US 20200366546A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0366546 A1

Kommula et al.

43) Pub. Date: Nov. 19, 2020

(54)

(71)
(72)

@
(22)

(1)

CONGESTION AVOIDANCE IN A
SLICE-BASED NETWORK

Applicant: VMWARE, INC., Palo Alto, CA (US)

Inventors: Raja Kommula, Cupertino, CA (US);
Jeremy Tidemann, Urbana, IL (US);
Constantine Polychronopoulos, Palo
Alto, CA (US); Marc Andre
Bordeleau, Shawinigan (CA); Edward
Choh, Richmond (CA); Ojas Gupta,
Mountain View, CA (US); Robert
Kidd, Champaign, IL. (US); Georgios
QOikonomou, Patras (GR)

Appl. No.: 16/411,912

Filed: May 14, 2019

Publication Classification

Int. CL.
HO4L 12/24
HO4L 12/26
HO4L 12/721

(2006.01)
(2006.01)
(2006.01)

HO4L 12/751 (2006.01)
HO4L 12/851 (2006.01)
GOGF 9/455 (2006.01)
(52) US.CL
CPC ... HO4L 41/046 (2013.01); HO4L 43/16

(2013.01); HO4L 45/38 (2013.01); HO4L 45/02
(2013.01); HO4L 47/2483 (2013.01); GO6F
2009/4557 (2013.01); HO4L 41/5009
(2013.01); HO4L 41/5019 (2013.01); GO6F
9/45558 (2013.01); GO6F 2009/45595
(2013.01); HO4L 47/2425 (2013.01)

(57) ABSTRACT

A system can reduce congestion in slice-based networks,
such as a virtual service network (“VSN™). The system can
include a monitoring module that communicates with agents
on switches, such as routers or servers. The switches report
telematics data to the monitoring module, which determines
slice-specific performance attributes such as slice latency
and slice throughput. These slice-specific performance attri-
butes are compared against software license agreement
(“SLA”) requirements. When the SLA is not met, the
monitoring module can implement a new slice path for the
slice to reduce the congestion.

Q{(CET&R@USHPU?

*
/ CoLLECTIELEMATKS FROM. /o
/ HEXT SWITCHS Al

¥
GET RATE STATS FORTHE REXTFLOWF

yd /K v

Mo IS SITCHS
C FRSTITHE FATH
FOR FLOWF?

UPDRTESUCETHROUGHPUT b0

A

P o ~530
ARE THERE. ™
ANY U&lP%ﬁC?ESSED

LOWS

VES

ORE SWITCHES
I THE NETWORK?

US 2020/0366546 Al

AL ONAS OLHO UM

s

grove

HOLIAS ONO3AS FHL 40 QY3 LN HOLY
5 Leutd IHL DNISIYD DHICMO

E:

3

HOLINS el Y DRICITION HiY

A0S 2HL 50
Vel

FHLYY SNLLSIKE
3LYNHAL 3HL 3005 mv,,, mm& H1Yd 3005 2UYNEILTY A

N LON 81 LyHL |

4
i

o Ol

LS

Nov. 19,2020 Sheet 1 of 10

F:

&

AS (NCDES GHY 1541 3HL 55
mmxmmﬁm THBAHd mgmgmm

04 LI LoN S1 LY
P IV WO SO LN

me%@@mﬁ N
{ O G35V DNININSIL30

s ff.?".}

Y15,
31

Fad)
b

AR
MOLME

QAT Y o0

bty

Abd DU AN SOMIINETEL DNINED 3

Patent Application Publication

US 2020/0366546 Al

4L TG

18 FH1 ¥04 HIVd 3005 INGHHNG Y NELON 81 [YHL HO
{04 Hivd 30005 219 mm,mq NY OMILITTES CIOHSIUHLY OLINTA AD

LIS QLY w&mmﬂ TOM HIYd w%&&mmﬁ

AT AHL ONIEYAN0D NG G5V

Nov. 19,2020 Sheet 2 of 10

£

Ly
o
L
Lid
e
ﬂ_.m
R\"

O NOUYIHON] SNIBLL L330Yd 3HL ND 0988 90

Tk AONZLYTY ONININEE 130

%

2

Ny

| HOLINS CNOZES Y NO L0
0033 Y ONY HOLIS 18H13 Y NO IN3OY 1SV ISVAT Y O
{IFHIHM 20115 40 ALTVHNT ¥ 4O STHO LS WISAHA T

mﬁ& AN ML
AN NI wwmu,& maw,,m

i L.

Patent Application Publication

US 2020/0366546 Al

Nov. 19,2020 Sheet 3 of 10

Patent Application Publication

o
REF
—

IR 1)
NN AN CIOHSTIHLY 0L

VS SINEALTY Y

e

3HL H04 Hivd

WdHONORHL 31YD30H0Y 3H1 ONIgYN00 NO G35V

=]
L% o
et

&

NOLYWROANE Alved Yi0 G203

0L OMIONCASINE0D
Wl FHL U0 INdHON0WHL 31YOTH05Y NY ONINGAL30

YA INZT 35 Y O SOKOJSIEHOD NOLL
LSHIAY 40 HiYd 30715 Y N STHOLIAS THL A0Y NOHLYIMC

Ty

W w im%mﬁ«m 3H) wm m &

SR8 LN HOS NOLY
HAAYT WOIBAH Y M SN JHL ONILADEE §3HDLA

il “mmmum:wm m(mmé ¥ zmmmm& QL SINASY DNIATEADS

US 2020/0366546 Al

Nov. 19,2020 Sheet 4 of 10

Patent Application Publication

o o e 0 o o i
o L HIYE TS
T N e -
Pg gg” T 13 LON
i Y
571~
e e "
7 VLV o] 7
m»mi\&.m(mmwd‘ wwNi\\%.M;w..m&ewww wNi\,\\i .W.meu@. . .
.) . — HD0Hd
§67~
0g 75 s A H00H
ONIHOLINDH

US 2020/0366546 Al

o

Nov. 19,2020 Sheet 5 of 10

Patent Application Publication

%7 DI AN b N0
{i 5
¥
e
052
o £5 ADNALY
p
7818 ABEL
¥ \\\
A ¢
pag " HiYd S8
~ oA DML
%

US 2020/0366546 Al

Nov. 19,2020 Sheet 6 of 10

3
&
| R
52
fooem
=<3
o
&

201s¥04
p o AHONORHL
A5

o

gy d

Patent Application Publication
L&Y

'~'">
¥

o
ki

\
J_
78 L 8 TINO0HK
SNHOLINON

US 2020/0366546 Al

Nov. 19,2020 Sheet 7 of 10

Patent Application Publication

u»%m,wmx

LM m&@m
FUNSNCD

x

*,

ADI040L ugvd

MDD
NOHSIENOD T

5, ,

NOLLSZENOT ON

.W«

/wa,, A

A
HHOA AN

US 2020/0366546 Al

mewf

Nov. 19,2020 Sheet 8 of 10
e
:E:j‘-‘t

= s B

g L

~d] Ko

a N

&= (9% Y

= % 7 5

= CNENY

z @ wvm,f e

- g ¢ Wi,

(=]

k= Qim? Mwﬁ/? o T i o
2) 5 b , m%axm,% MYS
_m.. K

s

[

=W

Patent Application Publication Nov. 19,2020 Sheet 9 of 10 US 2020/0366546 A1

.
*<: CETHROUG E*PL} h

/ / COLECTTELENATCS RO 10
/ NExTswicHs £

515
GET RATE STATS FOR THE NEXTRLOWF b7

~

(95 31
o2

/,. {r““ é{}
P
v L ISSWITOHS ™.
a s FIRST N THE :&.ﬂ

AT S T AL ~ 525
UPDATE SLICE THROUGHPUT 4

_f"’ \\ P
vis " ARETHERE \
ED ANy UNPROCESSED >

FLOWS?

f“"?mﬁ SWITCHES S ¥ES
\NTHENETWO R*&

US 2020/0366546 Al

Nov. 19,2020 Sheet 10 of 10

A

N4

oo

g

§ IRYNIL - HGA

Patent Application Publication

-
wiY

N e

~
~

BB e KR R W W R R e W e W
<

vy
%
x
,‘%{) N
o N

b
%

US 2020/0366546 Al

CONGESTION AVOIDANCE IN A
SLICE-BASED NETWORK

BACKGROUND

[0001] Today’s 3G, 4G, and LTE networks operate using
multiple data centers (“DCs”) that can be distributed across
clouds. These networks are centrally managed by only a few
operating support systems (“OSSs”) and network operations
centers (“NOCs”). 5G technology will dramatically increase
network connectivity for all sorts of devices that will need
to connect to the Telco network and share the physical
network resources. Current network architectures cannot
scale to meet these demands.

[0002] Network slicing is a form of virtualization that
allows multiple logical networks to run on top of a shared
physical network infrastructure. A distributed cloud network
can share network resources with various slices to allow
different users, called tenants, to multiplex over a single
physical infrastructure. For example, Internet of Things
(“IoT”) devices, mobile broadband devices, and low-latency
vehicular devices will all need to share the 5G network.
These different use cases will have different transmission
characteristics and requirements. For example, the IoT will
typically have a large number of devices but very low
throughput. Mobile broadband will be the opposite, with
each device transmitting and receiving high bandwidth
content. Network slicing can allow the physical network to
be partitioned at an end-to-end level to group traffic, isolate
tenant traffic, and configure network resources at a macro
level.

[0003] However, traditional approaches to Quality of Ser-
vice (“QoS”) and congestion avoidance do not easily scale
to keep up with the dramatic increase in network usage
otherwise afforded by a slice-based network. For example, if
there is congestion in the network, existing solutions throttle
the source of congestion, effectively slowing data transmis-
sion to free up bandwidth. For example, existing flow
control mechanisms, like Priority Flow Control (“PFC”),
notify upstream switches (e.g., routers) about congestion
and reduce it by throttling traffic at the source, such as a host
that is sending traffic through the switches. But in a slice-
based network, throttling can adversely affect other slices
and inefficiently cause slices to perform more poorly than
allowed under a software license agreement (“SLA”). New
slice-based solutions that do not break SL A requirements are
needed.

[0004] Important performance metrics, such as latency
and throughput, are particularly challenging to accurately
monitor in a slice-based network. In traditional networks,
latency can be calculated in software by sending probe
packets, such as a ping, between any two end points.
However, software-based monitoring probes do not scale in
large Telco networks that have tens of millions of users.
Generally, detecting congestion in the virtual layer, such as
with virtual network functions (“VNFs”) of slices, is not
scalable and would quickly overwhelm the underlying
physical hardware.

[0005] Without additional ways to relieve congestion,
when the network infrastructure becomes overburdened,
important slices can be negatively impacted. SLAs often
require reliable transmission of important traffic, such as 911
calls and communications to self-driving vehicles, among
others.

Nov. 19, 2020

[0006] As a result, a need exists for systems that relieve
congestion in slice-based networks.

SUMMARY

[0007] Examples described herein include systems and
methods for relieving congestion in slice-based networks.
The system can include a monitoring module that commu-
nicates with agents on physical devices, such as routers or
servers. The network can be divided into slices to accom-
modate different use cases for one or more tenants. Each
slice can have required SLA performance attributes, such as
threshold levels of latency, bandwidth, round-trip time, and
others.

[0008] Each network slice in a virtual service network
(“VSN”) can carry data from multiple end devices, such as
phones, cars, and IoT devices. For example, a 911 slice can
carry calls from thousands of mobile devices at a time. The
same case can exist with a YOUTUBE slice where hundreds
of thousands of mobile users can watch YOUTUBE videos
at the same time. Each slice can have different VNFs for
different specialized functionality within the slice. However,
monitoring some performance metrics with VNFs is not
scalable.

[0009] In one example, some monitoring tasks are
offloaded to the physical layer by running agents on the
underlying switches. The agents can analyze traffic and
report telematics data back to the monitoring module. In one
example, the monitoring module can supply the agents to the
switches, which can be programmable. In one example, the
switches include programmable networking application-
specific integrated circuits (“ASICs”), such as the TOFINO
chip, that can be programmed using the P4 language or some
other protocol.

[0010] Once programmed, the switches can then execute
the agents in a physical layer rather than in a virtual layer.
The agent on the switches can report telematics data to the
monitoring module. The telematics data can be slice-spe-
cific, indicating some performance characteristic of a slice.
Each switch can report telematics data for the slices it
handles. The telematics data can be related to any perfor-
mance metric for a slice, such as latency, bandwidth, and
round-trip time.

[0011] The monitoring module can maintain or retrieve a
network connectivity graph to track compiled telematics
data for switches across the slice-based network. The moni-
toring module can also determine that a slice does not meet
SLA requirements based on one or more switches in the
network connectivity graph. This determination can be
based on the telematics data across a slice path for that slice.
The telematics data, also called performance data, can be
compiled over time, such as averaged, and compared to SLA
thresholds, in an example.

[0012] Based on the SLA not being met, the monitoring
module can select an alternate slice path to reduce conges-
tion. For example, the network connectivity graph can
indicate another possible route with better performance
metrics. The alternate slice path can include at least one
switch that is not in the existing slice path for that slice. The
monitoring module can implement the selected alternate
slice path, causing the routing to change such that a first
switch sends traffic to a third switch instead of a second
switch in the original slice path. This can reduce congestion
by distributing slice traffic throughout a network rather than
simply routing all the slices down the same path.

US 2020/0366546 Al

[0013] In one example, the alternate slice path can be
selected based on latency values falling below SLA require-
ments. For example, the monitoring module can receive
packet timing information from multiple physical switches
for multiple slices. Agents running in a physical domain of
the switches can send the packet timing information. The
monitoring module can determine a latency value based on
the packet timing information, such as by averaging multiple
different instances of the packet timing information received
from the switches. Based on comparing the latency value to
a threshold, the monitoring module can select an alternate
slice path for a slice, the alternate path including a switch
that is not in a current slice path for the slice. Then the
monitoring module can implement the alternate slice path,
which can include updating a switch with the new slice path
so that the next hop is correct.

[0014] In one example, the alternate slice path can be
selected based on throughput falling below SLA require-
ments. The monitoring module can receive data-rate infor-
mation from the switches in a slice path of a first slice. The
data-rate information can correspond to a slice identifier,
allowing the monitoring module to correlate the data rate to
a particular slice. The monitoring module can determine an
aggregate throughput for a first slice based on the received
data-rate information. Based on comparing the aggregate
throughput to a threshold, the monitoring module can imple-
ment an alternate slice path for the first slice.

[0015] These stages can be performed by a monitoring
module that executes as part of an orchestration system in
some examples. Alternatively, a non-transitory, computer-
readable medium including instructions can cause a proces-
sor to perform the stages when the processor executes the
instructions. The term “switch” can broadly refer to any
device performing network functionality, such as a server or
router.

[0016] Both the foregoing general description and the
following detailed description are exemplary and explana-
tory only and are not restrictive of the examples, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1A is a flowchart of an example method for
reducing congestion for a slice in a VSN.

[0018] FIG. 1B is a flowchart of an example method for
reducing congestion based on slice latency in a VSN.
[0019] FIG. 1C is a flowchart of an example method for
reducing congestion based on slice throughput in a VSN.
[0020] FIG. 2A is an example sequence diagram for reduc-
ing congestion for a slice in a VSN.

[0021] FIG. 2B is an example sequence diagram for reduc-
ing congestion for a slice in a VSN, based on latency.
[0022] FIG. 2C is an example sequence diagram for reduc-
ing congestion for a slice in a VSN, based on throughput.
[0023] FIG. 3 is an example flowchart for congestion
reduction in a slice-based network.

[0024] FIG. 4A is an example system diagram illustrating
multiple slices in a VSN.

[0025] FIG. 4B is an example system diagram illustrating
multiple slices in a VSN.

[0026] FIG.5 is an example flow chart for calculating slice
throughput.

[0027] FIG. 6 is an example system diagram of a topology
for a VSN.

Nov. 19, 2020

DESCRIPTION OF THE EXAMPLES

[0028] Reference will now be made in detail to the present
examples, including examples illustrated in the accompany-
ing drawings. Wherever possible, the same reference num-
bers will be used throughout the drawings to refer to the
same or like parts.

[0029] In one example, a system includes a monitoring
module that receives telematics data, such as performance
data related to latency or throughput, from multiple switches
in a slice-based network. Agents executing in the physical
layer on the switches can report the telematics data. The
monitoring module can track performance over a network
connectivity graph and determine when SLA requirements
are not met for one or more slices.

[0030] Based on slice performance for switches in the
network connectivity graph, the monitoring module can
select a new slice path for a slice, bringing the slice back into
SLA compliance. A slice can include elements in both the
virtual overlay and physical underlay of the network and can
potentially span multiple clouds. Slicing can allow a pro-
vider to segment a Telco network for use by multiple tenants,
which can each have their own slices governed by SLA
requirements.

[0031] The slices can span one or more clusters or clouds
in a VSN. An orchestrator can manage multiple slices within
the network, which can be used for specific purposes or
leased to tenants. For example, the slices can be reserved for
particular applications, IoT devices, or customers. Each slice
can be a virtual network that runs on top of a shared physical
network infrastructure distributed across one or more Telco
clouds. A slice can include a service chain of VNFs for
performing certain network tasks. The required combination
of VNFs can differ based on the intended use of the slice,
such as video streaming or IoT device management. Slices
can be reserved for certain types of traffic and can be
prioritized, such as for QoS purposes. An SLA can define
which performance metrics are required for the slice and can
specify required performance metrics for different slices.
The performance metrics can vary depending on the
intended use of a given slice. The SLA or a separate slice
record can also specify which VNFs make up the service
chain.

[0032] To instantiate the slice, the VNFs can be deployed
across a slice path. The slice path can represent a subset of
the provider’s distributed network and can span one or more
switches. Even when traffic is travelling to the same desti-
nation, different slices can route that traffic differently. The
physical switches and VNFs can span different locations in
the network, allowing slices to take different paths to the
destination and effectively distributing workload across the
network.

[0033] The physical switches can send the telematics data
to a monitoring module. The monitoring module can be part
of the orchestrator or a separate process. The orchestrator
and monitoring module can be hosted on a management
cluster of servers, in an example. In one example, the
physical switches are programmed to execute an agent that
monitors packets at the hardware level. For example, the
agent can run in the core of the switch rather than in a virtual
layer where the VNFs execute. The agent can cause the
switch to route traffic based on the slices. The agent can also
report the telematics data to the monitoring module. In one
example, the switches can use programmable networking
ASICs, such as the Tofino chip, that can be programmed

US 2020/0366546 Al

using the P4 language or some other protocol. The moni-
toring module can program the switches to use the agent, in
an example.

[0034] The monitoring module can ensure that the net-
work is functioning as expected for the various slices. The
monitoring module can also provide the switches with slice
paths that allow the switches to send the packets to different
next hops, based on the slice. The next hop can be another
switch for the slice path. This allows for prioritized slices to
be configured across less congested routes in the network.
Based on packet prioritization within the switches and in
slice path selection across the network, congestion can be
reduced.

[0035] FIG. 1 is an example method with stages per-
formed by a monitoring module. At stage 105, the monitor-
ing module can receive slice-specific telematics data from
multiple physical switches. The telematics data can be any
performance data relating to slices that are routed to the
switches. In one example, the switches can be programmed
to execute an agent that communicates with the monitoring
module. The agent can periodically report slice-specific
telematics data or can be polled periodically by the moni-
toring module. The telematics data can include performance
attributes such as switch latency, slice latency, total round-
trip time, slice bandwidth, and switch bandwidth.

[0036] At stage 110, the monitoring module can determine
if performance fails to meet an SLA requirement for a slice.
A tenant of the service provider can negotiation and pay for
specific performance requirements, which can be outlined in
the SLA. The service provider needs to ensure that these
SLA requirements are met, particularly since they can form
the basis of the contractual relationship with the tenant.
[0037] To ensure SLA requirements are met, the monitor-
ing module can aggregate telematics data for each slice and
then compare the data against slice-specific SLA require-
ments, in an example. The telematics data can include a slice
identifier in an example, allowing the monitoring module to
perform a per-slice analysis. The monitoring module can
also maintain a graph of switches in the physical layer that
correspond to the slices, in an example. This can allow the
monitoring module to determine which telematics data to
use in determining performance of a slice.

[0038] As an example, a first slice can have latency and
bandwidth SLA requirements. The monitoring module can
collect performance metrics from the switches pertaining to
the first slice and the metrics can relate to latency, band-
width, or both. The monitoring module can determine that
the SLLA is not met when these performance metrics stay
below SLA requirements for a period of time.

[0039] As a result, at stage 115, the monitoring module
can select an alternate slice path for the slice. The alternate
slice path can include a new path through the physical layer,
such as a new switch that is not part of the existing slice
path. The monitoring module can select the alternate slice
path based on the network connectivity graph. This graph
can include telematics data for other switches, indicating
more favorable performance in relation to the SLA require-
ments that the slice does not currently meet. For example,
telematics data from the new switch can indicate that latency
and bandwidth will improve if the slice is routed to the new
switch rather than an existing switch in the slice path.
[0040] At stage 120, the monitoring module can imple-
ment the alternate slice path. This can include sending a
message to the first switch to update slice path information

Nov. 19, 2020

at the first switch. Whereas the original slice path informa-
tion could indicate a second switch for the next hop of the
slice, the updated slice path information can indicate the
third switch as the next hop. Additionally, the monitoring
module or some other orchestration process can instantiate
one or more VNFs at the third switch if needed. Since the
slice can operate in both the physical and virtual layers, the
monitoring module can coordinate switching the slice path
in the physical layer with VNF availability in the virtual
layer.

[0041] By changing the slice path, network congestion can
be decreased. The monitoring module can help distribute
slices over available portions of the physical network. The
switches used can span one or more clusters or clouds,
reducing the load on overburdened switches.

[0042] FIG. 1B illustrates an example method for reducing
congestion based on latency requirements. Latency can be
an important SLA requirement for many types of customers.
For example, a slice for 911 calls needs to have the lowest
possible latency. If the monitoring module detects high
latency times for the slice, it can analyze the VSN topology
and calculate an alternate low-latency path, in an example.

[0043] At stage 125, the monitoring module can receive
packet timing information from multiple switches. The
packet timing information can be slice-specific. In one
example, the timing information is a time stamp collected by
the agent at the time a packet makes a hop. In one example,
the switch can track request-response times for a packet at
wire speed. A packet can be tracked across multiple
switches, with timing information being reported by each for
use in determining latency.

[0044] Table 1, below, indicates example types of requests
and responses for different packet types.
TABLE 1

Type Request Response

ICMP ICMP Echo Request ICMP Echo Response

ARP ARP Request ARP Response

TCP TCP Sequence Number TCP Ack
[0045] Internet control message protocol (“ICMP”) and

address resolution protocol (“ARP”) packets can be tracked
based on the protocol headers. In one example, to track
transmission control protocol (““TCP”) packets, the switches
can set a flag, such as an urgent flag, in a packet and track
acknowledgements from that packet.

[0046] Each switch can determine timing information for
the various unique flows that correspond to the different
slices. For example, a slice can have multiple different
ingress points for different flows. YOUTUBE traffic can join
the slice in both San Francisco and Miami, for example,
resulting in two distinct flows. The flows can be determined
based on packet headers. For example, a packet header can
include a source internet protocol (“IP”) address, a destina-
tion IP address, a source port, and a destination port. Using
this information, the switch can identify a unique flow
corresponding to a slice. When a packet is tracked for the
flow, the timing information reported from each switch can
be used by the monitoring module for determining latency.
[0047] The pseudo code of Table 2, below, is one example
of how an agent on a switch can determine timing informa-
tion for a packet.

US 2020/0366546 Al

TABLE 2

Example Pseudo Code for Packet Timing Information

foreach packet P
if protoType(P) == ICMP
if isRequest(P)
Store sliceld, sip, dip, current time
else
Update RTT for sliceld, sip, dip
endif
elseif protoType(P) == ARP
if isRequest(P)
Store sliceld, smac, current time
else
Update RTT for smac, dmac
endif
elseif protoType(P) == TCP
forFlow = getFlow(P—>sip, P—>dip, P->sport, P->dport)
if forFlow is valid
1t = getTime() — forFlow—>timeStamp
updateSliceRtt(sliceld, rtt)
cleanup forFlow
elseif
if P->flags & (URG Il SYN || PSH) !=0
revFlow = createFlow(P->dip, P->sip, P—>dport,

P->sport)
revFlow—>timeStamp = getTime()
endif
endif
endif
endfor
[0048] As shown in Table 2, for ICMP or ARP packets, a

request can cause the agent on the switch to store a current
time for the packet. When the response comes back, the
switch can capture that time as well. The switch can then
calculate the time difference between the request and
response, and return the result as the RTT for the slice ID.
[0049] The manner in which the switch calculates RTT
can vary for different packet types. In more detail, for each
packet P, protocol type (“protoType”) is checked. For ICMP,
if a packet is part of a request (e.g., “isRequest” is true), then
the switch can store the slice ID, source IP address (“sip”),
destination IP address (“dip”), and the current time. If the
ICMP packet is a return, then the switch can determine a
difference in the current time versus the previously stored
time. This value can represent RTT, and can be updated for
the slice 1D, sip, and dip. The RTT value can be sent to the
monitoring module, in an example.

[0050] For an ARP packet, if a request is recognized (e.g.,
“isRequest” is true), then a current time for the packet is
stored in association with the slice ID and source MAC
address (“smac”™). If the ARP packet is not a request, this can
mean it is the response. In that case, a response can cause the
agent to update the stored information with a round-trip time
(“RTT”). This can be reported as timing information for the
slice to the monitoring module.

[0051] For a TCP packet, the agent can calculate RTT
based on a time difference between a forwarding flow packet
and a return packet. A forwarding flow can be created, for
example, when a user opens the video and the flow is going
out to the destination where the video is accessed. The video
can then come back from the destination, including a return
packet.

[0052] In more detail, the agent can first try to determine
if the packet corresponds to a forwarding flow (“forFlow™)
by looking in a table of recent flows. The table can store
recent flows based on source IP address (“sip”), destination
1P address (“dip”™), source port (“sip”), and destination port

Nov. 19, 2020

(“dport™). Based on this information, the agent can look at
the flow table to see if the flow has already been identified
and stored with a timestamp from the forwarding flow. If a
forwarding flow is recognized (e.g., “forFlow is valid”), then
the current packet is the agent can get a time stamp for that
forwarding flow (“forFlow->timeStamp”). The agent can
also get the current time (“getTime()”) and deduct the time
stamp to determine RTT. Using this value, the agent can
update the RTT for the slice (e.g., “updateSliceRtt(slicelD,
rtt)”).

[0053] The agent can then clean up the forwarding flow
such that a new time stamp will be taken for determining
RTT in the future. This can include removing the forwarding
flow (“forFlow”) from the flow table in an example. In
another example, a value is set in the flow table to indicate
that RTT has already been calculated for the forwarding
flow. This can cause “forFlow” to be invalid on a future
lookup for that flow, which can cause the creating of another
timestamp for the flow in the flow table when RTT is
measured in the future.

[0054] When the monitoring module wishes to measure
RTT using a TCP packet, it can set a flag in the packet header
that is recognized by the agent on the switch. The agent can
log forwarding flows based these flags set in a TCP packet,
for example. This can allow for periodic RTT testing in one
example. As shown in the pseudocode of Table 1, if a
forwarding flow is not valid, then the packet P is checked to
see if certain flags are not equal to zero. For example, an
urgent flag (“URG”), SYN flag, for PSH flag can be set by
an application. These flags can be used to identify a new
flow, which can be added to the flow table for RTT calcu-
lation purposes.

[0055] An URG flag in the TCP header can indicate that
the packet must be delivered without delay. The SYN flag
can be set when a TCP connection is started between a client
and server. The PSH flag can tell the client and server to
push the buffered data to the application.

[0056] The switches can track these flags for purposes of
calculating RTT. For example, the receiver can send a reply
immediately if any of these flags are set. If none of the flags
are present in a TCP packet, the receiver may buffer the
incoming data and respond at a later time, making such
packets inappropriate for calculating RTT. For example, if
the sender sends a TCP packet with 1 byte at a time, instead
of sending this one byte to the application immediately, the
receiver TCP stack may store the data in a buffer. The
receiver may wait for a few more packets to arrive and notify
the application with a large set of data. In this way, the
response can be delayed when the data is buffered. As a
result, a buffered packet cannot be used to accurately cal-
culate the latency, in an example, as buffering skews the
results. By checking URG, SYN, and PSH flags, the system
can make sure that there is no buffering related delay present
in the latency calculation.

[0057] InTable 1, “createFlow” can cause the new flow to
be stored based on dip, sip, dport, and sport of the packet.
The new flow (“revFlow”) can be given a timestamp based
on a call such as getTime() to retrieve the current time.
Then, when a return packet is later received at the switch, the
same packet information (sip, dip, sport, dport) can be used
to get the flow (“forFlow”). This flow can be detected as
valid, and the timestamp deducted from the current time to
determine RTT.

US 2020/0366546 Al

[0058] In one example, at each hop, the respective switch
can record this timing information and report it to the
monitoring module for use in determining a latency.
[0059] At stage 130, the monitoring module can determine
the latency value. This can include adding up the timing
information of the packet from each hop on the slice to
determine slice RTT, in an example. In another example, the
monitoring module averages or otherwise aggregates the
RTT information for the slice over a period of time. This
aggregated value can be used as the slice latency value, in
an example.

[0060] At stage 135, the monitoring module can compare
the latency value to an SLA threshold. The monitoring
module can do this for slice-specific latencies, comparing
those values to slice-specific thresholds of the SLA. In one
example, if the latency falls below the threshold, the moni-
toring module can first ensure that the latency value remains
below the threshold for a period of time. This can help
ensure that the slice path truly needs to change and prevent
constant changes to slice paths. However, if the SLA thresh-
old remains unmet for the duration of the threshold time
period, then the monitoring module can act in changing the
slice path.

[0061] When the SLA latency requirement is unmet, the
monitoring module can select an alternate slice path for the
slice. This can include referencing a network connectivity
graph to determine another route with more suitable perfor-
mance characteristics. In one example, information reported
from the physical or virtual layers of the network and
corresponding to other switches can be stored in the network
connectivity graph. The alternate path selected by the moni-
toring module can include a switch that is not part of the
original slice path, requiring a different physical and virtual
path through the slice-based network.

[0062] At stage 140, the monitoring module can imple-
ment the alternate slice path across the new switch. This can
include updating slice path information at an existing switch
to route slice traffic to a third switch instead of a second
switch. Appropriate VNFs can also be instantiated in the
virtual layer corresponding to the third switch, in an
example.

[0063] FIG. 1C illustrates an example method for reducing
congestion based on throughput requirements, which can be
important SLA requirements for a variety of customers.
Traditional approaches to calculating throughput have
including periodically sending a burst of data through the
network. However, this software-based approach will not
scale in a large VSN that a Telco provider can distribute
across the country. Instead, the switches in the physical
network can collect telematics data and the monitoring
module can aggregate this data to calculate overall slice
throughput.

[0064] At stage 145, the orchestrator or monitoring mod-
ule can supply agents to programmable switches in the VSN.
This can include causing the switches to execute the agent
in the switch hardware, such as within the core of the switch.
The switches, executing the agent, can then calculate data-
rate information for multiple slices. In one example, the
switches can maintain data-rate information in the following
format: (Slice ID, Smac, Dmac, SIP, DIP, SPort, DPort, Pkt
rate). Slice ID can indicate the slice. Smac can indicate the
source MAC address while Dmac indicates the destination
MAC address. SIP and DIP can correspond to source IP
address and destination IP address, respectively. SPort and

Nov. 19, 2020

DPort can correspond to source and destination ports, and
Pkt rate can indicate the packet rate.

[0065] At stage 150, the monitoring module can receive
the data-rate information from multiple switches, including
the switches in a current slice path for a first slice. The
data-rate information can identify the slice and the packet
rate. In one example, the monitoring module periodically
collects this information by sending a message to the
switches. In another example, the switches contact the
monitoring module periodically without needing to receive
a request from the monitoring module.

[0066] At stage 155, the monitoring module can determine
an aggregate throughput for the slice and other slices in the
VSN. This can include using the network topology and slice
paths to eliminate duplicate information. For example, when
a switch is not a beginning node for a flow, it can include
duplicate information. The monitoring module can loop
through flows to update slice throughput based on rate
information from the first switch of each flow. This is
explained in further detail with regard to FIG. 5, below. The
other rate information can be ignored, in an example.

[0067] At stage 160, based on comparing the aggregate
throughput to a threshold, the monitoring module can imple-
ment a new slice path for the slice. The threshold can be a
throughput threshold for the slice in an SLA. As with
latency, the monitoring module can make sure the through-
put fails to comply with the SLA over a period of time, in
an example, before changing the slice path. The orchestrator
or monitoring module can select and implement an alternate
slice path, as was discussed above. The monitoring module
can pick a path that includes switches that are not suffering
from low throughput. This can allow for distributing slices
throughout the VSN in order to maintain SLLA compliance.

[0068] FIG. 2A is an example sequence diagram for reduc-
ing congestion based on telematics data. At stage 205, the
monitoring module can program several switches S1, S2, S3
in the slice-based network. This can include remotely con-
tacting an interface on the switch and sending a package for
execution at the switch. The package can contain the agent.
In one example, P4 language scripts are used to launch the
agent on the switches. Additionally, slice paths and other
information can be sent to the switches for use in routing.

[0069] At stage 210, the agent can execute on the
switches. The agent can be used to collect telematics data,
such as latency information or data-rate information, on a
per-slice basis. The agent 210 can further include logic for
looking up slice paths to determine next hops for packets
based on slice ID. In this example, a slice can have a current
slice path that includes switches S1 and S2. For that slice,
the next hop from S1 can be S2.

[0070] At stage 220, the switches can periodically send
telematics data to the monitoring module. In one example,
the switches determine when to send the telematics data
based on the agent. In another example, the monitoring
module contacts individual switches to request the telemat-
ics data on an as-needed basis.

[0071] At stage 225, the monitoring module aggregates
the telematics data per slice and can determine that a slice
does not meet one or more performance requirements of the
SLA. This can be based on any performance metric, and
latency and throughput are just two examples. The moni-
toring module can then determine an alternate slice path.
This can include analyzing a network topology graph that

US 2020/0366546 Al

reveals other less burdened switches. In this example, a third
switch S3 can have less congestion than a second switch S2.
[0072] In response, at stages 230 and 235, the monitoring
module can implement a new slice path for the slice by
changing the path to include the third switch S3 and exclude
the second switch S2. At stage 230, the monitoring module
can ensure that an appropriate VNF for the slice is running
in the virtual layer corresponding to the third switch S3.
Once the slice patch changes, the VNF in the virtual layer
corresponding to the second switch S2 will no longer be
used by that slice. In one example, VNF placement is
handled by the orchestrator or some other orchestrator
process besides the monitoring module.

[0073] At stage 235, the monitoring module can notify a
first switch S1 of the new slice path. This can be done after
the VNF from stage 230 is ready, in an example. The
notification can cause switch S1 to change the next hop to S3
for that particular slice, resulting in a new slice path at stage
240. This can reduce congestions across the slice-based
network.

[0074] FIG. 2B is an example sequence diagram for reduc-
ing congestion based on slice latency. At stage 242, the
monitoring module can receive timing information from
switches in the slice-based network. The agents on the
switches can communicate this information to the monitor-
ing module, as has been described. At stage 244, a first slice
path can include switches S1 and S2. Both of those switches
can report timing information at stage 242.

[0075] At stage 246, the monitoring module can determine
a latency value for a first slice based on the timing infor-
mation received from switches S1 and S2. At stage 248 the
monitoring module can determine a latency value for a
different slice that utilizes switch S3, based on timing
information from switch S3.

[0076] At stage 250, a comparison with SLA thresholds
can reveal that latency is too high in the first slice. In
response, the monitoring module can change the slice path
to a second slice path for the first slice at stage 256. To do
this, one or more needed VNFs can be instantiated in the
virtual layer of switch S3 at stage 252. Additionally, con-
figuration information can be sent to switch S1 to change the
next hop for the first slice to switch S3. This can cause the
first slice to no longer use switch S2, relieving the conges-
tion at that switch.

[0077] FIG. 2C is an example sequence diagram for reduc-
ing congestion based on slice throughput. A first slice can
have a current slice path that includes switches S1 and S2 at
stage 265. Agents on the switches can collect data-rate
information on a per-slice basis. At stage 260, the switches
can report slice-specific data-rate information to the moni-
toring module.

[0078] At stage 270, the monitoring module can calculate
slice throughput. The monitoring module can do this for the
first slice and other slices in the network. This can include
ignoring duplicate data-rate information at stage 275. In this
example, switch S2 reports duplicate data-rate information
for the first slice, which has a flow that starts at switch S1
but not at switch S2. In some examples, only some of the
data-rate information provided by switch S2 is duplicative of
the data-rate information received from switch S1, such as
where switch S2 receives data from multiple switches
including S1. In those examples, stage 275 can include
ignoring only the duplicate data-rate information that was
already accounted for based on the data-rate information

Nov. 19, 2020

associated with switch S1. Further description is provided
by FIG. 5 and the associated discussion.

[0079] At stage 280, the monitoring module can determine
that the throughput of the first slice is lower than the SLA
requirement. In response, a new slice path for the first slice
can be implemented at stage 285. This can increase through-
put by using switch S3 instead of switch S2.

[0080] FIG. 3 is an example flowchart for congestion
reduction in a slice-based network. The stages can be
performed by a monitoring module, in an example. At stage
310, a VSN monitor receives telematics data from network
elements. This can include receiving any performance data
from any switches in the network, including routers, servers,
and hosts. The VSN monitor can be one or more processes
executing on a physical server. The server can be part of a
management cluster that manages various operations on the
slice-based network. In one example, the VSN monitor
includes a virtual analytics engine, such as VMware®’s
vRealize®, to monitor how VNFs (e.g., virtual machines)
are performing in the VSN. The VNFs can represent virtual
controllers, virtual routers, virtual interfaces, virtual local
area networks (“VLANs”), host virtual machines (“VMs”),
or other virtualized network functions that run on top of the
physical hardware, such as servers connected by switches. In
one example, the VSN monitor can also include a physical
analytics engine, which can act as a physical underlay that
analyzes performance of hardware in the network, such as
the switches. The monitoring module can include the physi-
cal analytics engine. In another example, the monitoring
module can include the entire analytics engine.

[0081] The physical analytics engine can include a con-
gestion checker process that utilizes performance informa-
tion (e.g., telematics data) from the physical layer. At stage
320, the congestion checker process can determine if any of
the telematics data indicates congestion. Congestion can be
based on performance data failing to meet a threshold. For
example, bandwidth, RTT, latency, or throughput for a
particular slice can be below an SLA threshold.

[0082] At stage 330, a congestion eliminator process can
access fabric topology of the slice-based network to deter-
mine an alternate slice path. The fabric topology can include
a graph of other available switches and associated perfor-
mance metrics. The hardware in the VSN can report which
VNF's are running on which devices and which switches are
in communication with one another. By discovering both the
hardware and virtual components, the system can map these
together to create the fabric topology.

[0083] The congestion eliminator can determine one or
more alternate slice paths based on the rest of the fabric
topology and its current performance. Performance can be
reported in the physical layer by the programmable switches
that execute agents. Switches can report performance infor-
mation, such as data rate, throughput, latency, and band-
width. This performance information can be used to detect
congestion.

[0084] Congestion avoidance based on performance data
from the physical layer can be one reason for changing a
slice path. Issues in the virtual layer can also contribute to
that decision. Virtual components can separately report
performance to the virtual analytics engine. In one example,
both the virtual and physical layers are analyzed to deter-
mine when to change a slice path.

[0085] In one example, an orchestration process can man-
age a controller hierarchy. The controller hierarchy config-

US 2020/0366546 Al

ures various entities within the one or more datacenters to
implement a virtual service network. A high-level VSN
controller can coordinate sets of other controllers that con-
figure the entities in the datacenters in which the VSN is
implemented. In some embodiments, each datacenter has its
own suite of lower-level controllers. These controllers can
include compute controllers (e.g., for configuring VMs that
implement the VNFs), network controllers (e.g., for config-
uring forwarding switches to transmit data messages
between the slice selector(s) and the network services),
storage controllers, and software-defined network (“SDN)
controllers (e.g., for configuring the slice selectors and/or
gateways that transmit data messages between the datacen-
ters).

[0086] At stage 340, a process can configure an alternate
slice path in the network. The VSN controller hierarchy can
work together to implement the new slice path. This can
include instantiation of VNFs in the virtual layer and recon-
figuring physical or virtual switches to contact new switches
in either the virtual or physical layer. An orchestrator process
can manage the VNF instantiation based on the network
topology. The monitoring module can send a message to one
or more switches to change the slice path. Subsequently, the
new slice path can be monitored with future telematics data.
[0087] FIG. 4A is an example system diagram illustrating
multiple slices in a VSN. Multiple end devices 410, phones
in this example, can communicate with the VSN 405 by
sending and receiving network data at a cell tower in San
Francisco 420.

[0088] The cell tower can be communicatively coupled to
a slice selector 425 that determines the correct slices for the
packets coming from the end devices 410. This can be done
based on packet information, such as packet type, source and
destination IP address, source and destination ports, and
source and destination MAC addresses. In one example, the
slice selector 425 initially processes the packets and assigns
them to one of the network slices of the VSN. The slice
selector 425 can also handle service chaining operations to
ensure that the packets processed by the correct set of
network services for the assigned slice. In various examples,
the slice selector 425 can be implemented by a VM, a
software forwarding element (e.g., a flow-based forwarding
element) operating within a VM or within virtualization
software of a host computer, or a set of modules executing
outside of a forwarding element (e.g., between a VM and a
port of a forwarding element) within virtualization software
of a host computer, among others.

[0089] In some cases, many slice selectors 425 are con-
figured for a VSN. In a telecommunications service provider
example, a network slice selector can be configured for each
cell tower, base station, or other aspect of the access
network. The telecommunications service provider access
network can include edge clouds for each cell tower and
configure at least one slice selector 425 at each such edge
cloud. In other examples (e.g., for SD-WAN traffic entirely
contained within a set of connected datacenters), distributed
network slice selectors are configured such that the network
slice selection for a data message sent from a VM occurs at
the same host computer as the source of the data message
(though outside of the source VM).

[0090] In this example, a first slice 430 for YOUTUBE
streaming and a second slice 435 for 911 calls exist in the
VSN 405. These slices 430, 435 can each have different SLA
requirements and can be spread across one or more switches

Nov. 19, 2020

in the VSN. The switches can span multiple clouds across
the internet, in an example. These same slices 430, 435 can
end in New York City 450. A different slice selector 440 at
that point can route the network traffic to and from the
slice-based network.

[0091] FIG. 4B is an example system diagram illustrating
multiple slices in a VSN. A first slice 460 can span switches
R1, R3, R5, and R6. A second slice 465 can span switches
R1, R2, R4, and R6. Both slices 460, 465 span from San
Francisco 420 to New York City 450. The switches in this
example can be routers. These switches each calculate
packet rate and timing information for each slice 460, 465.
[0092] In one example, the second slice originally has a
slice path from San Francisco 420 to New York City 450.
Based on congestion, the slice path can be changed to use
switches R2, R4 instead of switch. R3, R5. To do this, the
monitoring module can update routing tables at switch R1 to
change the next hop to switch R2 instead of switch R3. The
routing tables at switches R2, R3, R4, and R5 can also be
updated to reflect the new slice path.

[0093] To detect congestion, the monitoring module can
use telematics data, such as the aforementioned packet rate
and timing information from the various switches. Using
this data, the monitoring module can attempt to aggregate
throughput for each slice 460, 465. In one example, slice
throughput only needs non-duplicative data-rate information
for calculating total slice throughput. For example, switches
R3 and R5 can have duplicate packet rate data for the first
slice 460 going from San Francisco 420 to New York 450,
but switch R5 will have non-duplicative and relevant packet
rate data for the first slice 460 going from Miami 470 to New
York 450. Therefore, while the data-rate information from
switch R3 should be ignored, the Miami 470 data at switch
R5 should be included in calculating throughput for the first
slice 460, in an example. This is because the first slice 460
has two different sources of throughput within the same
slice, the first being the flow from San Francisco 420 and the
second being the flow from Miami 470. Switch R3, on the
other hand, only contains the duplicate flow information
from R1.

[0094] FIG. 5 is an example flow chart for calculating slice
throughput and determining how to eliminate data from
duplicate flows. Other methods of calculating throughput are
possible, and FIG. 5 is only one example approach. At stage
505, the monitoring module begins aggregating throughput
for a slice, as explained previously. For calculating slice
throughput, the data rate information is only needed from the
first switch for each flow within the slice, in an example.
Therefore, in one example, the monitoring module can
analyze which flows begin at which switches within a slice
path, and calculate throughput based on the data-rate infor-
mation from those switches.

[0095] At stage 510, the monitoring module collects tele-
matics data from a next switch S in the slice path for the
slice. This can include collecting packet rate data. At stage
515, the monitoring module gets packet rate data for the next
flow F.

[0096] At stage 520, if the switch is the first in the path for
that flow, then the data-rate information is relevant to
determining slice throughput. As a result, at stage 525, the
monitoring module can update slice throughput to include
the data-rate information for that flow.

[0097] If the switch is not the first path for that flow, then
the data-rate information can be ignored with regard to

US 2020/0366546 Al

determining slice throughput. Instead, the algorithm can get
the next flow F at stage 515 again and repeat this process
until there are no more flows to check at the switch. With
regard to FIG. 4B, this is why switch R5 was relevant to the
throughput of the first slice but switch R3 was not. At switch
R3, there is a flow from San Francisco, but that flow began
at switch R1. Conversely, at switch RS, a first flow began
from switch R1 but a second flow began from switch R5.
[0098] At stage 530, the monitoring module determines if
there are any unprocessed flows. The monitoring module can
do this based on its access to the fabric topology. The fabric
topology, which can be a graph, can indicate different flows
based on flow paths and physical switches, in an example. If
there are unprocessed flows, then the algorithm can return to
stage 515, and get the rate statistics for the next flow.
[0099] Otherwise, at stage 535, the monitoring module can
determine whether additional switches exist. If so, the
algorithm can start again at stage 510. The next switch can
be checked as the first in any flow paths and included in the
slice throughput, if applicable. But if no more switches exist,
slice throughput calculation is complete at stage 540.
[0100] FIG. 6 is an example diagram of system compo-
nents in a VSN 600. The VSN 600 can be a distributed Telco
cloud network with one or more clouds 620, 640. Slices 672,
678, 682 can be distributed across these clouds 620, 640.
[0101] Each cloud 620, 640 can have physical and virtual
infrastructure for network function virtualization (“NFV”)
642. For example, physical switches 644, such as routers and
servers, can run VMs 646 or microservices that provide VNF
functionality. A slice can include a first VNF that executes on
an edge cloud 620. The VNF can utilize one or more vCPUs,
which can be one or more VMs 624 in an example. How-
ever, the edge cloud 620 can execute numerous VNFs, often
for multiple tenants where the VNFs are part of various
slices. The slices can be kept separate from a functional
perspective, with VNFs from different slices not aware of
the existence of each other even when they rely on VMs 624
operating on shared physical hardware 622.

[0102] A first VNF in the slice path can communicate with
a second VNF, which can be located in a different cloud 640.
For example, the second VNF can include one or more VMs
646 operating on physical hardware 644 in a core cloud 640.
The second VNF can communicate with yet another VNF in
the slice path. One or more of these VNFs can act as an
egress to the internet 660, in an example.

[0103] One or more user devices 602 can connect to a slice
in the VSN 600 using, for example, a 5G data connection.
The user devices 602 can be any physical processor-enabled
device capable of connecting to a Telco network. Examples
include cars, phones, laptops, tablets, IoT devices, virtual
reality devices, and others. Cell towers 605 or other trans-
ceivers can send and receive transmissions with these user
devices 602. At the ingress point to edge clouds 620, slice
selectors 608 can receive data sent from the user devices 602
and determine which slice applies. The slice selectors 608
can operate as VMs 624 in the edge cloud or can run on
different hardware connected to the edge cloud 620. The
slice selectors can use information in the packet headers to
determine which slice the packets belong to, in an example.
[0104] To manage the distributed virtual infrastructure, a
provider can run a topology 665 of management processes,
including an orchestrator 668 having a monitoring module.
The orchestrator 668 can alternately communicate with a
monitoring module that runs separately on a different server

Nov. 19, 2020

or in a different virtual environment. In that example, the
monitoring module can be part of the topology 665 that
works with the orchestrator 668. One example framework
for these processes is VCLOUD NFV by VMWARE, which
can use VSPHERE for network virtualization and VREAL-
IZE for virtual analytics. An example orchestrator is
CLOUDIFY.

[0105] The orchestrator can be responsible for managing
slices and VNFs, in an example. This can include provi-
sioning new slices or re-provisioning existing slices based
on performance metrics and network load. The orchestrator
can run on one or more physical servers located in one or
more core clouds 620, 640 or separate from the clouds. The
orchestrator 668 can provide tools for keeping track of
which clouds and VNFs are included in each slice. The
orchestrator can further track slice performance for indi-
vidual tenants 670, 680, and provide a management console.
The orchestrator 668 can also receive performance metrics
and load information and determine when the monitoring
module should find a new slice path.

[0106] In this example, a first tenant 670 has multiple
slices 672, 674. Each slice 672, 678 can be defined by a slice
record that indicates VNF requirements for that slice. VNFs
674, 676 can each provide different functionality in the
service chain.

[0107] In addition, an SLA can specify various threshold
performance requirements for the slices. These performance
requirements can include latency, round-trip time, band-
width, and others. These can serve as per-slice QoS require-
ments, in an example.

[0108] The orchestrator 668 can rely on the monitoring
module to receive telematics information from the switches
622, 644 and determine if the SLA is satisfied. In one
example, the monitoring module provides the switches 622,
644 with an agent 601. The switches 622, 644 can be
programmed to execute the agent 601. The monitoring
module can also supply policing algorithms that the switch
uses to move packets from ingress ports 603 to egress ports
606, and from egress ports 606 to the next hop in the
network 600. The monitoring module can also supply slice
path information that the switches 622, 644 use to determine
next hops and which egress interfaces (e.g., ports) to use for
those next hops.

[0109] The orchestrator 668 can also change settings in the
slice selectors 608 and switches 622, 644 to ensure traffic
routes correctly down a slice path. This can include chang-
ing tables to which these devices compare packet informa-
tion. For example, slice selection can be based on informa-
tion in the packet header for a packet. For example, a switch
or slice selector can use a combination of layer 2 to layer 4
(L2-L4) headers or by performing deep packet inspection
(e.g., to classify traffic based on data in the layer 7 (L7)
header. For example, slice selection can be based simply on
the source device by using the source network layer (e.g., IP)
address, or can be based on the type of traffic or destination
network domain by looking at the L7 header. In some
embodiments, the network slice selector maintains state for
mapping connections to network slices so that deep packet
inspection does not need to be performed on each data
message of a connection. In addition, for some connections,
only certain data messages contain the [.7 header informa-
tion required for performing the slice selection.

[0110] When performing slice selection using deep packet
inspection, the initial data message for a connection may not

US 2020/0366546 Al

include the L7 header information that the slice selector
needs to correctly identify the slice. For example, a connec-
tion between an endpoint device (for example, a mobile
device such as a smart phone or tablet, a laptop or desktop
computer, an loT device, a self-driving automobile, a smart
camera belonging to a security system) and a network
domain often begins with a set of connection initiation
messages, such as a TCP handshake. After completion of the
handshake, the device then sends, for example, an http get
message that includes the network domain. Subsequent data
messages sent between the device and the network domain
may not include such information.

[0111] Although several examples above are discussed
with regard to a physical switch, these examples can alter-
natively be performed at a virtual switch. Additionally,
although the orchestrator, virtual management topology, and
monitoring module are referred to separately, these pro-
cesses can all operate together. The examples are not meant
to limit which process performs which step. Instead, the
monitoring module can be considered any portion of the
virtual management topology that performs the described
stages.

[0112] Other examples of the disclosure will be apparent
to those skilled in the art from consideration of the speci-
fication and practice of the examples disclosed herein.
Though some of the described methods have been presented
as a series of steps, it should be appreciated that one or more
steps can occur simultaneously, in an overlapping fashion, or
in a different order. The order of steps presented are only
illustrative of the possibilities and those steps can be
executed or performed in any suitable fashion. Moreover,
the various features of the examples described here are not
mutually exclusive. Rather any feature of any example
described here can be incorporated into any other suitable
example. It is intended that the specification and examples
be considered as exemplary only, with a true scope and spirit
of the disclosure being indicated by the following claims.

What is claimed is:

1. A method for managing throughput in a slice-based
network, comprising:
supplying agents to programmable switches, the switches
executing the agents to calculate data-rate information
for multiple slices;

receiving, at a monitoring module, data-rate information
for a first slice from the switches in a slice path;

determining an aggregate throughput for the first slice
based on the received data-rate information; and

based on comparing the aggregate throughput to a thresh-
old, implementing an alternate slice path for the first
slice.

2. The method of claim 1, further comprising using a
network topology to prevent duplicate rate information from
being used in determining the aggregate throughput.

3. The method of claim 2, further comprising, for each
switch in the slice path:

when the switch is an ingress point for a flow, including
the data-rate information from the switch in determin-
ing the aggregate throughput; and

when the switch is not an ingress point for the flow,
preventing the data-rate information from being used in
determining the aggregate throughput.

Nov. 19, 2020

4. The method of claim 3, wherein the flow is uniquely
identified based on packet information including source
address, destination address, source port, destination port,
and the slice identifier.

5. The method of claim 1, wherein the threshold is
established by a service level agreement (“SLA™).

6. The method of claim 1, wherein receiving data-rate
information from a first switch includes receiving source and
destination addresses, a packet rate, and a slice identifier.

7. The method of claim 1, wherein the switches execute
the agents at a core of the respective switch.

8. A non-transitory, computer-readable medium compris-
ing instructions that, when executed by a processor, perform
stages for managing throughput in a slice-based network, the
stages comprising:

supplying agents to programmable switches, the switches

executing the agents to calculate data-rate information
for multiple slices;

receiving, at a monitoring module, data-rate information

for a first slice from the switches in a slice path;
determining an aggregate throughput for the first slice
based on the received data-rate information; and
based on comparing the aggregate throughput to a thresh-
old, implementing an alternate slice path for the first
slice.

9. The non-transitory, computer-readable medium of
claim 8, the stages further comprising using a network
topology to prevent duplicate rate information from being
used in determining the aggregate throughput.

10. The non-transitory, computer-readable medium of
claim 9, the stages further comprising, for each switch in the
slice path:

when the switch is an ingress point for a flow, including

the data-rate information from the switch in determin-
ing the aggregate throughput; and

when the switch is not an ingress point for the flow,

preventing the data-rate information from being used in
determining the aggregate throughput.

11. The non-transitory, computer-readable medium of
claim 10, wherein the flow is uniquely identified based on
packet information including source address, destination
address, source port, destination port, and the slice identifier.

12. The non-transitory, computer-readable medium of
claim 8, wherein the threshold is established by a service
level agreement (“SLA”).

13. The non-transitory, computer-readable medium of
claim 8, wherein receiving data-rate information from a first
switch includes receiving source and destination addresses,
a packet rate, and a slice identifier.

14. The non-transitory, computer-readable medium of
claim 8, wherein the switches execute the agents at a core of
the respective switch.

15. A system for managing throughput in a slice-based
network, comprising:

a non-transitory, computer-readable medium containing

instructions for a monitoring module; and

a processor that executes the monitoring module to per-

form stages comprising:

supplying agents to programmable switches, the
switches executing the agents to calculate data-rate
information for multiple slices;

receiving, at a monitoring module, data-rate informa-
tion for a first slice from the switches in a slice path;

US 2020/0366546 Al Nov. 19, 2020
10

determining an aggregate throughput for the first slice
based on the received data-rate information; and

based on comparing the aggregate throughput to a
threshold, implementing an alternate slice path for
the first slice.

16. The system of claim 15, the stages further comprising
using a network topology to prevent duplicate rate informa-
tion from being used in determining the aggregate through-
put.

17. The system of claim 16, the stages further comprising,
for each switch in the slice path:

when the switch is an ingress point for a flow, including

the data-rate information from the switch in determin-
ing the aggregate throughput; and

when the switch is not an ingress point for the flow,

preventing the data-rate information from being used in
determining the aggregate throughput.

18. The system of claim 17, wherein the flow is uniquely
identified based on packet information including source
address, destination address, source port, destination port,
and the slice identifier.

19. The system of claim 15, wherein the threshold is
established by a service level agreement (“SLA™).

20. The system of claim 15, wherein receiving data-rate
information from a first switch includes receiving source and
destination addresses, a packet rate, and a slice identifier.

#* #* #* #* #*

