US 20190371045A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0371045 A1

Li et al. 43) Pub. Date: Dec. 5, 2019
(54) DYNAMIC LOCAL HO4N 13/111 (2006.01)
TEMPORAL-CONSISTENT TEXTURED 04N 13/161 (2006.01)
MESH COMPRESSION
(52) US. CL
(71) Applicant: JJK Holdings, LLC, Santa Clara, CA CPC GO6T 15/04 (2013.01); GO6T 17/205
(US) (2013.01); HO4N 13/111 (2018.05); GO6T
17/10 (2013.01); GO6T 2219/00 (2013.01);
(72) Inventors: Zhong Li, Newark, DE (US); Jason GO6T 17/20 (2013.01); GO6T 2219/20
Chieh-Sheng Yang, Sunnyvale, CA (2013.01); HO4N 137161 (2018.05)
(US)
(73) Assignee: JJK Holdings, LL.C, Santa Clara, CA (57) ABSTRACT

Us)

(21) Appl. No.: 16/532,412
Mesh-based raw video data (or 3D video data) includes a
(22) Filed: Aug. 5, 2019 sequence of frames, each of which includes geometry data
(e.g., triangle meshes or other meshes) and texture map(s)
defining one or more objects. The raw 3D video data is
(63) Continuation of application No. 15/898,127, filed on segmented based on consistent mesh topology across
Feb. 15, 2018, now Pat. No. 10,417,806. frames. For each segment, a consistent mesh sequence
(CMYS) is defined and a consistent texture atlas (CTA) is
generated. The CMS and CTA for each segment are com-

Related U.S. Application Data

Publication Classification

(51) Int. CL pressed and stored as compressed data files. The compressed
GO6T 15/04 (2006.01) data files can be decompressed and used to render display-
GO6T 17/20 (2006.01) able images.

103 104
/

Patent Application Publication Dec. 5,2019 Sheet 1 of 9 US 2019/0371045 A1

FIG. 1

Patent Application Publication Dec. 5, 2019 Sheet 2 of 9

200

Receive raw video data for sequence of
frames

US 2019/0371045 A1l

202

4

Split the raw video data into segments
such that mesh topology within segment
is consistent, thereby generating a
consistent mesh sequence for each
segment

204

Y

Construct consistent texture atlas and
re-project texture onto consistent mesh
sequence

206

Y

Compress consistent texture atlas

Y

Compress consistent mesh sequence

Y

Output compressed data for each
segment

FIG. 2

Patent Application Publication Dec. 5, 2019 Sheet 3 of 9 US 2019/0371045 A1
300
Calculate score for every mesh e 302
\ 4
- » Select keyframe Fy based on scores | 304
366 L 316

-

|

Deform to next frame in forward
direction; calculate deform error

Deform to next frame in backward
direction; calculate deform etror

Deform error
exceeds threshold?

NO

Deform error
axceeds threshold?

~
YES 308 318 YES
310 320
\ h 4 4 ‘. /
Define frame Fy; as forward boundary Define current frame Segk. as back
of segment boundary of segment

\

)

YES

wfames’?

324

NO

A

(Segmenting complete) 326

FIG. 3

Patent Application Publication Dec. 5, 2019 Sheet 4 of 9 US 2019/0371045 A1

F
Fi Friv Fri /k Flgj Fioje 1 Fi

g Ny J

A AN AN J
hd hd hd

Segment(s) Segment k Segment(s)

FIG. 4

Patent Application Publication Dec. 5, 2019 Sheet 5 of 9

500

Add texture(s) associated with mesh to
Consistent Texture Atlas (CTA)

US 2019/0371045 A1l

\ 4

Determine CTA coordinates
corresponding to texture coordinates of
vertices in mesh

A 4

Modify vertex data to include CTA
coordinates

A 4

Create CTA for other frames in segment

FIG. 5

Patent Application Publication Dec. 5, 2019 Sheet 6 of 9 US 2019/0371045 A1

600

Determine trajectory of each vertex 602
through segment

A
Define clusters of vertices based on
similar trajectories

A 4

Construct matrix of cluster trajectories | 0606

Y

Perform principal component analysis 608
(PCA) on matrix

h 4

Store eigenvectors and coefficients | 610

FIG. 6

Patent Application Publication

722 <

724 <

Dec. 5,2019 Sheet 7 of 9

Header |
Vertex number |1~ 704
Face number \/:“ 706
Frame number | 708
Component number \/:h 710
Cluster number |~ 712

|

|
Face index | 714

|

|
UV index 716

|

|
Cluster index |~ 718

Cluster eigenvalues

Cluster_evX

Cluster_evY

Cluster_evZ

Cluster coefficients

Coefficent X

Coefficient Y

Coefficient Z

Cluster parameters

Cluster X

Cluster Y

Cluster Z

US 2019/0371045 A1l

Patent Application Publication Dec. 5, 2019 Sheet 8 of 9 US 2019/0371045 A1

800

Receive compressed data for segment fg(}z
that includes frame F;

Y
Decompress frame F; in video file to e 804
regenerate CTA

Y
Use eigenvectors and coefficients from f806
bin file to regenerate mesh for frame F;

Y

Render image e 803

FIG. 8

Patent Application Publication Dec. 5, 2019 Sheet 9 of 9 US 2019/0371045 A1

900
NETWORK INTERFACE | 908
USER INTERFACE PROCESSING SUBSYSTEM | g
906
STORAGE SUBSYSTEM
920 DATA FILE
|~ 904

970 | COMPRESSION
~— MODULE

912—~_| DECOMPRESSION
MODULE

FIG. 9

US 2019/0371045 Al

DYNAMIC LOCAL
TEMPORAL-CONSISTENT TEXTURED
MESH COMPRESSION

CROSS-REFERENCE APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 15/898,127, filed on Feb. 15, 2018, entitled
“DYNAMIC LOCAL TEMPORAL-CONSISTENT TEX-
TURED MESH COMPRESSION”, which is hereby incor-
porated by reference in its entirety.

BACKGROUND

[0002] The present disclosure relates generally to com-
pression of three-dimensional image data and in particular to
dynamic local temporal-consistent textured mesh compres-
sion.

[0003] Traditionally, digital video data is organized as a
sequence of images, or frames, where the content of each
frame defines a two-dimensional (2D) array of pixels to be
presented on a display device. Numerous techniques have
been developed to compress such data for efficient storage
and transmission. Pixel-based image data is useful for some
forms of video presentation; however, it is not well suited to
virtual reality (VR), augmented reality (AR), or other
immersive video experiences where the viewer becomes part
of the scene.

[0004] Free-viewpoint video (FVV) can support a more
immersive video experience. Rather than representing a
frame as a two-dimensional array of pixels, FVV data
typically represents each frame as a three-dimensional (3D)
scene that includes one or more three-dimensional geometric
objects. Within each frame, each object may have a position,
and the objects may change position from one frame to the
next. Further, some are all of the objects may deform (i.e.,
change shape). Objects can be represented using triangle
meshes, as is conventional in the field of computer graphics,
and the vertices of the mesh may move relative to each other
to represent the changing shape of the object. Textures can
be associated with the triangle meshes using conventional
texture mapping techniques. To generate a video presenta-
tion using FVV, a user typically interacts with a video-
rendering device (e.g., a computer) to determine a view-
point, and the video-rendering device renders an image from
that viewpoint using the object geometry of the frame. The
viewpoint can be static or dynamic, depending on the
application, and each frame is rendered from the appropriate
viewpoint.

[0005] FVV, however, is extremely data-intensive, requir-
ing the storage and/or transmission of object and texture data
for each frame (as opposed to just a pixel array for conven-
tional video data). This can impair performance and/or limit
the contexts in which FVV can be used.

SUMMARY

[0006] Certain embodiments of the present invention
relate to compression techniques that can be used for mesh-
based video data (also referred to as 3D video data), includ-
ing but not limited to FVV data. Embodiments described
herein receive as input uncompressed (“raw”) 3D video data
that includes a sequence of frames, each of which includes
geometry data (e.g., triangle meshes or other meshes) and
texture map(s) defining one or more objects. The input
sequence of frames is split into a number of “segments” such

Dec. 5, 2019

that mesh topology is consistent across all frames within a
given segment. For instance, a mesh may deform within a
segment, but the number and connectivity of vertices does
not change within the segment; a sequence of meshes having
consistent topology is referred to as a consistent mesh
sequence (CMS), and a segment may include multiple CMS
(e.g., if multiple objects are represented). It is to be under-
stood that mesh topology need not be consistent between
segments. After a segment having a CMS is identified, a
consistent texture atlas (CTA) is constructed from the tex-
ture map(s) associated with the object(s) in the segment, and
the texture(s) from the CTA is (are) re-projected onto the
mesh of the CMS. The CTA is then compressed, e.g., using
standard video compression techniques. The CMS is also
compressed, e.g., by defining vertex trajectory vectors that
can be clustered and compressed based on principal com-
ponent analysis. The compressed CTA and compressed CMS
for each segment can be stored as compressed data files. The
compressed data files can be decompressed and used to
render displayable images.

[0007] Insomeembodiments, the compressed data file can
be transmitted to a computer system remote from the com-
puter system that generated the compressed data file, and the
remote system can decompress the compressed data file and
render images for display. The compressed data file format
can be suitable for streaming video presentations. Specifi-
cally, the format allows the data for each segment to be sent
independently of data for any other segments, and therefore
it is not necessary for the receiving device to wait for all of
the data to be received before beginning to render and
display images, nor is it necessary for the receiving device
to begin rendering with any particular segment.

[0008] The following detailed description, together with
the accompanying drawings, will provide a better under-
standing of the nature and advantages of the claimed inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 shows an example of rendered image frames
showing deformable objects that can be represented as
meshes.

[0010] FIG. 2 shows a flow diagram of a data compression
process according to an embodiment of the present inven-
tion.

[0011] FIG. 3 shows a flow diagram of a process for
splitting a sequence of frames of raw 3D video data into
segments according to an embodiment of the present inven-
tion.

[0012] FIG. 4 shows an example of frames split into
segments according to an embodiment of the present inven-
tion.

[0013] FIG. 5 shows a flow diagram of a CTA generation
process according to an embodiment of the present inven-
tion.

[0014] FIG. 6 shows a flow diagram of a CMS compres-
sion process according to an embodiment of the present
invention.

[0015] FIG. 7 shows a simplified representation of a bin
file structure for storing compressed vertex data according to
an embodiment of the present invention.

[0016] FIG. 8 shows a flow diagram of a process for
rendering images from data compressed using a compres-
sion process according to an embodiment of the present
invention.

US 2019/0371045 Al

[0017] FIG. 9 is a simplified block diagram of a computer
system implementing an embodiment of the present inven-
tion.

DETAILED DESCRIPTION

[0018] Certain embodiments of the present invention
relate to compression techniques that can be used for mesh-
based video data (also referred to as 3D video data), includ-
ing but not limited to FVV data. Embodiments described
herein receive as input uncompressed (“raw”) 3D video data
that includes a sequence of frames, each of which includes
geometry data (e.g., triangle meshes or other meshes) and
texture map(s) defining one or more objects. The input
sequence of frames is split into a number of “segments” such
that mesh topology is consistent across all frames within a
given segment. For instance, a mesh may deform within a
segment, but the number and connectivity of vertices does
not change within the segment; a sequence of meshes having
consistent topology is referred to as a consistent mesh
sequence (CMS), and a segment may include multiple CMS
(e.g., if multiple objects are represented). It is to be under-
stood that mesh topology need not be consistent between
segments. After a segment having a CMS is identified, a
consistent texture atlas (CTA) is constructed from the tex-
ture map(s) associated with the object(s) in the segment, and
the texture(s) from the CTA is (are) re-projected onto the
mesh of the CMS. The CTA is then compressed, e.g., using
standard video compression techniques. The CMS is also
compressed, e.g., by defining vertex trajectory vectors that
can be clustered and compressed based on principal com-
ponent analysis. The compressed CTA and compressed CMS
for each segment can be stored as compressed data files. The
compressed data files can be decompressed and used to
render displayable images.

[0019] Insomeembodiments, the compressed data file can
be transmitted to a computer system remote from the com-
puter system that generated the compressed data file, and the
remote system can decompress the compressed data file and
render images for display. The compressed data file format
can be suitable for streaming video presentations. Specifi-
cally, the format allows the data for each segment to be sent
independently of data for any other segments, and therefore
it is not necessary for the receiving device to wait for all of
the data to be received before beginning to render and
display images, nor is it necessary for the receiving device
to begin rendering with any particular segment.

[0020] As used herein, “video” refers to a time ordered
series of “frames,” where each frame contains data defining
a scene as it appears at a given point in time. The video is
time-ordered, and it is generally assumed that if the frames
are rendered and presented as display images in order at a
constant rate (e.g., 30 frames per second), a human observer
can perceive the series of display images as depicting
objects that may move. As used herein, an “object” can be
a representation of any physical thing.

[0021] “Free viewpoint video” (FVV) refers generally to
video data in which the frame data is provided in a format
that allows a viewpoint to be selected or modified as the
frames are being rendered and presented on a display. Frame
data for FVV (or other 3D video data) may include data that
provides a geometric description of one or more 3D objects
to be rendered, referred to herein as “object geometry.”
Object geometry can be specified using one or more meshes,
i.e. sets of interconnected vertices, that represent the surface

Dec. 5, 2019

as a set of connected polygons (e.g., triangles). Each vertex
in a mesh has specified coordinates (usually in an object-
relative coordinate space) and connectivity to adjacent ver-
tices (which may be expressly specified or implicit, e.g., in
the ordering of vertices in a data structure), and a mesh can
include any number of vertices. Each vertex may have other
associated attributes, such as a color and/or coordinates in a
texture space that defines a texture to be applied to the mesh
(or a portion thereof); texture spaces are typically defined
using two-dimensional coordinates (referred to as uv coor-
dinates), although other systems may be used. Depending on
implementation, a vertex may have one or more associated
textures, and one or more textures may be applied to an
object’s surface or portions thereof.

[0022] To further illustrate these concepts, FIG. 1 shows
an example of rendered image frames 101-104 showing
deformable objects (in this case human figures) that can be
represented as meshes. It will be appreciated that the shapes
of'these figures are dynamic; for instance, the boxer in frame
101 has arms that can move relative to the rest of her body
to throw a punch, thus changing the shape of (or “deform-
ing”) the graphical object representing the boxer. In terms of
object geometry, deformation can be captured by changing
the relative positions of vertices in the mesh while keeping
other attributes the same.

[0023] It is assumed for purposes of this description that
“raw” 3D video data has been generated such that each
frame includes one or more meshes defining one or more
objects. It is also assumed that each mesh has one or more
associated textures, which can be mapped to the mesh using
standard texture mapping techniques (e.g., mapping each
vertex of the mesh to coordinates in the uv coordinate space
of the texture). Texture maps can be used to represent
various attributes that may vary across the surface of the
mesh, including color, surface normal, lighting effects, sur-
face properties (e.g., reflectivity, transparency), and so on,
and any number of textures representing any number of
attributes may be associated with a single mesh.

[0024] At least one of the objects is assumed to be
deformable, although this is not strictly required, and tech-
niques described below can be applied to 3D video depicting
static objects (i.e., objects that do not deform). Raw 3D
video data of this kind can be generated in a variety of ways,
including motion capture processes and/or computer-gener-
ated-animation processes, and compression algorithms
described below can be independent of the particular manner
in which the raw 3D video data was generated.

[0025] Meshes depicting realistic objects typically contain
hundreds or thousands of vertices, and in raw 3D video data
(as the term is used herein), each frame contains complete
vertex information for each object, including texture map(s),
so that any one frame can be rendered without reference to
data from any other frame. Consequently, the raw 3D video
data can be quite large, which presents difficulties for storage
and transmission.

[0026] Certain embodiments of the present invention pro-
vide methods and systems that can be used to compress the
raw 3D video data. FIG. 2 shows a flow diagram of a data
compression process 200 according to an embodiment of the
present invention. Data compression process 200 can be
implemented in a variety of computer systems, examples of
which are described below.

[0027] Process 200 can begin at block 202, when raw vide
data for a sequence of frames is received. As described

US 2019/0371045 Al

above, raw 3D video data for each frame can include a mesh
defining an object and one or more texture maps associated
with the mesh. (It is to be understood that a frame may
include multiple meshes defining multiple objects and/or
multiple meshes defining a single objet.) In some embodi-
ments, the computer system that executes process 200 may
also generate the raw 3D video data; in other embodiments,
raw 3D video data can be retrieved from storage or received
via a network interface.

[0028] At block 204, process 200 can split the raw 3D
video data into segments such that the mesh topology within
each segment is consistent. As used herein, a “segment” of
3D video data consists of a temporally contiguous subset of
the frames, and mesh topology is considered “consistent”
within a segment if, for all frames within the segment, the
mesh has the same set of vertices and the same connectivity
between vertices. Accordingly, processing at block 204 can
include comparing mesh topology between consecutive
frames to detect changes; where a change is found, a
segment boundary is defined. (If there are multiple meshes
per frame, a topological change in any mesh may result in
a segment boundary.) In some embodiments, each segment
is made as long as possible, so that segment boundaries are
only created where mesh topology changes. Thus, in some
cases, segmentation at block 204 may result a single seg-
ment covering the entire sequence of frames of the raw 3D
video data.

[0029] Various algorithms can be used to identify segment
boundaries. FIG. 3 shows a flow diagram of a process 300
for splitting a sequence of frames of raw 3D video data into
segments according to an embodiment of the present inven-
tion. Process 300 can be implemented, e.g., at block 204 of
process 200 of FIG. 2.

[0030] At block 302, a scoring algorithm is used to com-
pute a score for every mesh (or frame) in the raw 3D video
data. In some embodiments, the score can be a feasibility
score of each frame being a keyframe, where a “keyframe”
is a frame from which the mesh can deform to other meshes
in the segment with relatively few artifacts. One example of
a scoring algorithm that can be used at block 302 is
described in A. Collet et al., “High-Quality Streamable
Free-Viewpoint Video,” ACM Transactions on Graphics
(TOG), 34(4):69 (2015) (see, in particular, section 7.1).
Other scoring algorithms can also be used.

[0031] At block 304, a keyframe for defining a segment is
selected based on the scores. For instance, frames can be
sorted into a prioritized order based on the scores, and the
frame with the highest priority is selected.

[0032] To define segment boundaries, deformation of the
mesh of the keyframe in the forward and backward (tem-
poral) directions is performed. For instance, at block 306,
the mesh of the keyframe (frame F,) is deformed to match
the mesh of the next frame forward in time (frame F,,), and
a deform error (reflecting the difference between the
deformed mesh from frame F, and the actual mesh of frame
F..1) is computed. In some embodiments, deformation of
the mesh can include applying registration algorithms to
identify corresponding vertices in different frames within a
segment. Preferred algorithms include non-rigid registration
algorithms that define a source mesh (e.g., the mesh as it
appears in the first frame of the segment or the keyframe of
the segment) and build a deform graph for a target mesh
(e.g., the mesh as it appears in another frame of the seg-
ment). The deform graph has control points, each of which

Dec. 5, 2019

has a rotation and translation parameter that indicate how to
deform the source mesh to match the target mesh. A deform
graph can be constructed for each frame. Various algorithms
can be used; one example is described in Z. Li et al., “Robust
3D Human Motion Reconstruction Via Dynamic Template
Construction,” available at http:/www.arxiv.org/abs/1801.
10434 (see, in particular, section 3).

[0033] At block 308, if the deform error does not exceed
a threshold, processing returns to block 306 to consider the
next frame forward in time (frame F,,,). Once the deform
error is found to exceed the threshold at block 308 (e.g., for
frame Fy,;,,), then at block 310, the forward segment
boundary is determined to be frame F;_;.

[0034] Similarly, in the backward direction, at block 316,
the mesh of the keyframe (frame F,) is deformed to match
the mesh of the next frame backward in time (frame F,_,),
and a deform error (reflecting the difference between the
deformed mesh from frame F, and the actual mesh of frame
F,_,) is computed. At block 318, if the deform error does not
exceed a threshold, processing returns to block 316 to
consider the next frame backward in time (frame F,_,). Once
the deform error is found to exceed the threshold at block
318 (e.g., for frame F,_,_,), then at block 320, the backward
segment boundary is determined to be frame F,_,.

[0035] At block 324, process 300 can determine whether
any frames remain that have not been assigned to a segment.
If so, then process 300 can return to block 304 to select a
new keyframe, e.g., the highest-priority frame that is not yet
part of a segment, and repeat the deformation process to
determine segment boundaries. In some embodiments, if at
block 306 or block 316, the next frame in the forward or
backward direction has already been assigned to a segment,
the iteration can stop, so that each frame is assigned to
exactly one segment. Further, in some embodiments, process
300 may place an upper limit on the number of frames in a
single segment (e.g., 24 frames, 30 frames, 60 frames), and
a segment boundary may be created if the limit is reached
without exceeding the deform error threshold.

[0036] Once every frame of the raw input data has been
assigned to a segment, process 300 can end at block 326.
[0037] FIG. 4 shows an example of data segmented using
process 300 (or other processes) according to an embodi-
ment of the present invention. A total of M frames of data
(F,-F,,) are received. Using process 300, frame F, is
selected as a keyframe, and iteration backward and forward
in time is used to identify frames F, , and F, as the
backward and forward segment boundaries. One or more
other segments can be formed from frames F, to F,_, ,
(assuming k-i>1), and one or more other segments can be
formed from frames Fy,;,, to F,, (assuming k+j<M). Bach
segment includes a consistent mesh sequence (CMS), which
can be represented using the source mesh for the segment
and the deform graphs for each other frame of the segment.
[0038] Referring again to FIG. 2, after block 204, the
frames of the raw 3D video data have been split into one or
more segments, each segment including one or more frames.
Assuming that the raw 3D video data defines an object in
continuous motion, it is likely that most or all segments will
include multiple frames; however, this is not required, and
there may be instances where a segment includes just one
frame. Further, it is possible that there may be a single
segment that includes all frames of the raw input data, and
the term “split” as used herein is intended to include this
case.

US 2019/0371045 Al

[0039] At block 206, a consistent texture atlas for each
frame of a segment is generated, and texture coordinates are
re-projected so that the vertices of the source mesh of the
CMS are mapped to the consistent texture atlas. As used
herein, a “consistent texture atlas,” or “CTA,” defines a
single texture-coordinate space that can include all of the
textures used in a frame. FIG. 5 shows a flow diagram of a
CTA generation process 500 that can be implemented, e.g.,
at block 206. At block 502, the texture(s) associated with the
mesh at a given frame is (are) added to the CTA, for instance
by adding the texels of the texture to a currently unused
region of the CTA coordinate space. At block 504, coordi-
nates in the CTA coordinate space corresponding to the
original uv coordinates of each vertex in the source mesh are
determined, and at block 506, the vertex data for the source
mesh of the CMS is modified to include the CTA coordi-
nates. At block 508, a CTA can be generated for one or more
other frames of the segment, with the mapping between
vertices of the mesh and coordinates in the CTA coordinate
space being consistent across frames. Process 500 can be
repeated for each CMS in a given segment. In some embodi-
ments, the result of process 500 is a CTA for each frame of
the segment and a mapping of the vertices of the mesh to
coordinates in the CTA.

[0040] Referring again to FIG. 2, at block 208, the CTAs
for each segment can be compressed. The CTAs for a
segment can be understood as a sequence of two-dimen-
sional images, one image for each frame of the segment.
Where a particular texture map represents color, the CTA
data may by itself form one or more 2D images. For texture
maps representing other attributes, the CTA contains one or
more 2D arrays of values representing the attribute, not
necessarily forming an image. For purposes of compression,
such arrays can be treated as if they were image data.
Accordingly, the CTAs for a segment can be compressed
using standard 2D video compression techniques such as
MPEG-4, MPEG-2, H.264, or the like. Other techniques for
compressing 2D video data may also be used.

[0041] At block 210, the CMS for each segment can be
compressed. Various techniques can be used to compress a
CMS. One example is described in M. Sattler et al., “Simple
and efficient compression of animation sequences,” Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, pp. 209-217 (2005).
[0042] By way of further illustration, FIG. 6 shows a flow
diagram of a CMS compression process 600 that can be used
at block 210. At block 602, a trajectory of each vertex
through the segment is determined. For instance, each
trajectory can be represented as a vector having a component
corresponding to each frame of the segment. At block 604,
the vertices can be grouped into clusters based on similarity
of their trajectory vectors, allowing a single vector to
characterize the trajectory of each vertex in the cluster. This
can provide significant reduction in dimensionality of the
data. At block 606, a matrix of cluster trajectories is con-
structed, and at block 608, principal component analysis
(PCA) is performed on the matrix, producing a set of
eigenvalues and coefficients. At block 610, the eigenvalues
and coefficients can be stored as compressed vertex data.
[0043] Referring again to FIG. 2, at block 212, the com-
pressed data for each segment can be output. The output data
can include the compressed CTA data (from block 210) and
the compressed CMS data (from block 212). The com-
pressed CMS data for a segment can include one complete

Dec. 5, 2019

set of vertex data (including texture mapping) for one frame,
e.g., the first frame of the sequence, and data defining the
motion of each vertex through successive frames.

[0044] FIG. 7 shows a simplified representation of a bin
file structure 700 for storing compressed vertex data for a
CMS according to an embodiment of the present invention.
Header 702 includes general information about the mesh,
including number of vertices 704, number of faces 706,
number of frames in the segment 708, number of compo-
nents 710, and number of clusters 712. Face index 714 can
provide vertex connectivity information for the mesh, e.g., a
mapping of vertices to faces. UV index 716 can provide a
mapping of vertices to texture coordinates for the mesh.
Cluster index 718 can provide a mapping of each vertex to
a cluster in the mesh. Cluster eigenvalues 720, cluster
coeflicients 722, and cluster parameters 724 can store the
results of the CMS compression performed at block 210; in
this example, the per-cluster eigenvalues and coefficients
determined using PCA. Using this data, the object geometry
at any frame of the segment can be reconstructed.

[0045] The (compressed) output data can be stored and/or
transmitted as desired. Stored or transmitted data can be
retrieved or received, decompressed by the computer system
that receives it, and used to render animations. The com-
pressed data file includes a bin file containing the com-
pressed vertex data (e.g., a compressed CMS) for each
segment and a compressed CTA video file containing the
CTA for each segment.

[0046] FIG. 8 shows a flow diagram of a process 800 for
rendering images from data compressed using a compres-
sion process according to an embodiment of the present
invention. Process 800 can begin at block 802, when the
rendering system receives compressed data that includes
data for a segment, at least one frame of which (frame F,) is
to be rendered. As described above, the compressed data for
a segment includes a 2D video file containing the CTA for
the segment and a bin file containing the compressed vertex
information for the segment. At block 804, the rendering
system can regenerate image data for frame F; in the com-
pressed CTA video file, e.g., using conventional techniques
for regenerating in a frame in a 2D video file generated using
standard 2D video compression techniques. At block 806,
the rendering system can use the eigenvectors and coeffi-
cients from the bin file of the segment to regenerate the mesh
for a particular frame, e.g., frame F,. At block 808, the
rendering system can render an image for frame F, using the
regenerated mesh and the regenerated CTA. Process 800 can
be repeated for any number of frames; frames can be
rendered successively to generate animation.

[0047] In some embodiments, the compressed data struc-
ture described herein can support 3D video streaming appli-
cations, in which 3D video data generated and/or stored at
a source system is transmitted to a receiving system for
real-time display. Various streaming applications can be
supported, including so-called “live” streaming (where the
data is generated and transmitted to one or more receiving
devices substantially in real time) as well as streaming from
stored 3D video data (where stored data is transmitted to a
receiving device either on demand or in accordance with a
predetermined schedule such as a broadcast schedule).
[0048] For live streaming applications, the data can be
compressed as it is generated. For instance, segments can be
defined by applying process 300 to each frame as it is
generated and imposing an upper limit on the number of

US 2019/0371045 Al

frames per segment, and operations of blocks 206-214 can
be applied to each segment as soon as it is defined. The
resulting compressed data for a segment can be transmitted
as soon as it is generated, even if subsequent frames are still
being generated. In applications where stored data is
streamed, the data can be stored in compressed format and
delivered to a receiving device, either on demand or in
accordance with a schedule.

[0049] Compressed data files of the kind described herein
can be streamed similarly to conventional audio and video
file formats. Example streaming protocols include Dynamic
Adaptive Streaming over HTTP (DASH) or HTTP Live
Streaming (HLS). In these and other streaming protocols,
video streams are broken up into small chunks, with each
chunk corresponding to one or more frames, and a client (or
receiving system) can request a chunk of data for playback
and specify a desired bit rate. Bit rate can be dynamically
modified during playback.

[0050] To support dynamic bit rate selection during
streaming, mesh and CTA data in a compressed format as
described above can be generated and stored for a number of
different bit rates. For instance, in the case of mesh data, the
number of frames in a bin file can be controlled, and
different versions of a bin file corresponding to different bit
rates can be generated and stored. The bit rate can be
modified, e.g., by modifying the number of vertices. Cor-
responding video data files (i.e., compressed texture data)
can also be generated for different bit rates and time-aligned
with the compressed mesh data. Time-aligned audio files can
also be provided and streamed with the compressed mesh
data and video data files.

[0051] In some embodiments, the various versions of the
video files and compressed-mesh files (bin files) are stored
separately, and a streaming client can independently select a
bit rate for the mesh data and a bit rate for the texture data.
Where audio is also provided, audio files can also be stored,
and selection of an audio bit rate may also be supported.

[0052] At the receiving system, a given frame can be
rendered as soon as all of its data has been received. For
instance, process 800 can be applied to regenerate one or
more frames of a given segment without using data from any
previous segments and without waiting for any data from
subsequent segments. Thus, a receiving system can begin
rendering and displaying systems at any point in a stream. (It
may be necessary for the receiving system to wait for a new
segment; however, as noted above, the compression process
can limit the number of frames per segment, which limits
how long the receiving system would need to wait for a new
segment.)

[0053] Processes of the kind described herein can be
implemented using computer systems of generally conven-
tional design, programmed to carry out operations of pro-
cesses such as process 200 and/or process 800 described
above. FIG. 9 is a simplified block diagram of a computer
system 900 implementing an embodiment of the present
invention. In this implementation, computer system 900
includes processing subsystem 902, storage subsystem 904,
user interface 906, and network interface 908.

[0054] Processing subsystem 902 can include one or more
general purpose programmable processors capable of
executing program code instructions to perform various
operations, including operations described herein. In some
embodiments, processing subsystem 902 may incorporate

Dec. 5, 2019

scalable processing hardware (e.g., an array of server blades
or the like) that can be adapted dynamically to varying
processing needs.

[0055] Storage subsystem 904 can include a combination
of volatile and nonvolatile storage elements (e.g., DRAM,
SRAM, flash memory, magnetic disk, optical disk, etc.).
Portions of storage subsystem 904 may be used to store
program code to be executed by processing subsystem 904.
Examples of program code can include compression module
910 (e.g., code implementing process 200 of FIG. 2) and/or
decompression module 912 (e.g., code implementing pro-
cess 800 of FIG. 8). Portions of storage subsystem 904 may
also be used to store data files 920, including raw 3D video
files to be processed using compression module 910, com-
pressed data files generated using compression module 910,
and/or decompressed data generated using decompression
module 912.

[0056] User interface 906 can include user input devices
and/or user output devices. Examples of user input devices
include a keyboard, mouse, joystick, touch pad, touch
screen, microphone, and so on. Examples of user output
devices include a display device (which may be touch-
sensitive), speakers, indicator lights, a printer, and so on.
[0057] Network interface 908 can be implemented using
any combination of hardware and software components that
together enable communication with other computer sys-
tems. In some embodiments, network interface 908 may
communicate with a local area network (LLAN) using Eth-
ernet, Wi-Fi, or other similar technologies, and the LAN
may enable communication with a wide area network
(WAN) such as the internet. Via network interface 908,
computer system 900 can communicate with one or more
other computer systems to support distributed implementa-
tions of processes described herein.

[0058] In some embodiments, computer system 900 may
operate in a server configuration, communicating with one
or more client computers via network interface 908. For
example, computer system 900 may operate compression
module 910 to generate compressed data, then transmit the
compressed data to one or more client computers via net-
work interface 908. In embodiments where computer system
900 is operated remotely via network interface 908, local
user interface 906 may be limited (e.g., just a few indicator
lights) or omitted entirely.

[0059] It will be appreciated that computer system 900 is
illustrative and that variations and modifications are pos-
sible. For instance, although computer system 900 and its
operations are described herein with reference to particular
blocks, it is to be understood that these blocks are defined for
convenience of description and are not intended to imply a
particular physical arrangement of component parts or a
particular software architecture. Further, the blocks need not
correspond to physically distinct components. Blocks can be
configured to perform various operations, e.g., by program-
ming a processor or providing appropriate control circuitry,
and various blocks might or might not be reconfigurable
depending on how the initial configuration is obtained.
Embodiments of the present invention can be realized in a
variety of apparatus including computing devices and com-
puter systems implemented using any combination of cir-
cuitry and software.

[0060] Computer programs incorporating various features
of the present invention may be encoded and stored on
various computer readable storage media; suitable media

US 2019/0371045 Al

include magnetic disk or tape, optical storage media such as
compact disk (CD) or DVD (digital versatile disk), flash
memory, and other non-transitory media. (It is understood
that “storage” of data is distinct from propagation of data
using transitory media such as carrier waves.) Computer
readable media encoded with the program code may be
packaged with a compatible computer system or other
electronic device, or the program code may be provided
separately from electronic devices (e.g., as a separately
packaged computer-readable storage medium or via an
internet download process that results in the program code
being stored on a computer-readable storage medium of the
electronic device that downloads it).
[0061] In alternative embodiments, a purpose-built pro-
cessor may be used to perform some or all of the operations
described herein. Such processors may be optimized, e.g.,
for performing specific operations described herein, such as
video compression.
[0062] While the invention has been described with ref-
erence to specific embodiments, those skilled in the art with
access to the present disclosure will recognize that variations
and modifications are possible. Processing operations
described sequentially can be performed in parallel, order of
operations can be modified, and operations can be combined
or omitted. Further, operations not specifically described
herein may be added. The particular algorithms for segment-
ing a sequence of 3D video frames, identifying consistent
mesh sequences, compressing texture data, and/or com-
pressing consistent mesh sequence data described above are
illustrative, and other algorithms may be substituted.
[0063] As noted above, a frame may contain one or more
meshes, and each mesh may be compressed in the manner
described herein. All texture maps associated with a mesh in
a given frame can be combined in a single CTA. In some
embodiments where a frame contains multiple meshes, a
topological change in any one mesh may result in defining
a segment boundary. Other implementations are possible.
[0064] Thus, although the invention has been described
with respect to specific embodiments, it will be appreciated
that the invention is intended to cover all modifications and
equivalents within the scope of the following claims.
1. (canceled)
2. A computer-implemented method for compressing
data, the method comprising:
receiving raw three-dimensional (3D) video data descrip-
tive of a sequence of frames, wherein the raw 3D video
data for a frame includes a mesh and a texture map
associated with the mesh;
determining, from the raw 3D video data, a first segment
of raw 3D video data comprising a first set of frames,
wherein the first set of frames comprise a first set of
vertices
modifying the first set of vertices to generate a second set
of vertices for the first set of frames, wherein a quantity
of vertices in the second set of vertices is less than a
quantity of vertices in the first set of vertices;
constructing a consistent texture atlas for the first segment
from the texture map for at least one frame in the first
set of frames;
compressing the first set of frames comprising the second
set of vertices;
compressing the consistent texture atlas; and
outputting, as compressed data, the compressed first set of
frames and the compressed consistent texture atlas.

Dec. 5, 2019

3. The computer-implemented method of claim 2,
wherein a quantity of vertices within second set of vertices
is less than a quantity of vertices within the first set of
vertices.

4. The computer-implemented method of claim 2,
wherein a quantity of vertices in the second set of vertices
is determined based at least in part on a target bitrate for
streaming the first segment.

5. The computer-implemented method of claim 2, further
comprising:

modifying the first set of vertices to generate a third set of

vertices being different than the second set of vertices,
wherein the quantity of vertices within the second set of
vertices is greater than a quantity of vertices within the
third set of vertices;

compressing the first set of frames comprising the first set

of vertices to generate a first compressed consistent
mesh sequence;

compressing the first set of frames comprising the second

set of vertices to generate a second compressed con-
sistent mesh sequence; and

compressing the first set of frames comprising the third

set of vertices to generate a third compressed third
consistent mesh sequence.
6. The computer-implemented method of claim 5, further
comprising:
receiving, a streaming video request associated with the
raw 3D video data comprising a bit rate indicator;

based at least in part on the bit rate indicator, outputting,
as compressed data, the first compressed consistent
mesh sequence, the second compressed consistent
mesh sequence, or the compressed third consistent
mesh sequence.

7. The computer-implemented method of claim 2,
wherein constructing the consistent texture for the first
segment further comprises:

constructing the consistent texture for the first segment,

wherein the first segment comprises the second set of
vertices.

8. The computer-implemented method of claim 2,
wherein constructing the consistent texture for the first
segment further comprises:

constructing the consistent texture for the first segment,

wherein the first segment comprises the first set of
vertices.

9. A non-transitory computer-readable storage medium
having stored thereon instructions for causing at least one
computer system to detect policy violations for an organi-
zation, the instructions comprising:

receiving raw three-dimensional (3D) video data descrip-

tive of a sequence of frames, wherein the raw 3D video
data for a frame includes a mesh and a texture map
associated with the mesh;

determining, from the raw 3D video data, a first segment

of raw 3D video data comprising a first set of frames,
wherein the first set of frames comprise a first set of
vertices

modifying the first set of vertices to generate a second set

of vertices for the first set of frames;

constructing a consistent texture atlas for the first segment

from the texture map for at least one frame in the first
set of frames;

compressing the first set of frames comprising the second

set of vertices;

US 2019/0371045 Al

compressing the consistent texture atlas; and

outputting, as compressed data, the compressed first set of

frames and the compressed consistent texture atlas.

10. The non-transitory computer-readable storage
medium of claim 9, wherein a quantity of vertices within
second set of vertices is less than a quantity of vertices
within the first set of vertices.

11. The non-transitory computer-readable storage
medium of claim 9, wherein a quantity of vertices in the
second set of vertices is determined based at least in part on
a target bitrate for streaming the first segment.

12. The non-transitory computer-readable storage
medium of claim 9, the instructions further comprising:

modifying the first set of vertices to generate a third set of

vertices being different than the second set of vertices,
wherein a quantity of vertices within the second set of
vertices is less than a quantity of vertices within the first
set of vertices and the quantity of vertices within the
second set of vertices is greater than a quantity of
vertices within the third set of vertices;

compressing the first set of frames comprising the first set

of vertices to generate a first compressed consistent
mesh sequence;

compressing the first set of frames comprising the second

set of vertices to generate a second compressed con-
sistent mesh sequence; and

compressing the first set of frames comprising the third

set of vertices to generate a third compressed third
consistent mesh sequence.
13. The non-transitory computer-readable storage
medium of claim 12, the instructions further comprising:
receiving, a streaming video request associated with the
raw 3D video data comprising a bit rate indicator;

based at least in part on the bit rate indicator, outputting,
as compressed data, the first compressed consistent
mesh sequence, the second compressed consistent
mesh sequence, or the compressed third consistent
mesh sequence.

14. The non-transitory computer-readable storage
medium of claim 9, wherein constructing the consistent
texture for the first segment further comprises:

constructing the consistent texture for the first segment,

wherein the first segment comprises the second set of
vertices.

15. The non-transitory computer-readable storage
medium of claim 9, wherein constructing the consistent
texture for the first segment further comprises:

constructing the consistent texture for the first segment,

wherein the first segment comprises the first set of
vertices.

16. A system for compressing data, comprising:

one or more processors; and

a memory coupled with the one or more processors, the

memory configured to store instructions that when
executed by the one or more processors cause the one
Or more processors to:

Dec. 5, 2019

receive raw three-dimensional (3D) video data descrip-
tive of a sequence of frames, wherein the raw 3D
video data for a frame includes a mesh and a texture
map associated with the mesh;

determine, from the raw 3D video data, a first segment
of raw 3D video data comprising a first set of frames,
wherein the first set of frames comprise a first set of
vertices

modify the first set of vertices to generate a second set
of vertices for the first set of frames;

construct a consistent texture atlas for the first segment
from the texture map for at least one frame in the first
set of frames;

compress the first set of frames comprising the second
set of vertices;

compress the consistent texture atlas; and

output, as compressed data, the compressed first set of
frames and the compressed consistent texture atlas.

17. The system of claim 16, wherein a quantity of vertices
within second set of vertices is less than a quantity of
vertices within the first set of vertices.

18. The system of claim 16, wherein a quantity of vertices
in the second set of vertices is determined based at least in
part on a target bitrate for streaming the first segment.

19. The system of claim 16, wherein the instructions that
when executed by the one or more processors further cause
the one or more processors to:

modify the first set of vertices to generate a third set of

vertices being different than the second set of vertices,
wherein a quantity of vertices within the second set of
vertices is less than a quantity of vertices within the first
set of vertices and the quantity of vertices within the
second set of vertices is greater than a quantity of
vertices within the third set of vertices;

compress the first set of frames comprising the first set of

vertices to generate a first compressed consistent mesh
sequence;

compress the first set of frames comprising the second set

of vertices to generate a second compressed consistent
mesh sequence; and

compress the first set of frames comprising the third set of

vertices to generate a third compressed third consistent
mesh sequence.

20. The system of claim 19, further comprising:

receive, a streaming video request associated with the raw

3D video data comprising a bit rate indicator;

based at least in part on the bit rate indicator, output, as

compressed data, the first compressed consistent mesh
sequence, the second compressed consistent mesh
sequence, or the compressed third consistent mesh
sequence.

21. The system of claim 16, wherein constructing the
consistent texture for the first segment further comprises:

construct the consistent texture for the first segment,

wherein the first segment comprises the second set of
vertices.

