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(57) ABSTRACT

Artificial intelligence is an increasingly important sector of
the computer industry. However, artificial intelligence is an
extremely computationally intensive field such that perform-
ing artificial intelligence calculations can be expensive, time
consuming, and energy consuming. Fortunately, many of the
calculations required for artificial intelligence applications
can be performed in parallel such that specialized linear
algebra matrix processors can greatly increase computa-
tional performance. But even with linear algebra matrix
processors; performance can be limited due to complex data
dependencies. Without proper coordination, linear algebra
matrix processors may end up idle or spending large
amounts of time moving data around. Thus, this document
discloses methods for efficiently scheduling linear algebra
matrix processors.
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METHOD AND APPARATUS FOR
SCHEDULING MATRIX OPERATIONS IN
DIGITAL PROCESSING SYSTEMS

FIELD OF INVENTION

[0001] The present U.S. patent application claims the
benefit of the previous U.S. Provisional Patent Application
entitled “Method and Apparatus for Scheduling Matrix
Operations in Digital Processing Systems” filed on May 7,
2019 having Ser. No. 62/844,499.

FIELD OF INVENTION

[0002] The present invention relates to the field of com-
puter processing. In particular, but not by way of limitation,
the present invention discloses digital circuit designs, meth-
ods, and control systems for scheduling matrix operations
within digital processing circuits.

BACKGROUND

[0003] Early computer systems processed computer
instructions a single instruction at time and were originally
limited to running a computer program at a time. In order to
share computer resources among many different computer
programs, multitasking computer operating systems were
developed. Multitasking computer operating systems inter-
rupt an executing computer program, store the current state
of that computer program, and then begin or resume the
operation of another computer program such that the com-
puter system can execute more than one computer program
at time.

[0004] As computers further developed, computer systems
were given multiple independent processing cores such that
computer systems could execute multiple sets of instructions
in parallel. Computer operating systems took advantages of
this by allowing multiple independent computer programs to
execute independently and in parallel. Furthermore, com-
puter programs were developed that include different sec-
tions of code that can be run in parallel or single sections of
code that can be duplicated and executed in parallel. This is
known as multithreading.

[0005] Multitasking and multithreading are used in com-
puter systems with multiple processing cores to maximize
the processing throughput of conventional computer sys-
tems. This has been further expanded with massive parallel
processing (MPP) computer systems that can use very large
amounts of independent computer processors or computer
systems to handle processing tasks that have a large amount
of parallelism.

[0006] In recent years the field of Artificial Intelligence
(AI) has grown to become very important. Artificial Intel-
ligence is increasingly being used for a wide variety of tasks
such as image recognition, High-Performance Computing
(HPC), scientific computing, machine learning, data-mining,
speech recognition, and self-driving vehicles. Artificial
Intelligence applications tend to rely very heavily upon
linear algebra matrix computations. Specifically, matrix
operations are required to implement artificial neural net-
works (ANNSs) that learn from a set of training data and then
later apply that learning to new input data.

[0007] Artificial Intelligence (Al) applications have been
traditionally implemented with conventional computer sys-
tems. Since there is a fair amount of inherent parallelism in
Artificial Intelligence applications, various parallel com-

Nov. 26, 2020

puter systems such as multicore processors and massive
parallel processing (MPP) computer systems have been
used. However, Artificial Intelligence applications are spe-
cifically very dependent on linear algebra matrix computa-
tions. Although traditional computer CPUs can easily handle
linear algebra matrix computations, they are not optimized
for linear algebra matrix computations. Thus, improve effi-
ciency and reduce the time required to perform complex
linear algebra matrix computations, many specialized pro-
cessors have been developed for handling specialized linear
algebra matrix computations used within Artificial Intelli-
gence (Al).

[0008] Due to the increased usage of artificial intelligence
based applications, digital circuit designers have in recent
years begun to develop specialized matrix processing cir-
cuits for the performing linear algebra matrix operations
needed to implement an artificial neural network. Graphical
Processing Units (GPUs) have long been used to perform
linear algebra operations for three-dimensional graphics
rendering. Thus, Graphical Processing Units (GPUs) have
been modified to perform linear algebra operations for
artificial neural networks.

[0009] Modified Graphical Processing Units (GPUs) have
been very effective at efficiently and quickly performing the
linear algebra matrix operations used into artificial neural
networks. However, modified Graphical Processing Units
(GPUs) generally used a long pipelined architecture that was
originally developed to perform linear algebra operations for
three-dimensional graphics rendering. Therefore, modified
Graphical Processing Units (GPUs) work best when per-
forming large batched operations of linear algebra opera-
tions for artificial neural networks.

[0010] Newer specialized digital processing circuits have
been developed to specifically perform the linear algebra
operations used within artificial neural networks. However,
these newer artificial intelligence (Al) processors are still
often underutilized due to various different reasons. For
example, memory limitations, data dependencies, move-
ment of vector data, reloading weight matrixes, and other
tasks can significantly reduce the throughput of a specialized
Al processor. Thus, without proper coordination, the spe-
cialized Al processor circuit may end up idle. Therefore, it
is desirable to develop new scheduling methods for opti-
mizing the computational efficiency specialized Al proces-
sor.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Inthe drawings, which are not necessarily drawn to
scale, like numerals describe substantially similar compo-
nents throughout the several views. Like numerals having
different letter suffixes represent different instances of sub-
stantially similar components. The drawings illustrate gen-
erally, by way of example, but not by way of limitation,
various embodiments discussed in the present document.
[0012] FIG. 1A illustrates a conceptual diagram of a single
layer artificial neural network.

[0013] FIG. 1B illustrates a conceptual diagram of a
double-layer artificial neural network.

[0014] FIG. 2 illustrates a block diagram of an abstracted
Matrix Processor that may be used to perform matrix
calculations.

[0015] FIG. 3A illustrates a block diagram of an array of
Matrix Processors surrounded by buffers on two sides and
vector processors on two sides.
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[0016] FIG. 3B illustrates one embodiment of the matrix
processor array of FIG. 3A.

[0017] FIG. 4A conceptually illustrates a forward pass
inference operation through a four layer artificial neural
network.

[0018] FIG. 4B conceptually illustrates a back propagation
operation through a four layer artificial neural network.
[0019] FIG. 4C conceptually illustrates a weight update
operation through a four layer artificial neural network.

[0020] FIG. 5A illustrates a four layer artificial neural
network.
[0021] FIG. 5B illustrates a batch of sample data vectors

and the operations that must be performed for an inference
operation of the sample data vectors.

[0022] FIG. 6A illustrates the full data dependencies for
all the three common artificial neural network processing
stages for a four-layer artificial neural network.

[0023] FIG. 6B illustrates three work queues that are
ordered according to the data dependencies for all the three
common artificial neural network processing stages for a
four-layer artificial neural network.

[0024] FIG. 7A illustrates a “layer-first” scheduling sys-
tem for processing the data samples through the four-layer
artificial neural network of FIG. SA.

[0025] FIG. 7B illustrates a “sample-first” scheduling sys-
tem for processing the data samples through the four-layer
artificial neural network of FIG. SA.

[0026] FIG. 8 illustrates a conceptual diagram describing
the various different execution paradigms wherein the teach-
ings of the present disclosure may be used.

[0027] FIG. 9 illustrates an overview of neural network
processing system for preparing a neural network for execu-
tion.

[0028] FIG. 10 illustrates a flow diagram illustrating how
a Neural Network Work Composition system operates.
[0029] FIG. 11 illustrates a flow diagram illustrating how
a Neural Network Dynamic Scheduler prepares a batch of
data samples for processing through an artificial neural
network.

[0030] FIG. 12A illustrates a four-layer artificial neural
network for a first example scheduling operation.

[0031] FIG. 12B illustrates a set of four work queues for
processing four data samples through the artificial neural
network of FIG. 12A with low latency.

[0032] FIG. 13A illustrates a four-layer artificial neural
network for a second example scheduling operation.
[0033] FIG. 13B illustrates a set of four work queues for
processing four data samples through the artificial neural
network of FIG. 13A with maximum throughput.

[0034] FIG. 14A illustrates a four-layer artificial neural
network split across two servers for a third example sched-
uling operation.

[0035] FIG. 14B illustrates a set of eight work queues for
processing four data samples through the artificial neural
network of FIG. 14A with two servers with minimal latency.
[0036] FIG. 15A illustrates a four-layer artificial neural
network for a fourth example scheduling operation with a
full training session.

[0037] FIG. 15B illustrates a set of four work queues for
processing four data samples through a full training session
on the artificial neural network of FIG. 15A.

[0038] FIG. 16A illustrates a four-layer artificial neural
network for a fifth example scheduling operation with a full
training session.
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[0039] FIG. 16B illustrates a set of four work queues for
processing four data samples through a full training session
on the artificial neural network of FIG. 16A.

[0040] FIG. 17A illustrates a four-layer artificial neural
network split across two servers for a sixth example sched-
uling operation.

[0041] FIG. 17B illustrates a set of eight work queues for
processing four data samples through the artificial neural
network of FIG. 17A with two servers.

[0042] FIG. 18A illustrates a four-layer artificial neural
network split across two servers for a seventh example
scheduling operation.

[0043] FIG. 18B illustrates a set of eight work queues for
processing four data samples through the artificial neural
network of FIG. 18A with two servers and recomputation.

[0044] FIG. 19A illustrates a four-layer artificial neural
network for an eighth example scheduling operation with an
inference operation with two jobs.

[0045] FIG. 19B illustrates a set of four work queues for
processing two data samples from two different jobs through
an inference operation on the artificial neural network of
FIG. 19A.

DETAILED DESCRIPTION

[0046] The following detailed description includes refer-
ences to the accompanying drawings, which form a part of
the detailed description. The drawings show illustrations in
accordance with example embodiments. These embodi-
ments, which are also referred to herein as “examples,” are
described in enough detail to enable those skilled in the art
to practice the invention. It will be apparent to one skilled in
the art that specific details in the example embodiments are
not required in order to practice the present invention. For
example, although some of the example embodiments are
disclosed with reference to a particular abstracted matrix
processor, the techniques may be used with other imple-
mentations artificial intelligence digital processing circuits.
The example embodiments may be combined, other embodi-
ments may be utilized, or structural, logical and electrical
changes may be made without departing from the scope of
what is claimed. The following detailed description is,
therefore, not to be taken in a limiting sense, and the scope
is defined by the appended claims and their equivalents.

[0047] In this document, the terms “a” or “an” are used, as
is common in patent documents, to include one or more than
one. In this document, the term “or” is used to refer to a
nonexclusive or, such that “A or B” includes “A but not B,”
“B but not A,” and “A and B,” unless otherwise indicated.
Furthermore, all publications, patents, and patent documents
referred to in this document are incorporated by reference
herein in their entirety, as though individually incorporated
by reference. In the event of inconsistent usages between
this document and those documents so incorporated by
reference, the usage in the incorporated reference(s) should
be considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document
controls.
[0048]

[0049] One of the core techniques in most artificial intel-
ligence (Al) work is the use of artificial neural networks
(ANN5s). Artificial neural networks were originally designed
based up the biological networks of neuron cells employed

Neural Networks Overview
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within animal brains. However, techniques used within
artificial neural networks (ANNs) have improved over the
years of research.

[0050] Like biological brains, artificial neural networks
learn from the experience of input data from the world
around them. For artificial neural networks, sets of training
data are presented to the artificial neural network and the
artificial neural networks attempts to make an inference. The
results are compared with a desired answer to determine an
error and that error is used to adjust as set of weights within
the artificial neural networks to improve performance. This
technique is known supervised learning.

[0051] FIG. 1A illustrates a conceptual diagram of a
single-layer four-input artificial neural network (ANN) 100.
Referring to the artificial neural network (ANN) of FIG. 1A,
input data values 101 to 104 form an input data vector 105
that is provided with training data vectors during training
sessions and then with new input data vectors when the
artificial neural network is later used to make inferences.
The input data vector 105 is processed with a weighted
matrix 120 to create an output data vector 147 (data values
141 to 144). Many different types of data processing may be
performed using weighted matrix 120 (such as a Hadamard
product, Frobenius inner product, matrix addition, etc.)
however this document will focus upon the well-known
matrix product. (Note that the techniques described in this
document can be used with any of these other data process-
ing operations.)

[0052] After processing the input data vector 107 (data
values 101 to 104) with the weighted matrix 120 to create
the output data vector 147 (output data values 141 to 144),
the output data vector 147 may be combined with an output
function 170 to create a final output 191 for the artificial
neural network 100. The output function 170 may be
referred to as an activation function.

[0053] Note that the four-input artificial neural network of
FIG. 1A illustrates just one example of very small an
artificial neural network. Artificial neural networks may be
constructed much wider than just four inputs. Multiple
independent artificial neural networks may be used in par-
allel and the outputs of the independent artificial neural
networks may be combined.

[0054] Artificial neural networks may comprise many
layers of weight matrices such that very complex analysis of
the input data may be performed. For example, FIG. 1B
illustrates a two-layer artificial neural network wherein the
input data (101 to 104) is processed with a first weighted
matrix 121 to create intermediate output data (141 to 144).
Next, intermediate output data (141 to 144) is processed
with a second weighted matrix 122 to create output data (151
to 154). Output data (151 to 154) may be processed by
output function 170 to create a final output. Alternatively (or
in addition to), the output data (151 to 154) may also be used
as intermediate data that is fed into additional artificial
neural network layers (not shown) such that very complex
hierarchical artificial neural networks may be created.

[0055] Abstracted Matrix Processor

[0056] As set forth in background, the field of artificial
intelligence has become increasingly popular. Therefore,
there are now many dedicated artificial intelligence digital
processing circuits designed to accelerate the task of per-
forming the linear algebra matrix operations that are per-
formed heavily within artificial neural network applications.
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[0057] FIG. 2 illustrates a block diagram of an abstracted
matrix processor 201 that has been designed to perform
linear algebra matrix operations for artificial neural network
applications. Matrix processors can be implemented in many
different sizes and in many different manners. This docu-
ment is primarily concerned with scheduling linear algebra
matrix operations for processing by such matrix processors
and thus will not discuss matrix processor hardware in
detail. However, to provide an example of what a matrix
processor may entail, an example of an abstracted matrix
processor will be described.

[0058] Referring to FIG. 2, the abstracted matrix processor
201 receives input data on one or more operand buses. In the
particular matrix processor embodiment of FIG. 2, there are
two operand buses: operand bus from the top 221T and
operand bus 22101 from the left. Data received on the
operand buses may be used directly by the processing logic
267 or may be stored in a local memory system 230 for later
usage. The data received may comprise entire weight matri-
ces and input data operand vectors. The memory system 230
may also include register files closely coupled to the pro-
cessing logic 267.

[0059] The matrix processor 201 also receives commands
on command bus 207. The control system 205 within the
matrix processor 201 parses the commands received and
uses the received commands to determine how the process-
ing logic 267 should be used to process data. The processing
logic 267 maybe implemented in many different manners as
long as the matrix processor 201 performs the desired linear
algebra matrix operations and outputs the proper linear
algebra matrix operation results. For example, the process-
ing logic 267 may be implemented with a single-instruction
multiple-data (SIMD) processor, a digital signal processor
(DSP), a conventional central processing unit (CPU) core, a
highly parallelized custom matrix processor, or in any other
manner that performs the desired linear algebra matrix
operations.

[0060] The matrix processor 201 may be designed to
operate using many different types of data formats and data
precision levels. For example, the Matrix Processor 201 may
process integers, 16-bit floating point numbers, 32-bit float-
ing point numbers, or any other data format.

[0061] Many different matrix operations may be imple-
mented in the abstracted matrix processor 201. Two well-
known matrix operations that may be included are the matrix
dot product and the matrix cross products.

[0062] The control system 205 of the matrix processor 201
instructs the processing logic 267 to output the results of
requested matrix operations on one or more result bus 291.
In some embodiments, the matrix processor 205 will include
the reduction logic output a reduced form of the result on a
reduce bus 295.

[0063] The operand buses may be wide parallel buses such
that entire input data vectors can be loaded into the matrix
processor 201 during a single operating cycle. Similarly,
entire weight matrix rows from a neural network weight
matrix may be read into the matrix processor 201 during a
single operating cycle. Similarly, the result buses 291 are
also wide parallel buses such that entire output data vectors
can be output during a single operation cycle.

[0064] The memory system 230 is generally a very impor-
tant component of the abstracted matrix processor 201. To
optimize performance, the memory system 230 of the matrix
processor 201 may be constructed wide and deep. The
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memory system 230 is an important resource of the matrix
processor and must be carefully used in order to optimize
operation. Thus, a scheduling system must carefully con-
sider the limitations of the memory system 230 within
matrix processors to ensure that it used efficiently without
overflowing.

[0065] The memory system 230 is wide in that entire data
vectors can be written into or read out of the memory system
230 during a single operating cycle. For example, in Matrix
Processor that handles a 16 by 16 element matrix wherein
each element is a 16-bit floating-point value, the memory
system can read out 256 bit values such that an entire sixteen
element data vector comprising 16-bit data values each can
be read out of the memory system 230 during a single
operating single cycle.

[0066] In one particular matrix processor, the memory
system 230 is deep in that it is constructed large enough to
store multiple different sets of weight matrices. In this
manner the matrix processor 201 can used to perform matrix
operations on multiple different artificial neural network
layers. For example, if a matrix processor 201 cannot
perform an operation for one particular neural network layer
because a required input data vector is not yet available, that
matrix processor can instead be used to perform matrix
operations for other neural network layers or other neural
networks. A deep memory 230 allows the matrix processor
201 to be used very efficiently since it can handle a steady
stream of requested matrix operations for many different
neural networks without ever needing to load in weight
matrix data, one of the most time consuming (and energy
consuming) tasks for matrix processing.

[0067] In addition to storing multiple weight matrices, the
memory 230 can be used to store other information that may
be needed such as input data vectors, output data vectors,
error vectors, etc. Intermediate result data vectors from
forward pass operations may be stored in the memory
system 230 and then later accessed when performing a
related back propagation operation. Another very important
type of data that may be stored is matrix weight gradients.
A matrix weight gradient comprises a matrix of adjustments
for a weight matrix that may be periodically used to update
the weight matrix.

[0068] Matrix Processor Array

[0069] The abstracted matrix processor 201 illustrated in
FIG. 2 may be be used alone to perform simple linear matrix
operations very quickly. For example, the Matrix Processor
201 can be used to implement the very small artificial neural
network 100 illustrated in FIG. 1A. It could also be used to
implement the small two-layer artificial neural network
illustrated in FIG. 1B by using it serially to perform the
required matrix operations of both artificial neural network
layers.

[0070] However, most artificial neural networks must
handle many more inputs and outputs than the very small
example artificial neural networks illustrated in FIGS. 1A
and 1B. It is therefore desirable to combine together the
computing ability of many different matrix processors in
order process wider artificial neural networks and multi-
layer artificial neural networks. In this manner, much larger
multi-layer artificial neural networks that are used to per-
form useful artificial intelligence tasks can be handled very
efficiently.

[0071] FIG. 3A illustrates a block diagram of an architec-
ture using multiple matrix processor circuits in a coordinated
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manner to implement wide multi-layer artificial neural net-
works. In FIG. 3A, each individual matrix processor is
labelled as “MP” for Matrix Processor. As illustrated in FIG.
3A, the matrix processors are arranged in a grid array
format. In between the individual matrix processors of the
matrix processor array is bus wiring and combination logic
399 that couples all of the matrix processors to buffers that
provide input data and vector processing units (VPU) that
receive result data vectors and further process those result
data vectors. The bus wiring and combination logic 399 may
be implemented in different manners to achieve different
goals.

[0072] To provide data vectors to the array of matrix
processors in one embodiment, Buffer 1 on left and Buffer
2 on the top are coupled to the operand bus of every
individual Matrix Processor in the array bus wiring 399.
This may be accomplished by coupling operand bus to
Buffer 1 and operand bus to Buffer 2 as illustrated in FIG.
3B. In this manner, data vectors from either Buffer 1 or
Buffer2 can be loaded into the Matrix Processors in the
array. The data vectors may comprise weight matrix rows,
input data vectors, or any other required data. Note that since
there are multiple buses, the operand loading operations can
be performed in parallel.

[0073] Similarly, the result bus of every matrix processor
in the array is coupled to Vector Processing Unit 1 (VPU1)
on the right and Vector Processing Unit 2 (VPU2) on the
bottom of the array using bus wiring and combination logic
399. This may be accomplished by coupling result bus to
Vector Processing Unit 1 (VPU1) on the right and result bus
to Vector Processing Unit 2 (VPU2) on the bottom as
illustrated in FIG. 3B. The Vector Processing Units contain
both storage for storing result data vectors and processing
logic for performing various vector processing operations on
received result data vectors. For example, the Vector Pro-
cessing Units (VPUs) can combine partial result data vectors
from multiple different Matrix Processors into a single
complete output data vector result.

[0074] All of the individual Matrix processors in the array
receive commands on their individual command buses (not
shown in FIG. 3B). In this manner, each individual Matrix
Processor in the array can be controlled individually. For
example, the individual Matrix Processors can be informed
when data is available on their operand buses and what
operations to perform. By carefully controlling each indi-
vidual matrix processor of the array in a coordinated manner,
the matrix processor array becomes a very powerful system
for efficiently processing matrix operations needed for arti-
ficial intelligence applications.

[0075] Artificial Neural Network Processing

[0076] Artificial neural networks (ANNs) generally per-
form training in a three step process: a forward pass infer-
ence, a backward pass loss error detection, and weight
matrix updates. FIGS. 4A to 4C illustrate these common
three artificial neural network processing stages.

[0077] FIG. 4A conceptually illustrates a forward pass
inference operation 451 through a four layer artificial neural
network (ANN) 422. A batch of sample data vectors 411 is
used to provide an input data vector 421 to the 4 layer ANN
422. The data vector is processed through the four layers of
the ANN 422 producing intermediate results after each layer.
During training, these intermediate results need to be stored
for later usage but during inference-only operation they can
be discarded. At the end of the 4 layer ANN 422 the final
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results can be combined with an activation function 420 to
create a final output value that may be used as an inference.
[0078] When in supervised training mode, that final output
value is compared with a goal value 481 at comparison 480
to calculate a loss value 485. This loss value represents a
difference between a desired outcome and the inference
made by the 4 layer ANN 422.

[0079] During supervised training, there are two more sets
of calculations used to improve the learning of the 4 layer
ANN 422: back propagation and weight updates. FIG. 4B
conceptually illustrates the back propagation operation 453.
Using the loss value 485, the back propagation successively
goes back down through the layers using the intermediate
results stored to calculate an error vector for every layer in
the 4 layer ANN 422. This error vector is then stored or
immediately used to perform a weight update as will be
described next.

[0080] After a back propagation, a weight update opera-
tion 457 may be performed as illustrated in the conceptual
diagram FIG. 4C. The weight update operation uses the
intermediate data from the forward pass operation 451 and
the error vectors calculated during the back propagation 453
to calculate weight gradients that will be used to update the
weight matrices in the four-layer ANN 457. Note that the
gradient values may be combined and stored and only
periodically used to update the actual weights in the weight
matrices.

[0081] Artificial Neural Network Batch Processing
[0082] To efficiently process large amounts of training
data, the training sample data vectors are organized into
batches for processing through artificial neural networks
(ANNs). For example, FIG. 5A illustrates the same four
layer artificial neural network (ANN) 522 of FIGS. 4A to
4C. FIG. 5B illustrates a batch of operations 560 that must
be performed for an inference operation of the sample data
vectors 527 (the first column).

[0083] The batch of operations 560 have certain data
dependencies. For just an inference operation, the data
dependencies are relatively simple: each data sample must
be processed through every layer of the 4 layer ANN 522.
This dependency is illustrated by the arrows connecting the
successive operations of a data sample through all four
layers. Each of the different sample data vectors is indepen-
dent of each other such that there are no data dependencies
between different sample vectors (and thus no arrow
between them).

[0084] The full data dependencies for all three sets of
artificial neural network processing stages (forward pass,
back propagation, and gradient update) is quite a bit more
complex. FIG. 6A and 6B illustrate the full data dependen-
cies for all the three common artificial neural network
processing stages. Referring to FIG. 6A, an input vector of
sample data 602 enters at the upper left. That sample data is
then used to perform forward processing (FP) stages 611,
612, 613, and 614 to create output 671. Note that each of
those stages creates intermediate data that is stored for later
used.

[0085] The output value 671 is compared with a goal value
691 to calculate a loss value 672 that indicates how far the
inference was from a desired goal value. That loss value 672
is then used for a series back propagation operations. Spe-
cifically, loss value 672 is combined with the intermediate
data from layer 4 forward pass in a back propagation (BP)
654 for layer 4. The output from back propagation (BP) 654

Nov. 26, 2020

is combined with the intermediate data from layer 3 forward
pass 613 in a back propagation (BP) operation 653 for layer
3. And so on all the way back to the layer 1 back propagation
operation 651.

[0086] The outputs from the loss value 672 and the
successive back propagation operations (654, 653, and 652)
may then be used to for gradient update (GU) operations.
The Gradient Update (GU) operations require the data
calculated from both the forward pass operations and the
back propagation operations for a layer.

[0087] In the data dependency diagram of FIG. 6A, a
processing operation requires all of the data from the arrows
going into that processing operation to be available before
that processing operation can be performed. Thus, all of the
forward pass operations 611, 612, 613, and 614 must be
performed in that order before any other operations. But
after that, some operations can be done in different order. For
example, after back propagation operation 654 has been
performed then the next operation can be gradient update
633 or the next back propagation operation 653.

[0088] FIG. 6B illustrates an alternate illustration of the
data dependencies. Specifically, FIG. 6B illustrates three
assembled work queues for three data samples to be pro-
cessed through a four-layer artificial neural network. In FIG.
6B each work queue comprises a set of computational
operations that need to be performed in order. Furthermore,
the data from the arrows going into each computational
operation need to be available before that computational
operation can be performed.

[0089] Simple Batch Scheduling

[0090] In a relatively simple environment with one artifi-
cial neural network model, one batch of training vectors, and
one matrix processor for processing the batch of training
vectors; it may seem relatively simple to schedule the
processing of the one batch of training vectors. However,
even in such a simple environment, the task is not as simple
as it seems.

[0091] Referring back to FIG. 5B, there is a batch of
sample data vectors 527 to be processed with the 4 layer
artificial neural network of FIG. 5A. The data vectors may
be processed through the four layers 522 in any order as long
as the data dependencies of FIG. 6A and 6B are handled
properly.

[0092] FIG. 7A and 7B illustrates two different extremes
on how the various sample data vectors 527 in FIG. 5B may
be scheduled for processing through the 4 layer artificial
neural network of FIG. 5A. FIG. 7A illustrates a “layer-first”
scheduling system and FIG. 7B illustrates a “sample-first”
scheduling system.

[0093] Referring to the “layer-first” scheduling system of
FIG. 7A, all of the data vector samples are first processed
through the first layer of the artificial neural network of FI1G.
5A. Next, the results from that first layer processing are then
first processed through the second layer of the artificial
neural network of FIG. 5A. And so on until all the data
vectors have been forward pass processed through the entire
artificial neural network of FIG. 5A. Next, the system may
then sequentially perform back propagation operations back
down through all the layers artificial neural network of FIG.
5A.

[0094] The layer-first scheduling system may provide the
one way to obtain a relatively low latency on the inference
operation (the forward pass operations) and the back propa-
gation and weight updates are then performed later. How-
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ever, the layer-first scheduling will generate large amounts
of intermediate results that must be stored for a long time.
This will generally require off-chip storage thus requiring
off-chip memory bandwidth. The time spent moving data off
chip will reduce utilization and increase latency. Further-
more, the all of the data movement will reduce the power
efficiency of the processing such energy must be spend
moving all the data on and off chip.

[0095] FIG. 7B illustrates the other extreme of scheduling,
a “sample-first” scheduling system. In the sample-first
scheduling system, each individual sample is process
through all the layers artificial neural network of FIG. 5A.
For example, the first sample data vector is forward pass
processed through all four layers of the artificial neural
network of FIG. 5A to obtain an inference result. If this is
training, the system may then perform back propagation
back down through all the layers of the artificial neural
network and weight gradient updates may then be calcu-
lated. (If this is just for inference, the system may immedi-
ately move to process the second data vector after complet-
ing the forward pass of the first data vector.)

[0096] Since only intermediate results from one data vec-
tor need to be stored, the results from the processing can be
stored locally. This reduces the power consumption of the
processing. However, there are several downsides of the
sample-first scheduling system. For example, there is sig-
nificant latency before the last data sample will be handled.
Furthermore, there will be low utilization due to the data
dependencies, the hardware latency, and the data flow delay.
[0097] Between the two extremes of the “layer-first”
scheduling system of FIG. 7A and the “sample-first” sched-
uling system of FIG. 7B are many different scheduling
systems. For example, small sub-batches of three data
sample vectors may be process through the entire four layer
artificial neural network at time. Alternatively, batches of
sample data vectors may be sequentially processed through
their forward pass operations until the memory starts becom-
ing filled and then back propagations and weight updates
may then begin to clear out the memory. Thus, the task of
scheduling a single batch of sample data vectors through a
single artificial network can be quite complex.

[0098] The data vector scheduling described with refer-
ence to FIGS. 5A, 5B, 7A, and 7B can be made even more
complex by having multiple different matrix processors that
processing can be dispatched to. Copies of the artificial
neural network can be provided to multiple matrix proces-
sors such that data samples can be processed in parallel.
Note that intermediate that will be stored in the different
matrix processors will complicate the data dependencies
such that operations that require that intermediate data can
only be dispatched to the matrix processors requiring that
intermediate data.

[0099] Scheduling in Complex Environments

[0100] The simple environment of a single artificial neural
network (ANN) and a single batch of operations 560 that
must be executed by artificial neural network as depicted in
FIG. 5A and FIG. 5B illustrates the current situation for
many artificial neural network processors. However, much
more complex situations can arise when handling multiple
different artificial neural networks and multiple different sets
of data batches to be processed.

[0101] FIG. 8 illustrates a conceptual diagram describing
the various different execution paradigms wherein the teach-
ings of the present disclosure may be used. The different
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paradigms may handle only a single artificial neural network
or multiple different artificial neural networks along a first
axis 890. Furthermore, the different execution paradigms
may handle only a single batch of data samples simultane-
ously or handle multiple different batches of data samples
simultaneously along a second axis 880. Each of the differ-
ent execution paradigms will be described individually.

[0102] The first execution paradigm is the current para-
digm 810 upper left quadrant. This paradigm is the current
paradigm of a single artificial neural network model (Single
Model=SM) that handles a single batch of data samples
(Single Data=SD) processed with a single artificial neural
network model. This is essentially the example previously
described with reference to the single artificial neural net-
work of FIG. 5A and the single batch of data samples 527
of FIG. 5B. This how existing Graphics Processor Unit
(GPU) and Tensor Processing Unit (TPU) based artificial
intelligence processors operate. As described with reference
to FIGS. 7A and FIG. 7B even the data sample scheduling
for the simplest case of FIG. 8 can be quite complex. In
addition to the Single Model Single Data (SMSD) paradigm
810, FIG. 8 illustrates three other operating paradigms that
the scheduling techniques of this disclosure can also be used
to handle.

[0103] In the upper right quadrant is a Single Model
Multiple Data (SMMD) paradigm 850 that handles a single
artificial neural network (ANN) model but multiple different
batches of data samples. By only handling a single artificial
neural network (ANN) model, only one set of ANN weight
matrices needs to be handled and thus minimizes memory
requirements. And by handling multiple different data
sample batches, there are multiple different sets of data
samples that can be executed such that data dependencies
will rarely slow execution and there will rarely be time
without data to process. In this manner this SMMD execu-
tion paradigm can achieve high utilization. If some data
needs to be moved on or off chip for one set of data samples
then computation can be performed on another set of data
samples.

[0104] The lower-left quadrant contains Multiple Model
Single Data (MMSD) operation paradigm 870. The MMSD
operation paradigm 870 can handle multiple different arti-
ficial neural network (ANN) models but limits execution to
a single batch of data samples. By only processing a single
batch of data samples, the system may quickly complete the
computations for the single batch of data samples as fast as
possible without interruption from any other data samples
thereby achieving low latency response times. The MMSD
operation paradigm 870 is good for performing real-time
inferences in order to return results as fast as possible.

[0105] Finally, the bottom-right quadrant specifies a Mul-
tiple Model Multiple Data (MMMD) operation paradigm
860. The MMMD operation paradigm 860 handles both
multiple different artificial neural network (ANN) models
and multiple different batches of data samples simultane-
ously. This MMMD operation paradigm 860 may be
encountered in a data-center that must handle very large
amounts of artificial intelligence processing tasks. This
MMMD execution paradigm 860 may still need to be able
to handle jobs that require low latency and thus provisions
must be made for flagging important data jobs. With both
multiple different ANN models and multiple different
batches of data samples that need to be handled simultane-
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ously, there are huge number of different possible ways to
address the allocation of resources and scheduling of jobs.
[0106] Overview of Artificial Neural Network Processing
[0107] To most efficiently perform the processing required
for artificial neural network (ANN) models, the system of
the present analyzes each ANN model, allocates resources
for each model, create scheduling work queues for each
model, and then execute the work schedules on the matrix
processors. This section provides an overview of that entire
processing system with reference to FIG. 9.

[0108] The source information at the top of FIG. 9 is the
existing neural network framework 910. The neural network
framework 910 may be one of several different neural
network frameworks such as TensorFlow, Keras, PyTorch,
Caffe2, Deeplearning4j, and other suitable framework for
building artificial neural networks. The various neural net-
work frameworks 910 allow developers to build deep arti-
ficial neural network models quickly and easily. The neural
network frameworks 910 provide developers a clear and
concise way for defining artificial neural network models
using a collection of pre-built and optimized components.
[0109] Since there are several different neural network
frameworks 910 that different developers may choose to use,
the information from these several neural network frame-
works 910 may be processed into more unified intermediate
neural network representations 920. Two commonly used
intermediate representations include the Open Neural Net-
work Exchange (ONNX) and Accelerate Linear Algebra
(XLA). In this manner, many different different neural
network frameworks 910 can more easily be supported.
[0110] The intermediate neural network representations
920 comprise a computational dataflow graph in the form a
directed acyclic graph (DAG). The computational datatlow
graph of the intermediate neural network representation 920
describes all of the computational operations to be per-
formed for a particular artificial neural network model. The
intermediate neural network representations 920 can then be
provided to a neural network computational system that will
then execute the artificial neural network model.

[0111] In the system of the present disclosure, the inter-
mediate neural network representation 920 is provided to the
Neural Network Work Composition system 940. The Neural
Network Work Composition system 940 analyzes the inter-
mediate neural network representation and then partitions
the neural network representation, allocates resources, and
performs performance analysis to determine how neural
network representations will be allocated into the hardware.
This allocation system will be described in more detail in the
next section.

[0112] Finally, after the resource allocation, the neural
network is provided to the neural network hardware 950 for
execution. A key component of the neural network hardware
950 is the hardware dynamic scheduler 951. The hardware
dynamic scheduler 951 is responsible for carefully control-
ling all of the execution hardware that will be used to
execute the artificial neural network. Specifically, the hard-
ware dynamic scheduler 951 controls the matrix processor
engines 957 that perform the computations, the data inter-
faces 958 between the various units, and the buffers &
memory systems 959.

[0113] The hardware dynamic scheduler 951 performs
several functions. The hardware dynamic scheduler 951
resolves the data dependencies and creates work queues for
processing. The hardware dynamic scheduler 951 dynami-
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cally handles memory management to ensure each job has
needed memory resources and there are no memory over-
flows. And the hardware dynamic scheduler 951 handles
work priority and synchronization.

[0114] Neural Network Partitioning and Resource Alloca-
tion
[0115] Referring again to FIG. 9, the Neural Network

Work Composition system 940 analyzes the intermediate
neural network representation in order to partitions the
neural network representation for the hardware and allocates
needed resources. This is an extremely difficult task to do
well since the allocations can performed in so many different
ways and it is difficult to find the optimal allocations. In
order to explore the potential allocation space, an iterative
approach is used. FIG. 10 illustrates a flow diagram describ-
ing how the Neural Network Work Composition system
operates.

[0116] At the top of FIG. 10, the intermediate neural
network representation 1005 is provided as the input data.
The first processing stage is a neural network partitioning
stage 1010. The goal of the partitioning is to distribute the
computational tasks evenly across the available matrix pro-
cessor engines in order to maximize utilization of the matrix
processor engines. Thus, the neural network partitioning
stage 1010 analyzes computation dataflow and then attempts
to evenly partition the different computational stages of the
computation dataflow among the available matrix processor
engines.

[0117] After the neural network partitioning, the next
stage is the resource allocation stage 1020. The in addition
to the matrix processor engines, the neural network hard-
ware has other resources such as memory systems, synchro-
nization flags, memory bandwidth, off-chip interface band-
width, etc. The resource allocation stage 1020 assigns these
resources to the various different computational stages of the
computation dataflow. After the resource allocation stage
1020, a proposed partitioning of the computation dataflow
and allocation of resources has been created.

[0118] Next, a Performance Analysis stage 1030 carefully
analyzes the proposed partitioning and resource allocation.
Specifically, the computational dataflow is analyzed end-to-
end with the proposed partitioning and resource allocation to
determine an estimate of the performance. An estimate of the
performance of each computational stages of the computa-
tion dataflow is created.

[0119] The performance estimate is then examined at stage
1040. If the estimated performance is not deemed sufficient
then the system to proceeds to Hint Generation stage 1050.
The Hint Generation stage 1050 uses heuristics to create a
set of hints that will alter the output from the neural network
partitioning stage 1010 and the resource allocation stage
1020 after a next run through those stages. For example, the
sub estimates of the various computational stages are exam-
ined and those with poor performance estimates will be
assigned additional resources to improve performance. For
example, if there is a bad balance between matrix processor
engines or if there is a shortage of memory resources, those
inadequacies will be used to change the partitioning and
allocation of resources. The system can then repeat the
neural network partitioning stage 1010 and the resource
allocation stage 1020 to generate a new proposed partition-
ing and resource allocation.

[0120] The system may perform repeated iterations of
stages 1010, 1020, 1030, 1040, and 1050 in order to deter-
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mine a good partitioning and resource allocation. Referring
back to stage 1040, after a sufficient partitioning and
resource allocation has been created, the system proceeds to
output the partitioning and resource allocation plan to the
neural network hardware for execution.

[0121] Neural Network Job Scheduling Policies Goals

[0122] Scheduling neural network processing jobs
involves several different goals. To complicate matters,
these different goals often conflict with each other. The
conflicting goals may be resolved by examining the urgency
of the different jobs or maximizing utilization. This section
describes the various scheduling policy goals and later
sections will describe how the scheduling system achieves
these goals.

[0123] Prioritization—A first goal is simply respecting
processing job priority. Processing jobs that are given higher
priority should in general be processed before jobs with
lower priority. In the system disclosed in this document, the
priority numbers are reversed such that the lowest assigned
priority number is actually the highest priority job. Thus, the
dynamic scheduler picks lowest priority. Ties of priority are
generally broken with either a round-robin or First-In-First-
Out (FIFO) system.

[0124] Earlier Samples Get Higher Priority—In general,
earlier sample vectors are given higher priority than later
sample data vectors. By giving earlier samples higher pri-
ority, this allows earlier jobs to finish processing and thereby
free up resources such as memory as soon as possible.
Furthermore, when computational tasks are split among
several matrix processor engines, then the matrix processing
engines assigned to handle the later computations may sit
idle until work becomes available. Thus, prioritizing earlier
samples will ensure that the matrix processing engines
assigned to handle the later computations are fed with work
as soon as possible.

[0125] Create Work Faster—Data dependencies limit the
amount of possible computational operations that can be
selected for execution. For example, back propagation and
gradient update computations cannot be performed until the
earlier forward pass computations are performed first. Thus,
forward pass operations should in general be assigned higher
priority than back propagation operations. And back propa-
gation operations are generally given higher priority than
gradient update operations. Note that this policy goal con-
tradicts the “earlier samples get higher priority” policy
above to some degree since a completing a gradient update
operation will free up some memory resources whereas a
forward pass operation or a backward propagation operation
will create work faster. Which policy goal is chosen may
depend on the current context of whether memory resources
are low or if utilization is paramount.

[0126] Defer Work That Is Not in The Pipeline Critical
Path—Gradient updates are not in the critical path of com-
pleting a batch or creating new work. Therefore, gradient
updates may be given lowest priority. Again, this may
conflict with other goals such that deferring gradient updates
may create memory pressures and thereby raise the priority
of gradient updates.

[0127] Context Switch to More Important Operations—
The processing operations that are receive may be assigned
important ratings or require low-latency. Therefore, context-
switching may be used to switch resources to more impor-
tant tasks.
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[0128] Dynamic Memory Management—As previously
mentioned above, the memory resources are limited and thus
the scheduling system must carefully monitor memory
resources to ensure that system does not run out of memory.
The memories can become filled with intermediate results
that will be for later calculations. To handle memory con-
straints the system can move data off of a matrix processor
engine chip to larger memory system but this requires
memory bandwidth and slows computations.

[0129] Ensure Fairness Between Jobs—The above poli-
cies are used to reduce latency and maximize utilization.
However, strictly following those policies may result in
certain jobs being ignored. Thus, the scheduling policy must
ensure a degree of fairness so that no jobs are ignored to
maximize efficiency.

[0130]

[0131] Referring back to FIG. 9, the hardware dynamic
scheduler 951 takes the policies goals of the previous section
and uses those policy goals to guide the scheduling of
processing operations. The hardware dynamic scheduler 951
accomplishes by creating a set of work queues filled with
ordered computational operations, assigning priorities to the
computational operations, and then dispatching the compu-
tational operations for execution using the queue ordering
and the priorities. This method of scheduling will be
described with reference to FIGS. 11.

[0132] Referring to FIG. 11, a data sample batch 1105 for
a particular neural network model is the input for the
scheduling system. The first and largest task is to first create
a set of work queues for the batch of data samples 1105 at
stage 1110.

[0133] Each work queue is an ordered set of computa-
tional operations that need to be performed in order to
complete a particular job. The following list describes a set
of commonly used computational operations that can be
placed into work queue although additional computational
operations can be added and signalling flags may also be
placed into a work queue.

Scheduling Procedure

TABLE 1

Computation Jobs

Forward Pass (FP) - Calculate the forward pass for a layer.

Back Propagation (BP) - Calculate the backward propagation for a
Loss (Loss) - Calculate loss of the inference

Gradient update (GU) - Calculate gradient update for data sample.
Re-computation (RC) - Recompute a dropped FP calculation
Weight Update (WU) - Update the weight matrix with gradients
Data Parallel Merge (PM) - Combine parallel gradient updates

To illustrate how work queues are created some examples are

[0134] hereby provided. For a first example, consider the
small two layer artificial neural network (ANN) of FIG. 1B
with two layers referred to as L1 and [.2. A small batch of
two data samples referred to as Si and S2 may be provided
to the two-layer ANN of FIG. 1B for full training processing
(forward pass, back propagation, and gradient update).
Using the computational operation abbreviations from the
previous table, the two work queues (WQ1 and WQ2) for the
two data samples (S1 and S2)
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TABLE 2

Example Work Queues

(WQ1] (WQz2]

S1 L1 FP S2 L1 FP
S1 L2 FP S2 L2 FP
S1 L2 BP S2 L2 BP
S1 L2 GU S2 L2 GU
S1 L1 BP S2 L1 BP
S1 L1 GU S2 L1 GU

[0135] A second work queue example can be provided for
the four-layer artificial neural network (ANN) of FIG. 5A.
Consider a batch of three data samples for a full training
processing through the four-layer ANN of FIG. 5A. The
three work queues for those three data samples is illustrated
in FIG. 6B.

[0136] The ordered work queues are used to help ensure
that the data dependencies of the computational operations
are respected. In this manner, the scheduling system can
ensure that required data will be available when accessing
the top of the work queues.

[0137] Referring back to FIG. 11, after creating the work
queues at stage 1110, there are few more stages before the
work queues are dispatched for execution. The next step is
to determine the number of active queues that will be
allowed at stage 1120.

[0138] With a large batch of samples, there will be many
sets of work queues for execution. Allowing a large number
of queues to execute in parallel might provide good utiliza-
tion of computational resources. However, with a large
number of work queues executing in parallel, the memory
resources may become constrained and there may be greater
latency of getting work queue completion. Therefore, the
scheduling system will determine the number of work
queues that may be actively processed simultaneously.
[0139] For example, to reduce memory consumption only
two active queues may be allowed despite a large number of
work queues created. The system will then start operation on
two work queues but all the other work queues will wait.
Specifically, the other work queues will need to wait for one
of the earlier dispatched work queues to complete operation
before it can begin executing. The scheduling system may
use memory allocation information from neural network
work composition stage 940 of FIG. 9 to help determine the
number of active queues.

[0140] Referring back to FIG. 11, after determining the
number of allowed active queues at stage 1120, the system
proceeds to stage 1130 where it determines priority levels
for each computational operation within the work queues
that were created at stage 1110. The system determines the
priority levels for each computational operation using the
neural network scheduling policies of the previous section.
[0141] All incoming data batches are tagged with an
importance scale. For example, a real-time natural language
processing job from a smart device may be received with a
high importance scale value in order to minimize latency.
Other jobs such as examining digital images and attempting
to automatically add tags to the digital images may be
received with a low importance scale value such that the job
that is to run when there are no other more important jobs to
run. All of this information will be used to properly assign
the priorities in manner than will ensure the proper process-
ing.
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[0142] Finally, at stage 1140, the scheduling system will
determine if pre-emption will be allowed during the pro-
cessing. Pre-emption allows processing jobs to be paused to
allow other processing jobs to begin execution.

[0143] Scheduling Case 1—Minimal Latency

[0144] FIG. 12A illustrates a four-layer artificial neural
network for a first example scheduling operation. The first
scheduling example has a sample data batch 1211 that
contains four data samples that need to be processed with an
inference operation. This means each data sample needs to
be processed with a forward pass (FP) computational opera-
tion through all four of the network layers. Furthermore, in
this particular example the four data sample batch must be
processed with minimal latency. This particular job is being
performed with a single linear algebra matrix processor that
will be referred to as “server 0.

[0145] The first step is to create a set of four work queues,
one for each data sample to be processed. FIG. 12B illus-
trates a set of four work queues (1251, 1252, 1253, and
1254) for performing the processing job described in the
previous paragraph. Since this is just an inference operation
each of the four work queues only requires four forward pass
(FP) computational operations, one for each layer of the
four-layer ANN of FIG. 12A.

[0146] In this case, the objective is to minimize latency
such that the four data samples are prioritized in manner that
will most quickly complete all of data samples. Thus, the
computational operations are prioritized in the same order of
the data samples. Thus, all of the computational operations
for the first data sample in work queue 1251 are given the
highest priority, priority O (recall that this disclosure gives
higher priority to the lowest priority number). All of the
computational operations for the second data sample in work
queue 1252 are given priority 1 and so on for work queues
1253 and 1254. With this prioritization, the four computa-
tional operations should be completed as quickly as possible
in the same order.

[0147] Furthermore, for this case, the system enables
pre-emption. By enabling pre-emption, the system will
allow higher prior work to context switch from lower
priority work. This minimizes latency for this job although
throughput may suffer.

[0148] Scheduling Case 2—Maximize Throughput
[0149] FIG. 13A illustrates the same four-layer artificial
neural network for a second example scheduling operation.
Again, this scheduling example has a sample data batch
1311 that contains four data samples that need to be pro-
cessed only with an inference operation. However, in this
second example the four data sample batch must be pro-
cessed with maximum throughput.

[0150] Once again, the first step is to create a set of four
work queues (1351, 1352, 1353, and 1354), one for each
data sample to be processed as illustrated in FIG. 13B.
Again, since this is just an inference operation each of the
four work queues only require forward pass FP computa-
tional operations.

[0151] In this second example, the objective is to maxi-
mize throughput such that the computational operations are
prioritized in manner that will ensure maximum utilization.
Thus, the computational operations are prioritized in a
manner that achieves the most parallel computations. Thus,
all of the computational operations for the first network layer
are given the highest priority, priority 0. All of the compu-
tational operations for the second network layer are given
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priority 1 and so on for network layers 3 and 4. Thus, all four
work queues (1351, 1352, 1353, and 1354) have their four
computational operations ordered as 0, 1, 2, and 3. With this
prioritization scheme, the computational operations should
be completed with as much parallelized computations as
possible. It should be noted that whenever there is a tie
between work queues that have computational operations
ready to execute a round-robin system may be used to select
which queue will have a computational operation dis-
patched.

[0152] Note that if there are memory constraints or other
resource constraints, the scheduling system may limit the
number active queues in order to reduce resource usage. In
this example, the system may disable pre-emption to maxi-
mize throughput. Pre-emption may waste time moving data
around and thus reduce the throughput of the system.
[0153] Scheduling Case 3—Multi-Server Inference
[0154] FIG. 14A illustrates a four-layer artificial neural
network for a third example scheduling operation with a
sample data batch 1411 that contains four data samples that
need to be processed with an inference operation. In this
third scheduling example, the four-layer artificial neural
network has been split into two halves and the two halves are
each handled by different linear algebra matrix processor.
Specifically, as illustrated in FIG. 14A the first two layers
will be handled by a first matrix processor labelled “server
0” 1431 and the second two layers will be handled by a
second matrix processor labelled “server 1 1432. Splitting
the ANN evenly across the server 0 1431 and server 1 1432
achieves balance such that maximum utilization will be
achieved. Furthermore, in this particular example the four
data sample batch must be processed with minimal latency.
[0155] Again, the first step is to create a set of eight work
queues, one for each of the four data samples to be processed
to be processed by server 0 1431 and one for each of the four
data samples to be processed by server 1 1432. FIG. 14B
illustrates the eight work queues wherein there are two work
queues on top of each other for columns 1451, 1452, 1453,
and 1454. Since this is just an inference operation, the eight
work queues only require two forward pass (FP) computa-
tional operations in each work queue. There are four forward
pass (FP) computational operations for the ANN that are
split between server 0 1431 and server 1 1432. Specifically,
the two forward pass (FP) computational operations for
layers 0 and 1 of the ANN are assigned to server 0 1431 for
each queue and the two forward pass (FP) computational
operations for layers 2 and 3 of the ANN are assigned to
server 1 1432 for each work queue.

[0156] For this third example the objective is to maximize
utilization of the two different servers: server 0 1431 and
server 1 1432. To accomplish this, server 0 1431 should
attempt to complete its forward pass (FP) computational
operations so that the output data can be passed to server 1
1432 such that server 1 1432 can start processing. Thus, the
FP computational operations in server 0 1431 are prioritized
in manner that will most quickly complete all of data
samples. This is very important in this example since the
second server (server 1 1432) will be idle until it receives
output data from the lower two layers in server 0 1431.
[0157] To achieve this goal, the computational operations
are prioritized in the same order of the data samples as set
forth in the first example. Thus, all of the computational
operations for the first data sample in the two work queues
in column 1451 are assigned priority O; all of the compu-
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tational operations for the second data sample in the two
work queues of column 1452 are assigned priority 1, and so
on for the work queues in column 1453 and column 1454.
With this prioritization, the computational operations should
be completed as quickly as possible in the same order.

[0158] Again, as with the first case, the system enables
pre-emption in this case. By enabling pre-emption, the
system will allow higher prior work to context switch from
lower priority work. Furthermore, by enabling pre-emption,
this enables the later stage servers (which are dependent on
data from previous servers) to have higher utilization by
processing other jobs when the later stages are waiting for
data.

[0159] Scheduling Case 4—Single Server Training—
Minimize Memory

[0160] FIG. 15A illustrates a four-layer artificial neural
network for a fourth example scheduling operation. The
fourth scheduling example has a sample data batch 1511 that
contains four data samples that need to be processed with a
full training cycle. This means all four data samples in the
batch 1511 needs to be processed with forward pass (FP)
1551, back propagation 1553, and gradient update 1557
computational operations. Furthermore, in this particular
scheduling example the four data samples must be processed
while minimizing usage of resources such as memory.

[0161] The first step is to create work queues for each of
the four data samples to be processed. FIG. 15B illustrates
a set of four work queues (1551, 1552, 1553, and 1554), one
for each data sample. Since this is a full training operation,
each of the four work queues requires four forward pass
(FP), four back propagation (BP), and four gradient update
(GU) computational operations. Furthermore, the computa-
tional operations are placed in an order of with the four
layers of forward pass (FP) operations in ascending order,
then four of back propagation (BP) and gradient update
(GU) computational operations in descending order.

[0162] This ordering of computational operations in the
work queue maintains the data dependencies and optimizes
the scheduling efficiency. For example, by placing each
gradient update (GU) operations immediately after the cor-
responding back propagation (BP) operations for each layer,
the memory resources used by each layer can be freed up as
soon as the gradient update (GU) operation is completed.

[0163] In addition to the ordering of the computational
operations, the priorities for each work queue should be set
to minimize latency. Specifically, the priorities should be set
in a manner that will most quickly complete all of data
samples in order to minimize latency. Thus, the computa-
tional operations are prioritized in the same order of the data
samples. So, as illustrated in FIG. 15B, all of the computa-
tional operations for the first work queue 1551 are given the
highest priority 0. All of the computational operations for the
second data sample in work queue 1552 are given priority 1
and so on for work queues 1553 and 1554. With this
prioritization scheme, the four work queues should be com-
pleted as quickly as possible in generally the same order as
the data samples such that after each work queue is com-
pleted, all of the resources used by that work queue are freed
up.

[0164] To further minimize resource usage for this case,
the system enables pre-emption. By enabling pre-emption,
the system will context switch from lower priority work to
higher prior work in order to complete the higher priority
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work as soon as possible. Once a higher priority work queue
is completed then all of the resources used by that work
queue can be freed up.

[0165] Scheduling Case 5—Single Server Training—
Maximize Throughput

[0166] FIG. 16A illustrates a four-layer artificial neural
network (ANN) for a fifth example scheduling operation.
This fifth scheduling example has a sample data batch 1611
that contains four data samples that need to be processed
with a full training cycle through the artificial neural net-
work (ANN). Furthermore, in this fifth example scheduling
case the four data samples must be processed while maxi-
mizing throughput of the ANN processing system.

[0167] The first step is to create work queues for each of
the four data samples in batch 1611 to be processed. FIG.
168 illustrates a set of four work queues (1651, 1652, 1653,
and 1654), one for each data sample. Since this is a full
training operation as in the previous example, each of the
four work queues requires four forward pass (FP) compu-
tational operations, four back propagation (BP) computa-
tional operations, and four gradient update (GU) computa-
tional operations.

[0168] In this fifth scheduling example, the goal is to
maximize the throughput for the processing system. There-
fore, the scheduling system should prioritize the computa-
tional operations in the work queues in a manner that enables
the most amount of parallel processing. Therefore, as with
the second example case described with reference to FIGS.
13A and 13B, the priorities of the computational operations
should be set with the highest priority for the earliest
computational operations and the lowest priority for the final
computational operations. Thus, all of the first computa-
tional operations in each work queue are given priority 0. All
of the second computational operations in each work queue
are given priority 2 and so on for all of the remainder of
computational operations in the work queues. Thus, all four
work queues (1651, 1652, 1653, and 1654) have their twelve
computational operations sequentially ordered as 0, 1, 2, . .
. 10, 11. This is essentially a layer-first type of priority
system that will attempt to process as many computational
operations in parallel as possible and thereby achieve maxi-
mum throughput.

[0169] Note that if there are memory constraints or other
resource constraints, the scheduling system may limit the
number active queues in order to reduce resource usage.
Furthermore, for this example that is designed to maximize
throughput, the system may disable pre-emption. Pre-emp-
tion may waste time moving data around and thus reduce the
throughput of the system.

[0170] Scheduling Case 6—Multi-Server Training

[0171] FIG. 17A illustrates a four-layer artificial neural
network (ANN) for a sixth example scheduling operation.
The sixth scheduling example has a sample data batch 1711
that contains four data samples that need to be processed
with a full training cycle through the ANN. In this sixth
scheduling example, the four-layer artificial neural network
has been split into two halves and the two halves are each
handled by different linear algebra matrix processor. Spe-
cifically, as illustrated in FIG. 17A the first two layers will
be handled by a first matrix processor labelled “server 0~
1731 and the second two layers will be handled by a second
matrix processor labelled “server 17 1732. Splitting the
ANN evenly across the two servers achieves balance such
that maximum utilization will be achieved.
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[0172] The first step is to create a set of eight work queues,
four work queues for each of the four data samples handled
by server 0 1731 and four work queues for each of the four
data samples handled by server 1 1732. FIG. 17B illustrates
a set of eight work queues wherein there are two work
queues (one for server 0 1731 and one for server 0 1732) in
each of columns 1751, 1752, 1753, and 1754 for performing
the processing job. Since this is a full training session, the
system has two forward pass (FP), two back propagation
(BP), and two gradient update (GU) computational opera-
tions for the first two layers handled by the work queues for
server 0 1731 and the same six computational operations for
the second two layers handled the work queues for server 1
1732.

[0173] Next, the priorities for the computational opera-
tions must be assigned. In order to quickly have the second
server (server 1 1732) begin operating; the two forward pass
(FP) computational operations are given a high priority
setting. This will ensure that server 0 1731 quickly com-
pletes operations and passes data to server 1 1732. Similarly,
the back propagation (BP) computational operations in
server 1 1732 are assigned a high priority so that they are
completely quickly and return data to server 0 1731 such that
it can complete its back propagation (BP) computational
operations.

[0174] However, the gradient update operations are given
a much low priority value since those operations are not on
the critical execution path needed to ensure good utilization.
The gradient update (GU) computational operations can be
handled when there are no higher priority computational
operations since no additional operations are dependent on
information from the gradient update (GU) computational
operations. With this prioritization scheme, all of the for-
ward pass (FP) and back propagation (BP) computational
operations for all four work queues should be completed as
quickly as possible in generally the same order as the data
samples. This ensures high utilization. The lower priority
gradient update computational operations will be completed
later.

[0175] To ensure the critical path operations are completed
first, the system enables pre-emption for this example. By
enabling pre-emption, the system will context switch from
lower priority work to higher prior work in order to complete
that work that lies along the critical path. If there are
memory constraints or other resource constraints, the sched-
uling system may limit the number active queues in order to
reduce resource usage.

[0176] Scheduling Case 7—Multi-Server Training—Re-
computation
[0177] FIG. 18A illustrates a four-layer artificial neural

network (ANN) for a seventh example scheduling operation
that will describe the use of recomputation operations. This
seventh scheduling example has a sample data batch 1811
that contains four data samples that need to be processed
with a full training cycle through the ANN of FIG. 18A. In
this seventh scheduling example, the four-layer artificial
neural network has again been split into two halves and the
two halves are each handled by different linear algebra
matrix processor. Specifically, as illustrated in FIG. 18A the
first two layers will be handled by a first matrix processor
labelled “server 0” 1831 and the second two layers will be
handled by a second matrix processor labelled “server 17
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1832. Splitting the ANN evenly across the two servers
achieves balance such that maximum utilization will be
achieved.

[0178] The first step is to create a set of eight work queues,
one work queue for each of the four data samples to be
processed in both server 0 1831 and server 1 1832. FIG. 18B
illustrates a set of eight work queues wherein there are two
work queues in each column 1851, 1852, 1853, and 1854;
the upper work queue is for server 0 1831 and the lower
work queue is for server 1 1832. Since this is a full training
session, the system has two forward pass (FP), two back
propagation (BP), and two gradient update (GU) computa-
tional operations for the work queues handling the first two
layers in server 0 1831 and the same six computational
operations for the work queues handling second two layers
in server 1 1832.

[0179] In this particular scheduling example, the system
will use a technique known as recomputation in order to save
memory resources. Specifically, the intermediate data from
the initial two forward processing (FP) computational opera-
tions in server 0 1831 for the first two ANN layers will be
discarded. In order to complete later back propagation (BP)
computational operations, those two forward processing
(FP) computational operations will need to be recomputed.
This is performed with recompute (RC) operations in the
work queues for server 0 1831. Furthermore, the work
queues for server 0 1831 include flag entries labelled “wait”.
The “wait” flag indicates that the particular work queue
should pause operations until the work queue receives a
“notify” message from the corresponding work queue in
server 1 1832 indicating that data is now available to resume
operations. The “wait” flag is placed right after the two
forward processing (FP) computational operations in the
work queues. Note that this “wait” flag prevents the server
1 1832 from consuming resources until the data that it needs
to resume operation is available.

[0180] Referring to the work queues for server 1 1832, the
work queues contain two forward pass (FP) computational
operations to complete the top two layers of the ANN and
then two back propagation (BP) operations to being the back
propagation. After the two back propagation (BP) compu-
tational operations a “notify” flag is used to inform the
corresponding work queue in server 0 1831 that the work
queue may resume operations since the required data from
the back propagation (BP) operations is now available. Then
the remaining two gradient update (GU) operations in server
1 1832 then complete the work queue for server 1 1832.
[0181] Referring back to the work queues for server 0
1831, after the “notify” message is received, the work
queues in server 0 1831 will resume operations. First the two
the recompute (RC) operations will recreate the discarded
intermediate data from the previous forward pass (FP)
computational operations. Next the back propagation (BP)
computational operations can then be performed. Finally, the
last two gradient update (GU) computational operations are
performed.

[0182] The priorities for the computational operations in
all the work queues must be set. In this example, a “sample
first” priority system is used in order to complete each
sample as quick as possible so that memory resources can be
freed up.

[0183] To ensure the critical path operations are completed
first, the system enables pre-emption for this example. By
enabling pre-emption, the system will context switch from
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lower priority work to higher prior work in order to complete
that work to free up resources. If there are memory con-
straints or other resource constraints, the scheduling system
may limit the number active queues in order to reduce
resource usage.

[0184] Scheduling Case 8—Single Server with Multiple
Jobs
[0185] FIG. 19A illustrates a four-layer artificial neural

network for an eighth example scheduling operation. This
eighth scheduling example has two different sample data
batches 1911 and 1912 associated with two different jobs:
Job1 1971 and Job2 1972. Each job has two data samples
that need to be processed with an inference operation. Thus,
each data sample needs to be processed with four forward
pass (FP) computational operation s associated with the four
of the network layers 1922. In this example, it is a goal to
keep fairness between the jobs such that both jobs receive
execution resources and neither is stalled.

[0186] The first step is to create a set of four work queues,
one for each of the two data samples to be processed for Job
1 and one for each of the two data samples to be processed
for Job2. FIG. 19B illustrates two work queues for Job 1
1971 (work queues 1951 and 1952) and two work queues for
Job 2 1972 (work queues 1953 and 1954). Since this is just
an inference operation, each of the four work queues only
requires four forward pass (FP) computational operations,
one for each layer of the four-layer ANN of FIG. 19A.
[0187] In this case, the objective is to ensure fairness
between the two jobs. To achieve this goal the priority values
of the two jobs can be set to equal priority. Though in
practice, the system may use algorithms like DWRR (Deficit
Weighted Round Robin) to guarantee, priority and fair share
of resources between jobs.

[0188] At a higher level, the amount of processing that
each job received can be monitored to determine if adequate
fairness between the jobs is being enforced. If the amount of
processing is not in line with defined job priority levels, the
system may increase or decrease the rate at which data
samples from that particular job is provided to the system.
[0189] Additional Considerations.

[0190] The preceding sections have described several dif-
ferent scheduling scenarios and how those scenarios are
handled. The techniques described in each of those scenarios
can be combined to create complex solutions to difficult
scheduling problems.

[0191] Furthermore, the operation of the system may be
continually monitored such that if the desired outcome is not
achieved, then various parameters may be adjusted. For
example, the rate at which data samples are provided may be
adjusted or the number of active queues may be increased or
decreased.

[0192] The operating environment may become quite
complex. Supporting various jobs at scale requires ability to
swap jobs in and out in the background. This also involves
sharing buffers and bandwidth between the jobs and having
tiers of jobs.

[0193] Parallel training may occur wherein the same arti-
ficial neural network model is replicated and multiple train-
ing sets are run in parallel. After parallel training the
gradient updates from the parallel models need to be merged
together to create single model from the parallel models.
Thus, this requires merging various weights over parameter
servers and broadcasting them back. This can be done in
background if the weight updates are scheduled properly.
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[0194] The preceding technical disclosure is intended to
be illustrative, and not restrictive. For example, the above-
described embodiments (or one or more aspects thereof)
may be used in combination with each other. Other embodi-
ments will be apparent to those of skill in the art upon
reviewing the above description. The scope of the claims
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled. In the appended claims, the
terms “including” and “in which” are used as the plain-
English equivalents of the respective terms “comprising”
and “wherein.” Also, in the following claims, the terms
“including” and “comprising” are open-ended, that is, a
system, device, article, or process that includes elements in
addition to those listed after such a term in a claim is still
deemed to fall within the scope of that claim. Moreover, in
the following claims, the terms “first,” “second,” and
“third,” etc. are used merely as labels, and are not intended
to impose numerical requirements on their objects.

[0195] The Abstract is provided to comply with 37 C.F.R.
§ 1.72(b), which requires that it allow the reader to quickly
ascertain the nature of the technical disclosure.

[0196] The abstract is submitted with the understanding
that it will not be used to interpret or limit the scope or
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meaning of the claims. Also, in the above Detailed Descrip-
tion, various features may be grouped together to streamline
the disclosure. This should not be interpreted as intending
that an unclaimed disclosed feature is essential to any claim.
Rather, inventive subject matter may lie in less than all
features of a particular disclosed embodiment. Thus, the
following claims are hereby incorporated into the Detailed
Description, with each claim standing on its own as a
separate embodiment.
We claim:
1. A method of scheduling matrix operations for process-
ing, said method comprising the stages of:
creating a plurality of work queues, each of said work
queues comprising an ordered set of computational
operations;
setting priority values for each computational operation in
the plurality of work queues;
setting a number of active queues, said active queues
determine a number of said plurality of work queues
that may be active simultaneously;
setting whether pre-emption will be used or not; and
executing said computational operations from said work
queues.



