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BIPOLAR ALL-MEMRISTOR CIRCUIT FOR
IN-MEMORY COMPUTING

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to and claims priority
from U.S. Provisional Application Ser. No. 62/844,611, filed
May 7, 2019, and U.S. Provisional Application 62/860,915,
filed Jun. 13, 2019 (632128), which are hereby incorporated
by reference. This application is related to Non-Provisional
Application (NP 632152 in prep), which is incorporated by
reference herein as though set forth in full.

STATEMENT REGARDING FEDERAL
FUNDING

[0002] This invention was made under U.S. Government
contract FA8650-18-C-7869. The U.S. Government has cer-
tain rights in this invention.

TECHNICAL FIELD

[0003] This disclosure relates to neural networks.
BACKGROUND
[0004] Deep convolutional neural networks (CNNs) are

the prevailing architecture for current machine learning and
visual data processing. In typical CNNs, massive multiply-
accumulate (MAC) arithmetic operations are used to com-
pute the convolutions of input image patches for feature
extraction. The convolutions are the most computationally
intensive part of the CNN for visual or audio data process-
ing. In conventional digital computers based on a von
Neumann architecture, arithmetic logic units (ALUs) and
data memory are spatially separated, and the energy used to
move the data can be ten times higher than the energy used
for computations. It is therefore desirable to develop novel
circuit architectures that allow energy-efficient and high-
throughput in-memory or near-memory computations.
[0005] A circuit architecture that can be beneficial for
in-memory computing is a neuromorphic spiking neural
network (SNN) that combines three major benefits.

[0006] First, a nonvolatile crossbar memory architecture
that allows one of the two operands in MAC operations to
be locally saved and reused, that greatly reduces the energy
used in moving the data. Second, analog (continuous)
switching of passive memristor synapses with moderate bit
precision (up to ~7 bits for single element per synapse) that
enables energy-savvy analog computing. And, third, a spike
domain data representation that allows energy efflicient
MAC operations with minimal current draw.

[0007] However, prior art neuromorphic SNN demonstra-
tions have been built mainly with CMOS electronics. CMOS
electronics are not biomimetic and hence large circuit over-
heads are needed to construct neuron and synapse building
blocks, negating the benefits of a SNN architecture.
[0008] Reference [1] U.S. Provisional Application 62/860,
915, filed Jun. 13, 2019 (632128) (NP 632152 in prep),
which is incorporated herein by reference, by the present
inventors describes transistorless all-memristor SNN cir-
cuits and methods for energy-efficient and parallel
in-memory MAC operations and convolution computations.
The analog all-memristor neuromorphic convolution circuits
(neurosynaptic processors) consist of excitatory active
memristor based spiking neurons and passive memristor
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synapses. Synapse elements representing convolutional
weights are organized into two-dimensional crossbar arrays
with spiking memristor neurons connecting the rows (word
lines) and columns (bit lines) at the edges. In-memory
vector-matrix multiplication (VMM) arithmetic operations,
can be computed in parallel using Ohm’s law and Kirch-
hoff’s current law principles to achieve high-throughput
multi-kernel convolutions. The spike domain data coding
warrants much better energy efficiency than digital circuits.
Convolutional performance in image classification was ana-
lyzed by device-level SPICE simulations, which showed
that the transistorless convolution circuits can deliver 10
times or better energy efficiency (0.3 nJ per input bit vs. 6.7
nl per input bit) than state-of-the-art (SOA) CMOS neuro-
morphic processor (IBM TrueNorth).

[0009] However, the transistorless all-memristor neuro-
morphic circuits for in-memory computing using neurons
and synapses of Reference [1] can only perform convolu-
tions with kernels in which all weights are positive. This
makes the circuit not suitable for some applications such as
the implementation of convolutional layers in some neural
network image classifiers.

[0010] The circuit described in Reference [2], which is
incorporated herein by reference, describes analogue signal
and image processing with memristor toolbar synapses, but
it does not show the use of integrated memristor neurons.
Also the circuit of Reference [2] may require external
neurons, which would result in larger circuits that consume
more power.

REFERENCES

[0011] The following references are incorporated herein as
though set forth in full.

[0012] [1] U.S. Provisional Application 62/860,915, filed
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[0021] What is needed is a circuit that can efficiently
perform convolutions with kernels in which the weights can
have positive or negative values, and allows the implemen-
tation of convolutional layers for neural network image



US 2020/0356344 Al

classifiers and which has low power. The embodiments of
the present disclosure answer these and other needs.

SUMMARY

[0022] In a first embodiment disclosed herein, a circuit for
performing energy-efficient and high-throughput multiply-
accumulate (MAC) arithmetic dot-product operations and
convolution computations comprises a two dimensional
crossbar array comprising a plurality of row inputs and at
least one column having a plurality of column circuits,
wherein each column circuit is coupled to a respective row
input, wherein each respective column circuit comprises an
excitatory memristor neuron circuit having an input coupled
to a respective row input, a first synapse circuit coupled to
an output of the excitatory memristor neuron circuit, the first
synapse circuit having a first output, an inhibitory memristor
neuron circuit having an input coupled to the respective row
input, and a second synapse circuit coupled to an output of
the inhibitory memristor neuron circuit, the second synapse
circuit having a second output, and an output memristor
neuron circuit coupled to the first output and second output
of each column circuit, the output memristor neuron circuit
having an output.

[0023] In another embodiment disclosed herein, a method
for setting conductance values for excitatory memristor
synapse circuits and inhibitory memristor synapse circuits
comprises training convolutional kernel weights using a
prevailing stochastic gradient descent method, and convert-
ing a trained convolutional kernel weight element w(i, j) of
a k” convolutional kernel, wherein i and j are the row and
column indices of a two dimensional weight matrix into
dual-quadrant synaptic conductance values that can be either
positive or negative by converting the trained convolutional
kernel weight element w(i, j) to a synapse weight g(i, j)
using a linear conversion scheme so that g(i, j)=(w(i, j)x1.
2e¢~%)Ymax(w(i, j)), determining whether g(i, j) is positive or
negative, and if the synapse weight g(i, j) is zero or positive,
then setting a conductance g,,,,,(i, j) of a respective inhibitory
memristor synapse circuit to a first lower bound value, and
setting a conductance g, (i, j) of a respective excitatory
memristor synapse circuit to a value such that a total
conductance g(i, j) or a signed summation of g, ,(i, j) and
2., 1)) equals w(i, j)x1.2¢”5Vmax(w(i, j), if the synapse
weight g(i, j) is negative, then setting a conductance g, (i,
j) of a respective excitatory memristor synapse circuit to a
second lower bound value, and setting a conductance g,,,,(i,
j) of a respective inhibitatory memristor synapse circuit to a
value such that a total conductance g(i, j) or a signed
summation of g, ,(i, j) and g, (i, j)) equals w(i, j)x1.2e~%)/
max(i, j).

[0024] In yet another embodiment disclosed herein, a
method for performing energy-efficient and high-throughput
multiply-accumulate (MAC) arithmetic dot-product opera-
tions and convolution computations comprises providing a
two dimensional crossbar array comprising a plurality of
row inputs and at least one column having a plurality of
column circuits, wherein each column circuit is coupled to
a respective row input, wherein each respective column
circuit comprises an excitatory memristor neuron circuit
having an input coupled to a respective row input, a first
synapse circuit coupled to an output of the excitatory
memristor neuron circuit, the first synapse circuit having a
first output, an inhibitory memristor neuron circuit having an
input coupled to the respective row input, and a second
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synapse circuit coupled to an output of the inhibitory mem-
ristor neuron circuit, the second synapse circuit having a
second output, and providing an output memristor neuron
circuit coupled to the first output and second output of each
column circuit, the output memristor neuron circuit having
an output.

[0025] These and other features and advantages will
become further apparent from the detailed description and
accompanying figures that follow. In the figures and descrip-
tion, numerals indicate the various features, like numerals
referring to like features throughout both the drawings and
the description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] FIG. 1A shows a symbolic diagram of a bi-polarity
(“dual-quadrant™) all-memristor convolutional kernel with
25 excitatory input neurons, 25 inhibitory input neurons and
one excitatory output neuron, FIG. 1B shows a diagram of
a bi-polarity all-memristor convolutional circuit and FIG.
1C shows a diagram of a bi-polarity all-memristor convo-
Iutional circuit having 10 convolutional kernels as shown in
FIG. 1A operating in parallel, FIG. 1D shows simulated
spike waveforms at input and output of one inhibitory
memristor neuron and one excitatory memristor neuron,
FIG. 1E shows a circuit schematic of an excitatory mem-
ristor neuron, and FIG. 1F shows a circuit schematic of an
inhibitory memristor neuron in accordance with the present
disclosure.

[0027] FIG. 2 shows a block diagram showing the algo-
rithm for setting the conductance values for the excitatory
synapse element g, (i, j) and inhibitory synapse element
2,.,(, j) based on the sign of the synapse weight g(i, j)
converted from a pre-trained CNN convolutional kernel
weight w(i, j) in accordance with the present disclosure.
[0028] FIG. 3A shows calculated resistance values for the
250 excitatory memristor synapses, and FIG. 3B shows the
calculated resistance values for the 250 inhibitory memristor
synapses of the bi-polarity all-memristor convolutional cir-
cuit of FIG. 1B, using the algorithm shown in FIG. 2, in
accordance with the present disclosure.

[0029] FIG. 4 shows a customized MATLAB CNN model
used to benchmark the energy efficiency and throughput
metrics of the bi-polarity all-memristor convolution circuit
shown in FIG. 1B in accordance with the present disclosure.
[0030] FIG. 5 shows an example of MNIST image clas-
sification benchmarked using the MATLLAB CNN model in
FIG. 4, wherein the convolutional layer operations are
simulated with an all-memristor convolutional circuit, as
shown in FIG. 1B in a SPICE simulator, showing that the
class of the input image, in this case, a handwritten digit “2”,
is determined by the largest value in the ten classifier outputs
in accordance with the present disclosure.

[0031] FIG. 6 shows a table of benchmarked MNIST
image convolution performance metrics for an all-memristor
bi-polarity convolution circuit containing a (50x10) passive
memristor synapse crossbar array in accordance with the
present disclosure.

DETAILED DESCRIPTION

[0032] In the following description, numerous specific
details are set forth to clearly describe various specific
embodiments disclosed herein. One skilled in the art, how-
ever, will understand that the presently claimed invention
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may be practiced without all of the specific details discussed
below. In other instances, well known features have not been
described so as not to obscure the invention.

[0033] In the present disclosure a transistorless memuris-
tive neuromorphic electronic circuit and a method for
energy-efficient and high-throughput multiply-accumulate
(MAC) arithmetic operations and convolution computations
are described. Compared with the circuits described in
Reference [1] in which the values of the scaling element
(synaptic weight) can only be positive, the present invention
utilizes excitatory and inhibitory memristor neurons and
synapses to enable both positive and negative synaptic
weights. Bi-polarity (or “dual-quadrant™) synaptic weights
helps to improve both the training convergence and the
inference accuracy for convolutional neural network (CNN)
based image classification applications.

[0034] Reference [1] describes the basic operating prin-
ciples (based on Ohm’s law and Kirchhoff’s current law) for
an all-memristor in-memory vector-matrix multiplication
(VMM) arithmetic operations. The present invention applies
the same operating principles; however, the circuit of the
present invention allows both positive and negative synaptic
weights.

[0035] The present disclosure describes transistorless
memristive neuromorphic electronic circuits and methods
for energy-efficient and high-throughput multiply-accumu-
late (MAC) arithmetic operations, which are sometimes
called dot product operations, Vector-Matrix Multiplication
(VMM) operations, and convolution computations.

[0036] The analog all-memristor neuromorphic convolu-
tion circuits (neurosynaptic processors) consist of active
memristor based excitatory and inhibitory spiking neurons
and passive memristor synapses. Synapse elements repre-
senting positive and negative convolutional weights may be
organized into a two-dimensional crossbar array with both
spiking memristor excitatory neurons and spiking memristor
inhibitory neurons. In-memory vector-matrix multiplication
(VMM) arithmetic operations, can be computed in parallel
using Ohm’s law and Kirchhoff’s current law principles to
achieve high-throughput multi-kernel convolutions. The
spike domain data coding has much better energy efficiency
than a digital circuit implementation. Convolutional perfor-
mance in visual data processing (image classification) has
been analyzed by device-level SPICE simulations, and
shows that the presented transistorless convolution circuits
can deliver 10 times or better energy efficiency than state-
of-the-art (SOA) CMOS neuromorphic processor.

[0037] Embodiments of this disclosure utilize active and
passive memristor devices and circuits described for
example in Reference [3] U.S. patent application Ser. No.
15/976,687, Reference [5] U.S. patent application Ser. No.
16/005,529, and Reference [6] U.S. patent application Ser.
No. 15/879,363, which are incorporated herein by reference.
[0038] FIG. 1A shows a circuit architecture of a bi-
polarity (“dual-quadrant”) all-memristor convolutional cir-
cuit 10, which provides symmetric ‘dual-quadrant’ convo-
Iutional kernel weights. It is similar to the ‘single-quadrant’
memristor convolutional circuit described in Reference [1],
but includes an additional set of inhibitory input neurons 54
and synapses 56, as shown in FIG. 1A, which are not present
the ‘single-quadrant’ memristor convolutional circuit
described in Reference [1].

[0039] FIG. 1A shows an example bi-polarity all-memris-
tor convolutional kernel 10 containing 25 excitatory mem-
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ristor neuron circuits 53, 25 inhibitory memristor neuron
circuits 54 and one excitatory output memristor neuron
circuit 57. The additional inhibitory neuron circuits 54,
which are connected to synapse circuits 56, allow symmetric
MAC operations, in which the synaptic weights can be either
positive or negative. In contrast, the circuits described in
Reference [1] perform asymmetric MAC operations with
only positive synaptic weights.

[0040] As shown in FIG. 1A, the output of each respective
excitatory memristor neuron circuit 53 is an input to a
connected respective synapse circuit 55, and the output of
each respective inhibitory memristor neuron circuit 54 is an
input to a connected respective synapse circuit 56. The
output of each synapse circuit 55 and 56 is an input to the
excitatory output memristor neuron 57. The output 58 of the
bi-polarity all-memristor convolutional kernel 10 is the
convolution of the inputs 50 (for the example shown in FIG.
1A there are 25 inputs 50) with the effective weights
provided by the excitatory memristor neuron circuits 53
connected to synapse circuits 55, and the effective weights
provided by the inhibitory memristor neuron circuits 54
connected to synapse circuits 56. Each respective input 50 is
connected to a respective input 51 to an excitatory memris-
tor neuron circuit 53 and to a respective input 52 to an
inhibitory memristor neuron circuit 54.

[0041] The effective weights of the excitatory memristor
neuron circuits 53 and the connected synapse circuits 55
may be zero or positive. The effective weights of the
inhibitory memristor neuron circuits 54 and the connected
synapse circuits 56 may be zero or negative, but can be
configured to be only negative.

[0042] FIG. 1B shows a simplified diagram of a bi-
polarity all-memristor convolutional circuit in accordance
with FIG. 1A, where the inputs to the excitatory memristor
neuron circuits 53 and to the inhibitory memristor neuron
circuits 54 are from an image patch 100.

[0043] FIG. 1C shows a simplified physical diagram of a
bi-polarity all-memristor convolutional circuit 60, similar to
FIG. 1B, but which includes ten (10) convolutional kernels
operating in parallel. For example, out, 66 is the convolution
of the 25 inputs 50 in, to in,5 connected to the rows of the
two dimensional matrix with the effective weights of the
excitatory memristor neuron circuits 53 connected to syn-
apse circuits 55 and the effective weights of the inhibitory
memristor neuron circuits 54 and connected synapse circuits
56 in the first column 62 of the matrix, as shown in FIG. 1C.
The out,, 68 is the convolution of the 25 inputs 50 in, to in,
connected to the rows of the two dimensional matrix with
the effective weights of the excitatory memristor neuron
circuits 53 connected to synapse circuits 55 and the effective
weights of the inhibitory memristor neuron circuits 54 and
connected synapse circuits 56 in column 64 of the matrix, as
shown in FIG. 1C.

[0044] FIG. 1E shows a circuit schematic of an excitatory
memristor neuron, and FIG. 1F shows a circuit schematic of
an inhibitory memristor neuron.

[0045] InFIGS. 1E and 1F, X1 and X2 represent vanadium
oxide (VO,) active memristor devices, and Rel and Re2 are
the parasitic series resistance (150€2) from the electrode
wires to the VO, active memristor devices. The label In is
the input port of the neuron, and the label Out is the output
port of the neuron. Vdd is a positive supply voltage, and Vss
is a negative supply voltage.
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[0046] The SPICE model parameters for X1 and X2 are:
deltaT=43, rch=56e-9, Lchan=100e-9, rholns=le-2,
rhoMet=3e-6, kappa=3.5, cp=3.3e6, deltahtr=2.35¢8. More
details of the excitatory and inhibitory VO, memristor
neuron operations are described in Reference [7] U.S. patent
application Ser. No. 15/976,687, filed May 10, 2018, which
is incorporated herein by reference.

[0047] FIG. 1E shows a schematic of an excitatory mem-
ristor neuron circuit 20, which has first (X1) and second
(X2) negative differential resistance (NDR) devices that are
biased with opposite polarities (-Vdc; +Vdc). The first and
second NDR devices (X1, X2) are coupled to first and
second grounded capacitors (C1, C2), respectively.

[0048] The first NDR device (X1) has a first node 30
connected to an input node 32 of the neuron circuit 20 by a
first load resistor RL1 and a second node 34 connected to a
first voltage source 36; the first node (30) of the first NDR
device (X1) is coupled to the first grounded capacitor (C1).
The second NDR device (X2) has a first node 38 connected
to the first node 30 of the first NDR device X1 by a second
load resistor RL2 and a second node 40 connected to a
second voltage source 42; the first node 38 of the second
NDR device X2 is coupled to the second grounded capacitor
C2; the first node 38 of the second NDR device X2 forming
an output node 44 of the neuron circuit 20.

[0049] The first voltage source 36 is a negative voltage
source and the second voltage source 42 is a positive voltage
source. The voltages -Vdc, +Vdc provided by voltages
sources 36 and 42 can have the same amplitude or they can
have different amplitudes. The d.c. voltage supplies 36 and
42 are amplitude-matched only if the two NDR devices X1
and X2 are well matched in their switching threshold
voltages. If the switching threshold voltages of X1 and X2
are different, then the values of their d.c. voltage supplies
have to be chosen differently, so that both NDR devices are
biased at the proper operating points (less than, but close to
their switching threshold voltage) for the neuron circuit to
spike properly.

[0050] The first and second NDR devices X1, X2 can each
comprise, between their first (respectively 30, 38) and
second (respectively 36, 40) nodes, a resistance (respec-
tively Rel, Re2) in series with an NDR material. The NDR
material of the first and second NDR devices X1, X2 can be
a layer or thin film of vanadium dioxide. Rel can have a
value of a few hundred Ohms and can be the cumulative
resistance of a first metal nanowire electrode arranged
between the first node (30) and a first side of the NDR
material of X1, and of a second metal nanowire electrode
arranged between second node (34) and a second side of the
NDR material of X1. Similarly, Re2 can have a value of a
few hundred Ohms and can be the cumulative resistance of
a first metal nanowire electrode arranged between the first
node (38) and a first side of the NDR material of X2, and of
a second metal nanowire electrode arranged between second
node (40) and a second side of the NDR material of X2.
[0051] A vanadium dioxide layer can be generated by
electroforming from a vanadium pentoxide layer, as detailed
in U.S. patent application Ser. No. 15/417,049, (filed Jan. 26,
2017, Reference [8], above) which is incorporated by ref-
erence to this presentation.

[0052] Alternatively, the vanadium dioxide layer can be
directly prepared by a variety of thin film deposition meth-
ods, including but not limited to, reactive d.c. or r.f. mag-
netron sputtering of vanadium metal or vanadium oxide
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targets, atomic layer deposition followed by post-deposition
anneal, or metallic precursor oxidation.

[0053] The first and second voltage sources (36, 42) are
arranged to bring the first and second NDR devices (X1, X2)
close to their respective Mott Insulator-to-Metal Transition;
and the voltage biases can be adjusted to set desired levels
of voltage or current threshold for the neuron action poten-
tial generation (spike firing) and desired signal gains. The
first load resistor, the first NDR device, the first voltage
source and the first grounded capacitor are arranged to form
a first relaxation oscillator; and the second load resistor, the
second NDR device, the second voltage source and the
second grounded capacitor are arranged to form a second
relaxation oscillator.

[0054] The NDR material of the first and second NDR
devices X1, X2 can be a layer or thin film of vanadium
dioxide, where vanadium dioxide has an Mott insulator-to-
metal (IMT) transition temperature TC of 340 K (67° C.).
The operation of such vanadium dioxide NDR devices only
requires a very moderate Joule heating to raise the local
temperature by 40 K (or ° C.) above room temperature. For
example, it has been calculated that a NDR device having a
vanadium dioxide channel with a 10-nm radius (located for
example in a thin film of vanadium pentoxide), has an
extremely low estimated switching energy of 1.2 fI; which
is 50 times lower than a NbO2 device, such as disclosed by
Pickett et al. in References [7] and [8], which are incorpo-
rated herein by reference. It is expected that vanadium
dioxide based neurons circuits according to embodiments of
this presentation are capable of achieving a biologically-
competitive 0.1 pJ/spike or less neuron energy use. A single
VO, NDR device can operate as low as 1.2 fJ, but the energy
consumption of the complete neuron circuit (X1, X2, C1,
C2, RL1, RL2) is dominated by the charging energy of the
two capacitors. The 0.1 pJ/spike total energy consumption is
estimated assuming exemplary d.c. bias level near 0.5 V and
with 40-50 fF capacitors (such a small capacitor value is
chosen for neuron size and spike frequency considerations).

[0055] The neuron circuit 20 can be used in a neural circuit
having a plurality of neuron circuits connected in a network,
for example, as shown in FIG. 1A; input node 32 being
arranged to receive an input waveform through an input
impedance Zin; and output node 44 being arranged to
provide an output waveform through an output impedance
Zout.

[0056] FIG. 1F shows a schematic of an inhibitory mem-
ristor neuron circuit 26, which has first (X2) and second
(X1) NDR devices that are biased with opposite polarities
(+Vdc; -Vdc). The first and second NDR devices (X2, X1)
are coupled to first and second grounded capacitors (C2,
C1), respectively.

[0057] The first NDR device (X2) has a first node 38
connected to an input node 32 of the neuron circuit 26 by a
first load resistor RL1 and a second node 40 connected to a
first voltage source 42. The first node 38 of the first NDR
device X2 is coupled to the first grounded capacitor C2. The
second NDR device (X1) has a first node 30 connected to the
first node 38 of the first NDR device X2 by a second load
resistor RL.2 and a second node 34 connected to a second
voltage source 36. The first node 30 of the second NDR
device X1 is coupled to the second grounded capacitor C21.
The first node 30 of the second NDR device X1 is an output
node 44 of the neuron circuit 26.
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[0058] The first voltage source 42 of neuron circuit 26 is
a positive voltage source and the second voltage source 36
is a negative voltage source. The voltages —Vdc, +Vdc
provided by voltages sources 36 and 42 can have a same
amplitude or they can have different amplitudes, as dis-
cussed above.

[0059] The first and second NDR devices X2, X1 can each
comprise, between their first (respectively 38, 30) and
second (respectively 40, 34) nodes, a resistance (respec-
tively Rel, Re2) in series with an NDR material. The NDR
material of the first and second NDR devices X2, X1 can be
a layer or thin film of vanadium dioxide, for example
identical to the one detailed previously for neuron circuit 20.
[0060] Rel can have a value of a few hundred Ohms and
can be the cumulative resistance of a first metal nanowire
electrode arranged between the first node (38) and a first side
of the NDR material of X2, and of a second metal nanowire
electrode arranged between second node (40) and a second
side of the NDR material of X2. Similarly, Re2 can have a
value of a few hundred Ohms and can be the cumulative
resistance of a first metal nanowire electrode arranged
between the first node (30) and a first side of the NDR
material of X1, and of a second metal nanowire electrode
arranged between second node (34) and a second side of the
NDR material of X1.

[0061] The vanadium dioxide layer can be generated by
electroforming from a vanadium pentoxide layer, as detailed
in U.S. patent application Ser. No. 15/417,049,(filed Jan. 26,
2017, Reference [8], above) which is incorporated by ref-
erence to this presentation.

[0062] Alternatively, the vanadium dioxide layer can be
directly prepared by a variety of thin film deposition meth-
ods, including but not limited to, reactive d.c. or r.f. mag-
netron sputtering of vanadium metal or vanadium oxide
targets, atomic layer deposition followed by post-deposition
anneal, or metallic precursor oxidation.

[0063] The first and second voltage sources (42, 36) are
arranged to bring the first and second NDR devices (X2, X1)
close to their respective Mott Insulator-to-Metal Transition;
and the voltage biases can be adjusted to set desired levels
of voltage or current threshold for the neuron action poten-
tial generation (spike firing) and desired signal gains. The
first load resistor, the first NDR device, the first voltage
source and the first grounded capacitor are arranged to form
a first relaxation oscillator; and the second load resistor, the
second NDR device, the second voltage source and the
second grounded capacitor are arranged to form a second
relaxation oscillator.

[0064] One or more of neuron circuits 20 and 26 can be
used in a neural circuit having a plurality of neuron circuits
connected in a network, such as for example, FIG. 1A, and
also, for example, as illustrated in FIG. 1B (of Reference [7]
U.S. patent application Ser. No. 15/976,687, filed May 10,
2018).

[0065] A Mott IMT physics-based SPICE model of VO2
NDR devices was used to simulate the excitatory and
inhibitory neuron circuits as shown in FIGS. 1E and 1F,
respectively. In the SPICE model, the VO2 conduction
channel is modeled as a cylindrical volume with a radius of
28-56 nm and a length of 50-100 nm. These dimensions are
close to experimentally observed values in electroformed
VO2 NDR devices (see U.S. patent application Ser. No.
15/417,049, filed Jan. 26, 2017, Reference [8], above) or
electroform-free VO, NDR devices.
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[0066] It is noted that the excitatory and inhibitory neuron
circuits 20, 26 of FIGS. 1E and 1F are both tonic neuron
circuits. According to embodiments of this presentation, and
as detailed hereafter, tonic neuron circuits 20 and 26 can be
made phasic by replacing the input load resistor (RL1 in 20
or RL2 in 26) by a capacitor or a capacitor in series with a
resistor.

[0067] Each excitatory memristor neuron circuit 53, as
shown in FIG. 1A may be implemented with the excitatory
neuron circuit of FIG. 1E, and each inhibitory memristor
neuron circuit 54 may be implemented with the inhibitory
neuron circuit of FIG. 1F. The excitatory output memristor
neuron 57 may also be implemented with the excitatory
neuron circuit of FIG. 1E.

[0068] The synapse circuits 55 and 56 may be passive
memristor synapse circuits. An example of a passive mem-
ristor is described in Reference [9] Yoon, J. H., Zhang, .,
Ren, X., Wang, Z., Wu, H., Li, Z., Barnell, M., Wu, Q.,
Lauhon, L. J., Xia, Q., and Yang, J. J., “Truly electroform-
ing-free and low-energy memristors with preconditioned
conductive tunneling paths.” Advanced Functional Materi-
als 27, pp. 1702010 (2017), which is incorporated herein by
reference.

[0069] In the present disclosure, each passive memristor
synapse circuit may be a 2 terminal resistor whose resistance
value is a positive value.

[0070] FIG. 1D shows typical simulated spike waveforms
at the input 70 and the output 72 of an inhibitory memristor
neuron circuit 54. FIG. 1D also shows typical simulated
spike waveforms at the input 74 and the output 76 of an
excitatory memristor neuron circuit 53. A notable feature is
that an excitatory memristor neuron circuit 53 does not fire
if the input 74 is subthreshold or below threshold, such as a
negative input, and an inhibitory memristor neuron circuit
54 does not fire if the input 70 is suprathreshold or above the
threshold, such as a zero or positive input.

[0071] To evaluate and benchmark the in-memory com-
puting performance of the bi-polarity all-memristor convo-
lutional circuit as shown in FIG. 1C, a customized convo-
Iutional neural network (CNN) image classification model
was used employing the MATLAB neural network toolbox
for classification of the MNIST image set. The convolutional
kernel (filter) weights were trained in the CNN model using
the prevailing stochastic gradient descent method. Then the
pre-trained convolutional kernel weights were converted
into dual-quadrant synaptic conductance values that can be
either positive or negative.

[0072] The conversion algorithm is shown in FIG. 2 and
described below.

[0073] 1. In step 80 from the pre-trained CNN weight
element w(i, j) of the k” convolutional kernel (i and j are the
row and column indices of the 2D weight matrix).

[0074] 2. In step 82 convert the pre-trained CNN weight
element w(i, j) to the synapse weight g(i, j) using a linear
conversion scheme so that g(i, j)=(w(i, j)x1.2e~%)/max(w(i,

-

[0075] 3. In step 84 determine whether g(i, j) is positive or
negative.
[0076] 4. In step 86, if the synapse weight g(i, j) is zero or

positive, then the conductance g,,,(i, j) of the inhibitory
synapse is set to the lower bound value (for example, the
lower bound value may be a resistance of 2 MQ), and the
conductance g, (i, j) of the excitatory synapse is set to a
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value such that the total conductance g(i, j) (signed sum-
mation of' g, ,,(i,j) and g__(i, j)) equals to the synapse weight
in step 82.

[0077] 5. In step 88, if the synapse weight g(i, j) is
negative, then the conductance g, (i, j) of the excitatory
synapse is set to set to the lower bound value (for example,
the lower bound may be a resistance of 2 MQ), and the
conductance g,,,(i, j) of the inhibitory synapse is set to a
value such that the total conductance g(i, j) (signed sum-
mation of' g, ,,(i,j) and g__(i, j)) equals to the synapse weight
in step 82.

[0078] FIGS. 3A and 3B show an example set of calcu-
lated resistance values for the 250 excitatory memristor
synapses and 250 inhibitory memristor synapses of the
bi-polarity all-memristor convolutional circuit of FIG. 1C,
converted using the algorithm in FIG. 2 from pre-trained
convolutional kernel weights of a customized MATLAB
CNN model. The same rate-based data encoding scheme and
benchmarking method was used as described in Reference
[1] for evaluating the bi-polarity all-memristor convolution
circuit and method.

[0079] FIG. 4 shows the customized MATLAB CNN
image classification model used for benchmarking. It is
designed to classify 28x28 pixel grayscale (256 levels)
MNIST handwritten digit input images 60. The MNIST
image set 90 has a total of 10,000 images and has a total of
10 image classes 100 (for digits 0 to 9). This simplified CNN
model includes one convolutional layer 92 having 10 (5x5)
convolutional kernels (filters) for feature extraction, two
nonlinear (“NL”) layers 96 and 98, and one fully-connected
neural network (NN) layer 95, whose output is layer 4,
reference number 97. The first nonlinear layer 96 after
convolution is based on a rectified linear unit (RelL.U)
transformation. The fully connected layer 95 performs mul-
tiplications and sums. The final nonlinear layer 98 performs
a winner take all (WTA) operation, wherein only one output
class with the highest output value among the ten outputs is
selected as the final output class. For simplicity, no batch
normalization layer or pooling layer (originally Layer 3) was
used. Neglecting these layers did not deteriorate the image
classification accuracy (a 93.4% accuracy was achieved
after training). In simulated benchmarking, the convolu-
tional layer 92 was implemented by an all-memristor con-
volution circuit, as shown in FIG. 1B, and was simulated by
a SPICE simulator (Cadence Verilog AMS). The simulated
convolutional layer activations (outputs) in spike domain
were converted back and loaded to the rest of the MATLAB
CNN model to complete the image classification process
using MATL.AB numerical calculations.

[0080] The number of multiply and accumulate (MAC) (or
comparable) numerical operations required for MNIST
image classification is 144,000 MACs for Layer 1 the
convolution layer 92, 5,760 operations for Layer 2 the ReLU
nonlinear layer 96, and 57,600 MACs for Layer 4 the fully
connected layer 95. It is clear that the convolutional layer 92
is the most computationally intensive part of the CNN
model. This is also the case for much more sophisticated
deep CNN models used in the industry.

[0081] FIG. 5 shows an example benchmarking operation
of the simplified (no pooling) MATLAB CNN model, as
shown in FIG. 4, for image classification benchmarking. In
this example, the input 90 is a 28%x28 pixel MNIST image of
a handwritten digit (digit “2”"). The convolutional layer 92
having ten 5x5 bi-polarity convolutional kernels is simu-
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lated (in Cadence Verilog AMS) by a memristor neurosyn-
aptic convolution circuit having 50x10 passive memristor
synapses 55 and 56, as shown in FIG. 1B. The simulated
memristor convolution outputs are ten 24x24 pixel output
images 94, and two of them are shown in FIG. 5. The images
94 are then sent back to the MATLAB model to calculate the
classification outputs. The nonlinear classifier layer Layer 4
98 has ten outputs, one for each digit class 100. The highest
value (10.9178 in this case) in the ten outputs points to the
correct class of digit “2”.

[0082] FIG. 6 shows a table, which is a summary of the
benchmarking analysis. The simulated all-memristor con-
volution energy efficiency per input bit is 0.52 nl/b, trans-
lating into an overall image classification energy efficiency
per input bit of 0.61 nJ/b, which is better than 10x improve-
ment over the prior art CMOS neuromorphic processor (the
IBM TrueNorth, at 6.7 nl/b).

[0083] The simulated memristor convolution throughput
for a (50x10) passive memristor crossbar array shown in
FIG. 1B for bi-polarity (dual-quadrant) convolution is about
7.5 Mb/s. As a comparison, the prior art CMOS neuromor-
phic processor has an image classification throughput of
30.7 Mb/s. This indicates that the circuit of the present
invention can rival the throughput of the prior art using
merely four copies of such (50x10) memristor crossbar
arrays, with a total synapse count of only 4x50x10=2000.
The prior art TrueNorth chip uses 4042 out of the 4096
neurosynaptic cores in its benchmarking. Fach TrueNorth
neurosynaptic core contains (256x256)=65536 synapses,
bringing the total amount of synapses in-use to ~265 million.
This indicates a synapse count ratio of 1.32x10° for achiev-
ing similar throughput for TrueNorth vs. using the circuits of
the present invention. Such a large contrast in the required
synapse count can be explained by the large difference in the
operating spike rates, which have a rate of about 100 MHz
for the present invention vs. a rate of only about 200 Hz for
the prior art TrueNorth).

[0084] Note that the Si prior art (TrueNorth) uses a more
sophisticated CNN model for image classification bench-
marking, which involves more convolutional layers and
multiply and accumulate (MAC) operations. Therefore it is
helpful to compare the architecture-independent energy use,
or Joule per operation (J/OP). However, this number is not
available for TrueNorth. In the present invention, the simu-
lated all-memristor energy use per MAC operation is ~6
pJ/OP. This value is based on counting ~40 spikes for
rate-based convolution per output pixel. This is a rather
conservative practice to ensure spike rate accuracy. In the
best-case scenario of counting ~4 spikes for convolution per
output pixel, the all-memristor energy use per operation can
reach ~0.6 pJ/OP. Thus making it possible to access the
sub-pJ/OP regime for approximate computing applications.
Note that this estimation is based on a 0.4 pl/spike VO,
neuron energy efficiency, which is not the lower bound of the
technology.

[0085] Having now described the invention in accordance
with the requirements of the patent statutes, those skilled in
this art will understand how to make changes and modifi-
cations to the present invention to meet their specific
requirements or conditions. Such changes and modifications
may be made without departing from the scope and spirit of
the invention as disclosed herein.

[0086] The foregoing Detailed Description of exemplary
and preferred embodiments is presented for purposes of
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illustration and disclosure in accordance with the require-
ments of the law. It is not intended to be exhaustive nor to
limit the invention to the precise form(s) described, but only
to enable others skilled in the art to understand how the
invention may be suited for a particular use or implemen-
tation. The possibility of modifications and variations will be
apparent to practitioners skilled in the art. No limitation is
intended by the description of exemplary embodiments
which may have included tolerances, feature dimensions,
specific operating conditions, engineering specifications, or
the like, and which may vary between implementations or
with changes to the state of the art, and no limitation should
be implied therefrom. Applicant has made this disclosure
with respect to the current state of the art, but also contem-
plates advancements and that adaptations in the future may
take into consideration of those advancements, namely in
accordance with the then current state of the art. It is
intended that the scope of the invention be defined by the
Claims as written and equivalents as applicable. Reference
to a claim element in the singular is not intended to mean
“one and only one” unless explicitly so stated. Moreover, no
element, component, nor method or process step in this
disclosure is intended to be dedicated to the public regard-
less of whether the element, component, or step is explicitly
recited in the Claims. No claim element herein is to be
construed under the provisions of 35 U.S.C. Sec. 112, sixth
paragraph, unless the element is expressly recited using the
phrase “means for . . . ” and no method or process step herein
is to be construed under those provisions unless the step, or
steps, are expressly recited using the phrase “comprising the
step(s) of . . ..

What is claimed is:

1. A circuit for performing energy-efficient and high-
throughput multiply-accumulate (MAC) arithmetic dot-
product operations and convolution computations compris-
ing:

a two-dimensional crossbar array comprising a plurality
of row inputs and at least one column having a plurality
of column circuits, wherein each column circuit is
coupled to a respective row input;

wherein each respective column circuit comprises:
an excitatory memristor neuron circuit having an input

coupled to a respective row input;

a first synapse circuit coupled to an output of the
excitatory memristor neuron circuit, the first synapse
circuit having a first output;

an inhibitory memristor neuron circuit having an input
coupled to the respective row input; and

a second synapse circuit coupled to an output of the
inhibitory memristor neuron circuit, the second syn-
apse circuit having a second output; and

an output memristor neuron circuit coupled to the first
output and second output of each column circuit, the
output memristor neuron circuit having an output.

2. The circuit of claim 1:

wherein each first synapse circuit and each second syn-
apse circuit comprises a passive memristor synapse
circuit.

3. The circuit of claim 1:

wherein each respective excitatory memristor neuron cir-
cuit and respective first synapse circuit coupled to the
respective excitatory memristor neuron circuit has a
positive or a zero convolutional weight; and
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wherein each respective inhibitory memristor neuron cir-
cuit and respective second synapse circuit coupled to
the respective inhibitory memristor neuron circuit has a
negative convolutional weight.

4. The circuit of claim 1 wherein each respective excit-

atory memristor neuron circuit comprises:

a first negative differential resistance (NDR) device
biased with a first voltage source;

a second negative differential resistance (NDR) device
biased with a second voltage source, wherein the first
voltage source and the second voltage source are oppo-
site polarities;

a first capacitor coupled to ground and coupled to a first
node of the first NDR device;

a first load resistor coupled between an input node of the
excitatory active memristor neuron circuit or the self-
excitatory active memristor output neuron circuit and
the first capacitor;

a second capacitor coupled to ground; and

a second load resistor coupled between the first capacitor
and the second capacitor, and coupled to a first node of
the second NDR device;

wherein the first node of the second NDR device forms an
output node of the excitatory active memristor neuron
circuit or the self-excitatory active memristor output
neuron circuit;

wherein the first voltage source is a negative voltage
source; and

wherein the second voltage source is a positive voltage
source.

5. The circuit of claim 4 further comprising:

a third load resistor coupled between the first capacitor
and the first node of the first NDR device; and

a fourth load resistor coupled between the second capaci-
tor and a first node of the second NDR device.

6. The circuit of claim 4 wherein:

at least one of the first and second NDR devices comprises
a vanadium dioxide layer.

7. The circuit of claim 4 wherein:

the first and second voltage sources are configured to
bring the first and second negative differential resis-
tance (NDR) devices close to their respective Mott
insulator-to-metal transition.

8. The circuit of claim 1 wherein each respective inhibi-

tory memristor neuron circuit comprises:

a first negative differential resistance (NDR) device
biased with a first voltage source;

a second negative differential resistance (NDR) device
biased with a second voltage source, wherein the first
voltage source and the second voltage source are oppo-
site polarities;

a first capacitor coupled to ground and coupled to a first
node of the first NDR device;

a first load resistor coupled between an input node of the
inhibitory active memristor neuron circuit and the first
capacitor;

a second capacitor coupled to ground; and

a second load resistor coupled between the first capacitor
and the second capacitor, and coupled to a first node of
the second NDR device;

wherein the first node of the second NDR device forms an
output node of the inhibitory active memristor neuron
circuit;
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wherein the first voltage source is a positive voltage

source; and

wherein the second voltage source is a negative voltage

source.

9. The circuit of claim 8 further comprising:

a third load resistor coupled between the first capacitor

and the first node of the first NDR device; and

a fourth load resistor coupled between the second capaci-

tor and a first node of the second NDR device.
10. The circuit of claim 8 wherein:
at least one of the first and second NDR devices comprises
a vanadium dioxide layer.

11. The circuit of claim 8 wherein:

the first and second voltage sources are configured to
bring the first and second negative differential resis-
tance (NDR) devices close to their respective Mott
insulator-to-metal transition.
12. The circuit of claim 1:
wherein the two-dimensional crossbar array further com-
prises a plurality of columns, wherein each column has
a plurality of column circuits and each column circuit
in a respective column is coupled to a respective row
input.
13. The circuit of claim 1:
wherein a respective excitatory memristor neuron circuit
does not fire if the respective row input coupled to the
respective excitatory memristor neuron circuit is below
a threshold or has a negative value; and

wherein a respective inhibitory memristor neuron circuit
does not fire if the respective row input coupled to the
respective excitatory memristor neuron circuit is above
a threshold or has a positive value.

14. A method for setting conductance values for excit-
atory memristor synapse circuits and inhibitory memristor
synapse circuits comprising;

training convolutional kernel weights using a prevailing

stochastic gradient descent method; and

converting a trained convolutional kernel weight element

w(i, j) of a k” convolutional kernel, wherein i and j are

the row and column indices of a two dimensional

weight matrix into dual-quadrant synaptic conductance

values that can be either positive or negative by:

converting the trained convolutional kernel weight ele-
ment w(i, j) to a synapse weight g(i, j) using a linear
conversion scheme so that g(i, j)=(w(i, j)x1.2¢7%)/
max(w(i, j));

determining whether g(i, j) is positive or negative; and

if the synapse weight g(i, j) is zero or positive, then
setting a conductance g,,,(i, j) of a respective inhibi-
tory memristor synapse circuit to a first lower bound
value, and setting a conductance of a g, (i, j) of a
respective excitatory memristor synapse circuit to a
value such that a total conductance g(i, j) or a signed
summation of g, .(, j) and g, (i, j)) equals w(i,
j)x1.2e”%)/max(w(i, j);

if the synapse weight g(i, j) is negative, then setting a
conductance g, (i, j) of a respective excitatory
memristor synapse circuit to a second lower bound
value, and setting a conductance of a g, ,(i, j) of a
respective inhibitatory memristor synapse circuit to a
value such that a total conductance g(i, j) or a signed
summation of g,,(, j) and g, (i, j)) equals w(i,
j)x1.2e”%)/max(i, j).
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15. The method of claim 14:

wherein the first lower bound value is g, (i, j)=0.5¢7¢;
and

wherein the second lower bound value is g, __(i, j)=0.5¢7S.

16. A method for performing energy-efficient and high-

throughput multiply-accumulate (MAC) arithmetic dot-
product operations and convolution computations compris-
ing:

providing a two dimensional crossbar array comprising a
plurality of row inputs and at least one column having

a plurality of column circuits, wherein each column

circuit is coupled to a respective row input;

wherein each respective column circuit comprises:

an excitatory memristor neuron circuit having an input
coupled to a respective row input;

a first synapse circuit coupled to an output of the
excitatory memristor neuron circuit, the first synapse
circuit having a first output;

an inhibitory memristor neuron circuit having an input
coupled to the respective row input; and

a second synapse circuit coupled to an output of the
inhibitory memristor neuron circuit, the second syn-
apse circuit having a second output; and

providing an output memristor neuron circuit coupled to
the first output and second output of each column
circuit, the output memristor neuron circuit having an
output.

17. The method of claim 16:

wherein each respective excitatory memristor neuron cir-
cuit and respective first synapse circuit coupled to the

respective excitatory memristor neuron circuit has a

positive or a zero convolutional weight; and

wherein each respective inhibitory memristor neuron cir-
cuit and respective second synapse circuit coupled to

the respective inhibitory memristor neuron circuit has a

negative convolutional weight.

18. The method of claim 16 wherein each respective

excitatory memristor neuron circuit comprises:

a first negative differential resistance (NDR) device
biased with a first voltage source;

a second negative differential resistance (NDR) device
biased with a second voltage source, wherein the first
voltage source and the second voltage source are oppo-
site polarities;

a first capacitor coupled to ground and coupled to a first
node of the first NDR device;

a first load resistor coupled between an input node of the
excitatory active memristor neuron circuit or the self-
excitatory active memristor output neuron circuit and
the first capacitor;

a second capacitor coupled to ground; and

a second load resistor coupled between the first capacitor
and the second capacitor, and coupled to a first node of
the second NDR device;

wherein the first node of the second NDR device forms an
output node of the excitatory active memristor neuron
circuit or the self-excitatory active memristor output
neuron circuit;

wherein the first voltage source is a negative voltage
source; and

wherein the second voltage source is a positive voltage
source.

19. The method of claim 16 wherein each respective

inhibitory memristor neuron circuit comprises:
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a first negative differential resistance (NDR) device
biased with a first voltage source;

a second negative differential resistance (NDR) device
biased with a second voltage source, wherein the first
voltage source and the second voltage source are oppo-
site polarities;

a first capacitor coupled to ground and coupled to a first
node of the first NDR device;

a first load resistor coupled between an input node of the
inhibitory active memristor neuron circuit and the first
capacitor;

a second capacitor coupled to ground; and

a second load resistor coupled between the first capacitor
and the second capacitor, and coupled to a first node of
the second NDR device;

wherein the first node of the second NDR device forms an
output node of the inhibitory active memristor neuron
circuit;
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wherein the first voltage source is a positive voltage
source; and

wherein the second voltage source is a negative voltage
source.

20. The method of claim 16:

wherein the two-dimensional crossbar array further com-
prises a plurality of columns, wherein each column has
a plurality of column circuits and each column circuit
in a respective column is coupled to a respective row
input.

21. The method of claim 16:

wherein a respective excitatory memristor neuron circuit
does not fire if the respective row input coupled to the
respective excitatory memristor neuron circuit is below
a threshold or has a negative value; and

wherein a respective inhibitory memristor neuron circuit
does not fire if the respective row input coupled to the
respective excitatory memristor neuron circuit is above
a threshold or has a positive value.
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