017 ] FIG . 2 depicts a block diagram of an example 
SEQ2SLATE model according to example embodiments of 
the present disclosure ; 
[ 0018 ] FIG . 3 depicts a block diagram of an example 
SEQ2SLATE model according to example embodiments of 
the present disclosure ; 
[ 0019 ] FIG . 4 depicts a flow chart diagram of an example 
method to generate a slate of ranked items that is appealing 
as a whole according to example embodiments of the present 
disclosure ; 
[ 0020 ] FIG . 5 depicts a flow chart diagram of an example 
method to train a SEQ2SLATE model according to example 
embodiments of the present disclosure ; and 
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some greedy or approximate procedure is used for inference , 
which can still be quite computationally expensive . 
[ 0027 ] Aspects of the present disclosure provide for a 
sequence - to - sequence model for ranking called 
SEQ2SLATE . In each step , the model predicts the next item 
to place on the slate given the items already chosen . 
Thereby , complex dependencies between items can be cap 
tured directly in a flexible and scalable way that naturally 
accounts for high - order interactions . In particular , a 
sequence - to - sequence ( seq2seq ) model is used , where the 
input is the list of candidate items and the output is the 
resulting ordering . Since the output sequence corresponds to 
ranked items on the slate , the model is called SEQ2SLATE . 
[ 0028 ] Aspects of the present disclosure provide for end 
to - end training of the SEQ2SLATE model to directly opti 
mize several commonly used ranking measures . In particu 
lar , the training can use weak supervision in the form of 
click - through logs that are easy to obtain instead of relying 
on relevance scores or ground - truth rankings , which can be 
more expensive to obtain . 
[ 0029 ] Aspects of the present disclosure provide for the 
SEQ2SLATE model to include a machine learned pointer 
network for generating an output sequence from a list of 
candidate items in some examples . In some implementa 
tions , the machine learned pointer network can include an 
encoding network configured to receive the list of candidate 
items and provide an output that includes a sequence of 
latent memory states , a decoder network configured to 
receive a previously - selected candidate item for the output 
sequence and provide an output vector based at least in part 
on the previously - selected candidate item , and an attention 
network configured to receive the sequence of latent 
memory states and a query including the output vector from 
the decoder network to produce a probability distribution 
associated with a next candidate item to include in the output 
sequence . In some implementations , a computing system 
can provide an input with the list of candidate items to the 
machine learned pointer network , implement the machine 
learned pointer network to process the list of candidate 
items , receive an output generated by the machine learned 
pointer network as a result of processing the list of candidate 
items ; and select the next candidate item to include in the 
output sequence based at least in part on the probability 
distribution . In some implementations , the list of candidate 
items can include a sequence of features associated with the 
list of candidate items . In some implementations , the 
machine learned pointer network can be trained to point to 
candidate items in the list of candidate items based on a 
plurality of learned parameters . 
[ 0030 ] In some implementations , the attention network 
can assign scores to the list of candidate items as part of 
producing the probability distribution , and the scores 
assigned to candidate items that already appear in the output 
sequence can be lower than the scores assigned to candidate 
items that do not already appear in the output sequence . The 
scores assigned to candidate items that already appear in the 
output sequence can enforce the attention network to output 
permutations . 
[ 0031 ] In some implementations , the decoder network can 
operate over a plurality of decoding steps . In particular , a 
learned vector can be provided as an input to a first decoding 
step of the decoder network , and in response the decoder 
network can provide an output vector based at least in part 
on the learned vector . For a second decoding step of the 

decoder network , an embedding that corresponds to the 
previously - selected candidate item can be provided as an 
input . 
[ 0032 ] In some implementations , the encoder network can 
include a first recurrent neural network that utilizes long 
short - term memory cells , and the decoder network can 
include a second recurrent neural network that utilizes long 
short - term memory cells . 
[ 0033 ] Aspects of the present disclosure provide for train 
ing a machine learned pointer network for generating an 
output sequence from list of candidate items . In some 
implementations , the machine learned pointer network can 
be trained by a model trainer that is configured to train the 
machine learned pointer network based on a set of training 
data . In particular , the model trainer can include one or more 
computing devices that can obtain data descriptive of the 
machine learned pointer network . The machine learned 
pointer network can include an encoder network configured 
to receive the list of candidate items and provide an output 
that includes a sequence of latent memory states , a decoder 
network that operates over a plurality of decoding steps and 
is configured to receive a previously - selected candidate item 
for the output sequence and provide an output vector based 
at least in part on the previously - selected candidate item , and 
an attention network configured to receive the sequence of 
latent memory states and a query including the output vector 
from the decoder network . The attention network can pro 
duce a probability distribution associated with a next can 
didate item to include in the output sequence . 
[ 0034 ] In some implementations , the model trainer ( e.g. , 
the one or more computing devices ) can train the machine 
learned pointer network by determining a per - step loss for 
two or more of the plurality of decoding steps , and modify 
one or more parameters of the machine learned pointer 
network based at least in part on the per - step loss . The 
per - step loss can represent a performance evaluation of the 
machine learned pointer network based on the set of training 
data . In some implementations , the model trainer can 
enforce a permutation constraint on an output of the 
machine learned pointer network . In some implementations , 
the model trainer can modify the one or more parameters of 
the machine learned pointer network by backpropagating 
the per - step loss to train the machine - learned pointer net 
work end - to - end . In some implementations , the model 
trainer can provide feedback based on the per - step loss to the 
machine learned pointer network at each of the plurality of 
decoding steps of the decoder network . 
[ 0035 ] Aspects of the present disclosure provide for gen 
erating an output sequence from a list of candidate items . In 
particular , the list of candidate items can be ranked to 
generate an initial sequence of candidate items . The initial 
sequence of candidate items can be input into an encoder 
network configured to receive the initial sequence of can 
didate items and provide an output that includes a sequence 
of latent memory states . A previously - selected candidate 
item for the output sequence can be input into a decoder 
network configured to receive the previously - selected can 
didate item and provide an output vector based at least in 
part on the previously - selected candidate item . The 
sequence of latent memory states and a query including the 
output vector from the decoder network can be input into an 
attention network configured to receive the sequence of 
latent memory states and the query including the output 
vector from the decoder network , and produce a probability 
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one or more 

distribution associated with a next candidate item to include 
in the output sequence . In some implementations , the list of 
candidate items can include a sequence of features associ 
ated with the list of candidate items . In some implementa 
tions , the encoder network can include a first recurrent 
neural network that utilizes long short - term memory cells , 
and the decoder network can include a second recurrent 
neural network that utilizes long short - term memory cells . In 
some implementations , the encoder network , the decoder 
network , and the attention network can be part of a machine 
learned pointer network that is trained to point to candidate 
items in the list of candidate items based on a plurality of 
learned parameters . 
[ 0036 ] In some implementations , the decoder network can 
operate over a plurality of decoding steps including a first 
decoding step and a second decoding step . A learned vector 
can be provided as an input to the first decoding step , and in 
response the decoder network can provide an output vector 
based at least in part on the learned vector . An embedding 
that corresponds to the previously - selected candidate item 
can be input into the second decoding step of the decoder 
network . 
[ 0037 ] In some implementations , the attention network 
can be configured to produce the probability distribution 
based at least in part on candidate items that already appear 
in the output sequence . A score assigned to each candidate 
item that already appears in the output sequence can enforce 
the attention network to output permutations . 
[ 0038 ] With reference now to the Figures , example 
embodiments of the present disclosure will be discussed in 
further detail . 

types of machine learned models , including non - linear mod 
els and / or linear models . Neural networks can include feed 
forward neural networks , recurrent neural networks ( e.g. , 
long short - term memory recurrent neural networks ) , convo 
lutional neural networks or other forms of neural networks . 
Example SEQ2SLATE models 120 are discussed with ref 
erence to FIGS . 2 and 3 . 

[ 0043 ] In some implementations , the 
SEQ2SLATE models 120 can be received from the server 
computing system 130 over network 180 , stored in the user 
computing device memory 114 , and then used or otherwise 
implemented by the one or more processors 112. In some 
implementations , the user computing device 102 can imple 
ment multiple parallel instances of a single SEQ2SLATE 
model 120 ( e.g. , to perform parallel ranking across multiple 
instances of input sequences ) . 
[ 0044 ] More particularly , the SEQ2SLATE models 120 
can provide a general and scalable approach to ranking , 
which naturally accounts for high - order interactions . The 
SEQ2SLATE models 120 can include Recurrent Neural 
Networks ( RNNs ) that can capture rich dependencies 
between ranked items , while keeping the computational cost 
of inference manageable . In order to support variable - size 
input sequences , the SEQ2SLATE models 120 can use 
pointer - networks , which are seq2seq models with an atten 
tion mechanism for pointing at positions in the input . In each 
step , the SEQ2SLATE models 120 predict the next item to 
place on a slate of ranked items given the items already 
chosen . Thereby , complex dependencies between items in an 
input sequence can be captured directly in a flexible and 
scalable way . 
[ 0045 ] Additionally or alternatively , one 
SEQ2SLATE models 140 can be included in or otherwise 
stored and implemented by the server computing system 130 
that communicates with the user computing device 102 
according to a client - server relationship . For example , the 
SEQ2SLATE models 140 can be implemented by the server 
computing system 140 as a portion of a web service ( e.g. , a 
search engine service ) . Thus , one or more models 120 can be 
stored and implemented at the user computing device 102 
and / or one or more models 140 can be stored and imple 
mented at the server computing system 130 . 
[ 0046 ] The user computing device 102 can also include 
one or more user input component 122 that receives user 
input . For example , the user input component 122 can be a 
touch - sensitive component ( e.g. , a touch - sensitive display 
screen or a touch pad ) that is sensitive to the touch of a user 
input object ( e.g. , a finger or a stylus ) . The touch - sensitive 
component can serve to implement a virtual keyboard . Other 
example user input components include a microphone , a 
traditional keyboard , or other means by which a user can 
provide user input . 
[ 0047 ] The server computing system 130 includes one or 
more processors 132 and a memory 134. The one or more 
processors 132 can be any suitable processing device ( e.g. , 
a processor core , a microprocessor , an ASIC , a FPGA , a 
controller , a microcontroller , etc. ) and can be one processor 
or a plurality of processors that are operatively connected . 
The memory 134 can include one or more non - transitory 
computer - readable storage mediums , such as RAM , ROM , 
EEPROM , EPROM , flash memory devices , magnetic disks , 
etc. , and combinations thereof . The memory 134 can store 

or 
Example Devices and Systems 

[ 0039 ] FIG . 1 depicts a block diagram of an example 
computing system 100 that can rank an input sequence of 
items according to example embodiments of the present 
disclosure . The system 100 includes a user computing 
device 102 , a server computing system 130 , and a training 
computing system 150 that are communicatively coupled 
over a network 180 . 
[ 0040 ] The user computing device 102 can be any type of 
computing device , such as , for example , a personal com 
puting device ( e.g. , laptop or desktop ) , a mobile computing 
device ( e.g. , smartphone or tablet ) , a gaming console or 
controller , a wearable computing device , an embedded com 
puting device , or any other type of computing device . 
[ 0041 ] The user computing device 102 includes one or 
more processors 112 and a memory 114. The one or more 
processors 112 can be any suitable processing device ( e.g. , 
a processor core , a microprocessor , an ASIC , a FPGA , a 
controller , a microcontroller , etc. ) and can be one processor 
or a plurality of processors that are operatively connected . 
The memory 114 can include one or more non - transitory 
computer - readable storage mediums , such as RAM , ROM , 
EEPROM , EPROM , flash memory devices , magnetic disks , 
etc. , and combinations thereof . The memory 114 can store 
data 116 and instructions 118 which are executed by the 
processor 112 to cause the user computing device 102 to 
perform operations . 
( 0042 ] In some implementations , the user computing 
device 102 can store or include one or more SEQ2SLATE 
models 120. For example , the SEQ2SLATE models 120 can 
be or can otherwise include various machine learned models 
such as neural networks ( e.g. , deep neural networks ) or other 

more 
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data 136 and instructions 138 which are executed by the 
processor 132 to cause the server computing system 130 to 
perform operations . 
[ 0048 ] In some implementations , the server computing 
system 130 includes or is otherwise implemented by one or 
more server computing devices . In instances in which the 
server computing system 130 includes plural server com 
puting devices , such server computing devices can operate 
according to sequential computing architectures , parallel 
computing architectures , or some combination thereof . 
[ 0049 ] As described above , the server computing system 
130 can store or otherwise include one or more machine 
learned SEQ2SLATE models 140. For example , the models 
140 can be or can otherwise include various machine 
learned models . Example machine learned models include 
neural networks or other multi - layer non - linear models . 
Example neural networks include feed forward neural net 
works , deep neural networks , recurrent neural networks , and 
convolutional neural networks . Example models 140 are 
discussed with reference to FIGS . 2 and 3 . 
[ 0050 ] The user computing device 102 and / or the server 
computing system 130 can train the models 120 and / or 140 
via interaction with the training computing system 150 that 
is communicatively coupled over the network 180. The 
training computing system 150 can be separate from the 
server computing system 130 or can be a portion of the 
server computing system 130 . 
[ 0051 ] The training computing system 150 includes one or 
more processors 152 and a memory 154. The one or more 
processors 152 can be any suitable processing device ( e.g. , 
a processor core , a microprocessor , an ASIC , a FPGA , a 
controller , a microcontroller , etc. ) and can be one processor 
or a plurality of processors that are operatively connected . 
The memory 154 can include one or more non - transitory 
computer - readable storage mediums , such as RAM , ROM , 
EEPROM , EPROM , flash memory devices , magnetic disks , 
etc. , and combinations thereof . The memory 154 can store 
data 156 and instructions 158 which are executed by the 
processor 152 to cause the training computing system 150 to 
perform operations . In some implementations , the training 
computing system 150 includes or is otherwise implemented 
by one or more server computing devices . 
[ 0052 ] The training computing system 150 can include a 
model trainer 160 that trains the machine learned models 
120 and / or 140 stored at the user computing device 102 
and / or the server computing system 130 using various 
training or learning techniques , such as , for example , back 
wards propagation of errors . In some implementations , 
performing backwards propagation of errors can include 
performing truncated backpropagation through time . The 
model trainer 160 can perform a number of generalization 
techniques ( e.g. , weight decays , dropouts , etc. ) to improve 
the generalization capability of the models being trained . 
[ 0053 ] In particular , the model trainer 160 can train the 
SEQ2SLATE models 120 and / or 140 based on training data 
162. The training data 162 can include , for example , click 
through logs . The click - through logs can be collected by 
running the SEQ2SLATE models 120 and / or 140 in the wild . 
This kind of training data can be collected with little cost , in 
contrast to human - curated labels / rankings . However , this 
and other types of training data can additionally and / or 
alternatively be used . In particular , the training data 162 can 
include a plurality of training examples . Each training 
example in the training data 162 can include an input 

sequence of items { x1 , . xn } and binary labels ( y1 , ... 
, Yn ) with y ; E { 0 , 1 } representing user feedback ( e.g. , 
click / no - click ) . The input sequence can be ordered by a base 
ranker , and when possible will include the per - item score of 
the base ranker as an additional feature in x ;: 
[ 0054 ] The training data can be generated by training the 
base ( e.g. , pointwise ) ranker from raw data to rank items and 
simulate a user cascading through the results and clicking on 
items . Each item in the result can be observed with decaying 
probability , such that if an item is observed and its ground 
truth relevance score is above a threshold , then a click is 
generated , otherwise no click is generated . Additionally , 
introduce high - order interactions , if an item is too similar to 
a previously clicked item , then no click is generated even 
when observing a relevant item . 
[ 0055 ] In some implementations , if the user has provided 
consent , the training examples can be provided by the user 
computing device 102. Thus , in such implementations , the 
model 120 provided to the user computing device 102 can be 
trained by the training computing system 150 on user 
specific data received from the user computing device 102 . 
In some instances , this process can be referred to as per 
sonalizing the model . 
[ 0056 ] The model trainer 160 includes computer logic 
utilized to provide desired functionality . The model trainer 
160 can be implemented in hardware , firmware , and / or 
software controlling a general purpose processor . For 
example , in some implementations , the model trainer 160 
includes program files stored on a storage device , loaded 
into a memory , and executed by one or more processors . In 
other implementations , the model trainer 160 includes one 
or more sets of computer - executable instructions that are 
stored in a tangible computer - readable storage medium such 
as RAM hard disk or optical or magnetic media . 
[ 0057 ] The network 180 can be any type of communica 
tions network , such as a local area network ( e.g. , intranet ) , 
wide area network ( e.g. , Internet ) , or some combination 
thereof and can include any number of wired or wireless 
links . In general , communication over the network 180 can 
be carried via any type of wired and / or wireless connection , 
using a wide variety of communication protocols ( e.g. , 
TCP / IP , HTTP , SMTP , FTP ) , encodings or formats ( e.g. , 
HTML , XML ) , and / or protection schemes ( e.g. , VPN , 
secure HTTP , SSL ) . 
[ 0058 ] FIG . 1 illustrates one example computing system 
that can be used to implement the present disclosure . Other 
computing systems can be used as well . For example , in 
some implementations , the user computing device 102 can 
include the model trainer 160 and the training data 162. In 
such implementations , the models 120 can be both trained 
and used locally at the user computing device 102. In some 
of such implementations , the user computing device 102 can 
implement the model trainer 160 to personalize the models 
120 based on user - specific data . 

Example Model Arrangements 
[ 0059 ] FIG . 2 depicts a block diagram of an example 
SEQ2SLATE model 200 according to example embodi 
ments of the present disclosure . In some implementations , 
the SEQ2SLATE model 200 is trained to receive input data 
202 descriptive of a sequence of candidate items and , as a 
result of receipt of the input data 202 , provide output data 
214 that includes a slate of ranked items from the sequence 
of candidate items . In some implementations , the 
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loss ) with the binary label that corresponds to an input item 
as a ground - truth for the item . The model trainer 160 can 
allow the binary labels to change in each step , depending on 
previous predictions , so they do not incur a loss after that 
step . The model trainer 160 can optimize the SEQ2SLATE 
model 300 for a particular slate size k by only computing the 
loss for the first k output steps of the SEQ2SLATE model 
300 . 

SEQ2SLATE model 200 can receive input data 202 descrip 
tive of a list of candidate items , as a result of receipt of the 
input data 202 , determine a sequence of the candidate items , 
and provide output data 214 that includes a slate of ranked 
items from the sequence of candidate items . 
[ 0060 ] FIG . 3 depicts a block diagram of an example 
SEQ2SLATE model 300 according to example embodi 
ments of the present disclosure . The SEQ2SLATE model 
300 is similar to SEQ2SLATE model 200 of FIG . 2 except 
that SEQ2SLATE model 300 further includes an encoder 
204 , decoder 208 , and attention function 210. The encoder 
204 and the decoder 208 can each consist of a recurrent 
neural network ( RNN ) that uses Long Short Term Memory 
cells . The attention function can include a pointer network 
architecture that uses non - parametric softmax modules , and 
learns to point to items of its input sequence . 
[ 0061 ] In some implementations , the SEQ2SLATE model 
300 is trained to receive input data 202 descriptive of a 
sequence of candidate items and , as a result of receipt of the 
input data 202 , provide output data 214 that includes a slate 
of ranked items from the candidate items . In particular , the 
SEQ2SLATE model 300 can provide the input data 202 into 
the encoder 204. The encoder 204 can read each item of the 
sequence of candidate items in the input data 202 sequen 
tially , and at each encoding step the encoder can output a 
d - dimensional vector for the item , thus transforming the 
input sequence of candidate items into a sequence of latent 
memory states 206. The SEQ2SLATE model 300 can pro 
vide the sequence of latent memory state 206 into the 
decoder 208. At each decoding step , the decoder 208 can 
output a d - dimensional vector 209 which is used as a query 
in the attention function 210. The attention function 210 can 
take as input the vector 209 output by the decoder 208 and 
the latent memory states 206. The attention function 210 can 
output a probability distribution over the next item from the 
input sequence of candidate items to include in a sequence 
of ranked items in the output data 214. The probability 
distribution can represent the degree to which the 
SEQ2SLATE model 300 is pointing at a particular input 
item in the input data 202 at a particular decoding step of the 
decoder 208. Once the next item to include in the sequence 
of ranked items in the output data 214 is selected , an 
embedding 212 of the next item is fed as input to the next 
decoder step of the decoder 208. The input of the first 
decoder step can include a learned d - dimensional vector that 
is shared for all inputs in the input data 202 . 
[ 0062 ] In some implementations , the SEQ2SLATE model 
300 can be trained by the model trainer 160 using the 
training data 162. The goal of the model trainer 160 can be 
to learn the parameters of the SEQ2SLATE model 300 such 
that a slate of ranked items that corresponds to a “ good ” 
ranking is assigned a high probability , and a slate of ranked 
items in which the positive labels rank higher is considered 
better . The model trainer 160 can train the SEQ2SLATE 
model 300 to predict the positive labels at the beginning of 
the output sequence . In particular , the model trainer 160 can 
input a sequence of items associated with a training example 
in the training data 162 into the SEQ2SLATE model 300 . 
The model trainer 160 can train the SEQ2SLATE model 300 
directly from the binary labels corresponding to the input 
sequence of items . For each output step of the SEQ2SLATE 
model 300 , the model trainer 160 can obtain a score for each 
item in the input sequence of items . The model trainer 160 
can define a per - step loss ( e.g. , a multi - label classification 

Example Methods 
[ 0063 ] FIG . 4 depicts a flow chart diagram of an example 
method 400 to generate a slate of ranked items that is 
appealing as a whole according to example embodiments of 
the present disclosure . Although FIG . 4 depicts steps per 
formed in a particular order for purposes of illustration and 
discussion , the methods of the present disclosure are not 
limited to the particularly illustrated order or arrangement . 
The various steps of the method 400 can be omitted , 
rearranged , combined , and / or adapted in various ways with 
out deviating from the scope of the present disclosure . 
[ 0064 ] At 402 , a computing system can receive an input 
sequence of candidate items . For example , the computing 
system 102/130 can obtain input data 202 that includes a 
sequence of candidate items . In some implementations , the 
computing system 102/130 can obtain a list of candidate 
items , and the computing system 102/130 can determine the 
sequence of candidate items based on the list by ranking the 
candidate items in the list using a base ranker . 
[ 0065 ] At 404 , the computing system can provide the 
input to an encoder network . For example , the computing 
system 102/130 can input the input data 202 into the 
SEQ2SLATE model 120/140 . In particular , the computing 
system 102/130 can input the sequence of candidate items in 
the input data 202 into the encoder 204 that consists of a 
recurrent neural network . 
[ 0066 ] At 406 , the computing system can provide an 
output of the encoder network to a decoder network . For 
example , the computing system 102/130 can obtain , in 
response to inputting the sequence of candidate items in the 
input data 202 into the encoder 204 , an output of the encoder 
204 that includes a sequence of latent memory states 206 . 
The computing system 102/130 can input the sequence of 
latent memory states 206 into the decoder 208 that consists 
of a recurrent neural network . 
[ 0067 ] At 408 , the computing system can provide an 
output of the decoder network to an attention network . For 
example , the computing system 102/130 can obtain , in 
response to inputting the latent memory states 206 and an 
embedding 212 that corresponds to a candidate item selected 
in response to a previous decoding step of the decoder 208 , 
an output of the decoder 208 that includes an output vector 
209. The computing system 102/130 can input a learned 
vector that is shared for all the candidate items in the input 
data 202 for a first decoding step of the decoder 208. The 
computing system 102/130 can input the output vector 209 
and the latent memory states 206 into the attention function 
210 that consists of a pointer network that points to items of 
its input sequence . 
[ 0068 ] At 410 , the computing system can feedback an 
output of the attention network into the decoder network . 
For example , the computing system 102/130 can obtain , in 
response to inputting the output vector 209 and the latent 
memory states 206 into the attention function 210 , an output 
of the attention function that includes a probability distri 
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seq2seq framework , the joint probability of the outputs 
given the inputs can be expressed as a product of conditional 
probabilities according to the chain rule : 

( 1 ) 
p ( t | x ) = P ( 74 ; 71 , ... , 77j - 1 , x ) , 

j = 1 

bution over one or more candidate items . The computing 
system 102/130 can select a candidate item to include in a 
ranking of the candidate items based at least in part on the 
output of the attention function 210. The computing system 
102/130 can input an embedding that corresponds to the 
selected candidate item into the decoder 208 for use in a next 
decoder step . 
[ 0069 ] At 412 , the computing system can provide an 
output of a slate of ranked items from the candidate items . 
For example , the computing system 102/130 can obtain in 
response to inputting the input data 202 into the 
SEQ2SLATE model 120/140 , an output of the SEQ2SLATE 
model 120/140 that includes a ranking of the candidate 
items . The ranking of the candidate items can include a 
diverse set of the candidate items at the top positions in the 
ranking such that one or more highly relevant candidate 
items are demoted in the ranking . The computing system 
102/130 can provide the ranking of the candidate items as a 
slate of ranked items in the output data 214 . 
[ 0070 ] FIG . 5 depicts a flow chart diagram of an example 
method 500 to train a machine learned model to generate a 
slate of ranked items that is appealing as a whole according 
to example embodiments of the present disclosure . Although 
FIG . 5 depicts steps performed in a particular order for 
purposes of illustration and discussion , the methods of the 
present disclosure are not limited to the particularly illus 
trated order or arrangement . The various steps of the method 
500 can be omitted , rearranged , combined , and / or adapted in 
various ways without deviating from the scope of the present 
disclosure . 
[ 0071 ] At 502 , the computing system can obtain a training 
example that includes click - through data . For example , the 
computing system 150 can obtain training data 162 that 
includes one or more training examples . Each training 
example can include a sequence of items and a plurality of 
binary labels , each binary label corresponding to an item in 
the sequence of items . The plurality of binary labels can 
represent user feedback for the corresponding item in the 
sequence . 
[ 0072 ] At 504 , the computing system can train a 
SEQ2SLATE model using the click - through data . For 
example , the computing system 150 can train the 
SEQ2SLATE model 120/140 with a training example in the 
training data 162. In particular , the model trainer 160 can 
input a sequence of items associated with the training 
example into the SEQ2SLATE model 120/140 . In response 
to inputting the sequence of items , for each output step of the 
SEQ2SLATE model 120/140 , the model trainer 160 can 
obtain an output of the SEQ2SLATE model 120/140 that 
includes a score for each item in the input sequence and a 
prediction of a positive item from the input sequence of 
items . The model trainer 160 can evaluate a loss associated 
with the score for each input item by using the binary label 
that corresponds to the input item as ground - truth , and adjust 
the binary label corresponding to the predicted item such 
that the label does not incur a loss in a subsequent step . 

The conditional p ( t ; = . \ T < j > X ) EA ” ( a point in the n - dimen 
sional simplex ) models the probability of each item to be at 
the j'th position in the ranking given the items already placed 
in previous positions , and captures the high - order depen 
dencies between items in the ranked list . The SEQ2SLATE 
model provides for inputs of variable size and an output 
vocabulary size that is not fixed , so n can vary per instance . 
To address this , a pointer network architecture is used to 
model the conditional p ( st ; IT_j? x ) . An example pointer 
network architecture for ranking in the SEQ2SLATE model 
is shown in FIG . 6. The pointer network can use non 
parametric softmax modules , and learn to point to items of 
its input sequence rather than predicting an index from a 
fixed sized vocabulary . 
[ 0074 ] The SEQ2SLATE model can include two recurrent 
neural networks ( RNN ) : an encoder and a decoder , both of 
which can use long short - term memory ( LSTM ) cells . At 
each encoding step i , the encoder RNN can read the input 
vector x ; and output a d - dimensional vector e ;, thus trans 
forming the input sequence { x ; } ; = ? into a sequence of latent 
memory states { e ; } i = 1 • At each decoding step j , the decoder 
RNN outputs a d - dimensional vector d , which is used as a 
query in the attention function . The attention function takes 
as input the query d , ER " and the set of latent memory states 
computed by the encoder { e ; } z = 1 " and produces a probability 
distribution over the next item to include in the output 
sequence as follows : 

- ( 2 ) . = { if T?p = i for any j < j 
I w.tanh ( We Yenc ® ; + Wdec.d ; ) otherwise 

pe ( T ; = i | A < j , x ) = softmax ( s ) ; = pi , 

ency where W W Idee ER dxd and veRd are learned parameters 
in the network , denoted as 0 , and softmax ( s ) ; = e * Eyes . The probability distribution peq = ile , x ) represents the degree to 
which the model is pointing at input i at decoding step j . The 
scores s are set to -o for items i that already appear in the 
slate thus enforcing the model to output permutations . Once 
the next item n ; is selected , typically greedily or by sam 
pling , its embedding xn , is fed as input to the next decoder 
step . The input of the first decoder step is a learned d - di 
mensional vector shared for all inputs ( e.g. , label 601 in FIG . 
6 ) . 
[ 0075 ] The computational cost of inference is dominated 
by the sequential decoding procedure , and is O ( n ) Addi 
tionally , a computationally cheaper single - step decoder with 
linear cost O ( n ) is considered , which outputs a single output 
vector pl , rom which a obtained by sorting values 
( similarly to pointwise ranking ) . 
[ 0076 ] According to aspects of the present disclosure , the 
seq2slate model can be trained from data in which each 
training example consists of a sequence of items { x1 , ... , 

Example Pointer Network 
[ 0073 ] Aspects of the present disclosure provide for for 
malizing the ranking task as follows . Given a set of n items , 
each represented by a feature vector x , ER " , let TENI denote 
a permutation of the items , where each t , E { 1 , ... , n } 
denotes the index of the item in position j . The goal is to 
predict the output ranking it given the input items x . In the 
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functions of the scores s . To improve convergence , a smooth 
version of the hinge loss can be used to replace the maxi 
mum and minimum by their smooth counterparts 

( 0.8 . , smooth – max ( s ; y ) = -logers ) . 

xn } and binary labels ( Y1 , , yn ) , with y , E { 0 , 1 } , 
representing user feedback ( e.g. , click / no - click ) . This 
approach can easily extend to more informative feedback , 
such as the level of user engagement within the chosen item . 
The input sequence x can be ordered by a base ranker ( e.g. , 
an existing recommender ) . The input sequence can also 
include per - item scores from the base ranker as an additional 
feature for each x ;. The goal is to learn the parameters 0 of 
pe ( T , IT « , x ) ( Eq . ( 2 ) ) such that permutations et correspond 
ing to good rankings are assigned high probabilities . Various 
ranking metrics R ( ht , y ) , such as mean - average - precision 
( MAP ) precision at k , or normalized - discounted - cumula 
tive - gains at k ( NDCG @ k ) can be used to measure the 
quality of a given the labels y . Generally , permutations 
where the positive labels rank higher are considered better . 
[ 0077 ] In some implementations , reinforcement learning 
( RL ) can be used to directly optimize for the ranking 
measure R ( st , y ) . The objective is to maximize the expected 
( cumulative ) ranking score obtained by sequences sampled 
from the model : J ( 0 ] x , y ) = E T - P8 ( , \ x ) R ( n , y ) . Policy gradients 
and stochastic gradient descent can be used to optimize 0 . 
The gradient can be formulated using REINFORCE update 
and can be approximated via Monte - Carlo sampling as 
follows : 

The smooth minimum can be defined similarly , using min ; 
( s ; ) = - max , ( - s ; ) . Instead of simply applying a per - step ss 
from Eq . ( 3 ) to all steps of the output sequence while reusing 
the same labels y at each step , y can be allowed to change 
at each decoding step and labels of already chosen items can 
be set to zero so they do not incur loss after that step : 

o if t ; = i for any j < j 
? ( y , T ) ; = { yi otherwise 

[ 0079 ] Once all positive labels are predicted , ? = 0 and 
1 ( s , ? ) = 0 for all S. In order to match the model behavior at 
training to the behavior of inference , the scores S are set to 
-oo which enforces a permutation constraint on the output . 
The corresponding label is also set to 0 so that the loss will 
not be unbounded . The overall sequence loss is then : 

VAJ ( @ | x , y ) = Ex - pol- \ x ) [ R ( 1 , y ) Velog po ( t | x ) ] ? 
B 11 ( Rifk , Yk ) – b ( xk ) ) Velog petak | xk ) , ( 4 ) L ( S , y ) = w ; l ( s !, ( y , ( S ) ) , 

j = 1 

W ; = 1 / 

where S = { { s ' ) } ; - i " , and Ý ( y , c ( S ) ) refers to the adjusted 
labels . A per - step weight w ; can be used to encourage better 
performance at the beginning of the sequence ( e.g. , w 
log ( ) ) . If optimizing for a particular slate size k , this loss can 
be computed only for the first k output steps . Using the 
sequence loss in Eq . ( 4 ) , the SEQ2SLATE model can be 
trained end - to - end using back - propagation . 

Additional Disclosure 

where k indexes ranking instances in a batch size of B and 
b ( x ) denotes a baseline function that estimates the expected 
rewards to reduce the variance of the gradients . 
[ 0078 ] In some implementations , supervised learning can 
be used to optimize for the ranking measure R ? ( t , y ) . The 
seq2seq model can be trained to maximize a likelihood of a 
target sequence of tokens given an input . Using Eq . ( 1 ) , this 
can be done by maximizing the likelihood for each target 
token given the previous target tokens . Instead , the seq2slate 
model can be trained directly from the binary labels y ( e.g. , 
clicks ) . The goal in ranking in some examples is to train the 
model to predict the positive labels at the beginning of the 
output sequence . Rather than waiting until the end of the 
output sequence , as in RL , the model can be given feedback 
at each decoder step . For example , at the first step , the model 
can assign a score s ; to each item in the input . A per - step loss 
1 ( s , y ) can be defined which acts as a multi - label classifica 
tion loss with labels y as ground - truth , such as cross - entropy 
loss and hinge loss : 

[ 0080 ] The systems and methods discussed herein may 
provide a number of technical effects and benefits . For 
instance , the disclosed techniques enable a model ( e.g. , 
SEQ2SLATE ) that can predict a next item to place on a slate 
given the items already chosen from a list of candidate 
items . By capturing complex dependencies between candi 
date items that accounts for high - order interactions between 
the items , a diverse set of items can be presented at the top 
positions on the slate ( as opposed to presenting items based 
solely on a ranking score ) . This can be advantageous when , 
for example , a ranking score of an item depends on other 
items in the candidate list and their joint placement . Such 
interactions between items can be especially dominant 
where display area is limited ( and fewer items can be 
presented ) or when a strong position bias is present . In these 
cases only a few highly ranked items may get the user's 
attention . By presenting a more diverse set of items , a wider 
range of user interests can be represented , thus improving 
the user experience . Moreover , computational resources can 
be conserved by efficient encoding and decoding techniques 
as well as the use of an attention network . 

{ xent ( s , y ) = -ýlogp : ( 3 ) 

lninge ( s , y ) = max { 0 , 1 min S ; + max S ; 
1 : y ; = 1 j : y ; = 0 

where ? y ; / ; y ; and p ; is defined in Eq . ( 2 ) . The cross 
entropy loss can assign high sores to positive labels , and the 
hinge loss is minimized when scores of positive labels are 
higher than scores of negative labels . Both losses are convex 
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[ 0081 ] Additionally , the present disclosure enables the 
SEQ2SLATE model to consider the dependencies between 
candidate times in a flexible and scalable manner that 
naturally accounts for high - order interactions . In this way , 
the model can consider the inter - item dependences at infer 
ence time ( as opposed to only when training the model ) 
without restricting the functional form of the relational terms 
to simple functions ( e.g. , submodular ) in order to obtain 
tractable inference and learning algorithms . Thus , the mod 
el's expressive power can be maintained , allowing the 
model to capture rich dependencies between ranked items , 
while keeping the computational cost of inference manage 
able . 
[ 0082 ] The present disclosure further enables the 
SEQ2SLATE model to be trained end - to - end using weak 
supervision in the form of binary click - through logs . Such 
click - through logs are generally easier to obtain end less 
expensive than relying on relevance scores or ground - truth 
rankings . By enabling a model that can be trained using 
binary click - through logs , more training data at lower cost 
can be used to train the model , thus improving both training 
efficiency and the model's efficacy . 
[ 0083 ] The technology discussed herein makes reference 
to servers , databases , software applications , and other com 
puter - based systems , as well as actions taken and informa 
tion sent to and from such systems . The inherent flexibility 
of computer - based systems allows for a great variety of 
possible configurations , combinations , and divisions of tasks 
and functionality between and among components . For 
instance , processes discussed herein can be implemented 
using a single device or component or multiple devices or 
components working in combination . Databases and appli 
cations can be implemented on a single system or distributed 
across multiple systems . Distributed components can oper 
ate sequentially or in parallel . 
[ 0084 ] While the present subject matter has been 
described in detail with respect to various specific example 
embodiments thereof , each example is provided by way of 
explanation , not limitation of the disclosure . Those skilled in 
the art , upon attaining an understanding of the foregoing , 
can readily produce alterations to , variations of , and equiva 
lents to such embodiments . Accordingly , the subject disclo 
sure does not preclude inclusion of such modifications , 
variations and / or additions to the present subject matter as 
would be readily apparent to one of ordinary skill in the art . 
For instance , features illustrated or described as part of one 
embodiment can be used with another embodiment to yield 
a still further embodiment . Thus , it is intended that the 
present disclosure cover such alterations , variations , and 
equivalents . 
What is claimed is : 
1. A computer system comprising : 
one or more processors ; and 
one or more non - transitory computer readable media that 

collectively store : 
a machine learned pointer network for generating an 

output sequence from a list of candidate items , the 
machine learned pointer network comprising : 
an encoder network configured to receive the list of 

candidate items and provide an output that includes 
a sequence of latent memory states ; 

a decoder network configured to receive a previously 
selected candidate item for the output sequence and 

provide an output vector based at least in part on the 
previously - selected candidate item ; and 

an attention network configured to receive the sequence 
of latent memory states and a query including the 
output vector from the decoder network , the atten 
tion network configured to produce a probability 
distribution associated with a next candidate item to 
include in the output sequence , wherein the attention 
network produces the probability distribution based 
at least in part on candidate items that already appear 
in the output sequence ; and 

instructions that , when executed by the one or more 
processors , cause the computer system to perform 
operations , the operations comprising : 
providing an input associated with the list of candidate 

items to the machine learned pointer network ; 
implementing the machine learned pointer network to 

process the list of candidate items ; 
receiving an output generated by the machine - learned 

pointer network as a result of processing the list of 
candidate items ; and 

selecting the next candidate item to include in the 
output sequence based at least in part on the prob 
ability distribution . 

2. The computing system of claim 1 , wherein : 
the attention network assigns scores to the list of candi 

date items as part of producing the probability distri 
bution ; and 

the scores assigned to candidate items that already appear 
in the output sequence are lower than the scores 
assigned to candidate items that do not already appear 
in the output sequence . 

3. The computing system of claim 2 , wherein : 
the scores assigned to candidate items that already appear 

in the output sequence enforces the attention network to 
output permutations . 

4. The computer system of claim 1 , wherein : 
the decoder network operates over a plurality of decoding 

steps including a first decoding step ; and 
a learned vector is provided as an input to the first 

decoding step , and in response the decoder network 
provides an output vector based at least in part on the 
learned vector . 

5. The computer system of claim 4 , wherein : 
the plurality of decoding steps includes a second decoding 

step ; and 
the operations further comprise inputting an embedding 

that corresponds to the previously - selected candidate 
item into the second decoding step of the decoder 
network . 

6. The computer system of claim 1 , wherein the list of 
candidate items comprises a sequence of features associated 
with the list of candidate items . 

7. The computer system of claim 1 , wherein : 
the encoder network includes a first recurrent neural 

network that utilizes long short - term memory cells ; and 
the decoder network includes a second recurrent neural 

network that utilizes long short - term memory cells . 
8. The computer system of claim 1 , wherein the machine 

learned pointer network is trained to point to candidate items 
in the list of candidate items based on a plurality of learned 
parameters . 
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candidate items and provide an output that includes a 
sequence of latent memory states ; 

inputting , by the one or more computing devices , a 
previously - selected candidate item for the output 
sequence into a decoder network configured to receive 
the previously - selected candidate item and provide an 
output vector based at least in part on the previously 
selected candidate item ; and 

inputting the sequence of latent memory states and a 
query including the output vector from the decoder 
network into an attention network configured to receive 
the sequence of latent memory states and the query 
including the output vector from the decoder network , 
the attention network configured to produce a probabil 
ity distribution associated with a next candidate item to 
include in the output sequence . 

14. The computer - implemented method of claim 13 , 
wherein : 

the decoder network operates over a plurality of decoding 
steps including a first decoding step ; and 

a learned vector is provided as an input to the first 
decoding step , and in response the decoder network 
provides an output vector based at least in part on the 
learned vector . 

15. The computer - implemented method of claim 14 , 
wherein : 

the plurality of decoding steps includes a second decoding 

9. A computer - implemented method to train a machine 
learned pointer network for generating an output sequence 
from a list of candidate items , the method comprising : 

obtaining , by one or more computing devices , data 
descriptive of the machine learned pointer network , 
wherein the machine learned pointer network com 
prises an encoder network configured to receive the list 
of candidate items and provide an output that includes 
a sequence of latent memory states , a decoder network 
that operates over a plurality of decoding steps and is 
configured to receive a previously - selected candidate 
item for the output sequence and provide an output 
vector based at least in part on the previously - selected 
candidate item , and an attention network configured to 
receive the sequence of latent memory states and a 
query including the output vector from the decoder 
network , wherein the attention network is configured to 
produce a probability distribution associated with a 
next candidate item to include in the output sequence ; 

training , by the one or more computing devices , the 
machine learned pointer network based on a set of 
training data , wherein training , by the one or more 
computing devices , the machine learned pointer net 
work comprises : 

determining , by the one or more computing devices , a 
per - step loss for two or more of the plurality of decod 
ing steps , the per - step loss representing a performance 
evaluation of the machine learned pointer network 
based on the set of training data ; and 

modifying , by the one or more computing devices , one or 
more parameters of the machine learned pointer net 
work based at least in part on the per - step loss . 

10. The computer - implemented method of claim 9 , 
wherein training , by the one or more computing devices , the 
machine learned pointer network comprises : 

enforcing a permutation constraint on an output of the 
machine learned pointer network . 

11. The computer - implemented method of claim 9 , 
wherein modifying , by the one or more computing devices , 
one or parameters of the machine - learned pointer network 
comprises backpropagating the per - step loss to train the 
machine learned pointer network end - to - end . 

12. The computer - implemented method of claim 9 , 
wherein feedback based on the per - step loss is provided to 
the machine learned pointer network at each of a plurality of 
decoding steps of the decoder network . 

13. A computer - implemented method to generate an out 
put sequence from a list of candidate items , the method 
comprising : 

ranking , by one or more computing devices , the list of 
candidate items to generate an initial sequence of 
candidate items ; 

inputting , by the one or more computing devices , the 
initial sequence of candidate items into an encoder 
network configured to receive the initial sequence of 

step ; and 
the method further comprises inputting an embedding that 

corresponds to the previously selected candidate item 
into the second decoding step of the decoder network . 

16. The computer - implemented method of claim 13 , 
wherein the list of candidate items comprises a sequence of 
features associated with the list of candidate items . 

17. The computer - implemented method of claim 13 , 
wherein : 

the encoder network includes a first recurrent neural 
network that utilizes long short - term memory cells ; and 

the decoder network includes a second recurrent neural 
network that utilizes long short - term memory cells . 

18. The computer - implemented method of claim 13 , 
wherein the encoder network , the decoder network , and the 
attention network are part of a machine - learned pointer 
network that is trained to point to candidate items in the list 
of candidate items based on a plurality of learned param 
eters . 

19. The computer - implemented method of claim 13 , 
wherein the attention network is configured to produce the 
probability distribution based at least in part on candidate 
items that already appear in the output sequence . 

20. The computer - implemented method of claim 13 , 
wherein a score assigned to each candidate item that already 
appears in the output sequence enforces the attention net 
work to output permutations . 


