US 20190356606A1

a2y Patent Application Publication o) Pub. No.: US 2019/0356606 A1

a9y United States

Gamage et al. 43) Pub. Date: Nov. 21, 2019
(54) DISTRIBUTED RESOURCE SCHEDULING HO4L 1226 (2006.01)
BASED ON NETWORK UTILIZATION GOG6F 9/455 (2006.01)
GOG6F 9/445 (2006.01)
(71) Applicant: VMware, Inc., Palo Alto, CA (US) (52) U.S. CL
CPCcc..... HO4L 47/70 (2013.01); HO4L 41/00

(72) Inventors: Sahan B. Gamage, West Lafayette, IN
(US); Rean Griffith, Oakland, CA (US)

(21) Appl. No.: 16/531,419
(22) Filed: Aug. 5, 2019

Related U.S. Application Data
(63) Continuation of application No. 15/352,033, filed on
Nov. 15, 2016, now Pat. No. 10,382,352.

Publication Classification
(51) Int. CL

(2013.01); HO4L 47/822 (2013.01); GOGF 9/50
(2013.01); HO4L 43/0817 (2013.01); HO4L
41/0896 (2013.01); GOGF 2009/45595
(2013.01); GOGF 9/45558 (2013.01); GO6F
9/445 (2013.01); HO4L 41/0893 (2013.01);
GOGF 2009/45562 (2013.01); GO6F 2009/4557
(2013.01); HO4L 43/0876 (2013.01)

(57) ABSTRACT

Examples provide a network-utilization based scheduler that
considers network utilization when load balancing virtual
computing instances (VClIs) in a cluster. The scheduler also
periodically evaluates proposed migrations based on a cur-

HO4L 12911 (2006.01) rent cluster snapshot including network utilization data of
HO4L 12/24 (2006.01) the hosts. Proposed migrations are removed and/or priori-
GO6F 9/50 (2006.01) tized to prevent network saturation in the cluster.
SCHEDULER 300
THRESHOLD 336

r—
SNAPSHOT 334 | =

. COMPONENT 302

___________________ I

| smmsmcscouEcToR | e
; CLUSTER ; — :
; T SCHEDULING

: CONF%F;AT?ON HOST B VM DECISION
308 / STATETICS | sTATISTICS 338
Soome oz

CLUSTER 310

NETWORK TRAFFIC COUNTERS
326

Patent Application Publication Nov. 21,2019 Sheet 1 of 12 US 2019/0356606 A1

/1 ONETWORK 100
DATA CENTER
110
... NETWORK 122
SCHEDULER Resouress
108 4 | MEMORY120
cPU118

FIG. 1

Patent Application Publication

Nov. 21,2019 Sheet 2 of 12

HOST COMPUTING DEVICE 200

|

VIRTUAL MACHINE 220 VIRTUAL MACHINE 222
APPLICATIONS APPLICATIONS
224 226
OPERATING SYSTEM OPERATING SYSTEM
228 230
HYPERVISOR 232

HARDWARE PLATFORM 202

PROCESSOR({S)

COMMUNICATIONS
INTERFACE
COMPONENT

216

US 2019/0356606 A1

MEMORY 206 DATA STORAGE
RAM 210 DEVICE(S)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 218
ROM 212
COMPUTER
READABLE USER
INSTRUCTIONS INTERFACE
214 208

FIG. 2

Patent Application Publication Nov. 21,2019 Sheet 3 of 12 US 2019/0356606 A1

FIG. 3

SCHEDULER 300

THRESHOLD 336

INITIAL PLACEMENT
COMPONENT 302

..

STATISTICS COLLECTOR PN
/. CLUSTER 328
[CONFIGURATION & e 0 gy . DECISION

%‘gg | STATSTICS | STATSTICS | ,
S 33 332 N 338

CLUSTER 310

SCHEDULING

NETWORK TRAFFIC COUNTERS
326

Patent Application Publication Nov. 21,2019 Sheet 4 of 12 US 2019/0356606 A1

cPy S MEMORY 7 NETWORK
STATISTICS | STATISTICS | STATISTICS

INTERNAL |\ | EXTERNAL

NETWORK | NETWORK
TRAFFIC | TRAFFIC
412 44

..

CONFIGURATION
DATA
409

. CLUSTER
 CONFIGURATION
408

..

SCHEDULER 400

 NETWORK SNAPSHOT
 CONFIGURATION 418
5 410 T

Patent Application Publication Nov. 21,2019 Sheet 5 of 12 US 2019/0356606 A1

SNAPSHOT
y 202
SCHEDULER 500
INITIAL PLACEMENT COMPONENT 510
PRIVARY RESOURCE | / CANDIDATE
. BASED RANKING | » -
. =204
/ SELECTED . NETWORK BASED
. HOST - RANKING

Patent Application Publication Nov. 21,2019 Sheet 6 of 12 US 2019/0356606 A1

FIG. 6

[sNAPSHOT
N
\\
SCHEDULER £00
_— FILTER
‘ : ¢ RECOMMENDED
A ;A i { H
LOAD %QL?NCER gt MGRATIONS b
\\\ m
THRESHOLD
N
SELECTED
MIGRATION ettt SCORE(S)

Patent Application Publication

Nov. 21,2019 Sheet 7 of 12 US 2019/0356606 A1

FIG. 7

~"SCHEDULER -

INVOKED?

NO

YES

¥

“TINmAL
PLACEMENT?

UTILIZATION
710

RANK EACH HOST IN A CANDIDATE
SET OF HOSTS BASED ON NETWORK

¥

212

SELECT HOST BASED ON RANKINGS

k 4

414

PLACE VO ON SELECTED HOST

NQ

h 4

GENERATE A SCORE FOR EACH
PROPOGSED MIGRATION BASED ON
NETWORK UTILIZATION

716

v

FILTER PROPOSED MIGRATION{S)
BASED ON SCORES AND A
THRESHOLD

PERFORM THE UNFILTERED
MIGRATIONS

720

Patent Application Publication Nov. 21,2019 Sheet 8 of 12 US 2019/0356606 A1

GENERATE A PRIMARY RANK FOR EACH HOST IN A PLURALITY OF
HOSTS BASED ON A SET OF PRIMARY RESOURCES

802

i

SELECT A CANDIDATE SET OF HOSTS FROM THE PLURALITY OF
HOSTS BASED ON THE PRIMARY RANKINGS

804

¥
GENERATE A SECONDARY RANKING OF EACH HOST IN THE
CANDIDATE SET OF HOSTS BASED ON NETWORK UTHIZATION

806

Y

SELECT A HOST HAVING A HIGHEST SECONDARY RANKING

\ S

Patent Application Publication

FIG. 9

. EVALUATE PROPOSED
MIGRATION :

207

,......~--~~"“"'éEﬁTiNAT%O\?E“"x\ NO
< HOST SATURATED? -

N

S
.

S

{*{ES

" NETWORK ™. NO
LOADONVCE?

“ =

YES

.

. REJECT MIGRATION

208

e

| ALLOWMIGRATION

Nov. 21,2019 Sheet 9 of 12

~NETWORK .
- SATURATION
TP _CREATED BY MOVE?

L

NO

US 2019/0356606 A1

YES

| REJECT MIGRATION
i iz! 5 :

Patent Application Publication Nov. 21,2019 Sheet 10 of 12 US 2019/0356606 A1

FIG. 10
YM1 | VM2 | VM
CPU 1100 | 1200 | 500 o
Mem 5§12 | 512 | 512 1000
Net 700 0 300
_PlacedHost{DRS) 1 | H1 | H2 1 HI
Flaced Host {NetAwareDRS) Hi H2 H2

FIG. 11
,,, VML | VM2 | VM
,,,,,,,,, chy 3 500 | 500 1 500
Mem 1100 | 1200 | 512 1100
Net 700) 306
,,,,,,,,, PlacedHost {DRS}) 1 Hi1 | H2 § HI
Placed Host {NetAwareDHRS) H1 M2 H2

FIG. 12

YMI | VM2 | YM3 Vi
Py 600 1000 500 500
Mem 512 532 512 512
Net 400 400 700 300 1200
Placed Host {DRS) H1 H2 Hi H3
Placed Host {NetAwareDRS) H1 H2 H2 H1
FIG. 13

VMID | VM2 | VM3
CPU 3500 | 1000 | 800
Mem 512 512 512
Net 100 | 100 | 800 1300
Host before load balancing H1 Hi H2
Host after load balancing {DRS} H1 H2 H2
Host after load balancing {NetAwareDRS) H1 H1 H2

FiG. 14

VM § VM2 | VM3 | VM4
CRU 1400 { 1400 § 1200 | 1100
Mem 532 512 512 | 512 1400
Net 100 100 0 800
Host before load balancing H1 H1 H2 H3
Host after load balancing {DRS) H1 H3 H2 H3
Host after load halancing (NetAwareDRS) Hi H2 H2 H3

US 2019/0356606 A1

Nov. 21,2019 Sheet 11 of 12

Patent Application Publication

RHONEN
ROISVLVE| o y0ST-—
< JO8d0L | 1 30y
IDVA0LS TN o
VRN | _w HOSSAO0H 1™ a0y gz i wasn
D | NOLYDINTAIOD Y, N
30130 HIOMAIN cost 0Tt
LONE _—
wosgoL | 21T 005t
30IA30 ONILNGINCD 1SOH

»/womﬁ

Patent Application Publication Nov. 21,2019 Sheet 12 of 12 US 2019/0356606 A1

/ HOST COMPUTING DEVICE 1600 \

[VIRTUAL MACHINE EXECUTION SPACE 1630 N
VM 1635 APPLICATIONS 1670
WM UM

1835, 1 * ** | 1835k
GUEST OPERATING SYSTEM 1685

A5

o o o o
B o e ot S s e o e o e e v o

e S SR A Sminn WA R AP PR e o A SRR AN AR SR A AR SNR A SRR SR AR AR AR AR SO PR RS A AR S S N S

il 1 4 '
¢! i ! i
i I t
HVIRTUAL HARDWARE PLATFORM 1640 ¥ i] i
o e . o s . S o o o ot o 0 o o o 7 . . o 0 0 . s . . 0 } f
o 1845 1680 1860 166631111640 |1 1} 1640 ;
! USER NETWORK _ |i)!! lowel !
11| PROCESSOR | | MEMORY || INTERFACE || COMMUNICATION |} b ;
H DEVICE INTERFACE |11} ! z ;
i) 1 A
s s LU=V <
{DEV%CE DRIVER LAYER 1815 Ty §
| Pl | NETWORK COMMUNICATION | |
: INTERFACE DRIVER 1620 | !
! 1625 !
*\.... mmmmmmmmmmmmmmmmmmmmmmmmmmmm U —— J
HARDWARE PLATFORM 1605
1602 1604 v 1612 1610
NETWORK USER
| PROCESSOR MEMORY COMMUNICATION INTERFACE
| INTERFACE DEVICE

\ /

FIG. 16

US 2019/0356606 Al

DISTRIBUTED RESOURCE SCHEDULING
BASED ON NETWORK UTILIZATION

BACKGROUND

[0001] A scheduler is utilized, in some existing systems, to
select a host for initial placement of powering-on virtual
machines (VMs) and manage migrations of VMs to balance
resource utilization among the hosts in the cluster. However,
these placement and relocation decisions are frequently
made based on insufficient information regarding resource
demands of the VMs and resource availability of the hosts.
For example, most VMs deployed in a cluster of hosts have
networking resource requirements. The VMs communicate
with other VMs on the same host and/or VMs on different
hosts. Currently available schedulers typically only consider
processor and memory resources within the cluster when
performing scheduling. These schedulers do not consider the
VMs’ or the hosts’ networking behavior when performing
placement or load-balancing. This lack of consideration of
network resource metrics frequently causes non-optimal VM
initial placements and VM migrations, network saturated
hosts, overloaded network links, and other network resource
contention at the hosts.

[0002] For example, some existing schedulers may per-
form an admission control check to ensure that the sum of
network reservations on a VM’s outbound (transmit) band-
width on a host do not exceed its capacity. However, actual
usage of a host’s network interface controllers (NICs) is not
considered with these existing schedulers.

[0003] Further, elastic resource provisioning in a software
defined datacenter (SDDC) is frequently managed by a
number of different schedulers managing different resources
independently of one another. For example, some systems
computer resources, such as CPU and memory, are managed
by a resource scheduler, storage resources are managed by
a storage scheduler, and network resources are managed by
a separate network scheduler. These different schedulers
operate independently from each other and frequently work
on different sets of input metrics. The utilization of these
disparate schedulers also results in sub-optimal VM place-
ments and inefficient resource management in the datacen-
ter.

SUMMARY

[0004] Examples of the disclosure provide for distributed
resource scheduling based on network utilization. A statis-
tics channel provides runtime statistics associated with a
cluster of hosts to a scheduler. An initial placement compo-
nent of the scheduler ranks each host in the candidate set of
hosts based on network utilization. A host is selected for
placement of a powering-on virtual computing instance
(VCI) based on the ranking. The powering-on VCI is placed
on the selected host to minimize network saturation of hosts.
A load balancing component generates a score for at least
one proposed migration in a set of proposed migrations
based on network utilization associated with at least one
destination host in the set of proposed migrations. A filter
component of the scheduler rejects a given proposed migra-
tion in the set of proposed migrations in response to a
determination that a given score associated with the given
proposed migration indicates a destination host associated
with the proposed migration is network saturated.

Nov. 21, 2019

[0005] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is an exemplary block diagram illustrating
a system for a network-utilization based scheduler.

[0007] FIG. 2 is an exemplary block diagram illustrating
a host computing device.

[0008] FIG. 3 is an exemplary block diagram illustrating
network-utilization based scheduling.

[0009] FIG. 4 is an exemplary block diagram illustrating
a statistics channel for transmitting runtime statistics to the
scheduler.

[0010] FIG. 5 is an exemplary block diagram illustrating
an initial placement component of the scheduler.

[0011] FIG. 6 is an exemplary block diagram illustrating a
filter component of the scheduler.

[0012] FIG. 7 is an exemplary flow chart illustrating
operation of the scheduler utilizing network as a secondary
resource.

[0013] FIG. 8 is an exemplary flow chart illustrating
operation of a scheduler for initial placement of a virtual
computing instance (VCI) based on network utilization.
[0014] FIG. 9 is an exemplary flow chart illustrating
operation of a scheduler for load balancing based on net-
work utilization.

[0015] FIG. 10 is an exemplary table illustrating results of
a first initial placement experiment.

[0016] FIG. 11 is an exemplary table illustrating results of
a second initial placement experiment.

[0017] FIG. 12 is an exemplary table illustrating results of
a third initial placement experiment.

[0018] FIG. 13 is an exemplary table illustrating results of
a first load balancing experiment.

[0019] FIG. 14 is an exemplary table illustrating results of
a second load balancing experiment.

[0020] FIG. 15 is a block diagram of an example host
computing device.

[0021] FIG. 16 is a block diagram of VMs instantiated on
a host computing device.

[0022] Corresponding reference characters indicate corre-
sponding parts throughout the drawings.

DETAILED DESCRIPTION

[0023] Referring to the figures, examples of the disclosure
include a network-utilization based scheduler for network-
utilization based distributed resource scheduling in a cluster.
Applications hosted in a virtualized data center such as data
center 110 in FIG. 1 are frequently network intensive in
nature. Many modern applications are distributed and work
as a group to achieve the required enterprise level function-
ality and performance. For example, applications may
include three tier web applications, replicated database sys-
tems, distributed key-value stores, etc. Each component of
such distributed applications are packaged into a single
container, virtual machine (VM), or other virtual computing
instance (VCI) and deployed in a cluster of physical server
machines, such as a set of servers.

US 2019/0356606 Al

[0024] Given that the VClIs host different components of
such applications, each VCI has different resource require-
ments. In other words, the VCIs may have highly diverse
requirements for a set of resources 124 including central
processing unit (CPU) 118, memory 120, and network 122
resources.

[0025] The scheduler as described herein is a form of a
distributed resource scheduler (DRS) that manages
resources in a cluster, such as CPU, memory and/or storage
as well as network. In some examples, the primary metric
the scheduler optimizes is dynamic entitlement. This metric
reflects resource delivery in accordance with both the needs
and importance of the VMs and is a function of the VMs
actual resource demands, overall cluster capacity, and the
VMs resource settings. The VMs resource settings may
include reservations, limits, and shares. A reservation is a
claim or guarantee on a specific amount of a resource should
the VM demand it. VMs entitlement for a resource is higher
than its reservation and lower than its limit. Dynamic
entitlement is equal to VM demand if there are sufficient
resources in the cluster to meet all VM demands. Otherwise,
it is scaled down based on cluster capacity, the demands of
other VMs, and its settings for reservations, shares, and
limits.

[0026] The scheduler computes host load (its normalized
entitlement) in some examples by summing up the entitle-
ments of the VMs running in it and normalizing it using the
hosts capacity. This normalized entitlement is then used to
calculate the cluster balance metric, which is the standard
deviation of the normalized entitlements of hosts. The
primary target of the optimization algorithm is to move the
standard deviation value close to zero when making place-
ment decisions or load-balancing.

[0027] The scheduler 108 in the present disclosure man-
ages compute, memory, and network resources together. The
scheduler does not consider network resource usage inde-
pendently from CPU usage, in some examples. Even with
support for hardware offloading, processor cycles are needed
to drive traffic. The positive correlation between compute
and networking places networking as a secondary, depen-
dent resource rather than a primary, independent resource in
some of these examples. In other examples, the scheduler
108 further manages storage resources.

[0028] In some examples, the scheduler selects a host for
placement of a VCI from a candidate set of server hosts
based at least in part on network resource availability and/or
network resource utilization of the hosts and VCI. The VCI
may include a VM, a container, or any other type of VCI, as
further described herein.

[0029] The network resource data of the host includes the
network utilization of VClIs on the host, the host’s network
capacity, the network availability of the host, network
requirements of the powering-on VCI or migrating VCI,
and/or other network resource data. The powering-on VCI or
a migrated VCI is placed on the selected host. Selecting a
host from the candidate set of hosts based on network
resource data reduces network saturation of hosts and
reduces network bandwidth usage.

[0030] In some examples, the candidate set of hosts is
selected based on a primary ranking of host processor
resources and memory resources. A secondary ranking is
performed on the candidate set of hosts based on processor
resources, memory resources, and network resources (e.g.,
network resource data). The host in the candidate set with

Nov. 21, 2019

the best or highest ranking is selected for placement of the
VCI. This enables cluster scheduling by optimizing memory
and processor resources while also optimizing network
resources.

[0031] In other examples, the scheduler evaluates pro-
posed VCI migrations based on network resources (e.g.,
network resource data) of the proposed target hosts. This
network-utilization based scheduling improves host selec-
tion speed, reduces processor load, conserves memory,
avoids placement of VClIs that may increase network satu-
ration, and remediates network saturated hosts.

[0032] In still other examples, proposed migrations are
selected based on memory resources and processor
resources of the hosts. The proposed migrations are then
scored based on network resource utilization of the proposed
target hosts. Proposed migrations are filtered or allowed
based on the scores. The scheduler considers multiple
resource metrics, including networking metrics, for place-
ment of powering on VCIs and migrations. This enables
more accurate and reliable selection of hosts to reduce
processor load, prevent host network saturation, improve
cluster resource utilization, and enable more efficient place-
ment of virtual computing instances on hosts in a cluster.
[0033] In some examples, the scheduler considers proces-
sor resources and memory resource to optimize host selec-
tion at a primary resource level selection. The scheduler then
considers networking resources at a secondary resource
level host selection for a powering-on or migrating VCI.
This enables the scheduler to provide an improved distri-
bution of load, increase VCI packing density on hosts, and
minimize VCI network contention.

[0034] In some examples, the scheduler considers host
internal network traffic and host external network traffic
during evaluations of proposed host placements and pro-
posed host migrations. Host internal network traffic includes
communications between VCls on the same host. Host
external network traffic is communications between VCIs on
different hosts. The scheduler filters out proposed migration
placements that would saturate the host’s network interfaces
with host external network traffic. This improves commu-
nication speed between VCls, reduces network bandwidth
usage, and improves network resource efficiency within the
cluster.

[0035] The cluster is a collection of hosts in which system
resources, such as processor and memory resources, are
aggregated for utilization by hosts in the cluster. A host is a
server or any other computing device capable of running one
or more VClIs, such as a VM. A host may be implemented
as a physical server, or as a cloud instance running within a
cloud environment. A cloud instance of a host is a host
running within a VM, a container, or other VClIs. This may
be implemented as a first hypervisor running within a VM,
which is running over a second hypervisor, in some
examples. A cloud instance of a host runs within a VCI,
while supporting one or more other computing instances. A
VM running within a cloud instance of a host may be
referred to as a nested VM.

[0036] While some embodiments are described with ref-
erence to VMs for clarity of description, the disclosure is
operable with other forms of VCIs. A VCI may be a VM, a
container, and/or any other type of virtualized computing
instance.

[0037] Referring to FIG. 1, an exemplary block diagram
illustrates a system for a network-utilization based sched-

US 2019/0356606 Al

uler. Cloud services are provided to clients via a network
106. The network 106, in some examples, is a Wide Area
Network (WAN) accessible to the public, such as the Inter-
net. The cloud services are provided via one or more
physical servers, such as a set of servers associated with data
center 110.

[0038] In this example, the data center 110 includes one or
more physical computing devices in the set of servers and/or
data storage device(s). The set of servers may include a
single server, as well as two or more servers in a cluster. In
some examples, the set of servers includes a rack scale
architecture (RSA) housing a plurality of physical servers.
In yet other examples, the set of servers includes one or more
blade servers. In still other examples, the set of servers is
implemented as a VMware vSphere cluster from VMware,
Inc.

[0039] The set of servers supports any VCI. The VCI may
be considered to be part of a cloud, which may be imple-
mented as a private cloud, a public cloud, or a hybrid cloud.
A hybrid cloud is a cloud that includes a public cloud and a
private cloud. VMware’s vCloud Hybrid Services (vCHS) is
an example of a hybrid cloud implementation.

[0040] The VCI includes a VM, a container, and/or any
other form of VCI. A VM typically includes an operating
system (OS) running one or more applications or portions of
an application to perform a workload. VMs running on a
host utilize cluster resources to perform the workloads. The
data center 110 in this non-limiting example hosts a set of
one or more VMs running on one or more servers.

[0041] The data storage device(s) in this non-limiting
example includes one or more devices for storing data. The
data storage device(s) may be implemented as any type of
data storage, including, but without limitation, a hard disk,
optical disk, a redundant array of independent disks (RAID),
a solid state drive (SSD), a flash memory drive, a storage
area network (SAN), or any other type of data storage
device. The data storage device(s) may include rotational
storage, such as a disk. The data storage device(s) may also
include non-rotational storage media, such as SSD or flash
memory.

[0042] In some non-limiting, examples, the data storage
device(s) provide a shared data store. The shared data store
is a data storage accessible by two or more hosts in the
cluster.

[0043] In some examples, the system 100 optionally
includes a remote data storage device. The remote data
storage is accessible to the data center 110 via the network
106.

[0044] The system 100 may optionally include one or
more other remote computing devices. The remote comput-
ing device may be a client, a server, or any other type of
computing device accessible via the network 106. The
remote computing device may be associated with one or
more users. For example, a user associated with the remote
computing device may utilize the network 106 to send data
to the data center 110 and receive data from the data center
110.

[0045] The scheduler 108 in this non-limiting example, is
a network-utilization based distributed resource scheduler.
The scheduler utilizes network resource data associated with
one or more VClIs associated with the data center 110 to
make decisions regarding initial placement of powering-on
VCIs and migrations of VCIs for purposes of load balancing.

Nov. 21, 2019

[0046] In some example, the scheduler 108 performs both
load balancing and initial placement of VCIs based on
network resource data. In other examples, the scheduler 108
only performs load balancing based on network resource
data periodically during runtime of the VCIs. In other
examples, the scheduler 108 only performs initial placement
of VClIs based on network resource data associated with the
VClIs.

[0047] The scheduler 108 considers network resource
when performing initial placement of a VCI and migrations
of VCIs to relieve resource contention. The scheduler in
some examples avoids bad placements for VCIs from a
network resource aspect and remediates network saturated
hosts while considering the CPU and memory as primary
resources or first class resources for scheduling purposes. A
first class or primary resource is a resource given higher
priority or greater consideration than a secondary resource.
If CPU is a primary resource and network is a secondary
resource, the scheduler 108 prioritizes balancing CPU
resource contentions over network considerations.

[0048] While described with reference to the network as a
secondary resource and the processor and memory as pri-
mary resources in some examples, other tiering is contem-
plated. For example, the network may be viewed as a
primary resource while the processor and memory are
viewed as secondary resources. In these examples, the
network is considered first, and the processor and memory
are considered second. In still other examples, all three of
these resources are considered to be primary resources and
thus considered together.

[0049] The scheduler 108 runs on one or more computing
devices associated with the data center 110 in this example.
In other examples, the scheduler 108 executes on other
devices, such as in the cloud or on a remote computing
device. In such cases, the scheduling decisions are trans-
mitted to the data center 110 via the network 106 for
implementation.

[0050] FIG. 2 is a block diagram of a host computing
device supporting one or more VMs. The illustrated host
computing device 200 may be implemented as any type of
host computing device, such as a server. In some non-
limiting examples, the host computing device 200 is imple-
mented as a host or ESXi host from VMware, Inc. The host
computing device 200 is a host for running one or more
VMs.

[0051] The host computing device 200 represents any
device executing instructions (e.g., as application(s), oper-
ating system, operating system functionality, or both) to
implement the operations and functionality associated with
the host computing device 200. The host computing device
200 may include desktop personal computers, kiosks, table-
top devices, industrial control devices, or server, such as, but
not limited to, a server in the data center 110 in FIG. 1. In
some examples, the host computing device 200 is imple-
mented as a blade server within a RSA. Additionally, the
host computing device 200 main represent a group of
processing units or other computing devices.

[0052] The host computing device 200 includes a hard-
ware platform 202. The hardware platform 202, in some
examples, includes one or more processor(s) 204, a memory
206, and at least one user interface, such as user interface
component 208.

[0053] The processor(s) 204 includes any quantity of
processing units, and is programmed to execute computer-

US 2019/0356606 Al

executable instructions for implementing the examples. The
instructions may be performed by the processor or by
multiple processors within the host computing device 200,
or performed by a processor external to the host computing
device 200. In some examples, the one or more processors
are programmed to execute instructions such as those illus-
trated in the figures (e.g., FIG. 7, FIG. 8. and FIG. 9).
[0054] The host computing device 200 further has one or
more computer readable media, such as the memory 206.
The memory 206 includes any quantity of media associated
with or accessible by the host computing device 200. The
memory 206 may be internal to the host computing device
200, external to the host computing device, or both. In some
examples, the memory 206 includes read-only memory
(ROM) 212.

[0055] The memory 206 further stores a random access
memory (RAM) 210. The RAM 210 may be any type of
random access memory. In this example, the RAM 210 is
part of a shared memory architecture. In some examples, the
RAM 210 may optionally include one or more cache(s). The
memory 206 further stores one or more computer-executable
instructions 214.

[0056] The host computing device 200 may optionally
include a user interface 208 component. In some examples,
the user interface 208 includes a graphics card for displaying
data to the user and receiving data from the user. The user
interface 208 may also include computer-executable instruc-
tions (e.g., a driver) for operating the graphics card. Further,
the user interface 208 may include a display (e.g., a touch
screen display or natural user interface) and/or computer-
executable instructions (e.g., a driver) for operating the
display. The user interface component may also include one
or more of the following to provide data to the user or
receive data from the user: speakers, a sound card, a camera,
a microphone, a vibration motor, one or more accelerom-
eters, a BLUETOOTH brand communication module,
global positioning system (GPS) hardware, and a photore-
ceptive light sensor.

[0057] In some examples, the hardware platform 202
optionally includes a network communications interface
component 216. The network communications interface
component 216 includes a network interface card and/or
computer-executable instructions (e.g., a driver) for operat-
ing the network interface card. Communication between the
host computing device 200 and other devices may occur
using any protocol or mechanism over any wired or wireless
connection. In some examples, the communications inter-
face is operable with short range communication technolo-
gies such as by using near-field communication (NFC) tags.
[0058] The data storage device(s) 218 may be imple-
mented as any type of data storage, including, but without
limitation, a hard disk, optical disk, a redundant array of
independent disks (RAID), a solid state drive (SSD), a flash
memory drive, a storage area network (SAN), or any other
type of data storage device. The data storage device(s) 218
may include rotational storage, such as a disk. The data
storage device(s) 218 may also include non-rotational stor-
age media, such as SSD or flash memory.

[0059] In some non-limiting examples, the data storage
device(s) 218 provide a shared data store. A shared data store
is a data storage accessible by two or more hosts in a host
cluster.

[0060] The host computing device 200 hosts one or more
VClIs such as, but not limited to, VMs 220 and 222. The VM

Nov. 21, 2019

220 in some examples, includes data such as, but not limited
to, one or more application(s) 224. The VM 222 in this
example includes applications(s) 226. The application(s),
when executed by the processor(s) 204, operate to perform
functionality on the host computing device 200.

[0061] Exemplary application(s) include, without limita-
tion, mail application programs, web browsers, calendar
application programs, address book application programs,
messaging programs, media applications, location-based
services, search programs, and the like. The application(s)
may communicate with counterpart applications or services
such as web services accessible via a network. For example,
the applications may represent downloaded client-side
applications that correspond to server-side services execut-
ing in a cloud.

[0062] In this example, each VM includes a guest oper-
ating system (OS). In this example, VM 220 includes guest
operating system (OS) 228 and VM 222 includes guest OS
230.

[0063] The host computing device 200 further includes
one or more computer executable components. Exemplary
components include a hypervisor 232. The hypervisor 232 is
a VM monitor that creates and runs one or more VMs, such
as, but without limitation, VM 220 or VM 222. In one
example, the hypervisor 232 is implemented as a vSphere
Hypervisor from VMware, Inc.

[0064] The host computing device 200 running the hyper-
visor 232 is a host machine. VM 220 is a guest machine. The
hypervisor 232 presents the OS 228 of the VM 220 with a
virtual hardware platform. The virtual hardware platform
may include, without limitation, virtualized processor,
memory, user interface device, and network communication
interface. The virtual hardware platform, VM(s) and the
hypervisor are illustrated and described in more detail in
FIG. 16 below.

[0065] FIG. 3 is an exemplary block diagram illustrating
network-utilization based scheduling. The scheduler 300 in
this example factors in network resource utilization into
scheduling decisions for initial VM placement and VM
migrations to remediate resource contention as well as
improve application metrics.

[0066] The scheduler 300 in this example includes an
initial placement component 302. The initial placement
component 302 utilizes networking resources for initial
placement scheduling decisions. The initial placement com-
ponent 302 treats the network resource as a second class or
secondary resource for the purposes of scheduling decisions
and/or optimizing, resources within the cluster, in some
examples. In other words, the scheduler 300 considers
primary resource(s), such as CPU and memory, first when
making scheduling decisions. Then the scheduler 300 con-
siders the secondary, network resource. In other examples,
there is no two-tiered structure like this, and the resources
are all considered at the same time by the scheduler 300.
[0067] In still other examples, the scheduler 300 includes
a load balancer 304 which migrates a VM so that the CPU
or memory contention of another host is remediated without
making the networking of the VM suffer by selecting a
network saturated host. In other examples, the scheduler 300
includes a filter 306 which filters or rejects potential desti-
nation hosts if an initial placement or migration to that host
would result in network saturation. If a potential placement
or migration to a particular host would alleviate CPU or
memory contention while creating network contention, that

US 2019/0356606 Al

particular host is filtered, or removed, from the pool of
potential destination hosts for the initial placement or migra-
tion.

[0068] The scheduler 300 receives cluster configuration
data 308 associated with cluster 310. Cluster 310 includes a
plurality of hosts, such as host 312 and 314. Each host in the
cluster 310 supports one or more VMs, such as VM 316, VM
318, and VM 320 on host 312. Likewise in this non-limiting
example, host 314 hosts VM 322 and VM 324. Although
VMs are shown in FIG. 3, the hosts in other examples may
be associated with one or more containers or other VCIs
instead of VMs.

[0069] The network-utilization based scheduler 300 in this
example includes one or more network traffic counters 326.
The network traffic counters 326 collect network traffic data
associated with communications between VCIs within the
cluster. In some non-limiting examples, the network traffic
counters 326 are available at the host level and exposed to
the scheduler or virtual controller via a statistics communi-
cation channel, such as the statistics channel 416 shown in
FIG. 4.

[0070] When two VClIs on the same host communicate,
internal network traffic is generated on the host supporting
the VCIs. When a VCI on one host communicates with a
VCI on a different host, external network traffic is generated
on both hosts. Typically, external network traffic consumes
network resources such as via the network interface card,
compared to the internal network traffic.

[0071] Therefore, in this example, the scheduler 300
retrieves network traffic data including host internal traffic
data and host external traffic data for one or more hosts in the
cluster. In some examples, the scheduler obtains network
traffic data for every host on the cluster. In other examples,
the scheduler only obtains network traffic data for hosts in a
candidate set of hosts or hosts in a set of proposed migra-
tions.

[0072] The statistics collector 328 is a component for
providing host statistics 330 and VM statistics 332 to the
scheduler. The scheduler 300 collects statistics from a clus-
ter statistics collector 328. The cluster statistics received
from the cluster statistics collector 328 includes host
resource capacity, VM resource demand, and VM resource
usage. The host resource usage data includes, without limi-
tation, total CPU utilization, total consumed memory, and
total network receive and transmit usage. The cluster statis-
tics collector 328 in some examples, provides per-VM usage
statistics, such as the VM resource demand and VM resource
usage, to the scheduler.

[0073] Network traffic between hosts and VMs in a cluster
is often unstable. The network traffic frequently includes
periods of high usage followed by periods of low usage. The
VM network resource usage statistics may be provided using
a percentile measure. In these examples, a percent high-
water mark may be used for stability in determining network
usage. In one non-limiting example, the percent high-water
mark is the seventy-fifth percentile. In other examples, a
high-water mark of the eightieth percentile may be utilized.

[0074] Moreover, in some examples, the cluster statistics
include internal send and receive traffic occurring on a single
host, as well as external send and receive traffic occurring
across different hosts. The external network traffic is more
expensive than the internal network traffic. These internal
versus external communications traffic statistics are consid-

Nov. 21, 2019

ered to avoid separating VMs during migrations which
communicate at a high rate with one another on the same
host.

[0075] The scheduler retrieves the statistics from the clus-
ter statistics collector 328 to evaluate the cluster status as the
VMs are powering-on and/or during load balancing. The
scheduler 300 also receives link bandwidth data from the
cluster configuration data 308.

[0076] In the example shown in FIG. 3 the scheduler 300
is a single component including the load balancer filter 306
and initial placement component 302 receiving runtime data
from the statistics collector 328. In other examples, the
scheduler 300 includes the initial placement component 302
for performing, network-utilization based placements of
powering on VClIs but does not include the load balancer
304 filter 306. In still other examples, the scheduler 300
includes the filter 306 for performing network-utilization
based migrations but excludes the initial placement compo-
nent 302.

[0077] In yet other examples, the initial placement com-
ponent 302 and/or filter 306 are located externally or sepa-
rately from an existing resource scheduler. In these non-
limiting examples, the initial placement component 302 and
filter 306 may optionally be implemented on a remote
computing device. In still other non-limiting examples, the
initial placement component 302 and/or filter may optionally
be implemented as one or more plug-ins to an existing
resource scheduler.

[0078] FIG. 4 is an exemplary block diagram illustrating
a statistics channel for transmitting runtime statistics to the
scheduler. The scheduler 400 performs scheduling based on
runtime statistics obtained regarding the hosts and the VCls,
as well as configuration data 409. The runtime statistics
include the VCIs’ CPU statistics 402, memory statistics 404,
and network statistics 406. The runtime statistics include
memory, CPU, and network consumption and hosts total
CPU, memory, and network utilization. The network statis-
tics 406 include internal network traffic 412 and external
network traffic 414.

[0079] A selected VCI proposed for migration by the
scheduler 400 based on CPU and memory resource load
balancing, may communicate with other VClIs. These other
VCIs may reside either on the same host as the selected VCI
or in different hosts. That means the VCI may have external
network traffic with the other VCls associated with different
hosts and/or internal network traffic with other VClIs sup-
ported on the same host as the selected VCI. When the
selected VCI is moved from a first host to a second host, the
external network traffic no longer impacts the first host but
the prior internal network traffic now becomes new external
network traffic for the first host.

[0080] In this non-limiting example, the scheduler 400
obtains separate utilization statistics for internal network
traffic 412 and external network traffic 414 for VClIs for both
transmit (Tx) and receive (Rx) directions, in addition to the
current utilization metrics. In some examples, the internal
network traffic 412 and external network traffic 414 are
collected by counters, such as the network traffic counters
326 in FIG. 3.

[0081] While the scheduler 400 receives the runtime sta-
tistics data via a statistics channel 416, the scheduler 400 in
some examples also receives configuration data 409 includ-
ing cluster configuration 408 data and network configuration
410 data. The inputs from VCI configuration include VCIs’

US 2019/0356606 Al

configured size, as well as their resource settings. The
configured size includes, for example but without limitation,
total memory and/or number of cores. The resource settings
include reservations, limits, and shares. The inputs from host
configuration include hosts’ CPU capacity, memory capac-
ity, and networking capacity (bandwidth).

[0082] The scheduler 400 generates the current cluster
status snapshot 418 based on the runtime statistics and the
configuration data 409. The snapshot 418 is utilized by the
scheduler 400 to generate network-utilization based sched-
uling decisions for initial placement of VCIs and VCI
migrations for load balancing.

[0083] FIG. 5 is an exemplary block diagram illustrating
an initial placement component of the scheduler. The sched-
uler 500 runs in on-demand fashion when a VCI is powered-
on. At each invocation of the scheduler, a snapshot 502
representing the current status of the cluster is created. This
snapshot 502 contains configuration data as well as runtime
statistics associated with the cluster. The snapshot 502
contains the current VCI placements.

[0084] During the initial placement, when a VCI is pow-
ered on, the scheduler selects a host for placement of the
VCI that maintains host utilization such that that standard
deviation of utilization is minimized. The VCI’s actual
resource utilization is unknown at initial placement. The
scheduler 500 uses an estimation of VCI utilization based on
the VCI’s configured size as its entitlements for CPU and
memory when calculating the standard deviation.

[0085] The scheduler 500 considers availability of net-
working resources to avoid over-utilizing network resource
of some hosts. In this example, the scheduler 500 uses a
standard deviation based scheduling algorithm to obtain a
list of hosts ranked best to worst from the standard deviation
aspect. The scheduler 500 uses the top ranked hosts from this
list to select a candidate set of hosts 504 during a first level
analysis. The candidate set of hosts 504 is a user defined
number of the top ranked hosts in the list of hosts. The
scheduler 500 further analyzes the candidate set of hosts 504
to select a host for the powering-on VCI considering CPU,
memory, and network resources. The powering-on VCI is
placed on the selected host 512.

[0086] In this example, the primary resource based rank-
ing 506 generates the candidate set of hosts 504 for the
second level analysis by comparing the standard deviation
difference against a threshold. The threshold is a user
controllable or user-defined threshold setting in the cluster
used for load balancing decisions. The threshold indicates a
magnitude of imbalance in the cluster (overall standard
deviation) which triggers a migration.

[0087] In some examples, when the initial placement
component 510 outputs the ranked host list along with the
overall standard deviation (imbalance after the VCI place-
ment), the primary resource based ranking selects hosts
below the threshold to ensure the subsequent load balancing
phase does not trigger a migration due to this initial place-
ment. In other examples, hosts having a ranking that equals
or exceeds the threshold are filtered or rejected.

[0088] During the second level host selection performed
by the network based ranking 508, the scheduler selects the
best host from the short-listed hosts in the candidate set of
hosts for power-on operation. This ranking is based on CPU,
memory, and network resources. The scheduler 500 utilizes
a dot product algorithm to select the best host using the
VCI’s CPU, memory, and networking demands as well as

Nov. 21, 2019

hosts’ available capacity. In some examples, the dot product
between a VCI’s resource demand vector and a host’s
available resource vector gives the best packing efficiency
for the cluster. However, other ways to select the best host
are contemplated.

[0089] In some examples, the scheduler 500 uses entitle-
ments of the CPU and memory calculated by the DRS
algorithm for the demands. For networking resources, the
scheduler assumes the VCI will use its entire capacity of
virtual network interface card (vNIC) and use the capacity of
the vNIC as its demand. For the host’s available capacity, the
scheduler deducts the sum of the entitlements of the other
running VCI on that host from the host’s total capacity for
CPU and memory resources. For networking resources, the
scheduler in some examples deducts the current utilization
from total capacity to obtain the available capacity. The
current utilization is an average over a given time period.
For example, the current utilization may be, without limi-
tation, the average over the last minute. Once the dot product
algorithm emits the dot product between the VCI demand
vector and each host’s available capacity vector, the sched-
uler identifies a selected host 512 that maximizes the dot
product.

[0090] FIG. 6 is an exemplary block diagram illustrating
a filter component of the scheduler. The scheduler 600 runs
periodically to balance the load in the cluster. The scheduler
in this non-limiting example is invoked to perform load-
balancing at an occurrence of a predetermined time interval.
The predetermined time interval may be a user defined
amount of time or a default period.

[0091] Insome examples, the scheduler 600 evaluates one
or more proposed migration(s) 610 from a load balancer 604
to determine whether the proposed migration(s) would
resolve an existing network saturation, create additional
network saturation, or have minimal/no effect on network
utilization.

[0092] At each invocation of the scheduler, a snapshot 602
representing the current status of the cluster is created. This
snapshot 602 contains configuration data, runtime statistics
associated with the cluster, and VM placements. The sched-
uler 600 analyzes the snapshot 602 to determine impact of
a proposed migration on network utilization.

[0093] The scheduler 600 performs migrations of VClIs to
maintain balance of cluster resources across hosts. The
resource utilization is calculated using the normalized
entitlement. The term “balance” refers to the standard devia-
tion of the host utilization histogram within a user defined
acceptable threshold 606.

[0094] The scheduler 600 maintains balance with respect
to CPU and memory resources while placing VClIs where the
network resource is available and avoids network saturation
when performing load balancing. In other examples, the
scheduler 600 performs remediation actions during load
balancing phases to prevent host network saturation.

[0095] In some examples, the load balancer 604 executes
periodically as an asynchronous task in a virtual controller
associated with the cluster. The virtual controller may be
implemented as a vCenter server from VMware. The load
balancer 604 evaluates the load on each host of the cluster
and proposes migrations to reduce any imbalance of the host
load to below a user configured threshold 606. The load
balancer 604 in some examples runs a greedy hill climbing

US 2019/0356606 Al

algorithm which performs an exhaustive search at each step
to find the best move that minimizes the imbalance in the
cluster.

[0096] The proposed migrations from the load balancer
604 may be harmful from a networking perspective because
the load balancer 604 in this example only considers CPU
and memory resources. For example, a host may have few
VMs which are networking intensive and the host’s physical
network interface card (pNIC) may be dose to saturation.
However, the CPU and memory resources may be free in
this host compared to other hosts in the cluster. If the load
balancer 604 brings a new VM that is network intensive into
this host, the VClIs in this host will suffer from the network
resource aspect.

[0097] The scheduler 600 prevents such harmful migra-
tions proposed by the load balancer 604 and performs
remediation tasks if a host is already in network saturation.
Remediation refers to moving a network intensive VM or
other VCI away from a network saturated host and onto a
network unsaturated host.

[0098] The filter 614 filters proposed migrations while
treating network resource as secondary to other resources,
such as memory and processor resources. In other words,
when the processor and memory based primary evaluation is
complete during a first level (e.g., by the load balancer 604),
the filter performs a second level re-evaluation of the
proposed migrations based on the network resources.
[0099] In some examples, during the second level re-
evaluation, the scheduler 600 generates one or more network
utilization score(s) 608 for each destination host in a set of
one or more proposed migration(s) 610. A proposed migra-
tion is a recommendation to move a VCI from a source host
to a destination host within the cluster. A proposed migration
may recommend a single move or recommend multiple
moves. For example, a proposed migration may recommend
a move of a first VCI from a first host to a second host and
a move of a second VCI from the first host to a third host.
[0100] The filter 614 generates each score based on data
provided in the current cluster status snapshot 602. The
snapshot 602 includes internal network traffic and external
network traffic data for each destination host in the proposed
migration(s) 610. In some examples, the snapshot 602 also
includes external network traffic data and external network
traffic data for each source host in the proposed migration(s)
610.

[0101] The filter 614 compares the generated scores to
filter or approve proposed migrations based on an impact of
the proposed migration on network utilization within the
cluster. The filter 614 compares scores and rejects proposed
migrations associated with the greatest negative impact on
network saturation and/or network contention.

[0102] In some examples, the filter 614 rejects proposed
migrations which would result in a network saturation
and/or network contention an a destination host. This check
ensures the scheduler 600 avoids migrations having a nega-
tive impact on network resources with regard to one or more
hosts in the cluster. For example, if a destination host for a
proposed migration is network saturated and the VCI to be
moved includes a network load, the proposed migration is
rejected.

[0103] In another example, the filter 614 selects or priori-
tizes migrations to network unsaturated hosts. This assists in
resolving existing host network resource saturation on one
or more hosts. For example, if a destination host A for a first

Nov. 21, 2019

proposed migration is network saturated and a destination
host B for a second proposed migration is network unsatu-
rated, the filter 614 rejects or filters the first proposed
migration to the network saturated host and permits or
prioritizes the second proposed migration to the network
unsaturated host.

[0104] In another example, the filter 614 favors a migra-
tion that would move a VCI away from a network saturated
host to resolve an existing host network resource saturation.
For example, if a first proposed migration would move a
VCI from a network saturated source host A and a second
proposed migration would move a VCI off a network
unsaturated source host B, the filter approves or prioritized
the second proposed migration to alleviate the network
saturation on host B. In this example, the first proposed
migration creates a non-negative contribution to resolve the
cluster imbalance.

[0105] In other examples, the filter 614 favors a first
proposed migration that would move a VCI from a network
unsaturated host instead of a second proposed migration
moving a VCI from a network saturated host if the move
significantly reduces cluster load imbalance. This ensures
the scheduler 600 prefers the CPU and memory load bal-
ancing by prioritizing the proposed migrations that resolve
the cluster imbalance to the greatest degree.

[0106] In another example, the filter 614 selects a first
proposed migration of a VCI to a network saturated host A
instead of a second proposed migration of a VCI to a
network unsaturated host B if the first proposed migration
significantly reduces load imbalance with regard to proces-
sor and memory more than the second proposed migration.
The first proposed migration may also be favored in cases
where the VCI has little or no network load associated with
the VCI. In such cases, the network impact of the proposed
move may be negligible while the processor and memory
impact of the move is significant.

[0107] In yet other examples, the filter 614 performs a
strict imbalance change comparison if the source host in two
or more proposed migrations are saturated. A move from any
of the saturated hosts would assist in alleviating the existing
host network resource saturation. A strict imbalance change
comparison is performed by comparing the score for each
proposed migration. The proposed migration associated with
the score indicating, the greatest positive impact on CPU and
memory resources is selected. This enables the scheduler
600 to strictly consider the contribution to resolve the cluster
load imbalance.

[0108] In some examples, moves that migrate a VM to a
network saturated host are rejected outright.

[0109] FIG. 7 is an exemplary flow chart illustrating
operation of the scheduler utilizing network as a secondary
resource. The process shown in FIG. 7 may be performed by
a scheduler on a computing device, such as, but not limited
to, the scheduler 108 in FIG. 1, scheduler 300 in FIG. 3,
scheduler 400 in FIG. 4, scheduler 500 in FIG. 5, and/or
scheduler 600 in FIG. 6. The computing device may be
implemented as a computing device such as, but not limited
to, a server associated with the data center 110, host com-
puting device 200 in FIG. 2, host computing device 1500, or
host computing device 1600 in FIG. 16. Further, execution
of the operations illustrated in FIG. 7 is not limited to a
scheduler. One or more computer-readable storage media

US 2019/0356606 Al

storing, computer-readable instructions may execute to
cause at least one processor to implement the operations
illustrated in FIG. 7.

[0110] A determination is made as to whether the sched-
uler is invoked at 702. If yes, runtime statistics for the cluster
are received at 704. A cluster snapshot is generated based on
runtime statistics and configuration data at 706.

[0111] A determination is made as to whether this is an
initial placement of a VCI at 708. If yes, each host in a
candidate set of hosts is ranked based on network utilization
at 710. A host is selected based on the rankings at 712. The
VCI is placed on the selected host at 714. The process
terminates thereafter.

[0112] Returning to 708, if the proposed migration is not
an initial VCI placement, a score is generated for each
proposed migration based on network utilization at 716.
Proposed migrations are filtered based on the scores and a
threshold at 718. In some examples, proposed migrations
having a score that equals or exceeds the threshold are
filtered.

[0113] The unfiltered migrations are performed at 720.
The process terminates thereafter.

[0114] While the operations illustrated in FIG. 7 are
described as being performed by a host computing device or
a server, aspects of the disclosure contemplate that perfor-
mance of the operations by other entities. For example, a
cloud service may perform one or more of the operations.
[0115] FIG. 8 is an exemplary flow chart illustrating
operation of a scheduler for initial placement of a virtual
computing instance (VCI) based on network utilization. The
process shown in FIG. 8 may be performed by a scheduler
on a computing device, such as, but not limited to, the
scheduler 108 in FIG. 1, scheduler 300 in FIG. 3, scheduler
400 in FIG. 4, and/or scheduler 500 in FIG. 5. The com-
puting device may be implemented as a computing device
such as, but not limited to, a server associated with the data
center 110, host computing device 200 in FIG. 2, host
computing device 1500, or host computing device 1600 in
FIG. 16. Further, execution of the operations illustrated in
FIG. 8 is not limited to a scheduler. One or more computer-
readable storage media storing computer-readable instruc-
tions may execute to cause at least one processor to imple-
ment the operations illustrated in FIG. 8.

[0116] A primary rank is generated for each host in a
plurality of hosts based on a set of primary resources at 802.
A candidate set of hosts is selected from the plurality of
hosts based on the primary rankings at 804. A secondary
ranking of each host in the candidate set of hosts is generated
based on network utilization at 806. A host having a highest
secondary ranking is selected at 808. The process terminates
thereafter. The VCI is placed on the selected host at 810.
[0117] In this example, the host having the highest sec-
ondary ranking is selected. The highest secondary ranking is
a best rank. The highest secondary ranking may be the
highest rank in a set of ranks. However, in other examples,
the highest ranking may be a ranking that is within a selected
range but not necessarily the rank having the highest value.
[0118] While the operations illustrated in FIG. 8 are
described as being performed by a host computing device or
a server, aspects of the disclosure contemplate that perfor-
mance of the operations by other entities. For example, a
cloud service may perform one or more of the operations.
[0119] FIG. 9 is an exemplary flow chart illustrating
operation of a scheduler for load balancing based on net-

Nov. 21, 2019

work utilization. The process shown in FIG. 9 may be
performed by a scheduler on a computing device, such as,
but not limited to, the scheduler 108 in F1G. 1, scheduler 300
in FIG. 3, scheduler 400 in FIG. 4, and/or scheduler 600 in
FIG. 6. The computing device may be implemented as a
computing device such as, but not limited to, a server
associated with the data center 110, host computing device
200 in FIG. 2, host computing device 1500, or host com-
puting device 1600 in FIG. 16. Further, execution of the
operations illustrated in FIG. 9 is not limited to a scheduler.
One or more computer-readable storage media storing com-
puter-readable instructions may execute to cause at least one
processor to implement the operations illustrated in FIG. 9.
[0120] A proposed migration is evaluated at 902. A deter-
mination is made as to whether a destination host is saturated
at 904. If yes, a determination is made as to whether a
network load is on the VCI at 906. If yes, the proposed
migration is rejected at 908. The process terminates there-
after.

[0121] Returning to 904, if the VCI does not have a
network load, the migration is allowed at 908. The process
terminates thereafter.

[0122] Returning to 904, if the host is not network satu-
rated, a determination is made as to whether network satu-
ration is created by the proposed move at 912. If no, the
migration is allowed at 908. The process terminates there-
after.

[0123] Returning to 912, if network saturation is created
by the proposed move, the proposed migration is rejected at
914. The process terminates thereafter.

[0124] While the operations illustrated in FIG. 9 are
described as being performed by a host computing device or
a server, aspects of the disclosure contemplate that perfor-
mance of the operations by other entities. For example, a
cloud service may perform one or more of the operations.
[0125] InFIG. 10, FIG. 11, FIG. 12, FIG. 13, and FIG. 14,
cluster experiments are utilized to highlight the gaps in prior
art (legacy DRS) scheduler. FIG. 10, FIG. 11, FIG. 12, FIG.
13, and FIG. 14 also illustrate strengths in the network-
utilized based scheduler, such as, but not limited to, sched-
uler 108 in FIG. 1, scheduler 300 in FIG. 3, scheduler 400
in FIG. 4, scheduler 500 in FIG. 5, or scheduler 600 in FIG.
6.

[0126] In one experiment, a netperf client is used to
generate network load at each VM with a pre-determined
network requirement which generates a stream of Transmis-
sion Control Protocol (TCP) packets to a server located
outside of the cluster. The cluster may be implemented as a
vSphere cluster by VM Ware.

[0127] The clusters include two or three hosts in these
experiments. The hosts include four (4) CPU cores each at
2.8 gigahertz (GHz) and 6 gigabytes (GB) of random access
memory. Each host has two (2) network interface cards
(NICs) with one (1) GB per second (ps) capacity and only
one of them is used for VM traffic. Internal testing utilities
are utilized to generate pre-determined CPU and memory
workloads.

[0128] The network-utilization based scheduler considers
network resource as a secondary resource when performing
initial placement and remediation of resource contention.
The network-utilization based scheduler performs initial
placement by two level ranking algorithm, which first con-
siders CPU and memory resources only and then considers
all three resources (CPU, memory, and network) in the

US 2019/0356606 Al

second level. For resource contention remediation, the net-
work-utilization based scheduler filters-out proposed migra-
tions which move VMs to hosts which are network satu-
rated, even if it improves the CPU and memory condition. It
performs remediation to the host network saturation by
prioritizing the migrations which move VMs out of network
saturated hosts.

[0129] In FIG. 10, FIG. 11, and FIG. 12, the resource
utilization on hosts is varied in the cluster and attempted to
power-on VM in the cluster. Varying the load on hosts is
accomplished by placing some VMs and running load
generating tools for each resource types in these VMs. The
VM is powered-on by both an existing resource scheduler
and the network-utilization based scheduler of the disclo-
sure.

[0130] FIG. 10 is an exemplary table illustrating results of
a first initial placement experiment. In the first initial place-
ment experiment, two VMs (VM1 and VM2) are placed in
a first host (H1) and a second host (H2) respectively. These
VMs have similar memory utilization. VM2 on H2 uses
more CPU while VM1 uses high network. Thus, H1 is more
network utilized while H2 is more CPU utilized. Table 1000
illustrates the placement results.

[0131] When a VM is placed, an existing resource sched-
uler selects H1 since H2 is more CPU utilized. However, the
network-utilization based scheduler of the present disclosure
selects H2 because H1 is more utilized from both CPU and
network perspectives. The memory utilization is equal for
both hosts.

[0132] FIG. 11 is an exemplary table illustrating results of
a second initial placement experiment. In the second initial
placement experiment, CPU utilization is equal across the
two hosts. The memory and network utilization is varied. H1
has a higher network utilization and lower memory utiliza-
tion compared to H2. As shown in table 1100, when a VM
is powered on, an existing resource scheduler selects H1
based on CPU and memory utilization. The network-utili-
zation based scheduler of the disclosure, however, selects
H2 based on CPU, memory, and network utilization.
[0133] FIG. 12 is an exemplary table illustrating results of
a third initial placement experiment. In this example H1
associated with VM1 has a medium CPU load and a medium
network load. H2 associated with VM2 includes a high CPU
load and medium network load. Host 3 associated with VM3
has a low CPU load and high network load. When the VM
is powered on, an existing resource scheduler places it on
host 3 based on CPU and memory utilization. However, the
network-utilization based scheduler of the disclosure places
the VM on H1 because it is the best considering CPU,
memory, and network resources. Table 1200 shoes the
details of this third initial placement experiment.

[0134] InFIG. 13 and FIG. 14, the experiments begin with
an initial state of the cluster regarding resource utilization
and location of each VM. FIG. 13 and FIG. 14 illustrate
results of load balancing workflow run by an existing
resource scheduler as well as the network-utilization based
scheduler of the disclosure.

[0135] FIG. 13 is an exemplary table illustrating results of
a first load balancing experiment. In this example, H1
includes 2 VMs (VM1 and VM2) which has high CPU
utilization and low network utilization. H2 has a single VM
(VM3) which has low CPU utilization and high network
utilization which saturates H2’s network utilization. When
an existing resource scheduler (e.g., load balancer) is run, it

Nov. 21, 2019

moves VM2 from H1 to H2 to balance the CPU resource
utilization across hosts in the cluster. However, this denies
VM2’s access to the network resource at H2 because the
network resource at H2 is already saturated by VM3.
[0136] The network-utilization based scheduler of the
disclosure understands this situation and prevents VM2
moving to H2 even though the cluster CPU utilization is
somewhat imbalanced. Table 1300 illustrates these results.
[0137] FIG. 14 is an exemplary table illustrating results of
a second load balancing experiment. H1 includes VM1 and
VM2. These two VMs have high CPU utilization and low
network utilization. H2 includes a single VM (VM3) which
has medium CPU utilization and a no network utilization.
Host 3 (H3) has VM4, which has low CPU utilization and
high network utilization which saturates H3’s network
resource. When an existing resource scheduler (e.g., load
balancer) is run, it moves VM2 from H1 to H3 to balance the
CPU resource utilization across hosts in the cluster. How-
ever, this denies VM2’s access to the network resource at H3
because the network resource at H3 is already saturated by
VM4.

[0138] The network-utilization based scheduler of the
disclosure avoids H3 due to network resource saturation.
The network-utilization based scheduler moves VM2 to H2
to relieve high CPU utilization at H1, as shown in table
1400.

[0139] FIG. 15 is a block diagram of an example host
computing device. A host computing device 1500 includes a
processor 1502 for executing instructions. In some
examples, executable instructions are stored in a memory
1504. Memory 1504 is any device allowing information,
such as, but not limited to, executable instructions, to be
stored and retrieved. For example, memory 1504 may
include one or more random access memory (RAM) mod-
ules, flash memory modules, hard disks, solid state disks,
and/or optical disks.

[0140] Host computing device 1500 may include a user
interface device 1510 for receiving data from a user 1508
and/or for presenting data to user 1508. User 1508 may
interact indirectly with host computing device 1500 via
another computing device such as VMware’s vCenter Server
or another management device. User interface device 1510
may include, for example, a keyboard, a pointing device, a
mouse, a stylus, a touch sensitive panel (e.g., a touch pad or
a touch screen), a gyroscope, an accelerometer, a position
detector, and/or an audio input device.

[0141] In some examples, the user interface device 1510
operates to receive data from the user 1508, while another
device (e.g., a presentation device) operates to present data
to user 1508. In other examples, the user interface device
1510 has a single component, such as a touch screen, that
functions to both output data to user 1508 and receive data
from the user 1508. In such examples, the user interface
device 1510 operates as a presentation device for presenting
information to user 1508. In such examples, the user inter-
face device 1510 represents any component capable of
conveying information to user 1508. For example, the user
interface device 1510 may include, without limitation, a
display device (e.g., a liquid crystal display (LCD), organic
light emitting diode (OLEO) display, or “electronic ink”
display) and/or an audio output device (e.g., a speaker or
headphones). In some examples, the user interface device
1510 includes an output adapter, such as a video adapter
and/or an audio adapter. An output adapter is operatively

US 2019/0356606 Al

coupled to the processor 1502 and configured to be opera-
tively coupled to an output device, such as a display device
or an audio output device.

[0142] The host computing device 1500 also includes a
network communication interface 1512, which enables the
host computing device 1500 to communicate with a remote
device (e.g., another computing device) via a communica-
tion medium, such as a wired or wireless packet network.
For example, the host computing device 1500 may transmit
and/or receive data via the network communication interface
1512. The user interface device 1510 and/or network com-
munication interface 1512 may be referred to collectively as
an input interface and may be configured to receive infor-
mation from the user 1508.

[0143] The host computing device 1500 further includes a
storage interface 1516 that enables the host computing
device 1500 to communicate with one or more data stores,
which store virtual disk images, and/or software applications
suitable for use with the methods described herein. In
example examples, the storage interface 1516 couples the
host computing device 1500 to a storage area network
(SAN) (e.g., a Fibre Channel network) and/or to a network-
attached storage (NAS) system (e.g., via a packet network).
The storage interface 1516 may be integrated with network
communication interface 1512.

[0144] FIG. 16 depicts a block diagram of VMs 1635,,
1635, . . . 1635, that are instantiated on host computing
device 1600. The host computing device 1600 includes a
hardware platform 1605, such as an x86 architecture plat-
form. The hardware platform 1605 may include a processor
1602, memory 1604, network communication interface
1612, user interface device 1610, and other input/output
(I/O) devices, such as a presentation device 1606. A virtu-
alization software layer is installed on top of the hardware
platform 1605.

[0145] The virtualization software layer supports a VM
execution space 1630 within which multiple VMs (VMs
1635,-1635,) may be concurrently instantiated and
executed. Hypervisor 1610 includes a device driver layer
1615, and maps physical resources of the hardware platform
1605 (e.g., processor 1602, memory 1604, network commu-
nication interface 1612, and/or user interface device 1610) to
“virtual” resources of each of the VMs 1635,-1635,; such
that each of the VMs 1635,-1635,, has its own virtual
hardware platform (e.g., a corresponding one of virtual
hardware platforms 1640,-1640,,), each virtual hardware
platform having its own emulated hardware (such as a
processor 1645, a memory 1650, a network communication
interface 1655, a user interface device 1660 and other
emulated I/O devices in VM 1635)).

[0146] Hypervisor 1610 may manage monitor, initiate,
and/or terminate) execution of VMs 1635,-1635,, according
to policies associated with hypervisor 1610, such as a policy
specifying that VMs 1635,-1635,, are to be automatically
respawned upon unexpected termination and/or upon ini-
tialization of hypervisor 1610. In addition, or alternatively,
the hypervisor 1610 may manage execution VMs 1635, -
1635, based on requests received from a device other than
host computing device 1601. For example, the hypervisor
1610 may receive an execution instruction specifying the
initiation of execution of first VM 1635, from a management
device via the network communication interface 1612 and
execute the execution instruction to initiate execution of first
VM 1635,

Nov. 21, 2019

[0147] In some examples, the memory 1650 in the first
virtual hardware platform 1640, includes a virtual disk that
is associated with or “mapped to” one or more virtual disk
images stored on a disk (e.g., a hard disk or solid state disk)
of the host computing device 1600. The virtual disk image
represents a file system (e.g., a hierarchy of directories and
files) used by the first VM 1635, in a single file or in a
plurality of files, each of which includes a portion of the file
system. In addition, or alternatively, virtual disk images may
be stored on one or more remote computing devices, such as
in a storage area network (SAN) configuration. In such
examples, any quantity of virtual disk images may be stored
by the remote computing devices.

[0148] The device driver layer 1615 includes, for example,
a communication interface driver 1620 that interacts with
the network communication interface 1612 to receive and
transmit data from, for example, a LAN connected to the
host computing device 1600. The communication interface
driver 1620 also includes a virtual bridge 1625 that simu-
lates the broadcasting of data packets in a physical network
received from one communication interface (e.g., network
communication interface 1612) to other communication
interfaces (e.g., the virtual communication interfaces of
VMs 1635,-1635,,). Each virtual communication interface
for each VM 1635,-1635,,, such as the network communi-
cation interface 1655 for the first VM 1635,, may be
assigned a unique virtual MAC address that enables virtual
bridge 1625 to simulate the forwarding of incoming data
packets from the network communication interface 1612. In
an example, the network communication interface 1612 is
an Ethernet adapter that is configured in “promiscuous
mode” such that all Ethernet packets that it receives (rather
than just Ethernet packets addressed to its own physical
MAC address) are passed to virtual bridge 1625, which, in
turn, is able to further forward the Ethernet packets to VMs
1635,-1635,,. This configuration enables an Ethernet packet
that has a virtual MAC address as its destination address to
properly reach the VM in the host computing device 1600
with a virtual communication interface that corresponds to
such virtual MAC address.

[0149] The virtual hardware platform 1640, may function
as an equivalent of a standard x86 hardware architecture
such that any x86-compatible desktop operating system
(e.g., Microsoft WINDOWS brand operating system,
LINUX brand operating system, SOLARIS brand operating
system, NETWARE, or FREEBSD) may be installed as
guest operating system (OS) 1665 in order to execute
applications 1670 for an instantiated VM, such as the first
VM 1635,. The virtual hardware platforms 1640,-1640,,
may be considered to be part of the VM monitors (VMM)
1675,-1675,, that implement virtual system support to coor-
dinate operations between the hypervisor 1610 and corre-
sponding VMs 1635,-1635,,. Those with ordinary skill in
the art will recognize that the various terms, layers, and
categorizations used to describe the virtualization compo-
nents in FIG. 16 may be referred to differently without
departing from their functionality or the spirit or scope of the
disclosure. For example, the virtual hardware platforms
1640,-1640,, may also be considered to be separate from
VMs 1675,-1675,, and VMMs 1675,-1675,, may be con-
sidered to be separate from hypervisor 1610. One example
of'the hypervisor 1610 that may be used in an example of the

US 2019/0356606 Al

disclosure is included as a component in VMware’s ESX
brand software, which is commercially available from
VMware, Inc.

[0150] Certain examples described herein involve a hard-
ware abstraction layer on top of a host computer (e.g.,
server). The hardware abstraction layer allows multiple
containers to share the hardware resource. These containers,
isolated from each other, have at least a user application
running therein. The hardware abstraction layer thus pro-
vides benefits of resource isolation and allocation among the
containers. In some examples, VMs may be used alterna-
tively or in addition to the containers, and hypevisors may
be used for the hardware abstraction layer. In these examples
each VM generally includes a guest operating system in
which at least one application runs.

[0151] For the container examples, it should be noted that
the disclosure applies to any form of container, such as
containers not including a guest operating system, referred
to herein as “OS-less containers” (see, e.g., www.docker.
com). OS-less containers implement operating system-level
virtualization, wherein an abstraction layer is provided on
top of the kernel of an operating system on a host computer.
The abstraction layer supports multiple OS-less containers
each including an application and its dependencies. Each
OS-less container runs as an isolated process in user space
on the host operating system and shares the kernel with other
containers. The OS-less container relies on the kernel’s
functionality to make use of resource isolation (CPU,
memory, block I/O, network, etc.) and separate namespaces
and to completely isolate the application’s view of the
operating environments. By using OS-less containers,
resources may be isolated, services restricted, and processes
provisioned to have a private view of the operating system
with their own process ID space, file system structure, and
network interfaces. Multiple containers may share the same
kernel, but each container may be constrained to only use a
defined amount of resources such as CPU, memory and I/O.

Exemplary Operating Environment

[0152] Exemplary computer readable media include flash
memory drives, digital versatile discs (DVDs), compact
discs (CDs), floppy disks, and tape cassettes. By way of
example and not limitation, computer readable media com-
prise computer storage media and communication media.
Computer storage media include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as
computer readable instructions, data structures, program
modules and the like. Computer storage media are tangible
and mutually exclusive to communication media. Computer
storage media are implemented in hardware and exclude
carrier waves and propagated signals. Computer storage
media for purposes of this disclosure are not signals per se.
Exemplary computer storage media include hard disks, flash
drives, and other solid-state memory. In contrast, commu-
nication media typically embody computer readable instruc-
tions, data structures, program modules, or the like, in a
modulated data signal such as a carrier wave or other
transport mechanism and include any information delivery
media.

[0153] Although described in connection with an exem-
plary computing system environment, examples of the dis-
closure are capable of implementation with numerous other
general purpose or special purpose computing system envi-

Nov. 21, 2019

ronments, configurations, or devices. In some examples, the
computing system environment includes a first computer
system at a first site and/or a second computer system at a
second site. The first computer system at the first site in
some non-limiting examples executes program code, such as
computer readable instructions stored on non-transitory
computer readable storage medium.

[0154] Examples of well-known computing, systems,
environments, and/or configurations that may be suitable for
use with aspects of the disclosure include, but are not limited
to, mobile computing devices, personal computers, server
computers, hand-held or laptop devices, multiprocessor sys-
tems, gaming consoles, microprocessor-based systems, set
top boxes, programmable consumer electronics, mobile tele-
phones, mobile computing and/or communication devices,
network PCs, minicomputers, mainframe computers, dis-
tributed computing environments that include any of the
above systems or devices, and the like. Such systems or
devices may accept input from the user in any way, includ-
ing from input devices such as a keyboard or pointing
device, via gesture input, proximity input (such as by
hovering), and/or via voice input.

[0155] Examples of the disclosure may be described in the
general context of computer-executable instructions, such as
program modules, executed by one or more computers or
other devices in software, firmware, hardware, or a combi-
nation thereof. The computer-executable instructions may
be organized into one or more computer-executable com-
ponents or modules. Generally, program modules include,
but are not limited to, routines, programs, objects, compo-
nents, and data structures that perform particular tasks or
implement particular abstract data types. Aspects of the
disclosure may be implemented with any number and orga-
nization of such components or modules. For example,
aspects of the disclosure are not limited to the specific
computer-executable instructions or the specific components
or modules illustrated in the figures and described herein.
Other examples of the disclosure may include different
computer-executable instructions or components having
more or less functionality than illustrated and described
herein.

[0156] Inexamples involving a general-purpose computer,
aspects of the disclosure transform the general-purpose
computer into a special-purpose computing device when
configured to execute the instructions described herein.
[0157] The examples illustrated and described herein as
well as examples not specifically described herein but within
the scope of aspects of the disclosure constitute exemplary
means for a cluster level resource scheduler for VCIs. For
example, the elements illustrated in FIG. 1, FIG. 2, FIG. 3,
FIG. 4, FIG. 5, and FIG. 6 such as when encoded to perform
the operations illustrated in FIG. 7, FIG. 8 and FIG. 9
constitute exemplary means for selecting a candidate set of
hosts from the plurality of hosts in a cluster based on
processor and memory utilization; generating a network
utilization ranking for each host in the candidate set of hosts
based on network utilization associated with each, host in
the candidate set of hosts; selecting a host from the candidate
set of hosts based on the generated network utilization
rankings; and placing a powering on VCI on the selected
host.

[0158] The examples illustrated and described herein as
well as examples not specifically described herein but within
the scope of aspects of the disclosure also constitute exem-

US 2019/0356606 Al

plary means for a cluster level resource scheduler for VClIs.
For example, the elements illustrated in FIG. 1, FIG. 2, FIG.
3, FIG. 4, FIG. 5, and FIG. 6, such as when encoded to
perform the operations illustrated in FIG. 7, FIG. 8, and FIG.
9 constitute exemplary means for ranking each host in a
candidate set of hosts based on network utilization and
selecting a host for placement of a powering-on VCI based
on the ranking, the powering-on VCI is placed on the
selected host to minimize network saturation of hosts;
generating a score for at least one proposed migration in a
set of proposed migrations based on network utilization
associated with at least one destination host in the set of
proposed migrations; and rejecting a given proposed migra-
tion in the set of proposed migrations in response to a
determination that a given score associated with the given
proposed migration indicates a destination host associated
with the proposed migration is network saturated.

[0159] The examples illustrated and described herein as
well as examples not specifically described herein but within
the scope of aspects of the disclosure also constitute exem-
plary means for a cluster level resource scheduler for VClIs.
For example, the elements illustrated in FIG. 1, FIG. 2, FIG.
3, FIG. 4, FIG. 5, and FIG. 6, such as when encoded to
perform the operations illustrated in FIG. 7, FIG. 5, and FIG.
9 constitute exemplary means for generating a set of net-
work utilization scores for each destination host in a set of
proposed migrations based on a current cluster status snap-
shot; comparing the generated scores to select a proposed
migration from the set of proposed migrations based on the
generated scores, the selected proposed migration is asso-
ciated with a destination host that is network unsaturated or
the destination host is less network saturated than other
destination hosts in the set of proposed migrations (or, in
some examples, not network saturated); and performing the
selected proposed migration to move a VCI from a first host
in the cluster to a second host in the cluster.

[0160] The order of execution or performance of the
operations in examples of the disclosure illustrated and
described herein is not essential, unless otherwise specified.
That is, the operations may be performed in any order, unless
otherwise specified, and examples of the disclosure may
include additional or fewer operations than those disclosed
herein. For example, it is contemplated that executing or
performing a particular operation before, contemporane-
ously with, or after another operation is within the scope of
aspects of the disclosure.

[0161] When introducing elements of aspects of the dis-
closure or the examples thereof, the articles “a” “an,” “the,”
and “said” are intended to mean that there are one or more
of the elements. The terms “comprising,” “including,” and
“having” are intended to be in and mean that there may be
additional elements other than the listed elements. The term
“exemplary” is intended to mean “an example of.” The
phrase “one or more of the following: A, B, and C” means
“at least one of A and/or at least one of B and/or at least one
of C”

[0162] Having described aspects of the disclosure in
detail, it will be apparent that modifications and variations
are possible without departing from the scope of aspects of
the disclosure as defined in the appended claims. As various
changes could be made in the above constructions, products,
and methods without departing from the scope of aspects of
the disclosure, it is intended that all matter contained in the

Nov. 21, 2019

above description and shown in the accompanying drawings
shall be interpreted illustrative and not in a limiting sense.

1-20. (canceled)

21. A computer-implemented method, comprising:

receiving statistics associated with a candidate host of a

plurality of hosts within a cluster;

identifying a proposed migration of a virtual computing

instance (VCI) from a current host to the candidate
host; and

in response to determining, based at least in part on an

internal traffic statistic represented within the statistics,
that the candidate host is at least one of network
saturated or network unsaturated, allowing the pro-
posed migration.

22. The method of claim 21, further comprising migrating
the VCI to the candidate host.

23. The method of claim 21, further comprising:

determining that the candidate host is network unsaturated

based at least in part on a network utilization score
associated with the proposed migration being within a
threshold; and

determining that the candidate host is capable of hosting

the VCI without becoming network saturated as a result
of the proposed migration.

24. The method of claim 21, wherein the internal traffic
statistic is associated with network traffic between the VCI
and a different VCI on the candidate host.

25. The method of claim 24, further comprising:

determining that the candidate host is capable of hosting

the VCI without becoming network saturated based at
least in part on the internal traffic statistic.

26. The method of claim 21, wherein the statistics further
comprise an external traffic statistic associated with network
traffic between the VCI and a different VCI on a different
host of the plurality of hosts, the method further comprising:

determining that the candidate host is network saturated

based at least in part on the external traffic statistic.

27. The method of claim 21, wherein the statistics com-
prise a plurality of internal traffic statistics and a plurality of
external traffic statistics associated with the plurality of
hosts, the method further comprising:

generating a current cluster status snapshot based on the

statistics;

generating, based on the current cluster snapshot, a net-

work utilization score for a second proposed migration
for the VCI; and

rejecting the second proposed migration based at least in

part on comparing the network utilization score to a
threshold.

28. A system, comprising:

at least one memory storing a scheduler;

a candidate host of a plurality of hosts within a cluster;

and

at least one processor programmed to execute the sched-

uler to:

receive statistics associated with the candidate host;

identify a proposed migration of a virtual computing
instance (VCI) from a current host to the candidate
host; and

in response to determining, based at least in part on an
internal traffic statistic represented within the statis-
tics, that the candidate host is at least one of network
saturated or network unsaturated, allow the proposed
migration.

US 2019/0356606 Al

29. The system of claim 28, wherein the at least one
processor is further programmed to execute the scheduler to:

migrate the VCI to the candidate host.

30. The system of claim 28, wherein the at least one
processor is further programmed to execute the scheduler to:

determine that the candidate host is network unsaturated

based at least in part on a network utilization score
associated with the proposed migration being within a
threshold; and

determine that the candidate host is capable of hosting the

VCI without becoming network saturated as a result of
the proposed migration.

31. The system of claim 28, wherein the internal traffic
statistic is associated with network traffic between the VCI
and a different VCI on the candidate host.

32. The system of claim 31, wherein the at least one
processor is further programmed to execute the scheduler to:

determine that the candidate host is capable of hosting the

VCI without becoming network saturated based at least
in part on the internal traffic statistic.

33. The system of claim 28, wherein the statistics further
comprise an external traffic statistic associated with network
traffic between the VCI and a different VCI on a different
host of the plurality of hosts, wherein the at least one
processor is further programmed to execute the scheduler to:

determine that the candidate host is network saturated

based at least in part on the external traffic statistic.

34. The system of claim 28, wherein the statistics com-
prise a plurality of internal traffic statistics and a plurality of
external traffic statistics associated with the plurality of
hosts, wherein the at least one processor is further pro-
grammed to execute the scheduler to:

generate a current cluster status snapshot based on the

statistics;

generate, based on the current cluster snapshot, a network

utilization score for a second proposed migration for
the VCI; and

reject the second proposed migration based at least in part

on comparing the network utilization score to a thresh-
old.

35. A non-transitory computer-readable medium embody-
ing computer-readable instructions stored thereon that, when
executed by a computing device, direct the computing
device to perform a method comprising:

Nov. 21, 2019

receiving statistics associated with a candidate host of a

plurality of hosts within a cluster;

identifying a proposed migration of a virtual computing

instance (VCI) from a current host to the candidate
host; and

in response to determining, based at least in part on an

internal traffic statistic represented within the statistics,
that the candidate host is at least one of network
saturated or network unsaturated, allowing the pro-
posed migration.

36. The computer-readable medium of claim 35, wherein
the instructions further direct the computing device to per-
form a method comprising:

performing the method comprising migrating the VCI to

the candidate host.

37. The computer-readable medium of claim 35, wherein
the instructions further direct the computing device to per-
form the method comprising:

determining that the candidate host is network unsaturated

based at least in part on a network utilization score
associated with the proposed migration being within a
threshold; and

determining that the candidate host is capable of hosting

the VCI without becoming network saturated as a result
of the proposed migration.

38. The computer-readable medium of claim 35, wherein
the internal traffic statistic is associated with network traffic
between the VCI and a different VCI on the candidate host.

39. The computer-readable medium of claim 38, wherein
the instructions further direct the computing device to per-
form the method comprising:

determining that the candidate host is capable of hosting

the VCI without becoming network saturated based at
least in part on the internal traffic statistic.

40. The computer-readable medium of claim 35, wherein
the statistics further comprise an external traffic statistic
associated with network traffic between the VCI and a
different VCI on a different host of the plurality of hosts, and
wherein the instructions further direct the computing device
to perform the method comprising:

determining that the candidate host is network saturated

based at least in part on the external traffic statistic.

#* #* #* #* #*

