US 20200356418A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0356418 A1

Winkelmann et al.

43) Pub. Date: Nov. 12, 2020

(54) EXECUTING AN ATOMIC PRIMITIVE BY A GO6F 12/084 (2006.01)
PROCESSOR CORE GO6F 12/0842 (2006.01)
] (52) US. CL
(71) Applicant: INTERNATIONAL BUSINESS CPC oo, GOGF 9/522 (2013.01); GOGF 9/546
MACHINES CORPORATION, (2013.01); GOG6F 12/0842 (2013.01); GO6F
ARMONK, NY (US) 12/084 (2013.01); GO6F 9/544 (2013.01)
(72) Inventors: Ralf Winkelmann, Holzgerlingen (DE);
Michael Fee, Cold Spring, NY (US); 57 ABSTRACT
Matthias Klein, Poughkeepsie, NY 7)
(US); Carsten Otte, Stuttgart (DE);
Edward W. Chencinski, Poughkeepsie, The present disclosure relates to a method for a computer
NY (US); Hanno Eichelberger, system comprising a plurality of processor cores including a
Stuttgart (DE) first processor core and a second processor core, wherein a
data item is exclusively assigned to the first processor core,
(21) Appl. No.: 16/407,782 of the plurality of processor cores, for executing an atomic
. primitive by the first processor core. The method includes
(22) Filed: May 9, 2019 receiving by the first processor core, from the second
A . . processor core, a request for accessing the data item, and in
Publication Classification response to determining by the first processor core that the
(51) Int. CL executing of the atomic primitive is not completed by the
GO6F 9/52 (2006.01) first processor core, returning a rejection message to the
GO6F 9/54 (2006.01) second processor core.
200 , .
\\ Receive from a second core a request for accessing the |
| data item.
203 <y .
~— I8 the execution of the atomic
T primitive completed?
No
205

< Return a rejection message to the second core.

Patent Application Publication Nov. 12,2020 Sheet 1 of 3 US 2020/0356418 A1

100

"

Processor core Processor core
Wirite Cache
— 101N
Execute —
1 Register file
128 103 ; h
| 1A 1B Cache
Data fatch
121 e 106
111N
instruction |
fatch/ Cache cemroiieﬁ
decode 120 3
C = 107 108
~
110 101A
Memory
102

Fig. 1

Patent Application Publication Nov. 12,2020 Sheet 2 of 3 US 2020/0356418 A1

200
\\ Receive from a second core a request for accessing the
‘ data item.
203 \\iif//ié/t/he execution of the at\gr\ﬁ‘{fc\:;)
T primitive completed? —
lNo
205

\\,ﬁ Return a rejection message to the second core.

Fig. 2A

Memory / shared caches

221
e Sioa b 2128

2118 213 211A

101A © 101B, 101C,..or 101N

Fig. 2B

Patent Application Publication

Nov. 12, 2020

§ Starnt)

Sheet 3 of 3 US 2020/0356418 A1l

initiating core issues
TELT instruction
1o test lock availability

301

!

initiating core sends
a conditional feich request
to cache controller

e,

303

A

Cache controller sends
a conditional cross invalidation
request to target core

304

Is the target core
state suitable for
transfer of the lina?

Target core sends a response
{0 cache controller indicating
that data is not avaiable

308

< JU—

Cache controller sends a response
1o initiating core,
indicating that daia
is not available

] 309

Condition code indicating data not gvallable

is being presented on initiating
core

-

&

"""""""""""""""""" 313
=

k-4
Target core writes back a dirty
fine in case it changed,and sends
& positive cross invalidation
response.
Target core gives up
ownership of the line

315
g

¥

Cache controller sends
a positive response to feich
request along with the line
10 initiating core.
Ownership of the Line has been
transferred io initiating core

‘ 3
Condition code indicating

data is available is being
presented on initiating core

Fig. 3

US 2020/0356418 Al

EXECUTING AN ATOMIC PRIMITIVE BY A
PROCESSOR CORE

BACKGROUND

[0001] The present invention relates to the field of digital
computer systems, and more specifically, to a method for
executing an atomic primitive by a processor core.

[0002] Inconcurrent programming, concurrent accesses to
shared resources can lead to unexpected or erroneous behav-
ior, so parts of a program where the shared resource is
accessed may be protected. This protected section may be
referred to as an atomic primitive, critical section or critical
region. The atomic primitive may access a shared resource,
such as a data structure that would not operate correctly in
the context of multiple concurrent accesses. However, there
is a need to better control the usage of an atomic primitive
in a multi-core processor.

[0003] SUMMARY

[0004] Various embodiments provide a method for execut-
ing an atomic primitive by a core processor, and processor
system as described by the subject matter of the independent
claims. Advantageous embodiments are described in the
dependent claims. Embodiments of the present invention
can be freely combined with each other if they are not
mutually exclusive.

[0005] In one aspect, the present disclosure relates to a
method for a computer system comprising a plurality of
processor cores, wherein a data item is assigned exclusively
to a first processor core, of the plurality of processor cores,
for executing an atomic primitive by the first processor core.
The method includes receiving by the first processor core,
from a second processor core, a request for accessing the
data item, and in response to determining by the first
processor core that the atomic primitive is not completed by
the first processor core, returning a rejection message to the
second processor core.

[0006] In exemplary embodiments, the method further
includes returning a rejection message via the cache con-
troller, wherein the request is received at the first processor
core.

[0007] In exemplary embodiments, the method further
includes receiving the request at the cache controller, send-
ing by the cache controller an invalidation request of the data
item to the first processor core, receiving from the first
processor core by the cache controller a rejection message
indicative of a negative response to the invalidation request,
and forwarding, by the cache controller, the rejection mes-
sage to the second processor core.

[0008] In exemplary embodiments, the method further
includes determining that a store queue, or load queue, of the
first processor core comprises an instruction referring to the
requested data item, wherein the determining by the first
processor core that the executing of the atomic primitive is
not completed.

[0009] In exemplary embodiments, the method further
includes returning the data item to the second processor
core, in response to determining that the atomic primitive is
completed.

[0010] In exemplary embodiments, wherein returning the
rejection message to the second processor core further
comprises: causing the second processor core to execute one
or more further instructions while the atomic primitive is
being executed, wherein the one or more further instructions
are different from an instruction for requesting the data item.

Nov. 12, 2020

[0011] In another aspect, the present disclosure relates to
a processor system comprising a first processor core. The
first processor core is configured for receiving, from a
second processor core, a request for accessing the data item,
and in response to determining that the execution of an
atomic primitive is not completed by the first processor core,
returning a rejection message to the second processor core.
The data item is assigned exclusively to the first processor
core, of the plurality of processor cores, for executing an
atomic primitive by the first processor core.

[0012] In another aspect, the present disclosure relates to
a computer program product comprising one or more com-
puter readable storage mediums collectively storing pro-
gram instructions that are executable by a processor or
programmable circuitry to cause the processor or the pro-
grammable circuitry to perform a method for a computer
system comprising a plurality of processor cores, wherein a
data item is assigned exclusively to a first processor core, of
the plurality of processor cores, for executing an atomic
primitive by the first processor core; the method comprising:
receiving by the first processor core, from the second
processor core, a request for accessing the data item, and in
response to determining, by the first processor core, that the
executing of the atomic primitive is not completed by the
first processor core, returning a rejection message to the
second processor core.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0013] In the following embodiments the invention is
explained in greater detail, by way of example only, refer-
ring to the drawings in which:

[0014] FIG. 1 depicts an example multiprocessor system,
in accordance with embodiments of the present disclosure.
[0015] FIG. 2A depicts a flowchart of a method for pro-
cessing data requests of multiple processor cores, in accor-
dance with embodiments of the present disclosure.

[0016] FIG. 2B is a block diagram illustrating a method
for processing data requests of multiple processor cores, in
accordance with embodiments of the present disclosure.
[0017] FIG. 3 depicts a flowchart of a method to imple-
ment a lock for workload distribution in a computer system
comprising a plurality of processor cores, in accordance with
embodiments of the present disclosure.

DETAILED DESCRIPTION

[0018] The descriptions of the various embodiments of the
present invention will be presented for purposes of illustra-
tion, and are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations
will be apparent to those of ordinary skill in the art without
departing from the scope and spirit of the described embodi-
ments. The terminology used herein was chosen to best
explain the principles of the embodiments, the practical
application or technical improvement over technologies
found in the marketplace, or to enable others of ordinary
skill in the art to understand.

[0019] The present disclosure may prevent that, when a
given processor core enters an atomic primitive, other pro-
cessor cores do not have to wait (e.g., by continuously
requesting for a lock) for the given processor core until it
completes the atomic primitive. The other processor cores
may perform other tasks while the atomic primitive is being

US 2020/0356418 Al

executed. This may enable an efficient use of the processor
resources. The terms “core” and “processor core” are used
interchangeably herein.

[0020] The first core may communicate (e.g., by receiving
the request and returning the rejection message) directly
with the second core. This direct communication between
cores may, for example, be implemented in a peer to peer
communication enabling environment.

[0021] The atomic primitive may be defined by a storage
location and a set of one or more instructions. The set of one
or more instructions may have access to the storage location.
The storage location may be associated with a lock that
limits access to that location. To enter the atomic primitive
the lock must be acquired. Once acquired, the atomic
primitive is executed (i.e., the set of instructions are
executed) exclusively by a core that acquired the lock. Once
the lock is released this indicates that the core has left the
atomic primitive.

[0022] According to one embodiment, the request is
received at the first core via a cache controller and the
returning of the rejection messages is performed via the
cache controller. For example, the second core sends a
request to the cache controller and the cache controller
forwards the received request to the first core. The first core
sends the rejection message to the cache controller and the
cache controller forwards the rejection message to the
second core.

[0023] According to one embodiment, the determining by
the first core that the executing of the atomic primitive is not
completed comprises determining that a store queue or load
queue of the first processor core comprises an instruction
referring to the requested data item. For example, the first
core may comprise a logic in addition to the load/store queue
that is configured to decide on rejecting the received request.
[0024] According to one embodiment, the determining
that the store queue or the load queue of the first processor
core comprises the requested data item is performed using a
store compare logic and load compare logic of the first
processor core respectively.

[0025] According to one embodiment, the request for
accessing the data item is a tagged request indicating that it
is a request for data being used in the atomic primitive,
wherein the first core comprises a logic circuitry configured
for recognizing the tagged request, wherein the determining
step is performed in case the first core recognizes the tagged
request.

[0026] According to one embodiment, the method com-
prises receiving the request at the cache controller, sending
by the cache controller an invalidation request of the data
item to the first core, receiving from the first core by the
cache controller a rejection message indicative of a negative
response to the invalidation request and forwarding by the
cache controller the rejection message to the second core.

[0027] According to one embodiment, the method further
comprises, in response to determining that the atomic primi-
tive is completed, returning the data item to the second
(waiting) core. This may enable the second processor core to
receive the requested data item without having to perform
repeated requests.

[0028] According to one embodiment, returning the rejec-
tion message to the second core further comprises: causing
the second core to execute one or more further instructions
while the atomic primitive is being executed, the further
instructions being different from an instruction for request-

Nov. 12, 2020

ing the data item. This may enable an efficient use of the
processor resources compared to the case with the second
core has to wait for the first core until it finished the
execution of the primitive.

[0029] According to one embodiment, the data item is a
lock acquired by the first core to execute the atomic primi-
tive, wherein determining that the execution of the atomic
primitive is not completed comprises determining that the
lock is not available. This embodiment may seamlessly be
integrated in existing systems.

[0030] According to one embodiment, the cache line asso-
ciated with the data item is released after the execution of the
atomic primitive is completed.

[0031] According to one embodiment, the data item is
cached in a cache of the first core.

[0032] According to one embodiment, the data item is
cached in a cache shared between the first and second cores.
The cache may be a data cache or instruction cache.
[0033] According to one embodiment, the method further
comprises providing a processor instruction, wherein the
receiving of the request is the result of executing the
processor instruction by the second core, wherein the deter-
mining and returning steps are performed in response to
determining that the received request is triggered by the
processor instruction.

[0034] The processor instruction may be named Tentative
Exclusive Load&Test (TELT). The TELT instruction may be
issued by the core in the same way as a Load&Test instruc-
tion. The TELT instruction can either return the cache line
and do a test or can get a reject response. The reject response
does not return the cache line data and therefore does not
install it in the cache. Instead, the reject response is treated
in the same way as if the Load&Test instruction failed. The
TELT instruction may be beneficial as it may work with
stiff-arming, because it is non-blocking (providing a reject
response without changing a cache line state). Another
advantage may be that it may provide a faster response to the
requesting core such that it enables other cores to work on
other tasks. Another advantage is that the TELT instruction
does not steal the cache line from the lock owner (e.g., no
exclusive fetch prior to unlock is needed). For example, the
received request at the first core may be a fetch-request sent
via a bus by the second core when executing the “TELT”
instruction by the second core.

[0035] The TELT instruction may have an RX or RXE
format such as the LOAD instruction. In case the data
specified by the second operand of the TELT instruction is
available, the data is placed at the first operand of the TELT
instruction. The contents of the first operand are unspecified
in case the data is not available. The resulting condition
codes of the TELT instruction may be as follows: “0”
indicates that the result is zero; “1” indicates that the result
is less than zero; “2” indicates that the result is greater than
zero and “3” indicates that the data is not available. In a
typical programming sequence, depending on the condition
code, the result will be processed accordingly later.

[0036] The TELT instruction may be provided as part of
the instruction set architecture (ISA) associated with the
processor system.

[0037] FIG. 1 depicts an example multiprocessor system
100, in accordance with embodiments of the present disclo-
sure. The multiprocessor system 100 comprises multiple
processor cores 101A-N. The multiple processor cores
101A-N may for example reside on a same processor chip

US 2020/0356418 Al

such as an International Business Machines (IBM) central
processor (CP) chip. The multiple processor cores 101A-N
may, for example, share a cache 106 that resides on the same
chip. The multiprocessor system 100 further comprises a
main memory 103. For simplification of the description,
only components of the processor core 101A are described
herein; the other processor cores 101B-N may have a similar
structure.

[0038] The processor core 101A may comprise a cache
105 associated with the processor core 101. The cache 105
is employed to buffer memory data to improve processor
performance The cache 105 is a high speed buffer holding
cache lines of memory data that are likely to be used (e.g.,
cache 105 is configured to cache data of the main memory
103). Typical cache lines are 64, 128 or 256 bytes of memory
data. The processor core cache maintains metadata for each
line it contains identifying the address and ownership state.

[0039] The processor core 101A may comprise an instruc-
tion execution pipeline 110. The execution pipeline 110 may
include multiple pipeline stages, where each stage includes
a logic circuitry fabricated to perform operations of a
specific stage in a multi-stage process needed to fully
execute an instruction. Execution pipeline 110 may include
an instruction fetch and decode unit 120, a data fetch unit
121, an execution unit 123, and a write back unit 124.

[0040] The instruction fetch and decode unit 120 is con-
figured to fetch an instruction of the pipeline 110 and to
decode the fetched instruction. Data fetch unit 121 may
retrieve data items to be processed from registers 111A-N.
The execution unit 123 may typically receive information
about a decoded instruction (e.g., from the fetch and decode
unit 120) and may perform operations on operands accord-
ing to the opcode of the instruction. The execution unit 123
may include a logic circuitry to execute instructions speci-
fied in the ISA of the processor core 101A. Results of the
execution may be stored either in memory 103, registers
111A-N or in other machine hardware (such as control
registers) by the write unit 124.

[0041] The processor core 101A may further comprise a
register file 107 comprising the registers 111A-111N asso-
ciated with the processor core 101. The registers 111A-N
may for example be general purpose registers that each may
include a certain number of bits to store data items processed
by instructions executed in pipeline 110.

[0042] The source code of a program may be compiled
into a series of machine-executable instructions defined in
an ISA associated with processor core 101A. When proces-
sor core 101A starts to execute the executable instructions,
these machine-executable instructions may be placed on
pipeline 110 to be executed sequentially. Instruction fetch
and decode unit 120 may retrieve an instruction placed on
pipeline 110 and identify an identifier associated with the
instruction. The instruction identifier may associate the
received instruction with a circuit implementation of the
instruction specified in the ISA of processor core 101A.

[0043] The instructions of the ISA may be provided to
process data items stored in memory 103 and/or in registers
111A-N. For example, an instruction may retrieve a data
item from the memory 103 to a register 111A-N. Data fetch
unit 121 may retrieve data items to be processed from
registers 111A-N. Execution unit 123 may include logic
circuitry to execute instructions specified in the ISA of
processor core 101A. After execution of an instruction to

Nov. 12, 2020

process data items retrieved by data fetch unit 121, write unit
124 may output and store the results in registers 111A-N.
[0044] An atomic primitive 128 can be constructed from
one or more instructions defined in the ISA of processor core
101A. The primitive 128 may for example include a read
instruction executed by the processor core, and it is guar-
anteed that no other processor core 101B-N can access
and/or modify the data item stored at the memory location
read by the read instruction until the processor core 101A
has completed the execution of the primitive.

[0045] The processor cores 101 A-N share processor cache
106 for main memory 103. The processor cache 106 may be
managed by a cache controller 108.

[0046] FIG. 2A depicts a flowchart of a method for pro-
cessing data requests of multiple processor cores (e.g.,
101A-N), in accordance with embodiments of the present
disclosure.

[0047] For example, one first processor core (e.g., 101A)
is assigned exclusively a data item for executing an atomic
primitive (e.g., 128). For example, the data item may be
protected by the atomic primitive to prevent two processes
from changing the content of the data item concurrently.
Once entering the atomic primitive, other cores are pre-
vented from accessing data protected by the atomic primi-
tive and a set of one or more instructions are executed (e.g.,
the set of instructions have access to the protected data).
Once the set of instructions are finished, the atomic primitive
is left. Entering an atomic primitive may be performed by
acquiring a lock and leaving the atomic primitive may be
performed by releasing the lock. The releasing of the lock
may, for example, be triggered by a store instruction of the
set of instructions. The set of instructions may be part of the
atomic primitive.

[0048] In step 201, a request for accessing the data item is
received at the first processor core 101A from a second
processor core (e.g., one of the remaining processor cores
101B-N). The request may be received by the first core
directly from the second core or via a cache controller 108.
[0049] In a first example, the request may be received by
the first core directly from the second core in a peer to peer
communication mode. Each of the processor cores may be
enabled with an interface that supports a direct data
exchange between the cores.

[0050] In a second example, the request may be received
at the first core via the cache controller. The cache controller
may comprise a logic circuitry that enables the cache
controller to operate in accordance with a predefined cache
protocol. The cache protocol may be indicative of multiples
possible states of the cache controller, wherein each state of
the multiple states is associated with respective actions to be
performed by the cache controller. For example, when the
cache controller is in a first state of the multiple states,
whenever there is any request from a processor core of the
processor cores to access data, the cache controller will
check whether it is a request that is triggered by the TELT
instruction. The cache controller may, for example, be in the
first state in step 201. Upon receiving the request and
determining that the request is triggered by the TELT
instruction, the cache controller may jump to or switch to a
second state of the multiple states in accordance with the
cache protocol. In the second state, the cache controller may
send an invalidation request to the first processor core for
invalidating the requested data item at the first processor
core. In order to send the invalidation request, in the second

US 2020/0356418 Al

state, the cache controller may determine if the requested
data item is in a state suitable for transfer of line ownership
to the processor core requesting it or not. For example, the
cache controller maintains a state for the cache lines that it
holds. For example, the requested data item may be in a state
indicating that the first processor core has the target data
item exclusive, but that the execution of the atomic primitive
is not complete.

[0051] In response to determining (inquiry step 203) that
the execution of the atomic primitive is not completed by the
first processor core 101A, the processor core 101A may
generate a rejection message and send the rejection message
to the second core in step 205. The rejection message may
be sent by the first core directly to the second core or may
be sent via the cache controller 108 to the second core. For
example, the request for accessing the data item is a tagged
request indicating that it is a request for data being used in
the atomic primitive, wherein the first core comprises a logic
circuitry configured for recognizing the tagged request,
wherein the determining step 203 is performed in case the
first core recognizes the tagged request.

[0052] The determining by the first core that the execution
of the atomic primitive is not completed may be performed
by determining that a store queue, or load queue, of the first
processor core comprises an instruction referring to the
requested data item. If the queue has an instruction referring
to the requested data item, this may indicate that the first
processor core is still executing the atomic primitive. For
example, the determining that the store queue or the load
queue of the first processor core comprises the requested
data item may be performed using a store compare logic and
load compare logic of the first processor core respectively.
This may enable a seamless integration of the present
method into the existing systems.

[0053] Following the second example (in which the cache
controller is used as an intermediate), the cache controller
may jump to or switch, upon sending the invalidation
request, to a third state of the multiple states in accordance
with the cache protocol. In the third state, the cache con-
troller may wait for the response of the first processor core
to the invalidation request. Upon receiving from the first
core a response indicating that the requested data is not
available, the cache controller may switch to a fourth state
of the multiple states in accordance with the cache protocol.
In the fourth state, the cache controller may send a response
to the second core indicating that the data is not available.
[0054] FIG. 2B is a block diagram illustrating a method
for processing data requests of multiple processor cores
101A-N, in accordance with embodiments of the present
disclosure. The processor core 101 A may be assigned exclu-
sively a data item for executing an atomic primitive. While
executing the atomic primitive, another processor core
101B, 101C . . . or 101N may send (211A) a request to
access the data item. That request may, for example, be sent
via a bus 221 when executing the TELT instruction. By
monitoring the bus 221, the cache controller may receive the
request of the second core. Upon receiving via the bus 221,
the submitted request, the cache controller may send (211B)
a conditional invalidation request. The conditional invalida-
tion request may be a tagged request indicating that the data
to be invalidated is the data of the atomic primitive.
[0055] Upon receiving the conditional invalidation
request, the processor core 101 A may determine if its state
is suitable for transferring the requested data item. Since the

Nov. 12, 2020

processor core 101A is owning the cache line of the
requested data item, the processor core 101 A may determine
if its state is suitable for transferring the requested data item
based, for example, on information from instructions
recently retried, instructions currently in flight, instructions
waiting to be dispatched, or from instruction hints, such as
“next instruction access intent”.

[0056] Since the processor core 101A is still executing the
atomic primitive, that state is not suitable for data transfer
and thus the processor core 101A may send (212A) to the
cache controller a rejection message indicative of a negative
response to the conditional invalidation request. For
example, the generated rejection message may come from
two source categories. The first category may cover the
following rejection messages: -reject due to store queue
compare; -reject due to load queue compare; -reject due to
forward progress mechanism; and other reject reasons which
can be derived differently from the above rejection mes-
sages. The second category may cover specific rejects which
may improve the semaphore locking efficiency. A first
example may be a NIAI-8 instruction followed by a compare
and swap (long stiff-arming) instruction. For example, the
lock owner rejects a request to the cache line until either
releasing the stiff-arm via a NIAI7 instruction, followed by
an unlock (store), or a timeout occurs. A second example
may be a NIAI instruction before a Load& Test of the TELT
instruction to provide a short term stiff-arming (e.g., a
programmable delay in which requests for other cores will
be rejected, may be in the range of 128 to 2048 processor
cycles).

[0057] The cache controller may then send (212B) a
rejection message to the initiating processor core that
executed the TELT instruction indicating that the requested
data is not available. As illustrated in FIG. 2B, after com-
pleting the execution of the primitive 128, the processor core
101 A may release (213) the data item that is assigned to it.

[0058] Inone example, a hot-line table may be used by the
first core 101A. The hot-line table may be a mechanism that
is implemented in hardware to let the first core detecting
cache lines that are intensively used across multiple proces-
sor cores. After a cache line has been classified as being
‘hot’, cache accesses for that cache line to the shared caches
(e.g., in Z system, the shared cache may have a level beyond
L2) may be controlled differently. For example, processors
may execute instructions in an out-of-order mode. As a
consequence, memory accesses for operands (and instruc-
tions) are done based on branch predictions. For hot lines,
this may be prevented. The memory access to a hot line may
be prevented until it is confirmed that it is not a branch
wrong path. The hot-line table may thus help to eliminate
spurious memory access for hot lines if it is on a wrong
predicted branch.

[0059] FIG. 3 depicts a flowchart of a method to imple-
ment a lock for workload distribution in a computer system
comprising a plurality of processor cores, in accordance with
embodiments of the present disclosure.

[0060] In step 301, an initiating processor core 101B may
issue the TELT instruction to test lock availability of a lock
that is associated with an atomic primitive being executed by
a target processor core 101A. This may cause the initiating
processor core 101B to send in step 303 a conditional fetch
request for a cache line to the cache controller 108. In
response to receiving the conditional fetch request, the cache

US 2020/0356418 Al

controller 108 may send, in step 304, a cross invalidation
request to the target processor core 101A.

[0061] If it is determined by the target processor core
101A (inquiry step 305) that the state of the requested cache
line is not suitable for transfer, the target processor core
101A sends in step 307 a response (rejection message) to the
cache controller 108 indicating that data is not available. In
response to receiving the response, the cache controller 108
sends in step 308 a response (rejection message) to the
initiating processor core 101B indicating that data is not
available. In step 309, a condition code indicating that the
data is not available may be presented on the initiating
processor core 101B.

[0062] If it is determined by the target processor core
101A (inquiry step 305) that the state of the requested cache
line is suitable for transfer, the target processor core 101A
writes back in step 313 a dirty line in case the line is changed
and sends a positive cross invalidation response, thereby the
target core processor 101A gives up ownership of the
requested cache line. In step 315, the cache controller 108
sends a positive response to the fetch request to the initiating
processor core 101B along with the cache line. The owner-
ship of the cache line is transferred to the initiating processor
core 101B. In step 317, a condition code indicating that the
data is available may be presented on the initiating processor
core 101B.

[0063] In another example, a method is provided for
implementing a lock for workload distribution in a computer
system comprising a plurality of processor cores, the plu-
rality of processor cores sharing a processor cache for a main
memory, and the processor cache being managed by a cache
controller. The method comprises: in response to a tentative
exclusive load and test instruction for a main memory
address, a processor core sending a conditional fetch request
for the main memory address to the cache controller; in
response to a conditional fetch request for a main memory
address from an initiating processor core, the cache control-
ler sending a conditional cross invalidation request to the
target processor core currently owning the cache line for the
main memory address; in response to a cross invalidation
request for a main memory address from the cache control-
ler, the target processor core determining if ownership of the
cache line for the main memory address can be transferred,
and if not responding to the cache controller that the data is
not available, otherwise writing back the cache line in case
it was changed, releasing ownership of the cache line and
responding to the cache controller with a positive cross
invalidation request; in response to a positive cross invali-
dation request from the target processor core, the cache
controller responding to the initiating processor core with
the released cache line, otherwise responding to the initiat-
ing processor that the data is not available.

[0064] Various embodiments are specified in the following
numbered clauses.

[0065] 1. A method for a computer system comprising a
plurality of processor cores comprising a first core and a
second core, wherein a data item is exclusively assigned to
the first core of the processor cores for executing an atomic
primitive by the first core; the method comprising receiving
by the first core, from the second core, a request for
accessing the data item, and in response to determining by
the first core that the executing of the atomic primitive is not
completed by the first core, returning a rejection message to
the second core.

Nov. 12, 2020

[0066] 2. The method of clause 1, wherein the request is
received at the first core, via a cache controller, and the
returning of the rejection message is performed via the cache
controller.

[0067] 3. The method of clause 2, comprising receiving
the request at the cache controller, sending by the cache
controller an invalidation request of the data item to the first
core, receiving from the first core by the cache controller a
rejection message indicative of a negative response to the
invalidation request and forwarding by the cache controller
the rejection message to the second core.

[0068] 4. The method of any of the preceding clauses, the
determining by the first core that the executing of the atomic
primitive is not completed comprises determining that a
store queue or load queue of the first processor core com-
prises an instruction referring to the requested data item.
[0069] 5. The method of clause 4, wherein the determining
that the store queue or the load queue of the first processor
core comprises the requested data item is performed using a
store compare logic and load compare logic of the first
processor core respectively.

[0070] 6. The method of any of the preceding clauses,
wherein the request for accessing the data item is a tagged
request indicating that it is a request for data being used in
the atomic primitive, wherein the first core comprises a logic
circuitry configured for recognizing the tagged request,
wherein the determining step is performed in case the first
core recognizes the tagged request.

[0071] 7. The method of any of the preceding clauses,
further comprising in response to determining that the
atomic primitive is completed, returning the data item to the
second core.

[0072] 8. The method of any of the preceding clauses, the
determining by the first core that the executing of the atomic
primitive is not completed by the first core being performed
using predefined rejection messages.

[0073] 9. The method of any of the preceding clauses,
wherein returning the rejection message to the second core
further comprises: causing the second core to execute one or
more further instructions while the atomic primitive is being
executed, the further instructions being different from an
instruction for requesting the data item.

[0074] 10. The method of any of the preceding clauses,
wherein the data item is a lock acquired by the first core to
execute the atomic primitive, wherein determining that the
execution of the atomic primitive is not completed com-
prises determining that the lock is not available.

[0075] 11. The method of any of the preceding clauses,
wherein the cache line is released after the execution of the
atomic primitive is competed.

[0076] 12. The method of any of the preceding clauses,
wherein the data item is cached in a cache of the first core.
[0077] 13. The method of any of the preceding clauses
1-11, wherein the data item is cached in a cache shared
between the first and second cores.

[0078] 14. The method of any of the preceding clauses,
further comprising providing a processor instruction,
wherein the receiving of the request is the result of executing
the processor instruction by the second core, wherein the
determining and returning steps are performed in response to
determining that the received request is triggered by the
processor instruction.

[0079] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block

US 2020/0356418 Al

diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0080] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0081] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0082] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0083] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program

Nov. 12, 2020

instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0084] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0085] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0086] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

US 2020/0356418 Al

What is claimed is:

1. A method for a computer system comprising a plurality
of processor cores comprising a first processor core and a
second processor core, wherein a data item is exclusively
assigned to the first processor core of the plurality of
processor cores for executing an atomic primitive by the first
processor core, the method comprising:

receiving by the first processor core, from the second

processor core, a request for accessing the data item;
and

in response to determining, by the first processor core,

that the executing of the atomic primitive is not com-
pleted by the first processor core, returning a rejection
message to the second processor core.

2. The method of claim 1, wherein the request is received
at the first processor core, via a cache controller, and the
returning of the rejection message is performed via the cache
controller.

3. The method of claim 2, comprising:

receiving the request at the cache controller;

sending by the cache controller a request to invalidate the

data item to the first processor core;

receiving from the first processor core by the cache

controller a rejection message indicative of a negative
response to the request to invalidate; and

forwarding, by the cache controller, the rejection message

to the second processor core.

4. The method of claim 1, wherein the determining by the
first processor core that the executing of the atomic primitive
is not completed comprises:

determining that a store queue, or load queue, of the first

processor core comprises an instruction referring to the
requested data item.

5. The method of claim 4, wherein the determining that
the store queue, or the load queue, of the first processor core
comprises the requested data item is performed using a store
compare logic or load compare logic of the first processor
core, respectively.

6. The method of claim 1, wherein the request for access-
ing the data item is a tagged request indicating that the
request is for data being used in the atomic primitive,
wherein the first processor core comprises a logic circuitry
configured for recognizing the tagged request, and wherein
the determining step is performed in case the first processor
core recognizes the tagged request.

7. The method of claim 1, further comprising:

in response to determining that the atomic primitive is

completed, returning the data item to the second pro-
cessor core.

8. The method of claim 1, wherein determining by the first
processor core that the executing of the atomic primitive is
not completed by the first processor core is performed using
predefined rejection messages.

9. The method of claim 1, wherein returning the rejection
message to the second processor core further comprises:

causing the second processor core to execute one or more

further instructions while the atomic primitive is being
executed, wherein the one or more further instructions
are different from an instruction for requesting the data
item.

10. The method of claim 1, wherein the data item is a lock
acquired by the first processor core to execute the atomic

Nov. 12, 2020

primitive, and wherein determining that the execution of the
atomic primitive is not completed comprises determining
that the lock is not available.

11. The method of claim 1, wherein a cache line is
released after the execution of the atomic primitive is
completed.

12. The method of claim 1, wherein the data item is
cached in a cache of the first processor core.

13. The method of claim 1, wherein the data item is
cached in a cache shared between the first processor core and
the second processor core.

14. The method of claim 1, further comprising:

providing a processor instruction, wherein the receiving

of the request is the result of executing the processor
instruction by the second processor core, and wherein
the determining and returning steps are performed in
response to determining that the received request is
triggered by the processor instruction.

15. A processor system comprising a cache controller and
a plurality of processor cores, wherein a data item is
assigned exclusively to a first processor core of the plurality
of processor cores for executing an atomic primitive by the
first processor core, wherein the first processor core is
configured for:

receiving, from a second processor core of the processor

system, a request for accessing a data item; and

in response to determining that the execution of an atomic

primitive is not completed by the first processor core,
returning a rejection message to the second processor
core.

16. The processor system of claim 15, wherein the second
processor core includes a logic circuitry to execute a pre-
defined instruction, and wherein the first processor core is
configured to perform the determining step in response to
the execution of the predefined instruction by the logic
circuity.

17. The processor system of claim 15, wherein the request
is received at the first processor core, via a cache controller,
and the returning of the rejection message is performed via
the cache controller.

18. The processor system of claim 17, further comprising:

receiving the request at the cache controller;

sending by the cache controller a request to invalidate the

data item to the first processor core;

receiving from the first processor core by the cache

controller a rejection message indicative of a negative
response to the invalidation request; and

forwarding, by the cache controller, the rejection message

to the second processor core.

19. The processor system of claim 15, wherein the deter-
mining by the first processor core that the executing of the
atomic primitive is not completed comprises:

determining that a store queue, or load queue, of the first

processor core comprises an instruction referring to the
requested data item.

20. The processor system of claim 19, wherein the deter-
mining that the store queue, or the load queue, of the first
processor core comprises the requested data item is per-
formed using a store compare logic or load compare logic of
the first processor core, respectively.

21. A computer program product comprising one or more
computer readable storage mediums collectively storing
program instructions that are executable by a processor or

US 2020/0356418 Al

programmable circuitry to cause the processor or the pro-
grammable circuitry to perform a method for a computer
system comprising a plurality of processor cores, wherein a
data item is assigned exclusively to a first processor core of
the plurality of processor cores for executing an atomic
primitive by the first processor core; the method comprising:
receiving by the first processor core, from the second
processor core, a request for accessing the data item;

and

in response to determining, by the first processor core,

that the executing of the atomic primitive is not com-
pleted by the first processor core, returning a rejection
message to the second processor core.

22. The computer program product of claim 21, wherein
the request is received at the first processor core, via a cache
controller, and the returning of the rejection message is
performed via the cache controller.

23. The computer program product of claim 22, compris-
ing:

Nov. 12, 2020

receiving the request at the cache controller;

sending by the cache controller a request to invalidate the

data item to the first processor core;

receiving from the first processor core by the cache

controller a rejection message indicative of a negative
response to the request to invalidate; and

forwarding, by the cache controller, the rejection message

to the second processor core.

24. The computer program product of claim 21, wherein
the determining by the first processor core that the executing
of the atomic primitive is not completed comprises:

determining that a store queue, or load queue, of the first

processor core comprises an instruction referring to the
requested data item.

25. The computer program product of claim 24, wherein
the determining that the store queue, or the load queue, of
the first processor core comprises the requested data item is
performed using a store compare logic or load compare logic
of the first processor core, respectively.

#* #* #* #* #*

