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(57) ABSTRACT

Snapshot Isolation (SI) is an established model in the
database community, which permits write-read conflicts to
pass and aborts transactions only on write-write conflicts.
With the Write Skew Anomaly (WSA) correctly eliminated,
SI can reduce the occurrence of aborts, save the work done
by transactions, and greatly benefit long transactions involv-
ing complex data structures. Embodiments include a multi-
versioned memory subsystem for hardware-based transac-
tional memory (HTM) on the GPU, with a method for
eliminating the WSA on the fly, and incorporates SI. The
GPU HTM can provide reduced compute time for some
compute tasks.
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SNAPSHOT ISOLATION IN GRAPHICAL
PROCESSING UNIT HARDWARE
TRANSACTIONAL MEMORY

PRIORITY

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/523,459, filed Jun. 22, 2017, the
contents of which are incorporated herein in their entirety.

STATEMENT OF GOVERNMENTAL INTEREST

[0002] This invention was made with government support
under Grant Numbers CCF-1422408 and CNS-1527318
awarded by National Science Foundation. The government
has certain rights in the invention.

BACKGROUND

[0003] Transactional Memory (TM) is a programming
model used with the intention of making programming with
threads simpler, with the goal of synchronizing access to
data shared between several threads into transactions. Each
transaction is executed atomically, meaning that they will
either succeed and commit to the data store, or abort and
restart. In addition, transactions are isolated from one
another such that each transaction sees a consistent view of
the memory. In other words, TM is a programming model
that enables a series of read and write operations to complete
atomically, similar to an atomic compare-and-swap com-
mand A transaction should be aborted if it can result in
inconsistent state resulting from concurrent reads/writes by
other transactions into the system.

[0004] Many TM system proposals range from hardware
to software and hardware-software co-designs. When multi-
core and many-core processors emerged, TM innovation
began to focus on scalability of TM systems and interop-
eration of different TM systems. TM has been implemented
in consumer products such as the Haswell and its successors,
from Intel Corporation of Mountain View, Calif., United
States. A Graphics Processing Unit (GPU) is a throughput-
oriented computing device characterized by large arithmetic
density, high memory bandwidth and a high degree of
parallelism. GPU design is evolving towards a general-
purpose computing device, with growing support for irregu-
lar workloads and data structures that are traditionally
non-GPU oriented.

[0005] Recently, hardware based TM systems for GPUs
have been proposed, offering performance comparable to
fine-grained locking (synchronizations between threads in
thread blocks) that are as easy to use as coarse-grained
locking (synchronizations between threads), making it a
competitive tool for exploiting a full potential of GPUs.
Most existing TM systems implement a 2-Phasel.ocking
(2PL) concurrency control mechanism, which aborts trans-
actions on both write-read conflicts and write-write con-
flicts.

SUMMARY

[0006] An exemplary method performed according to the
concepts disclosed herein can include: receiving, at a cache
associated with a processor, a request from a single-input,
multiple-transaction (SIMT) core of the processor; generat-
ing, in response to the request, at least one copy of a row of
a memory associated with the processor, the at least one
copy stored in the cache; recording, during transactions
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executed by the processor, multiple versions of the row of
the memory, each version in the multiple versions associated
with a respective copy in the at least one copy of the row of
the memory; performing, at the cache, dependent loop
detection on the multiple versions; and aborting write-write
transactions based on the dependent loop detection.

[0007] An exemplary graphical processing unit configured
according to the concepts disclosed herein can include: at
least one processor; and at least one non-transitory memory
device having a cache, wherein the at least one non-transi-
tory memory device is configured to perform operations in
association with the at least one processor, the operations
comprising: receiving, at the cache, a request from a single-
input, multiple-transaction (SIMT) core of the at least one
processor; generating, in response to the request, at least one
copy of a row of memory within the at least one non-
transitory memory device, the at least one copy stored in the
cache; recording, during transactions executed by the at least
one processor, multiple versions of the row of memory
within the at least one non-transitory memory device, each
version in the multiple versions associated with a respective
copy in the at least one copy of the row of memory within
the at least one non-transitory memory device; performing,
at the cache, dependent loop detection on the multiple
versions; and aborting write-write transactions based on the
dependent loop detection.

[0008] An exemplary non-transitory computer-readable
storage device configured as disclosed herein can have
instructions which, when executed by a computing device,
cause the computing device to perform operations including:
receiving, at a cache, a request from a single-input, multiple-
transaction (SIMT) core of the computing device; generat-
ing, in response to the request, at least one copy of a row of
memory associated with the computing device, the at least
one copy stored in the cache; recording, during transactions
executed by the computing device, multiple versions of the
row of the memory, each version in the multiple versions
associated with a respective copy; performing, at the cache,
dependent loop detection on the multiple versions; and
aborting write-write transactions based on the dependent
loop detection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 illustrates, by way of example, a diagram of
an embodiment of an unnecessary abort.

[0010] FIG. 2 illustrates, by way of example, a graph of
types of conflicts between transaction pairs in some GPU
TM workloads.

[0011] FIG. 3 illustrates, by way of example, a block
diagram of an embodiment of versions and rows in a
subarray of a bank of DRAM.

[0012] FIG. 4 illustrates, by way of example, a diagram of
an embodiment of life cycles of versions and the changes in
the states (S1-S4).

[0013] FIG. 5 illustrates, by way of example, a diagram of
an embodiment of a memory mapping and reallocating
scheme.

[0014] FIG. 6 illustrates, by way of example, a diagram of
an embodiment detecting dependency loops using post-
dated logical timestamps and an increment of ten.

[0015] FIG. 7 illustrates, by way of example, a diagram of
an embodiment of post-dating loops involving more than
three transactions.
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[0016] FIG. 8 illustrates, by way of example, a diagram of
an embodiment of a structure of an SRL.

[0017] FIG. 9 illustrates, by way of example, a diagram of
an embodiment of an SI-enabled GPU HTM architecture
with GPU-specific components.

[0018] FIG. 10 illustrates, by way of example, a diagram
of an embodiment of a transaction execution flow in an
SI-enabled GPU HTM.

[0019] FIG. 11 illustrates, by way of example, overall
speedup for benchmarks of a system configured according to
embodiment of the present invention.

[0020] FIG. 12 illustrates, by way of example, energy
consumption for benchmarks of a system configured accord-
ing to an embodiment of the present invention.

[0021] FIG. 13 illustrates, by way of example, normalized
wasted cycles due to an abort of a system configured
according to an embodiment of the present invention.
[0022] FIG. 14 illustrates, by way of example, the number
of aborts caused in each of the benchmarks, normalized to
the number of aborts in WarpTM.

[0023] FIG. 15 illustrates, by way of example, the amount
of time transactions spend in the CU and the SIMT cores;
[0024] FIG. 16 illustrates, by way of example, the number
of loop-breaking aborts received per dependency loop.
[0025] FIG. 17 illustrates, by way of example, the total
number of possible dependency loops that can ever be
formed by all transactions throughout the benchmark life-
time.

[0026] FIG. 18 illustrates, by way of example, a study
performed on how the number of concurrently available
versions affects overall performance.

[0027] FIG. 19 illustrates, by way of example, there are
many transactions that read from the same snapshot.

[0028] FIG. 20 illustrates an example computer system.
DETAILED DESCRIPTION
[0029] One or more embodiments of the disclosure regard

one or more hardware, software, firmware, and/or logical
modifications to a GPU TM. The modification(s) may pro-
vide reduced compute time as compared to prior GPU TM.
[0030] Snapshot Isolation (SI) is an established model in
the database community, which permits write-read conflicts
to pass and aborts transactions only on write-write conflicts.
In comparison to 2PL, Snapshot Isolation (SI) is another
mechanism that only aborts on write-write conflicts, and not
on read-write conflicts, and can greatly improve perfor-
mance. However, at the same time, SI can permit a Write
Skew Anomaly (WSA) to obtain incorrect outputs. With the
WSA eliminated, SI can reduce the occurrence of aborts,
save work done by transactions, and greatly benefit long
transactions involving complex data structures.

[0031] GPUs are evolving towards a general-purpose
computing device with growing support for irregular work-
loads, including TM. As disclosed herein, the usage of SI
TM, with the WSA accounted for, results in improved GPU
performance Embodiments herein can may include a multi-
versioned memory subsystem for hardware-based TM on the
GPU. One or more embodiments can include a method for
eliminating a WSA on the fly. One or more embodiments can
incorporate SI therein.

[0032] Experimental results (accompanying FIGS. 11-19)
support that SI can effectively boost the performance of
dynamically sized data structures such as linked lists, binary
trees and red-black trees, sometimes by as much as 4.5
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times, which results in improved overall performance of
benchmarks using these data structures.

[0033] As previously discussed, embodiments herein can
include using SI in a GPU-based hardware TM system. One
or more embodiments can provide improved performance
for complex transactions involving dynamically sized data
structures, such as the linked list and search trees, and a
solution for eliminating the WSA on the fly. One or more
embodiments, can include one or more of the following: a
versioned memory system, such as for quickly creating
versions and enabling SI on the GPU; a method for detecting
dependency loops on the fly and eliminating the WSA that
can scale to hundreds of concurrent transactions on the
GPU; and an Sl-based hardware TM on the GPU brings
speed up over the baseline system that aborts on all read-
write conflicts in applications that use dynamically sized
data structures.

[0034] A TM system usually provides a certain isolation
level by implementing one concurrency control mechanism.
A purpose can include making sure concurrent read-writes
always result in valid system states. This can be accom-
plished by detecting and resolving conflicts. A conflict is a
condition when two or more transactions access one data
item in memory simultaneously, and at least one of the
transactions is a write. A frequently used conflict resolution
method is to abort-all-but-one transaction in a read-write or
write-write conflict. With this abort-all-but-one mechanism,
concurrent accesses will be split into disjoint sets with no
intersections in between. This abort-all-but-one mechanism
can also be used with the 2PL, concurrency mechanism,
with the first phase called the “expanding phase,” when
transactions compete for and acquire locks, and the second
phase called the “shrinking phase,” when locks are released.
[0035] This conflict resolution mechanism is pessimistic
in that it may abort more transactions than what is necessary,
such as to maintain a consistent program state. An example
of' why it can result in unnecessary aborts can be seen in FIG.
1. In FIG. 1, transactions T1 and T2 attempt to remove nodes
C and F from a linked list. Both transactions first iterate
through the list to find the element to be removed and its
neighbors and then change the list. In the example of FIG.
1, T1 modifies B to remove C from the list, but T2 reads
node B when it is looking for node F, so this pair is
considered in conflict, and one of them will be aborted, per
the abort all but one mechanism. But this abort is not
necessary since the outcome of T1 and T2 both committing
is still a valid linked list with nodes C and F removed. The
pessimistic approach is one reason why TM systems some-
times run slower than fine-grained locking. In fine-grained
locking (synchronizing threads in thread blocks), a section
can be made small enough to lock only the most relevant
data and block the smallest set of conflicting transactions.
The lock can also be acquired using the best strategy. Using
the same example illustrated in FIG. 1, when T1 locks nodes
B, C and D and T2 locks E, F, and G using fine-grained
locking, the abort can be avoided. However, fine-grained
locking requires extra efforts. For example, a lock-sorting
algorithm can be used with fine-grained locking to avoid
live-locks and dead-locks, so fine-grained locking can be a
more difficult task than using TM.

[0036] In contrast, SI is different from 2PL, as SI allows
write-read conflicts to pass. SI makes a guarantee that every
transaction will see a consistent snapshot of the entire
system and it will successfully commit only if it doesn’t
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conflict with any concurrent updates made during its life-
time. This allows a transaction to commit its tentative
changes in isolation, without being affected by other trans-
actions. In one SI protocol, read operations will always
complete and only write-write conflicts will be aborted. FIG.
2 illustrates, by way example, a diagram of an embodiment
of conflicts between transaction pairs in some GPU TM
workloads. Note that in many conflict pairs, only read-write
conflicts are involved. The rest may include both read-write
and write-write conflicts.

[0037] SI can accelerate applications that include transac-
tions aborted by read-write conflicts. For example, a break-
down of conflict types between temporally-overlapping
transaction pairs in some GPU programs is shown in in FIG.
2. FIG. 2 illustrates that transactional applications utilizing
data structures such as binary search trees, linked lists and
red-black trees contain more read-write only conflicts than
other applications. These data structures are dynamically
sized and are much easier to implement using TM than
fine-grained locks.

[0038] However, SI suffers from a well-known problem
called the WSA. The problem is that transactions executed
using SI produce correct results when running alone from
their own snapshots, but often produce incorrect results
when running together. This is a result of SI not providing
full serializability, and must be addressed for an SI-based
system to execute correctly and be useful. One method to
ensure correctness is to identify the cause of the anomalies,
either manually or by static/dynamic analysis and modify
the application accordingly by introducing artificial locking
or introducing write-write conflicts. There exist educational
campaigns for database users that attempt to make the users
aware of, and to prevent, the WSA. One notable theoretical
foundation to these methods includes types of dependency
graphs, such as the Read Dependency Graph (RDG), which
represents the relative serialization order of transactions that
can create a system state equivalent to when transactions are
concurrently executed.

[0039] Consider the example of SI to TM in an SI-TM
system running on a CPU. The system resolves the WSA
through a trace driven approach in which transaction execu-
tion traces are generated during runtime to form a dynamic
dependency graph (DDG). The DDG is collapsed into an
RDG, with edges in the RDG representing the dependency
loops in DDG, and vertices in the RDG representing the
source code locations that generate the dependency loops.
The problem of eliminating dependency loops is solved in
the trace-driven approach by choosing a set of the read
operations (“dangerous reads”), and converting the selected
read operations set into write operations, thereby introduc-
ing runtime write-write conflicts (instead of read-write con-
flicts), and eliminating the WSA. As with many test-driven
approaches, the coverage of skew detection depends on the
size of the sampled runs. To catch all possible “dangerous
reads”, many experiments/executions may be required.

[0040] Recent developments in database and coherence
have demonstrated ways to ecliminate cyclic read-write
dependencies in database systems and in memory depen-
dency analysis. The work in this area has outlined the
building block for preventing the WSA on-the-fly in a TM
system, thus saving the user from having to obtain execution
traces and manually fix application source code.
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[0041] Versioned Memory System

[0042] To meet a guarantee that transactions to see their
own snapshots in isolation, an address should be allowed to
map to multiple machine words, each of which can be a
version (the terms “version” and “snapshot™ are used inter-
changeably herein). This can be similar to a version control
system or a checkpointing infrastructure, where new ver-
sions may be appended to reflect the changes of the tracked
word, and old versions are kept for access to the word’s
history. In terms of its semantics, a version is the previous
version combined with the changes between the two ver-
sions. In the example shown in FIG. 3, a linked list initially
containing seven nodes has two nodes removed, then one
more node removed, to leave four nodes. After each batch of
removals, the linked list becomes a new version of itself, and
any version itself is a valid linked list. Versions are also
commutative, in the example of FIG. 3, Node D is removed
from Version 1, but may alternatively be removed from
Version 0. In either case, when all three nodes (B, F, and D
as in FIG. 3) are removed, the result is Version 2. In this
sense, a versioned memory system may be implemented as
a collection of full snapshots, or the combination of snap-
shots and change sets.

[0043] Discussed herein are embodiments that include the
collection of full snapshots, as a quick row copy primitive
makes it easier to create full snapshots than to keep track of
change sets. One or more embodiments, may alternatively
include snapshots and change sets. TM systems as disclosed
herein can serve as a mechanism to handle conflicts, a result
of accesses from different threads that overlap both in space
and time. This means that spatial and temporal locality can
exist in such access patterns. The locality is more noticeable
in GPUs (compared to other processors), because of the
large number of concurrent threads, as well as the lock-step
execution pattern of threads in a warp. The high degree of
parallelism can require a high-speed version creation, such
as to not affect execution time. As shown in FIG. 3, a version
may span (a) multiple subarrays and (b) multiple rows.
Versions can track the evolution of data structures (shown in
(b))

[0044] Because of this access pattern and high speed
version creation, embodiments configured as described
herein can exploit the internal organization of DRAMs
(Dynamic Random-Access Memory) to copy multiple kilo-
bytes of data referred to as “rows” completely within
memory, enabling fast creation of snapshots. A DRAM can
be thought of as a collection of rows, each of which may be
many kilobytes in size. The entire memory may be divided
into multiple banks that can operate independently and each
bank can be made up of multiple subarrays that have limited
physical size, such as to help keep signal transmission time
short. A number of DRAM rows that belong to the same
subarray can be connected to a shared sense amplifier which
can read and write the rows. By connecting multiple rows to
the amplifier, data can be copied from one row to another,
eliminating the need to copy data through the processor, all
at the granularity of a row buffer, which is generally larger
than cache lines. As such, the row copy operation can reach
large bandwidth with very small energy consumption.
[0045] Although a “DRAM row” shares the same name as
a “database row”, a “DRAM row” is not a smallest atomic
unit as a “database row”; the atomic unit in a transactional
memory is usually a machine word, and a DRAM row is
treated as and managed as a collection of many machine
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words. Thus, a granularity of a RowClone operation (mul-
tiples of DRAM rows) can be a bulk operation rather than a
fine-grained operation, and is more suitable for copying
whole snapshots than keeping fine-grained track of change
sets. Given the RowClone mechanism, the versioned
memory subsystem can do the following: 1) Layout the
versions in a subarray-aware fashion such that the versions
may be created using row copy, 2) Fetch a specific version
to service accesses quickly, 3) Manage the lifetime of
versions by creating and recycling versions, and 4) Remap
the memory such that accesses to versioned/non-versioned
regions works as expected.

[0046]

[0047] RowClone operates by copying between rows
belonging to a same subarray and version management can
require multiple copy operations. Rows that belong to the
same subarray can be allocated to the storage of versions, so
that the copy operations can be made faster. A version may
be larger than the row buffer size. In such a case, multiple
rows may be allocated for a single version, as indicated in
case (b) of FIG. 3.

[0048]

[0049] The lifetime of a version can include four states
(except Version 0, the initial version created at program start
will enter state S3 by definition), some of which allow
reads/writes as detailed in TABLE 1:

Layout of Versions

Version Lifetime Management

TABLE 1

STATE READ WRITE

S1. SPACE OF THE VERSION IS ALLOCATED NO NO
AND CONTENTS OF THE PREVIOUS VERSION

ARE COPIED TO IT

S2. THE CHANGES MADE BY THE NO YES
COMMITTING TRANSACTIONS FROM A GPU

THREAD WARP (EXECUTED IN LOCK STEP)

ARE BEING WRITTEN TO THIS VERSION.

MULTIPLE NON-CONFLICT CHANGES CAN BE

WRITTEN TO IT; CONFLICTS ARE RESOLVED

BY ABORTING SOME TRANSACTIONS

S3. WHEN WARP COMMIT IS FINISHED, THE YES NO
VERSION WILL BE ASSIGNED A CREATION

TIME AND WILL NOT BE WRITTEN TO;

FUTURE TRANSACTIONS MAY START

READING FROM IT

S4. THE VERSION IS RECYCLED, MARKED AS  NO NO
UNREADABLE WHEN NO TRANSACTIONS ARE

READING FROM IT ANYMORE, AND IT SPACE

IS RECYCLED

[0050] In addition to copying and recycling, transactional
reads and writes interact with the versions as well. An
example of how copying and recycling are involved in the
different states is shown in FIG. 4. FIG. 4 illustrates, by way
of example, life cycles of versions and corresponding
changes in the states (S1-S4). Arrows in FIG. 4 denote copy
operations. In the example of FIG. 4, four versions are
shown. When there exists a version at state S3, its next
version will enter state S1 and start copying. When a next
version enters state S2, it may be used as a write target. At
any given time, there exists at least one version that can be
read from, and when there is not an ongoing copy, there
exists one version to be written to. During the copying,
transactions that are executing CAN read from previous
versions which are in state S3. Therefore, the copy opera-
tions are overlapped with the transaction execution.
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[0051] The total number of versions allocated can be a
parameter determined at kernel launch. Due to the limit on
the number of versions, versions can be recycled and enter
state S4 when there are no references to them.

[0052] Accessing a Version

[0053] A version can be accessed with an address and a
timestamp. The timestamp is compared with the timestamps
of the existing versions that are in lifetime state S3, and the
latest version that is created before the given timestamp can
be the version that is accessed.

[0054] Memory Mapping

[0055] In a multi-version memory scheme, a version may
cause multiple regions in the device memory space to
become unavailable, similar to the way in which system
memory is shared between the CPU and the GPU in certain
heterogeneous architectures. Depending on the memory
mapping scheme, versions can take up multiple disjoint
regions in the memory space. For example, consider the
following address mapping scheme:

BitID 31 27 16 7 0

Bit Usage 0000RRRR RRRRRRRR BBBBCCCC CCCCCCCC

[0056] In this mapping scheme, R, B and C denote row,
burst, and column addresses, respectively. Suppose
addresses 0x800000-0x8003FF are allocated 8 versions,
each with a size of 0x400 bytes, then addresses 0x801000-
0x8013FF, 0x802000-0x8023FF, . . . 0x807000-0x807FFF
will be occupied. In this example, accesses to those
addresses can be redirected to a reserved space, starting from
0xA00000, as illustrated in FIG. 5. FIG. 5 illustrates, by way
of example, a diagram of an embodiment of a memory
mapping and reallocating scheme. The purpose of reallocat-
ing the space occupied by versioned regions can be to
recover a continuous memory space.

[0057] Accessing Versions through the Version Index
Table
[0058] To put the proposed multi-versioned memory in

action, the list of versioned memory regions and their details
can be stored in a Version Index Table (VIT). The details in
the VIT can include the length of the regions, the reallocated
location for the space occupied by the version(s), the cre-
ation times of the respective versions, and the reference
counts to the versions. The table can be located on the same
level as the L2 cache, through which all DRAM requests
pass. A program may be allowed to allocate multiple ver-
sioned memory regions. In such embodiments, there can be
multiple entries in the VIT. TABLE 2 is an example of a VIT:

TABLE 2
VIT
START RELO- CREATION
ADDR LENGTH CATED TIME REFCOUNT
0x800000  0x400 0xA00000 {17, 123,193,255} {1, 23, 50, 5}
0x880000 0x10000 0xA10000 {12, 144, 156,300} {0, 9, 35, 47}
[0059] An access can be handled based on whether it is

versioned or not. In the case of a versioned access, the
version can be retrieved by the accompanying timestamp.
For the example in TABLE 2, there exists two versioned
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memory regions, each having four versions. Access to
0x800000 in the first versioned region, when given time-
stamp between 123 and 192 inclusive, can be directed to
0x810000. A non-versioned access to 0x810000 cam be
reallocated and be reading from OxA00000. Other non-
relocated accesses will proceed as normal. Reference Counts
(REFCOUNT) can be incremented by transactions that read
from the region for the first time and decremented by the
aborting/committing transactions that have read from the
region.
[0060]

[0061] According to prior work, a necessary condition for
the WSA to occur is the presence of inter-transaction write-
read dependency loops in the DDG. Thus, eliminating
dependency loops prevents the WSA from happening. A
mechanism for removing WSAs by detecting and breaking
write-dependency loops that arise during SI is now
described.

[0062] Detecting Dependency Loops Using Post-Dating

[0063] One issue inherent to GPU is scalability, which is
at least a partial result of its concurrency. Because of the
presence of up to thousands of concurrent threads, such as
can be scattered throughout the system, the cost of commu-
nication can be high and the designer of a system can weigh
multiple factors when deciding where to use broadcasts.
This also makes a precise graph tracking mechanism
impractical on the GPU, because the size of the graph grows
as the program runs. To avoid building graphs with
unbounded size, detecting dependency loops (note the term
dependency loop to denote cyclic dependencies, to avoid
confusion with clock cycles) on the fly can be accomplished
using a post-dating mechanism. A dependency loop detec-
tion scheme is illustrated in FIG. 6.

[0064] With a little modification, the scheme in FIG. 6 can
be used to detect a dependency loop allowing tracking of
dependency loops between transaction pairs, when both
transactions are executing, as well as between executing and
committed transactions.

[0065] In the post-dating method, each transaction can be
assigned three numbers (e.g., integer, real, or other number)
that are updated throughout the post-dating process, which
are called the current logical timestamp (CTS), the post-
dated logical timestamp (PDTS), and the previous logical
timestamp (PrevTS), as shown in the Pseudocode below.
Note that the timestamps reflect the ordering between the
transactions, not the time at which the transactions start, or
when transactional accesses take place, thus they are called
logical timestamps, to avoid confusion with the time-based
timestamps associated with the snapshots. When two trans-
actions write and read the same address, a dependency edge
between these two transactions is formed, pointing from the
writer entity to the successor. The purpose of post-dating is
to detect loops by updating the logical timestamps of pre-
decessors and successors using a simple rule and checking
the invariant that a transaction’s CTS must be smaller than
its PDTS, when the invariant is violated, a dependency loop
is declared.

[0066] An example of the operation of the post-dating
mechanism involving 3 transactions and 3 dependency
edges is illustrated in FIG. 6. FIG. 6 illustrates, by way of
example, a diagram of a post-dating mechanism that
includes three dependency edges used to detect dependency
loops using post-dated logical timestamps and an increment
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of ten. Note that discovery starting from B and C can be
made equivalent to the illustrated example through rotating
the edge numbers.

[0067] In the beginning, all transactions can be initialized
with (CTS=1, PDTS=-1). Between transaction begin and
commit, all the write and read operations (Transaction
Operations) go through the post-dating process. When a pair
of read and write operations on the same data is seen by the
postdating mechanism, a dependency edge is discovered,
which is denoted as edges A, B and C (Actual Dependency
Cycle). Depending on the order in which the three edges are
discovered by post-dating, the three transactions may obtain
different CTS and PTDS logical timestamps (Possibilities of
Discovery Order). When only two out of the three edges are
discovered, the invariant is still maintained, but when the
third edge is constructed, one of the transactions will dis-
cover a violation of the invariant.

[0068] In the first case in the Possibility of Discovery
Order section, the three edges are discovered in the order of
A, B, C. When C is being discovered, T1 sets its CTS to 34
since it’s a successor to T3 in write-read dependency edge
C, and T3 has a PTDS of 33, but 34 is greater than T1’s
PTDS of 11, thus violating the invariant. In the second case
where the order is A, C then B, and when B is being
discovered, T3 sets its CTS to 23, because it’s the successor
to T2 in edge B, but 23 is greater than T3’s PDTS of 5, thus
violating the invariant.

[0069] For the other cases, B, C, then A and C, A, then B
are equivalent to A, B, then C; and B, A, then C and C, B,
then A are equivalent to A, C, then B. This can be proven by
rotating the edge names. In all the cases, the loop will be
discovered. When the edges involve committed transactions,
the committed transactions’ CTS and PDTS will be set as
usual; the only difference is when the committed transaction
serves as the predecessor, Line 2 in the following pseudo-
code will be executed and the PrevTS will be returned.

[0070] Pseudocode of post-dating loop detection:

(Predecessor receives successor’s PDTS and computes the logical
timestamp to be sent to the successor)

1 OnPredecessorReceivesTS(pred, succ->PDTS) {

2 if (pred is committed) return PrevTS

3 if (suce->PDTS == -1) {

4 if (pred->PDTS == -1)

5 pred->PDTS = pred->CTS + 10

6 } else if (pred->CTS >= succ->PDTS) {

7 if (pred->PDTS == -1)

8 pred->PDTS = pred->CTS + 10

9 } else {

10 midpoint = (pred->CTS + succ->PDTS) / 2

11 if (pred->PDTS > midpoint)

12 pred->PDTS = midpoint

13}

14 return pred->PDTS

15}

(Successor receives the updated logical timestamp from the predecessor)
16 OnSuccessorReceivesTS(pred, succ, timestamp) {

17 if (succ->PDTS != -1 && timestamp >= succ->PDTS) {
18 // Declare a dependency loop

19 } else {

20 suce->CTS =ts + 1

21}

22}

(At commit or abort)

23 AtCommitOrAbort(txn, ts) {

24 txn->PrevTS = txn->CTS



US 2018/0373560 Al

-continued

25txn->CTS =ts + 1
26 xn->PDTS = -1
27

[0071] A dependency loop involving more than 3 trans-
actions, such as the one in FIG. 7 can be discovered by the
post-dating algorithm because: (a) Due to transitivity, given
dependency Ti->Tj in a chain of dependency edges, the
invariants will always hold before a dependency loop is
discovered, regardless of the order in which the dependency
edges are post-dated: 1) PDTS of Ti must be greater than
CTS of Ti; (b) PDTS of Tj must be greater than PDTS of Tj
and 3) CTS of Tj must be greater than PDTS of Ti; and When
the closing edge of a dependency of a loop is discovered, it
will cause the aforementioned invariant to be violated, thus
declaring a dependency loop.

[0072] The violation may also be caused by the logical
timestamps running out of precision, resulting in false
positives. Because false positives can only lead to aborts, it
does not affect the correctness of the TM system.

[0073] Making Post-Dating Scalable

[0074] To make run-time costs manageable, a Single-
writer paradigm can be used, allowing only one writer to
own one machine word during the transaction execution
stage. The choice of single-writer paradigm is reasonable in
that the baseline SI aborts on write-write conflicts, so the
additional writers are likely to get aborted. With the single-
writer constraint, the difficulty of tracking dependency can
be reduced, because it now becomes feasible to track the
sole writers of the currently active words in this system. The
Writer Table that stores the writer of words can be located
on the same level as the L2 cache, so it is accessible to
single-instruction, multiple-thread (SIMT) cores, and is on
the path of transactional reads and writes. Transactions can
consult this table to perform post-dating. To enable the
writers to acknowledge readers of the request to update
logical timestamps, a Scalable Reader List (SRL) can be
implemented. Advantages of the SRL can include an effi-
cient, scalable and exact scheme for representing readers,
such as can be similar to an SCD directory. This scheme
relies on efficient highly-associative caches proposed in the
ZCache and the Cuckoo Directory.

[0075] The SRL is a directory with three types of entries
illustrated in FIG. 8. The SRL can be indexed by an address
(e.g., a 30-bit block address). Given an address, the relevant
table entries can be fetched. The entries can be one of the
four following types: (a) Type 0, Unused: the entry does not
contain any useful information and can be deallocated; (b)
Type 1, Plain Sharer ID: The entry contains 1 to 3 10-bit
Transaction IDs. The number of entries is stored in the 2-bit
field. (c¢) Type 2, Root-Level Bit Vector: Each bit in the
32-bit vector indicates whether one of the 32 leaf-level bit
vectors are present; and (d) Type 3, Leaf-Level Bit Vector:
Each bit in the 32-bit vector indicates whether each trans-
action in the group of 32 transactions is in the reader’s list.
The 5-bit field indicates the position of the Leaf in the Root
and is used as an offset in the 1024-bit space. For example:
the 11-th bit in the 21-th Leaf means the transaction with an
ID of 32_21+11=683.
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[0076] When a transaction reads an address, the read
address and the reader can be appended to the SRL. A writer
can use the SRL to find the writers and update the logical
timestamps.

[0077] The organization of two-level 32-bit vectors allows
at most 1024 concurrent transactions, which is greater than
the number of concurrent transactions used in generating the
Test Results shown below. More concurrent transactions can
be achieved by increasing the number of bit vector layers.
[0078] Overhead

[0079] The overhead of the components required for
detecting dependency loops is listed in TABLE 3, which is
estimated based on CACTI using a 40 nanometer (nm)
technology node. The total size of the four tables is designed
to be 768 kB, which may be increased when necessary. The
storage can be split into the following parts: (a) The Writer
Table contains 3000 entries. The number is chosen to match
the capacity of the SRL. Each entry in this table takes 40 bits
(30 bits block address plus 10 bits writer ID), with a total
size of 3000_40/8=15 kB; (b) The Logical Timestamp Table
contains 1024 entries in total to accommodate 1024 concur-
rent transactions. (In the experiments described in the Test
Results, the number is limited to 960 to match the baseline
system). The entries may be directly mapped to each trans-
action, each containing three 24-bit logical timestamps, with
a total size of 1024_24_3/8=12 kB; (c¢) The VIT takes 11(B.
Each entry in this table takes 193 bits (2x30-bit original and
reallocated block addresses, 5 bits versioned area size and
8x32-bit creation times such that 60+8x32+5=193 bits). The
space can accommodate 1024/(193/8)=42 versioned
regions; and (d) The SRL takes the rest of the space, which
is 768-15-12-1=740 kB. With each entry taking 69 bits (30
bits block address, 2 type bits, 37 bits of content), the space
accommodates 740x1024/(69/8)~87856 entries. This trans-
lates to 87856/33=2662 addresses in the worst-case sharer
scenario (each address taking 33 entries). Since worst-case
does not always happen, the space is large enough to cover
the same number of unique addresses as the Writer Table
(3000). TABLE 3 summarizes the sizes of various tables and
the SRL:

TABLE 3

parameters of tables and the SRL

SIZE  AREA (mm?) POWER (mW)

WRITER TABLE 15 kB 0.12 315
LOGICAL TIMESTAMP 12 kB 0.01 37.8
TABLE

VERSION INDEX TABLE 1kB 0.005 3.2
SCALABLE READER 740 kB 5.0 2330

LIST

[0080] Post-dating based loop detection can be overlapped

with loads and writes and therefore do not block. Logical
timestamp updates originating from a transaction can be
completed before the transaction starts committing. When
any loop-detection tables (Writer Table or SRL) overflow, all
future transactions, as well as transactions trying to obtain
entry in any of those tables, can abort and wait for current
transactions to either commit or abort and free up space in
the tables. In the case that a timestamp in the VIT overflows,
all current versions will be invalidated, all concurrent trans-
actions will abort, and the timestamps can be reset to zero.
In the case the post-dating timestamps (CTS and PDTS)
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overflow, all currently executing transactions can abort and
restart the CTS and PDTS to zero.

[0081] Interaction with Existing GPU Hardware TM
(HTM)
[0082] FIG. 9 illustrates exemplary hardware components

added to the baseline GPU HTM hardware, WarpTM. These
components enable SI and address the GPU-specific chal-
lenges for WSA elimination. First, GPUs usually lack the
ability to broadcast cache line invalidation messages across
cores as on the CPU. Second, the single-writer paradigm and
the corresponding components help keep dependency track-
ing cost low.

[0083] FIG. 10 shows how the hardware components are
involved in the execution of transactions. The communica-
tions before the log transfer are part of a transmit execution
procedure and the communication after the transmit execu-
tion procedure are part of a transmit commit procedure. At
the start, transactions perform access to snapshots in the
versioned memory by providing an address and its begin-
ning timestamp. The corresponding version is accessed
through the VIT (part of the L2 cache and commit unit
(CU)), such as by using a process described previously.
Transactional logging may be performed in the meantime.
Dependency loop detection may be performed while trans-
actional logging is being performed. For a write request, the
writer’s ID can be inserted into the Writer Table (part of the
L2 cache and CU) if no other writers to the address currently
exist, and all the readers of the same address are extracted
from the SRL (part of the L2 cache and CU) and their
timestamps are updated using the post-dating mechanism
previously discussed. If there already exists a writer, the new
writer is aborted, otherwise, the writer with a larger ID (or
other heuristic) can abort. For read requests, the reader’s ID
can be inserted into the SRL (part of the 1.2 cache and CU),
the writer of the read address can be found in the Writer
Table, and the post-dating process as previously discussed
can be run. The operations can overlap with the memory
accesses and transactional logging, which involve global
memory writes. These processes are usually long enough to
hide the post-dating latency. The loop detection results can
be sent back to the transaction that made the access, such as
to abort transactions that may form dependency loops.
Intra-warp conflict detection may not be needed as Warp TM
performs this before a warp commits The reason is intra-
warp conflict detection aborts on all intra-warp read-write
conflicts, which is not desirable in SI. The write sets of
transactions are sent to the multiple CUs based on the
memory partition the write destinations are in.

[0084] The function of the CUs in this system is simpler
than that in WarpTM and KiloTM. With SI, the CU can only
check transactional writes (the single writer limit apples to
running transactions only, so it is still possible for multiple
writes to the same address to exist in the commit stage) and
aborts transactions when the writes conflict with other
committing transactions. For at least this reason, the CU
does not need to validate read requests and the read log is not
transferred to the CU as it is in WarpTM. The commit
procedure starts in each of the CUs at, after, or around the
time the logs have been transferred to it. The transaction IDs
can be removed from the Writer Table or SRL after a
transaction passes the commit procedure.

[0085] During transaction execution and commit stages,
the Bulk (In-Memory) Copy Unit (BCU) can copy the
content of the current snapshot, currently in state S3 to the
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next snapshot, currently in state S1 (described about FIG. 4),
in an asynchronous fashion. The BCU scans the addresses in
the regions indicated in the VIT and issues copy commands
to the corresponding rows, which will then copy the rows in
parallel in the respective subarrays.

[0086] When the commit procedure is completed, the
SIMT core can collect the results from the related CUs.
When there is no write-write conflict in all its related CUs,
the transaction is considered to have passed validation, and
instructs the related CUs to write its changes to the new
snapshot in state S2. Because GPU warps execute in lock
step, a warp of transactions will be committing and writing
back simultaneously, which allows the changes to be
merged, reducing the number of versions that need to be
created. When transactions from this warp finish writeback,
the state of the snapshot can be changed from S2 to S3,
becoming the “current transaction” from the future transac-
tions’ perspective, and will be given a stamp and be read
from, as previously discussed. The execution flow repeat for
the next transaction.

[0087] Number of Concurrent Snapshots

[0088] A finite number of concurrent snapshots can be set,
such as to account for capacity constraints and/or other
practical considerations. As described previously, there may
exist multiple snapshots in state S3 which are available for
read. The more concurrent snapshots, the more recent the
versions read from by transactions will be.

[0089] A transaction can choose the snapshot to read om
by its transaction start time and/or the timestamp of the
snapshots, namely the latest version available at its start
time. With a limited number of concurrent transactions, a
transaction can be forced to read an older snapshot. This still
results in correct execution; however, it is similar to having
the transaction start much earlier but get stalled until its
actual start time, which may increase the chance of an abort.
[0090] When a transaction starts, the reference count of
the snapshot it is using can be incremented by 1. When it
commits or aborts, the count is decremented by 1. When it
restarts from an abort, it can choose a latest version in the
pool of available snapshots, so older snapshots can eventu-
ally be referenced by no transactions. Then, it will be
garbage-collected to make room for new versions.

[0091] Note that some applications may not have dynamic
data structures as those shown in FIG. 2, and SI may not
have performance benefits for those applications. The SI
mechanism can be turned off and a normal baseline con-
figuration may be used to avoid runtime overhead in this
case.

[0092] Test Results

[0093] The disclosure now turns to experimental data
regarding the concepts disclosed herein, and specifically
implementation of those concepts in an exemplary embodi-
ment. This experimental data is illustrated, at least in part, in
FIGS. 11-19.

[0094] Parameters of an experiment for SI are provided in
TABLE 4.

TABLE 4

GPU

SIMT Cores 15
SIMD Width 16 x 2
Warps/Threads per Core 48 warps x 32 = 1536 threads
Memory Partitions 6
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TABLE 4-continued

1400/1400/924 MHz
2 per Core
Greedy-then-oldest
60 KB/48 KB, 128 line, 6-way
(not caching global accesses)
16 KB
1 Crossbar per Direction
32 Bleycle = 288 GB/s per direction
5 Cycles to Traverse
Out-of-Order, FR-FCFS

Core/Interconnect/Memory Clock
Warp Scheduler Count

Warp Scheduler Policy

L1 Data Cache per Core

Shard Memory per Core
Interconnect Topology
Interconnect Bandwidth
Interconnect Latency
DRAM Scheduler

DRAM Scheduler Queue Size 16
DRAM Return Queue Size 116
DRAM Timing Hynix H5GQ1H24AFR

Min. DRAM Request Latency 330 Compute Cycles
TRANSACTIONAL MEMORY

Validation/Commit BW
Commit Unit Clock
Concurrency Control

1 Word per Cycle per CU
700 MHz
2 Warps per Core
(960 Concurrent Transactions)
WARP TM SPECIFIC
PARAMETERS

L2 Cache for all Cores
Intra-Warp CD Resources
Intra-Warp CD Mechanism

256 kB x 6 partition = 1536 kB
4 KB Shared Memory per Warp
2-Phase Parallel Conflict Resolution
TCD Last Written Time Table 16 KB (2048 Entries in 4 Sub Arrays)
TCD Detection Granularity 128 Byte
SI-SPECIFIC PARAMETERS

L2 Cache for Cores 128 KB x 6 partitions = 768 KB

Writer Table 15 KB

SRL 740 KB
Timestamp Table 12 KB

VIT 1 KB
Concurrently Active Versions 8

Row Copy Size 2 KB per Subarray
Row Copy Latency 68 ns

Number of Subarrays 64 per bank

[0095] Experimental Setup
TABLE 5
Benchmark Properties

Read/

Write Avg. TX
Name Threads Set Size Length (Cycles)
LINKED LIST 1 100 114/4 17646
LINKED LIST 2 200 240/4 59876
BINARY TREE 1 1000 33/8 327025
BINARY TREE 2 100 36/6 26910
RED BLACK TREE 1 200 47/14 86501
RED BLACK TREE 2 400 47/14 131218
VACATION 1 1.50 92/4 241258
VACATION 2 140 144/12 338872
[0096] Embodiments herein extend the WarpTM system

using GPGPUSIm 3.2.1, which simulates a device resem-
bling the NVidia GTX480. WarpTM also includes the base-
line KiloTM, with the difference being that it does not have
intra-warp conflict detection.

[0097] Applications using dynamically sized data struc-
tures that involve many write-read conflicts are used to
validate the SI embodiments. These applications are listed in
TABLE 2 (above), which are described as follows: Linked
List is a linked list, which allows both concurrent insertions
and deletions, where the early-release technique is not
available. In Linked List 1 and 2 100 and 200 threads are
spawned, respectively, each of which inserts one element in
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the linked list by first iterating to the insertion point then
performing the insert. The lists are initially empty.

[0098] Binary Tree is a binary search tree with pre-
initialized elements, which allows insertion, deletion and
query operations. In Binary Tree 1, a tree is initialized with
1000 elements and spawns 1000 threads, each removing one
element from the tree. In Binary Tree 2, a tree is initialized
with 1000 elements and spawns 100 threads to perform 50
insertion and 50 remove operations.

[0099] Red Black Tree is the red-black tree implementa-
tion from the RSTM suite, which is adapted to the GPU. In
Red Black Tree 1 and Red Black Tree 2 a tree is initialized
with 1000 elements and perform 50/50 and 100/100 inser-
tion/remove operations, respectively.

[0100] Vacation is the Vacation benchmark from the
STAMP benchmark suite, which is adapted to CUDA while
keeping the semantics unchanged. It includes its own linked
list and red-black tree implementation. Vacation Benchmark
simulates a travel reservation system, which includes a
database with four tables: Flight, Room, Car and Customers.
Each Customer has a linked list storing the reservations
made. A reservation points to flight, room or car. Thus,
Vacation is similar to having 4 red-black trees and 1 linked
list running simultaneously. In Vacation 1 we perform all
“table modifying” operations with no user queries, (e.g.,
entries are added or delete entries in the 4 red-black trees all
initialized with a size of 500 entries). In Vacation 2 5
customers are simulated and all threads make reservations
for the 5 customers. The table sizes are initialized to be 1000.
The benchmarks are run using 4 configurations: (a) WarpTM
is a baseline GPU hardware TM, with intra-warp conflict
resolution; (b) KiloTM is another pre-existing system,
which is WarpTM without intra-warp conflict resolution; (c)
SITM_TS is the Snapshot Isolation-enabled TM with loop
detection using post-dated timestamps, with the single-
writer restriction; and (d) SITM_Oracle is the Snapshot
Isolation-enabled TM with perfect loop detection (a
dynamic dependence graph in the simulator) with no cost.
[0101] There is no single-writer restriction for SITM_
Oracle. SITM_Oracle has no cost in post-dating or row copy.
This is not achievable in reality. For a fair comparison,
WarpTM and KiloTM are given a larger 1.2 cache as
indicated in TABLE 1 (1536 kB), to account for the extra
space taken by cyclic conflict detection in SI.

[0102] Results

[0103] FIGS. 11 and 12 respectively show the overall
speedup and energy consumption of the benchmarks. Over-
all, the baseline WarpTM is the slowest among all the
benchmarks. In fact, it is slower than KiloTM, which
indicates that intra-warp conflict detection based only on
address does not help with the benchmarks used in the
experiments. Since intra-warp conflict resolution aborts on
all write-read conflicts, this may the reason why it is slower
than KiloTM. For the same reason, KiloTM is slower than
both Sl-based systems because it aborts transactions with
write-read conflicts in the CU. This is most obvious in the
Linked List benchmarks. By comparing Linked List bench-
marks, KiloTM and WarpTM do not scale well; the execu-
tion gets serialized in WarpTM and KiloTM.

[0104] Speedup for red-black tree and binary tree may be
explained in a way resembling linked lists: a branch of a tree
is similar to a linked list, but since there exists many
branches in a tree, the serialization in a tree is not nearly as
serious as in a linked list. However, there may still be
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enough access patterns like those found in a linked list to
allow SI to perform much faster.

[0105] In fact, one may also think of graphs as generalized
trees which can contain loops. Because the same access
pattern is observed in all those data structures, dynamically
sized lists, trees and graphs can all benefit from SI. The
overall energy consumption is largely affected by the execu-
tion time. Although SITM_TS introduces extra power con-
sumption on the Writer Table, Timestamp Table, SRL. and
VIT, the overall energy consumption is still less than
WarpTM due to decreased running time. It can be even
significantly lower than KiloTM when the running time
difference is large enough, such as in Linked List.

[0106] Speedup Analysis

[0107] A design of Sl is to avoid unnecessary write-read
aborts. To give a quantitative measure of this, the sum of the
duration is computed for all aborted transactions in clock
cycles for each of the configurations and normalize them
that of the WarpTM baseline, as shown in FIG. 13. The
higher the bars are, the more work is wasted on aborted
transactions. Overall, the resultant speedup is generally
inversely correlated to the amount of work wasted. KiloTM
generally resulted in less wasted work than WarpTM, and
both Sl-based configurations resulted in even less wasted
work than KiloTM. To compare SITM_TS and SITM_
Oracle: the performance gap between SITM_TS and SITM_
Oracle is correlated to the gap between the amount of wasted
work of them. When SITM_TS has less or similar amount of
wasted work than SITM_Oracle, its performance may be
close to that of SITM_Oracle (in benchmarks BinaryTree 1
and 2, RBTree 1 and 2, Vacation 1). When SITM_TS wastes
more work than SITM_Oracle, its performance will fall
farther behind SITM_Oracle due to the overhead it has
compared to SITM_Oracle.

[0108] FIG. 14 shows the number of aborts caused in each
of the benchmarks, normalized to the number of aborts in
WarpTM. From the figure, WarpTM often aborts more than
KiloTM does; most of them are caused by intra-warp
conflict resolution. For SITM_TS, many aborts come from
the single-writer restriction. This type of aborts usually
happens in early stages of transactions where the transac-
tions have not performed much work. As a result, the length
of the aborted transactions tends to be smaller, resulting in
a smaller aggregated time even the number of aborted
transactions may be larger.

[0109] FIG. 15 shows the amount of time transactions
spend in the CU and the SIMT cores. It can be seen from the
figure that the amount of time spent in the CU is shorter in
SITM_TS and SITM_Oracle at least because the CU does
not need to perform value-based validation for the read sets
like in WarpTM and KiloTM (Only the write set needs to be
validated in Snapshot Isolation.) As a result, the average
durations of both SI-based configurations are shorter than
that of both WarpTM and KiloTM, and this can match the
observation of aggregate time for aborted transactions in
FIG. 13.

[0110] It can be seen from FIGS. 14 and 15 that SITM_
Oracle reduces the number of aborts for LinkedList 1 and 2,
which is as expected. For the other benchmarks, SITM_
Oracle resulted in a shorter transaction execution time,
which turns into greater speedup. For SITM_TS, the abso-
Iute number of aborts may increase due to single-writer
limits. Nevertheless, FIG. 15 suggests SITM_TS’s aborted
transactions tend to be much shorter. Since SITM_TS still
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allows transactions with read-write conflicts to pass, this
will overall results in less wasted work, leading to advantage
over non-SI configurations.

[0111] Dependency Loop Detection

[0112] FIG. 16 shows the number of loop-breaking aborts
received per dependency loop. The numbers are the outcome
of'two factors: 1) how much do the loops themselves overlap
and 2) the false-alarm rate. When the loops overlap more, it
is more likely that one aborted transaction breaks more than
one loop. False alarms may also cause a dependency loop to
receive more than one abort. Overall, the number of aborts
per dependency loop does not show a great difference
between SITM_TS and SITM_Oracle except in Binar-
yTreel: In the early stages of this benchmark, many trans-
actions attempt to replace the parent of a tree node with the
next largest element in the tree, resulting in many writes to
the same addresses. This causes the gap in the number of
aborts between to SITM_TS and SITM_Oracle to widen,
which contributed to the difference in the overall numbers of
aborts per dependency loop. In later stages of the benchmark
as well as in other benchmarks, the difference between the
number of aborts of SITM_TS and SITM_Oracle is more
stable, resulting in similar numbers of aborts per loop.
[0113] FIG. 17 shows the total number of possible depen-
dency loops that can ever be formed by all transactions
throughout the benchmark lifetime. The number for SITM_
TS is much smaller than that of SITM_Oracle. The reason is
many transactions are aborted due to single-writer abort,
such that the transactions could not have the chance to
overlap with other transactions to form dependency loops.
This also suggests although the purpose of the single-writer
restriction is to keep post-dating scalable, it also eliminates
much potential dependency loops by coincidence by abort-
ing transactions.

[0114] Sensitivity to Number of Versions and Postdating
Delta
[0115] A study was performed on how the number of

concurrently available versions affects overall performance,
shown in FIG. 18. The results suggest that a larger number
of concurrently available versions will generally imply
better performance. This is because with more versions
available, transactions can see more recent snapshots. On the
contrary, with fewer versions available, transactions are
more likely to see stale snapshots, which can turn into more
frequent write-write conflicts. For example, when inserting
into a linked list, a more recent snapshot will contain a
longer linked list. A longer list is more likely to cause the
insertion operations to modify addresses farther away from
each other, lowering the chance of conflict.

[0116] As is shown in FIG. 18, a concurrent version
number of 8 results in near-optimal performance, we con-
sider it to be the balance between performance and cost and
decide to use this number in our experiments.

[0117] FIG. 19 shows there are many transactions that
read from the same snapshot, which is a result of the
high-level parallelism on the GPU. In addition to the high-
level parallelism, transactions on a GPU are run in warps
which execute in lock-step, so that all transactions in a warp
start at the same time step, thus sharing the same snapshot.
The large number of transactions overlapping in time means
many commits of the transactions may be merged together,
reducing the number of version creation and row-level copy
needed, lowering the amortized cost of such operations. This
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is an example where a high degree of parallelism doesn’t
necessarily mean a high cost in versioning.

[0118] A choice of the post-dating delta (which is 10 in the
pseudocode presented above) does not have a significant
influence on the overall speedup.

[0119] Test Conclusion

[0120] The SI mechanism has been applied to a GPU-
based hardware TM system. With a feasible mechanism for
creating versions quickly and detecting dependency loop,
this system can work out well for applications involving
linked lists, binary search trees, red-black trees, achieving
speedup over systems using conventional conflict detection
mechanism. This can be expanded to the use cases for TM
systems on the GPU: It will no longer only handle small and
fixed-size transactions, but large ones with dynamically-
sized, complex data structures as well.

[0121] Computer System

[0122] With reference to FIG. 20, an exemplary system
includes a general-purpose computing device 2000, includ-
ing a processing unit (CPU or processor) 2020 and a system
bus 2010 that couples various system components including
the system memory 2030 such as read-only memory (ROM)
2040 and random access memory (RAM) 2050 to the
processor 2020. The system 2000 can include a cache of
high-speed memory connected directly with, in close prox-
imity to, or integrated as part of the processor 2020. The
system 2000 copies data from the memory 2030 and/or the
storage device 2060 to the cache for quick access by the
processor 2020. In this way, the cache provides a perfor-
mance boost that avoids processor 2020 delays while wait-
ing for data. These and other modules can control or be
configured to control the processor 2020 to perform various
actions. Other system memory 2030 may be available for
use as well. The memory 2030 can include multiple different
types of memory with different performance characteristics.
It can be appreciated that the disclosure may operate on a
computing device 2000 with more than one processor 2020
or on a group or cluster of computing devices networked
together to provide greater processing capability. The pro-
cessor 2020 can include any general purpose processor and
a hardware module or software module, such as module 1
2062, module 2 2064, and module 3 2066 stored in storage
device 2060, configured to control the processor 2020 as
well as a special-purpose processor where software instruc-
tions are incorporated into the actual processor design. The
processor 2020 may essentially be a completely self-con-
tained computing system, containing multiple cores or pro-
cessors, a bus, memory controller, cache, etc. A multi-core
processor may be symmetric or asymmetric.

[0123] The system bus 2010 may be any of several types
of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. A basic input/output (BIOS)
stored in ROM 2040 or the like, may provide the basic
routine that helps to transfer information between elements
within the computing device 2000, such as during start-up.
The computing device 2000 further includes storage devices
2060 such as a hard disk drive, a magnetic disk drive, an
optical disk drive, tape drive or the like. The storage device
2060 can include software modules 2062, 2064, 2066 for
controlling the processor 2020. Other hardware or software
modules are contemplated. The storage device 2060 is
connected to the system bus 2010 by a drive interface. The
drives and the associated computer-readable storage media
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provide nonvolatile storage of computer-readable instruc-
tions, data structures, program modules and other data for
the computing device 2000. In one aspect, a hardware
module that performs a particular function includes the
software component stored in a tangible computer-readable
storage medium in connection with the necessary hardware
components, such as the processor 2020, bus 2010, display
2070, and so forth, to carry out the function. In another
aspect, the system can use a processor and computer-
readable storage medium to store instructions which, when
executed by the processor, cause the processor to perform a
method or other specific actions. The basic components and
appropriate variations are contemplated depending on the
type of device, such as whether the device 2000 is a small,
handheld computing device, a desktop computer, or a com-
puter server.

[0124] Although the exemplary embodiment described
herein employs the hard disk 2060, other types of computer-
readable media which can store data that are accessible by
a computer, such as magnetic cassettes, flash memory cards,
digital versatile disks, cartridges, random access memories
(RAMs) 2050, and read-only memory (ROM) 2040, may
also be used in the exemplary operating environment. Tan-
gible computer-readable storage media, computer-readable
storage devices, or computer-readable memory devices,
expressly exclude media such as transitory waves, energy,
carrier signals, electromagnetic waves, and signals per se.

[0125] To enable user interaction with the computing
device 2000, an input device 2090 represents any number of
input mechanisms, such as a microphone for speech, a
touch-sensitive screen for gesture or graphical input, key-
board, mouse, motion input, speech and so forth. An output
device 2070 can also be one or more of a number of output
mechanisms known to those of skill in the art. In some
instances, multimodal systems enable a user to provide
multiple types of input to communicate with the computing
device 2000. The communications interface 2080 generally
governs and manages the user input and system output.
There is no restriction on operating on any particular hard-
ware arrangement and therefore the basic features here may
easily be substituted for improved hardware or firmware
arrangements as they are developed.

[0126] The steps outlined herein are exemplary and can be
implemented in any combination thereof, including combi-
nations that exclude, add, or modify certain steps.

[0127] Use of language such as “at least one of X, Y, and
Z” or “at least one or more of X, Y, or Z” are intended to
convey a single item (just X, or just Y, or just Z) or multiple
items (ie., {X and Y}, {Y and Z}, or {X, Y, and Z}). “At
least one of” is not intended to convey a requirement that
each possible item must be present.

[0128] The various embodiments described above are pro-
vided by way of illustration only and should not be con-
strued to limit the scope of the disclosure. Various modifi-
cations and changes may be made to the principles described
herein without following the example embodiments and
applications illustrated and described herein, and without
departing from the spirit and scope of the disclosure.

What is claimed is:
1. A method comprising:

receiving, at a cache associated with a processor, a request
from a single-input, multiple-transaction (SIMT) core
of the processor;
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generating, in response to the request, at least one copy of
a row of a memory associated with the processor, the at
least one copy stored in the cache;
recording, during transactions executed by the processor,
multiple versions of the row of the memory, each
version in the multiple versions associated with a
respective copy in the at least one copy of the row of
the memory;
performing, at the cache, dependent loop detection on the
multiple versions; and
aborting write-write transactions based on the dependent
loop detection.
2. The method of claim 1, further comprising:
recycling versions which are not referenced by the trans-
actions executed by the processor.
3. The method of claim 1, wherein the dependent loop
detection further comprises:
identifying order timestamps associated with each trans-
action in a pair of transactions associated with an
address of the memory;
identifying a current transaction order timestamp of a first
transaction which is out of order with a post-dated
logical timestamp of a second transaction, to yield an
incorrect order; and
identifying a dependent loop based on the incorrect order.
4. The method of claim 1, further comprising:
generating a version index table of the multiple versions,
wherein the version index table is stored in the cache.
5. The method of claim 4, wherein the version index table
is written by a single writer within the cache.
6. The method of claim 1, further comprising:
executing transactions which are not the write-write trans-
actions, wherein executed transactions respectively
modify a version of the multiple versions; and
recording the version of the memory as a current, system
version for a subsequent iteration.
7. The method of claim 1, wherein the processor is part of
a graphical processing unit.
8. A graphical processing unit comprising:
at least one processor; and
at least one non-transitory memory device having a cache,
wherein the at least one non-transitory memory device is
configured to perform operations in association with
the at least one processor, the operations comprising:
receiving, at the cache, a request from a single-input,
multiple-transaction (SIMT) core of the at least one
processor;
generating, in response to the request, at least one copy
of a row of memory within the at least one non-
transitory memory device, the at least one copy
stored in the cache;
recording, during transactions executed by the at least
one processor, multiple versions of the row of
memory within the at least one non-transitory
memory device, each version in the multiple ver-
sions associated with a respective copy in the at least
one copy of the row of memory within the at least
one non-transitory memory device;
performing, at the cache, dependent loop detection on
the multiple versions; and
aborting write-write transactions based on the depen-
dent loop detection.
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9. The graphical processing unit of claim 8, wherein the
at least one non-transitory memory device is further config-
ured to perform operations comprising:

recycling versions which are not referenced by the trans-

actions executed by the processor.

10. The graphical processing unit of claim 8, wherein the
dependent loop detection further comprises:

identifying order timestamps associated with each trans-

action in a pair of transactions associated with an
address of the at least one non-transitory memory
device;

identifying a current transaction order timestamp of a first

transaction which is out of order with a post-dated
logical timestamp of a second transaction, to yield an
incorrect order; and

identifying a dependent loop based on the incorrect order.

11. The graphical processing unit of claim 8, wherein the
at least one non-transitory memory device is further config-
ured to perform operations comprising:

generating a version index table of the multiple versions,

wherein the version index table is stored in the cache.
12. The graphical processing unit of claim 11, wherein the
version index table is written by a single writer within the
cache.
13. The graphical processing unit of claim 8, wherein the
at least one non-transitory memory device is further config-
ured to perform operations comprising:
executing transactions which are not the write-write trans-
actions, wherein executed transactions respectively
modify a version of the multiple versions; and

recording the version of the memory as a current, system
version for a subsequent iteration.

14. A non-transitory computer-readable storage device
having instructions which, when executed by a computing
device, cause the computing device to perform operations
comprising:

receiving, at a cache, a request from a single-input,

multiple-transaction (SIMT) core of the computing
device;
generating, in response to the request, at least one copy of
a row of memory associated with the computing
device, the at least one copy stored in the cache;

recording, during transactions executed by the computing
device, multiple versions of the row of the memory,
each version in the multiple versions associated with. a
respective copy;

performing, at the cache, dependent loop detection on the

multiple versions; and

aborting write-write transactions based on the loop detec-

tion.

15. The non-transitory computer-readable storage device
of claim 14, having additional instructions stored which,
when executed by the computing device, cause the comput-
ing device to perform operations comprising:

recycling versions which are not referenced by the trans-

actions executed by processor.

16. The non-transitory computer-readable storage device
of claim 14, wherein the dependent loop detection further
comprises:

identifying order timestamps associated with each trans-

action in a pair of transactions associated with an
address of the memory;
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identifying a current transaction order timestamp of a first
transaction which is out of order with a post-dated
logical timestamp of a second transaction, to yield an
incorrect order; and

identifying a dependent loop based on the incorrect order.

17. The non-transitory computer-readable storage device
of claim 14, having additional instructions stored which,
when executed by the computing device, cause the comput-
ing device to perform operations comprising:

generating a version index table of the multiple versions,

wherein the version index table is stored in the cache.
18. The non-transitory computer-readable storage device
of claim 17, wherein the version index table is written by a
single writer within the cache.
19. The non-transitory computer-readable storage device
of claim 14, having additional instructions stored which,
when executed by the computing device, cause the comput-
ing device to perform operations comprising:
executing transactions which are not the write-write trans-
actions, wherein executed transactions respectively
modify a version of the multiple versions; and

recording the version of the memory as a current, system
version for a subsequent iteration.

20. The non-transitory computer-readable storage device
of claim 14, wherein the computing device is a graphical
processing unit.



