20047027661 A2 |1 0 Y0 O O A

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
1 April 2004 (01.04.2004)

A 0

(10) International Publication Number

WO 2004/027661 A2

(51) International Patent Classification’: GO6F 17/60
(21) International Application Number:
PCT/GB2003/003943

(22) International Filing Date:
11 September 2003 (11.09.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/252,324 20 September 2002 (20.09.2002) US
(71) Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; New Orchard

Road, Armonk, NY 10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth, Hampshire PO6 3AU (GB).

(72)

(74)

(81)

(84)

Inventors: DAS, Rajarshi; 714-L Pelhamdale Ave., New
Rochelle, NY 10801 (US). WHALLEY, Ian, Nicholas;
203 Charles Colman Blvd., Pawling, NY 12564-1124 (US).

Agent: MOSS, Robert, Douglas; IBM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Winches-
ter, Hampshire SO21 2JN (GB).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,

[Continued on next page]

(54) Title: COMPOSITION SERVICE FOR AUTONOMIC COMPUTING

REQUESTING
SERVICE

400~

401

évg’k‘b?fég DIRECTORY
DATABASE SERVICE
/
406
HISTORY
405~ DATABASE
COMBINATION
404— HINTS

COMPOSITION
SERVICE

402

COMPOSITION
LOGIC

(57) Abstract: A method, computer program product, and data processing system for providing an improved directory service for
storing information about hardware and software components is disclosed. The directory service stores not only the information that
other hardware and software components require to locate, and make use of, the components listed in the directory, but is also able
to dynamically construct ‘meta services’ that fulfill a client’s functionality requirements.

WO 2004/027661 A2 I} N0VVH0 AT 00000 0000 AR

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, Fortwo-letter codes and other abbreviations, refer to the "Guid-
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

COMPOSTTION SERVICE FOR AUTONOMIC COMPUTING

BACKGROUND OF THE INVENTION
Technical Field

The present invention relates generally to an improved data
processing system, and in particular, to a method and apparatus for
managing hardware and software components. Still more particularly, the
present invention provides a method and apparatus for automatically
identifying and combining components to achieve functionality

reqguirements.
Description of Related Art

Modern computing technology has resulted in immensely complicated
and ever-changing environments. One such environment is the Internet,
which is also referred to as an “internetwork.” The Internet is a set of
computer networks, possibly dissimilar, joined together by means of
gateways that handle data transfer and the conversion of messages from a
protocol of the sending network to a protocol used by the receiving
network. When capitalized, the term "Internet" refers to the collection of
networks and gateways that use the TCP/IP suite of protocols. Currently,
the most commonly employed method of transferring data over the Internet is
to employ the World Wide Web environment, also called simply "the Web".
Other Tnternet resources exist for transferring information, such as File
Transfer Protocol (FTP) and Gopher, but have not achieved the popularity of
the Web. In the Web environment, servers and clients effect data
transaction using the Hypertext Transfer Protocol (HTTP), a known protocol
for handling the transfer of various data files (e.g., text, still graphic
images, audio, motion video, etc.). The information in various data files
is formatted for presentation to a user by a standard page description
language, the Hypertext Markup Language (HTMD). The Internet also is
widely used to transfer applications to users using browsers. Often times,

users of may search for and obtain software packages through the Internet.

Other types of complex network data processing systems include those
created for facilitating work in large corporations. In many cases, these
networks may span across regions in various worldwide locations. These
complex networks also may use the Internet as part of a virtual product
network for conducting business. These networks are further complicated by

the need to manage and update software used within the network.

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

As software evolves to become increasingly 'autonomic', the task of
installing and configuring software will, more and more, be performed by
the computers themselves, as opposed to being performed by administrators.
The current installing and qonfiguring mechanisms are moving towards an
“autonomic” process. For example, many operating systems and software
packages will autométically look for particular software components based
on user—speéified requirements. These installation and update mechanisms
often commect to the Internet at a preselected location to see whether an
update or a needed component is present. If the update or other component
is present, the message is presented to the user in which the message asks
the user whether to download and install the component. An example of
such a system is the package management program “dselect” that is part of

the open-source Debian GNU/Linux operating system.

A next block towards “autocnomic” computing involves identifying and
installing/downloading necessary hardware and software components without
requiring user intervention. In such a next generation system, an
autonomic configuration utility would install components in response to
the detection of a need for particular functiomality. In.such a
circumstance, there may not be a single hardware or software component for
providing the needed functionality. Thus, it would be desirable for there
to be a scheme whereby needed functionality may be obtained in the absence

of a single component for providing the necessary functionality.

SUMMARY OF THE INVENTION

Accordingly, the present invention provides a computer-implemented
process for storing information about hardware and software components
comprising: receiving a’ request containing a functional requirement;
consulting a directory to determine if a single component exists that
satisfies the functional requirement; in response to a determination that
a single component that satisfies the functiomal requirements does not
exist, identifying a plurality of functionalities that, when combined
according to a combination method, would satisfy the functional
requirement; and identifying a plurality of components satisfying the

plurality of functiomalities.

A computer program product comprising instructions for carrying out
the inventive process is also provided is a data processing system for

implementing the process.

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

The invention thus offers an improved directory service which stores
not only the information that other components require to locate, and make
use of, the components listed in the directory, but is also able to
dynamically construct ‘meta services’ that fulfill a client's

functionality requirements.

In response to a request from the client for particular functional
requirements, the directory service determines a set of hardware and/or
software components to provide the needed functionality. The components
in the set are then combined and configured to achieve the necessary
functionality via logical deduction from domain knowledge. A history
mechanism allows for already derived configurations of hardware or

software components to be recalled immediately.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set
forth in the appended claimg. The invention itself, however, as well as a -
preferred mode of use, further objectives and advantages thereof, will
best be understood by reference to the following detailed description of
an illustrative embodiment when read in conjunction with the accompanying

drawings, wherein:

Figure 1 is a diagram of a networked data processing system in which

the present invention may be implemented;

Figure 2 is a block diagram of a server system within the networked

data processing system of Figure 1;

Figure 3 is a block diagram of a client system within the networked

data processing system of Figure 1;

Figure 4 is a diagram depicting an overall view of an autonomic
composition broker system in accordance with a preferred embodiment of the

present invention;

Figure 5 is a flowchart representation of a process of fulfilling a
request for a hardware or software component in a preferred embodiment of

the present invention;

Figure 6 is a diagram providing a legend for symbols in E-R

(entity-relationship diagrams) as used in this document;

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

Figure 7 is an exemplary E-R diagram representing a database system

for use in a preferred embodiment of the present invention;

Figure 8 is a flowchart representation of a process followed by a
control logic in accordance with a preferred embodiment of the present

invention; and

Figure 9 is a diagram depicting an architectural variation on the
present invention in which a remote meta-service provider is used to

provide the derived meta-service; and

Figure 10 is a diagram depicting an architectural variation on the
present invention in which remote meta-service capability is incorporated

into a composition service.
DETATLED DESCRIPTION OF THE PREFERRED EMBODIMENT

With reference now to the figures, Figure 1 depicts a pictorial
representation of a network of data processing systems in which the
present invention may be implemented; Network data processing system 100
is a network of computers in which the present invention may be
implemented. Network data processing system 100 contains a network 102,
which is the medium used to provide communications links betwéen various
devices and computers connected together within network data processing
system 100. Network 102 may include connections, such as wire, wireless

communication links, or fiber optic cables.

In the depicted example, server 104 is connected to network 102
along with storage unit 106. In addition, clients 108, 110, and 112 are
connected to network 102. These clients 108, 110, and 112 may be, for
example, personal computers or network computers. In the depicted
example, server 104 provides data, such as boot files, operating system
images, and applications to clients 108-112. Clients 108, 110, and 112
are clients to server 104. Network data processing system 100 may include
additional servers, clients, and other devices not shown. In the depicted
example, network data processing system 100 is the Internet with network
102 representing a worldwide collection of networks and gateways that use
the Transmission Control Protocol/Internet Protocol (TCP/IP) suite of
pfotocols to communicate with one another. At the heart of the Internet
is a backbone of high-speed data communication lines between major nodes
or host computers, consisting of thousands of commercial, government,

educational and other computer systems that route data and messages. Of

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

course, network data processing system 100 also may be implemented as a
number of different types of networks, such as for example, an intranet, a
local area network (LAN), or a wide area network (WAN). Figure 1 is
intended as an example, and not as an architectural limitation for the

present invention.

Referring to Figure 2, a block diagram of a data processing system
that may be implemented as a server, such as server 104 in Figure 1, is
depicted in accordance with a preferred embodiment of the present
invention. Data processing system 200 may be a symmetric multiprocessor
(sMP) system including a plurality of processors 202 and 204 connected to
system bus 206. Alternatively, a single processor system may be employed.
Also connected to system bus 206 is memory controller/cache 208, which
provides an interface to local memory 209. I/O bus bridge 210 is
connected to system bus 206 and provides an interface to I/0 bus 212.
Memory controller/cache 208 and I/O bus bridge 210 may be integrated as
depicted.

Peripheral component interconnect (PCI) bus bridge 214 connected to
I/0 bus 212 provides an interface to PCI local bus 216. A number of
modems may be connected to PCI local bus 216. Typical PCI bus
implementations will support four PCI expansion slots orx add-in
connectors. Communications links to clients 108-112 in Figure 1 may be
provided through modem 218 and network adapter 220 connected to PCI local
bus 216 through add-in boards.

Additional PCT bus bridges 222 and 224 provide interfaces for
additional PCi local buses 226 and 228, from which additional modems or
network adapters may be supported. In this manner, data processing system
260 éllows connections to multiple network computers. A memory-mapped
graphics adapter 230 and hard disk 232 may also be connected to I/0 bus
212 as depicted, either directly or indirectly.

Those of ordinary skill in the art will appreciate that the hardware
depicted in Figure 2 may vary. For example, other peripheral devices,
such as optical disk drives and the like, alsc may be used in addition to
or in place of the hardware depicted. The depicted example is not meant

to imply architectural limitations with respect to the present invention.

The data processing system depicted in Figure 2 may be, for example,

an TIBM eServer pSeries system, a product of International Business

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

Machines Corporation in Armonk, New York, running the Advanced Interactive

Executive (AIX) operating system or LINUX operating system.

With reference now to Figure 3, a block diagram illustrating a data
processing system is depicted in which the present invention may be
implemented. Data processing system 300 is an example of a client
computer. Data processing system 300 employs a peripheral component
interconnect (PCI) local bus architecture. Although the depicted example
employs a PCI bus, other bus architectures such as Accelerated Graphics
Port (AGP) and Industry Standard Architecture (ISA) may be used.
Processor 302 and main memory 304 are connected to PCI local bus 306
through PCI bridge 308. PCI bridge 308 also may include an integrated
memory controller and cache memory for processor 302. Additional
connections to PCI local bus 306 may be made through direct component
interconnection or through add-in boards. In the depicted example, local
area network (LAN) adapter 310, SCSI host bus adapter 312, and expansion
bus interface 314 are connected to PCI local bus 306 by direct component
connection. In contrast, audio adapter 316, graphics adapter 318, and
audio/video adapter 319 are connected to PCI local bus 306 by add-in
boards inserted into expansion slots. Expansion bus interface 314
provides a connection for a keyboard and mouse adapter 320, modem 322, and
§dditional memory 324. Small computer system interface (SCSI) host bus
adapter 312 provides a connection for hard disk drive 326, tape drive 328,
and CD-ROM drive 330. Typical PCI local bus implementations will support

three or four PCI expansion slots or add-in connectors.

An operating system runs on processor 302 and is used to coordinate
and provide control of various components within data processing system
300 in Figure 3. The operating system may be a commercially available
oberéting system, such as Windows XP, which is available from Microsoft
Corporation. An object oriented programming system such as Java may run
in conjunction with the operating system and provide calls to the
operating system from Java programs or applications executing on data
processing system 300. “Java”’ is a trademark of Sun Microsystems, Inc.
Instructions for the operating system, the object-oriented operating
system, and applications or programs are located on storage devices, such
as hard disk drive 326, and may be loaded into main memory 304 for

execution by processor 302.

Those of ordinary skill in the art will appreciate that the hardware

in Figure 3 may vary depending on the implementation. Other intermal

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

hardware or peripheral devices, such as flash read-only memory (ROM),
equivalent nonvolatile memory, or optical digk drives and the like, may be
used in addition to or in place of the hardware depicted in Figure 3.
Also, the processes of the present invention may be applied to a

multiprocessor data processing system.

As another example, data processing system 300 may be a stand-alone
system configured to be bootable without relying on some type of network
communication interfaces As a further example, data proéessing system 300
may be a personal digital assistant (PDA) device, which is configured with
ROM and/or flash ROM in order to provide non-volatile memory for storing

operating system files and/or user-generated data.

The depicted example in Figure 3 and above-described examples are
not meant to imply architectural limitations. For example, data
processing system 300 also may be a notebook computer or hand held
computer in addition to taking the form of a PDA. Data processing system

300 also may be a kiosk or a Web appliance.

The present invention is directed toward an improved directory
service for storing information about hardware and software components.
Throughout this document, the term “service” is used to described both
hardware and software components. In an autonomic computing paradigm,
services may be procured and combined (bound) dynamically according to
functional requirements. Thus, hardware and software components in an
autonomic computing environment are referred to as “services” to emphasize
the fact that in autonomic computing, the system components are deployed
for current functional requirements only. Thus, an autonomic computing
system is not statically constructed at build time from a fixed and
unchanging set of components, but rather dynamically utilizes available

“‘services” as required.

Sometimes the functionality required of an autonomic computing
system cannot be provided by a single service alone. In such cases, the
required functionality may be achieved by combining a number of services
together. Thus, the directory service provided by the present invention
stores not only the information that other components require to locate,
and make use of, the services listed in the directory, but is also able to

dynamically construct “meta-gservices” that fulfill a client's request.

For example, if a client asks the directory to provide detaills for a

certain type of service (including, but not limited to, the location or

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

identity of that service) that is not available in the directory, then a
simple directory service would simply respond that no such services were
available. However, the improved directory service has the capability to
derive (or to cause another software entity to derive), either based on
pre-programmed knowledge or on-the-fly deduction, a mechanism by which
components available in the directory may be combined in order to obtain
functionality equivalent to that of the services originally sought by the

reguesting client.

Consider, for example, ‘a situation where a requesting service (e.g.,
a software component) asks the directory for information about available
services that can provide 1PB (Petabyte) of direct-access storage space.
In the case where the directory does not contain information about any
such services, but does contain information about ten services, each of
which can provide 100 TB (Terabytes) of direct-access storage space, the
directory service can then return a response to the requesting service
indicating that if the requesting service combined the ten services, it
would obtain the equivalent of the service that was originally requested.

Figure 4 is a diagram depicting an overall view of a directory and
composition service in accordance with a preferred embodiment of the
present invention. A requesting service 400 requests a service meeting
particular functionality reguirements from directory service 401, which is
itself a service (hardware or software component). Directory service 401
consults available services database 406 to locate a service (hardware or
software component) providing the necessary functionality. Should no such
single service be available, directory service 401 may utilize composition
service 402 (which is also a hardware or software component) to combine
individual services into a “meta—service” to provide the necessary

fUncFionality.

In a preferred embodiment, directory service 401 may provide
directory servicgs through the use of standardized directory service
schemes such as Web Services Description Language (WSDL) and systems such
as Universal Description, Discovery, and Integration (UDDI), which allow a
program to locate entities that offer particular services and to
automatically determine how to communicate and conduct transactions with
those services. WSDL is a proposed standard being considered by the
WorldwWwide Web Consortium, authored by representatives of companies, such
as International Business Machines Corporation, Ariba, Inc., and Microsoft
Corporation. UDDI version 3 is the current specification being used for

Web service applications and services. Future development and changes to

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

UDDI will be handled by the Organization for the Advancement of Structured
Information Standards (OASIS).

Composition service 402 will first try to fulfill the request via
history database 405, which stores the results of previously-derived
combinations of services. If no applicable previously-derived combination
is available, composition logic 403 will be employed to derive a new
combination of available services that satisfies the functional
requirements of the regquest. Composition logic 403 is, in a preferred
embodiment, software that utilizes information about components in
available services database 406 information regarding the combinability of
components from combination hints 404 to derive a combination of
components meeting the functional requirements of requesting service 400's

original request.

Figure 5 is a flowchart representation of a process for fulfilling
requests for services in accordance with a preferred embodiment of the
present invention. Figure 5 is divided into two portions. Directory
service portion 500 includes blocks involving identifying and locating
individual services (e.g., by directory service 401 in Figure 4), and
composition service portion 512 includes blocks involving the combination
of individual services to form meta-services. One of ordinary skill in
the art will recognize that this division of blocks may coincide with
different software processes (e.g., the blocks in directory service
portion 500 are performed by one software process, while the block in
composition service 512 are performed by a different software procegs), or
they may not (e.g., one process executes all blocks, or multiple processes
execute differently grouped blocks). Figure 5 assumes that two separate
organizational units of software (e.g., processes, threads, functions,
subroutines, etc.) are used (i.e., directory service 401 and composition
service 402), although, as stated above, no such division is necessary in

practice.

Turning now to the process flow represented by Figure 5, the process
begins with a request being received from a client (i.e., a service or
component requests additional functionality) (block 501). Next, a
determination is made as to whether the request can be met from available
services (i.e., available services database 406) (block 502). If so
(block 502:Yes), an appropriate response providing instructions regarding

the usage of an appropriate service ig retrieved from available services

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

10

database 406 (block 503). This response is then returned to the client to

allow the client to make use of the chosen service (block 504).

If the request cannot be met from available services (block 502:No),
the request is forwarded to composition service 402 (block 505).
Composition service 402 receives the request (block 506) and determines
whether the request can be satisfied from history database 405 (block
507). If so (block 507:Yes), a response from history database 405 is
returned (block 509). If not (block 507:No), composition logic 403 is
used to derive a combination providing the necessary functionality (block
510). This new combination is entered into history database 405 {(block
508), and a response returned (block 509). Directory service 401 then
receives composition services 402’s response (block 511) and returns the

response to the client (block 504).

As can be seen from Figures 4 and 5, the task of identifying and/or
combining services in response to a reguest involves retrieving data from
one or more databases and applying logic to the data (e.g., composition
logic 403) to derive an appropriate response. Figures 6 and 7 describe
one possible database schema that may be employed to store directory,
combination, and history information in a preferred embodiment of the
present invention. One of ordinary skill in the art will recognize that
many variations on and substitutions for the schema described herein are
also applicable without departing from the scope and spirit of the present
invention. The database schema depicted in the following Figures is

included for illustrative purposes only.

The E-R (entity-relationship) approach to database modeling provides
the semantics for the conceptual design of databases. With the E-R
approach, database information is represented in terms of entities,
attributes of entities, and relationships between entities, where the
following definitions apply. The modeling semantics corresponding to each
definition is illustrated in Figure 6. Figure 6 is adapted from Elmasri
and Navathe, Fundamentals of Database Systems, 3rd Ed., Addison Wesley
(2000), pp. 41-66, which contains additional material regarding E-R

diagrams and is hereby incorporated by reference.

Entity: An entity is a principal object about which information is
collected. For example, in a database containing information about
personnel of a company, an entity might be . “Employee.” In E-R modeling,
an entity is represented wiﬁh a box. An entity may be termed weak or

strong, relating its dependence on another entity. A strong entity

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

11

exhibits no dependence on another entity, i.e. its existence does not
require the existence of another Entity. As shown in Figure 6, a strong
entity is represented with a single unshaded box. A weak entity derives
its existence from another emtity. For example, an entity “Work Time
Schedule” derives its existence from an entity “Emplovee” if a work time
schedule can only exist if it is associated with an employée. As shown in

Figure 6, a weak entity is represented by concentric boxes.

Attribute: An attribute is a label that gives a descriptive property to an

entity (e.g., name, color, etc.). Two types of attributes exist. Key

attributes distinguish among occurrences of an entity. For example, in

the United States, a Social Security number i1s a key attribute that
distinguishes between individuals. Descriptor attributes merely describe
an entity occurrence (e.g., gender, weight). As shown in Figure 6, in E-R
modeling(an attribute is represented with an oval tied to the entity

(box) to which it pertains.

In some cases, an attribute may have multiple values. For example,
an entity representing a business may have a multivalued attribute
“locations.” If the business has multiple locations, the attribute
“locations” will have multiple values. A multivalued attribute is

represented by concentric ovals, as shown in Figure 6.

Relationships: A relationship is a connectivity exhibited between entity
occurrences. Relationships may be one to one, one to many, and many to
many, and participation in a relationship by an entity may be optional or
mandatory. For example, in the database containing information about
personnel of a company, a relation “married to” among employee entity
occurrences is one to one (if it is stated that an employee has at most
one spouse). Further, participation in the relation is optional as there
may éxist unmarried emplovees. As a second example, 1f company policy
dictates that every employee have exactly one manager, then the
relationship "managed by" among employee entity occurrences is many to one
(many employees may have the same manager), and mandatory (every employee

must have a manager) .

As shown in Figure 6, in E-R modeling a relationship is represented
with a diamond if it relates oné or two entities, and is represented with
an n-sided polygon if it relates more than two entities. The cardinality
ratio (one-to-one, one-to-many, etc.) in a relationship is denoted by the
use of the characters “1” and “N” to show 1:1 or 1:N cardinality ratios,

or through the use of explicit structural constraints, as shown in Figure

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

12

6. When all instances of an entity participate in the relationship, the
entity box is connected to the relationship diamond by a double line;
otherwise, a single line connects the entity with the relationship, as in

Figure 6.

Figure 7 is an enéity—relationship (E-R) diagram of an exemplary
database schema that may be applied to a preferred embodiment of the
present invention. The schema depicted in Figure 7 is divided into
portions according to the architecture depicted in Figure 4, namely
directory service portion 700, history database portion 702, and
combination hints portion 704. One of ordinary skill in the art will
recognize that éuch division is merely conceptual and is not intended to
mandate any physical separation of the information in the different

portions from each other.

The “base” entity in PFigure 7 is component entity 706, representing
a basic ‘atomic” service, meaning an individual component (service) that
is not a composition of other components (services). Each component may
have multiple requirements, such as certain minimum hardware requirements
or dependencies on other services, represented by multi-valued attribute

“requirement” 708.

Ternary relationship “providesl” 710 relates each component (706)
with one or more base functionalities (714) under a particular usage
(712) . Ternary relationship “providesl” 710 denotes that a particular
component (706), when used in a certain way (712), provides one or more

base functionalities (714).

Ternary relationship “synthesize” 716 relates one or more base
functionalities (714) with a combination method (combination method entity
718) and a corresponding derived functionality (derived functionalities
entity 720). Ternary relationship “synthesize” 716 denotes that one or
more base functionalities (714) may be combined in a certain manner (718)
to achieve a derived functionality (720). For example, converting a
graphics file from a “BMP” (bitmap) file to “TIFF” (tagged image file
format) file might be a base functionality and converting-a TIFF file to a
“GIF” (graphics interchange format) may be yet another base functionality.
Converting from BMP to GIF format would then be a derived functionality
achievable by applying the combination method of féeding the output from a
BMP-to-TIFF conversion service into a TIFF-to-GIF conversion service. It
should be noted that in Figure 7 ternary relationghip “synthesize” 716

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

13

relates functionalities, not components. For example, ternary
relationship “synthesize” 716 would indicate that any BMP-to-TIFF
conversion service may be combined with any TIFF-to-GIF conversion service
to yield a BMP-to-GIF conversion meta-service; no indication is made in
ternary relationship ‘synthesize” 716 as to which specific BMP-to-TIFF

conversion service should be used.

“Combinable” relationship 722 relates a combination method (718)
with one or more components (706). “Combinable” relationship 722 denotes
that a particular group of components may be combined according to a
particular combination method (718). Thus, in the case of the
aforementioned graphics file format conversions, “combinable” relationship
722 would store an indication that two particular conversion services
could be combined by feeding the output of one into the input of the
other. JThus, if a certain functionality must be derived from base
functionalities, “combinable” relationship 722 may be consulted to ensure
that a particular group of components may be combined in the way necessary

to achieve the desired derived functionality.

A combination of components: (706) combining a set of base
functionalities (714) into a derived functionality (720) is a combination,
represented by “combination” entity 724, which is related to entities 706,
714, and 720 via relatlonships 722, 728, and 730. “Combination scheme”
attribute 726 of “combination” entity 724 represents information for
forming or using the combination. Combination entity 724 provides a
history mechanism for storing already-derived combinations. “Combination
scheme” attribute 726 may contain, for example, combination method
information (e.g., from “combination method” entity 718), or any other
pertinent information for using or forming a combination (such as
instructions for forming the combination from individual components or a
copy of a combined software component incorporating the code from

individual components).

A database schema such as the schema described in Figure 7 may be
implemented using a database management system, such as a relational,
object-oriented, object-relational, or deductive database management
system. Other data storage paradigms are also possible within a preferred

embodiment of the present invention as are available in the art.

In accordance with a preferred embodiment of the present invention,
a database schema such as is described in Figure 7 is combined with

control logic (e.g., such as is provided by directory service 401,

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

14

composition seivice 402, and composition logic 403 in Figure 4) to allow
available services to be selected and/or combined in satisfaction of
functional requirements. Figure 8 depicts in flowchart form one possible
embodiment of a control logic that may be used in an embodiment of the
present invention. The control logic desqribed in Figure 8 is based on
the database schema of Figure 7 and combines functionalities of directory
service 401, composition service 402, and composition logic 403, as
described with respect to Figure 4. As was stated in conjunction with
Figure 4, no rigid separation of directory service 401, composition
service 402, and composition logic 403 is required by the present
invention. As with the database schema in Figure 7, the process depicted
in Figure 8 is merely intended to serve as an example of how a control

logic may function and is not intended to be limiting.

The process depicted in Figure 8 begins with calling a subroutine to
find the components and constraints associated with the specified
functional requirements (block 800). The subroutine called in block 800
is a recursive subroutine to find and/or combine components in
satisfaction of each functional requirement specified. As components are
incorporated into the solution for each functional requirement, the
subroutine is invoked recursively to incorporate additional components
and/or combinations in satisfaction of the remaining requirements. When
the subroutine is initially invoked, the full list of functional

requirements and two empty lists, representing the components and

constraints in the solution so far, may be passed into the subroutine as

parameters. As the subroutine is repeatedly recursively called,
components and constraints are added to the two lists representing the
solution so far and functional requirements that have been satisfied by

the solution so far are removed from the list of functional reguirements.

Each time the subroutine is invoked, a deterﬁination is made as to
whether any functional requirements remain to be addressed (block 802).
If no additional functional requirements remain (block 802:No), the

solution so far should be returned as the result (block 804).

If any functional requirements do remain (block 802:Yes),‘a
determination is made as to whether any components have been selected for
inclusion in the solution so far (block 806). If so (block 806:Yes), then
a determination is made as to whether any of the remaining requirements
can be met by components already selected for 'inclusion in the solution
(block 808). If not (block 808:No) or if no components have been selected

so far, the process continues to block 812.

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

15

If there is a requirement that is met by an already selected
component (block 808:Yes), then usage information (i.e., information that
instructs a client on how to use the component in question to achieve the
desired functionality) is added to the list of constraints in the solution
so far (block 810). A recursive call is then made to address any

remaih;ng functional requirements (block 811).

In block 812, a determination is made as to whether there is a
requirement that may be met by a single component that has not yet been
selected for inclusion in the solution so far. If so (block 812:Yes), the
component is added to the list of components in the solution so far (block
814), usage information for that component is added to the solution so far
(block 810), and the subroutine is recursively called to handle any

remaining functional requirements (block 811).

If none of the functiomnal requirements may be satisfied by a single
component (block 812:No), a determination is made as to whether a
functional requirement may be met with a combination of functions (block
816). If so (block 816:Yes), the subroutine is called recursively to find
a set of components meeting the functional requirements needed to achieve
the necessary derived functional requirement (block 818). The result of
the recursive subroutine call 1s then checked to see if the components
returned by the subroutine may be combined in the necessary way (block
819). If not (block 819:No), the process makes additional subroutine
calls to find combinable components (block 818). If a properly combinable
set of components is found (block 819:Yes), the components are added to
the solution so far (block 814), usage information specifying how to
combine and use the components is added to the solution so far (block
810), and the subroutine is called recursively to address any remaining

functional requirements (block 811).

Once a solution is returned by the subroutine, the combination
derived is stored in the history database (block 820). One of ordinary
skiil in the art will recognize that a history database may be implemented
using conventional database storage technigues or by making modifications
to program logic in a language that supports tabled logic programming or
self-modifying code, such as Prolog, or through any other appropriate

means, not limited to a simple database representation.

While the preferred embodiment depicted in Figures 4-8 assumes that
the a directory service or combined directory and composition service will

return a response comprising instructions or other information to allow a

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

16

client to combine and use services (components), a number of other
architectural arrangements are also possible. Figure 9 depicts an
embodiment of the present inventlon utilizing a remote meta-service
provider 912. Remote meta-service provider 912 allows the actual
combination of services to be performed remotely from client 900.
Specifically, client 900 issues a request 902 to directory sérvice 904,
which if a combination of services is necessary relays request 906 to
composition service 908. Composition service 908 then forwards
combination instructions 910 to remote meta-service provider 912.
Directory service 904 then responds (914, not shown) to client 900 to
notify client 900 that remote meta-service provider 912 is now available
to provide the requested functionality. Client 900 may then utilize
remote meta-service provider 912 as if it were an individual service
providing the requested functionality. Remote meta-service provider 912,
however, in actuality serves as an interface to the combination of
services making up the "mgta—service" accérding to combination

instructions 910.

Figure 10 depicts vet another architectural variation of the present
invention in which .the remote meta~service provider is incorporated into
the compogition service used for deriving combinations. Client 1000
issues a request 1002 to directory service 1004, which if a combination of
services is necessary relays request 1006 to composition service 1008,
which then provides the derived meta-service to client 1000 as would
remote meta-service provider 912 in Figure 9. Directory service 1004 then
responds (1010, not shown) to client 1000 to nqtify client 1000 that
composition service 1008 is ﬁow available to provide the requested
functionality. A variation on the architecture in Figure 10 would be for
directory service 1004 to provide the derived meta-service, rather than

composition service 1008.

Additional variations on the present invention are possible. For
example, the process of deriving combinations may be done in a distributed
fashion, so that multiple solutions are returned from a plurality of
composition services operating concurrently and a best solution is chosen
from the returned solutions. Ancther variation is to offer two or more
possible combinations to the requesting client, possibly with additional
information to be used as selection criteria, and allowing the client to
choose one of the possible combinations presented. Another way in which
multiple solutions may be supported is for the composition service (or

directory service) to gquery the client for preferences that would aid in

10

15

20

25

30

35

WO 2004/027661 PCT/GB2003/003943

17

choosing a derived combination from a plurality of candidates, so that the
composition service (oxr diregtory service) could then offer one or more
solutions that best fit the client’s preferences. For example, the client
could be agsked whether speed or reliability is a greater concern, and
solutions could be offered in which the speed/reliability tradeoff is
handled in accordance with the client’s needs.

It is important to note that while the present invention has been
described in the context of a fully functioning data processing system,
those of ordinary skill in the art will appreciate that the processes of
the present invention are capable of being distributed iﬁ the form of a
computer feadable medium of instructions or other functional descriptive
material and in a variety of other forms and that the present invention is
equally applicable regardless of the particular type of signal bearing
media actually used to carry out the distribution. Examples of computer
readable media include recordable-type media, such as a floppy disk, a
hard disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmission-type media,
such as digital and analog communications links, wired or wireless
communications links using transﬁission forms, such as, for example, radio
frequency and light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual use in a
particular data processing system. Functional descriptive material is
information that imparts furnctionality to a machine. Functional
descriptive material includes, but is not limited to, computer programs,
instructions, rules, facts, definitions of computable functions, objects,

and data structures.

The description of the present invention has been presented for
purposes of illustration and description, and is not intended to be
exhaustive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of ordinary skill
in the art. The embodiment was chosen and described in order to best
explain the principles of the invention, the practical application, and to
enable others of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited to the

particular use contemplated.

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

18

CLAIMS

1. A computer-implemented process for storing information about

hardware and software components comprising:
recelving (501) a request containing a functional requirement;

consulting (502) a directory (401) to determine if a single

component exists that satisfies the functional requirement;

in response to a determination that a single component that
satisfies the functional requirements does not exist, identifying (816) a
plurality of functionalities that, when combined according to a

combination method, would satisfy the functional requirement; and

identifying (818) a plurality of components satisfying the plurality

of functionalities.

2. The process of claim 1, wherein the functional requirements are
service definitions and the directory determines 1if a defined service is

available by consulting a database of available services.
3. The process of claim 1 or claim 2, further comprising:

deriving instrﬁctions for combining the plurality of components

according to the combination method to achieve the functional reguirement.

4. The process of claim 3, wherein the request is made by a client and

the process further comprises:
returning the instructions to the client,

whereby the client may utilize the plurality of components to

achieve the functional regquirement.

5. The process of claim 3, wherein the request is made by a client and

the process further comprises:

providing the imstructions to a remote meta-service provider so that

the remote meta-service provider may provide functionality satisfying the

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

19
functional requirement to the client by combining the plurality of
components into a meta-service.
6. The process of any preceding claim, further comprising:

registering the plurality of componenfs for future use without

reidentifying the plurality of components.

7. The process of claim 1, wherein the request is made by a client and

the process further comprisés:

making an identification of the plurality of components available to

services other than the client.

8. The process of claim 1, wherein the request is made by a client and

the process further comprises:

identifying a plurality of combinations of components satisfying the

plurality of functionalities; and

offering the client a choice of a combination from the plurality of

combinations.

9. The process of claim 1, wherein the request is made by a client and

the process further comprises:

identifying a plurality of combinations of components satisfying the

plurality of functionalities;
querying the client to determine additional preferences; and

choosing, based on the additional preferences, at least one
combination from the plurality of combinations to offer to the client.

10. A computer program product comprising instructions, when executed by

a computer, cause the computer to carry out the process of:
receiving (501) a regquest containing a functional reguirement;

consulting (502) a directory (401) to determine if a single

component exists that satisfies the functional reguirement;

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

20

in response to a determination that a single component that
satisfies the functional requirements does not exist, identifyving (816) a
plurality of functionalities that, when combined according to a

combination method, would satisfy the functional requirement; and

ideﬁtifying (818) a plurality of components satisfying the plurality

of functionalities.

11. The computer program product of claim 10, wherein the functional
requirements are service definitions and the directory determines if a

service is available by consulting a database of available services.

12. The computer program product of claim 10 or claim 11, wherein the

process carried out by the computer further includes:

deriving instructions for combining the plurality of components

according to the combination method to achieve the functional requirement.

13. The computer program product of claim 12, wherein the request is

made by a client and the process carried out by the computer includes:
returning the instructions to the client,

whereby the client may utilize the plurality of components to

achieve the functional requirement.

14. The computer program product of claim 12, wherein the request is
made by a client and the process carried out by the computer includes:

providing the instructions to a remote meta-service provider so that
the remote meta-service provider may provide functionality satisfying the
functional requirement to the client by combining the plurality of

components into a meta-service.

15. The computer program product of any of claims 10 to 14 wherein the

process carried out by the computer includes:

registering the plurality of components for future use without

reidentifying the plurality of components.

16. The computer program product of claim 10, wherein the request is

made by a client and the process carried out by the computer includes:

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

21

making an identification of the plurality of components available to

services other than the client.

17. The computer program product of claim 10, wherein the request is
made by a client and the process carried out by the computer includes:

identifying a plurality of combinations of components satisfying the

plurality of functionalities; and

offering the client a choice of a combination from the plurality of

combinations.

18. The computer program product of claim 10, wherein the request is
made by a client and the process carried out by the computer includes:

identifyving a plurality of combinations of components satisfying the

plurality of functionalities;
querying the client to determine additional preferences; and

chooging, based on the additional preferences, at least one
combination from the plurality of combinations to offer to the client.

19. A data processing system comprising:

means (501) for receiving a regquest containing a functional

requirement;

means (502) for consulting a directory (401) to determine if a
single component exists that satisfies the functional reguirement;

means (816), responsive to a determination that a single component
that satisfies the functional requirements does not exist, for identifying
a plurality of functionalities that, when combined according to a
combination method, would satisfy the functional requirement; and

means (818) for identifying a plurality of components satisfying the

plurality of functionalities.

20. A data processing system as claimed in claim 19 wherein the
functional requirements are service definitions, the system further

including a database of service definitions consultable by directory.

10

15

20

25

30

35

40

WO 2004/027661 PCT/GB2003/003943

22

21. The data processing system of either claim 19 or claim 20, further

comprising:

means for deriving instructions for combining the plurality of
components according to the combination method to achieve the functional

requirement.

22. The data processing system of claim 21, wherein the request is made

by a client and the data processing system further comprises:
means for returning the instructions to the client,

whereby the client may utilize the plurality of components to

achieve the functional reguirement.

23. The data processing system of claim 21, wherein the request is made

by a client and the data processing system further comprises:

means for providing the instructions to a remote meta-service
provider so that the remote meta-service provider may provide
functionality satisfying the functional requirement to the client by

combining the plurality of components into a meta-gservice.

24. The data processing system of any one of claims 19-23, further

comprising:

means for registering the plurality of components for future use

without reidentifying the plurality of components.

25. The data processing system of claim 19, wherein the request is made

by a client and the data processing system further comprises:

means for meking an identification of the plurality of components

available to services other than the client.

26. The data processing system of claim 19, wherein the request is made

by a client and the data processing system further comprises:

means for identifyving a plurality of combinations of'components

satisfying the plurality of functionalities; and

10

WO 2004/027661 PCT/GB2003/003943

23

means Ffor offering the client a choice of a combination from the

plurality of combinations.

27. The data processing system of claim 19, wherein the request 1s made

by a client and the data proqessing system further comprises:

1

means for identifying a plurality of combinations of .components

satisfying the plurality of functionalities;

meéans for querying the client to determine additional preferences;

and

means for choosing, based on the additional preferences, at least

one combination from the plurality of combinations to offer to the client.

WO 2004/027661

104

E:DI
-__J o0 -

SERVER

116

PCT/GB2003/003943

CLIENT
106
112
CLIENT
202 204
\. /
PROCESSOR PROCESSOR
206
SYSTEM BUS P
< >
200
MEMORY r'el
208~ CONTROLLER/ | 1/0 BRIDGE |~ 210
CACHE
214
it p oz
C
209~ LOCAL — PCII BUES PCLBUS [
MEMORY BRIDG ﬁ ﬁ
1/0 NETWORK
2127 B/US MODEM e
GRAPHICS 222 \ \
230-"] ADAPTER / 218 ool BUS 220
PCI BUS
<— BRiDGE < >
226
HARD DISK PCI BUS
239/ P PCl BUS
2 <— BRIDGE "
T 298
FIG. 2 ¥ 4

WO 2004/027661

216

PCT/GB2003/003943

FIG. 4

302 308 302 316
CLIENT N \ / /
300 HOST/PCI MAIN AUDIO
| PROCESSOR K= cacHE /BRIDGE MEMORY ADAPTER
& I I
BUS
7 T
SCST HOST | ~319 LN | | EXPRSION T | GrapCS | | AUDIO/VIDEO
BUS HOMPTER |~ AOAPTER | | BV | | ADAPTER | | ADAPTER
/ N \ \)
DISK 310 314 318 319
<
M P-328 KEYBO%D AND {}
A
320~"| MOUSE ADAPTER | | MODEM | | MEMORY
\;—_—> CD-ROM ~_ 330 5 v
FIG. 3 322 324
400~ REQUESTING
SERVICE
401 Y
AVAILABLE
DIRECTORY COMPOSITION
SERVICES v
DATABASE SERVICE SERVICE
402
/
406
HISTORY
4051 DATABASE
COMBINATION COMPOSITION
404 HINTS LOGIC

WO 2004/027661 PCT/GB2003/003943

376
DIRECTORY COMPOSITION
FIG. 5 SERVICE SERVICE
500 | 512
START '/ |
Y I
501~ RECEIVE REQUEST |
FROM CLIENT !
505 I
502 / !
CAN PROVIDE u
REQUEST BE MET REQUEST TO | !
FROM AVAILABLE COMPOSITION || l
f)
SERVICES? SERVICE i RECEIVE
| COMPOSITION (506
! REQUEST
RETRIEVE |
RESPONSE(S) ' 507
503~ FROM AVAILABLE { CAN
SFRVICES | REQUEST BE ES
DATABASE | < SATISFIED FROM HISTORY
| DATABASE?
|
|
|
i
| DERIVE
! COMBINATION
, VIA COMBINATION |™>-310
| LOGIC
| Y
{ ENTER
| COMBINATION INTO ~-508
! HISTORY DATABASE
I -
I \2
: SEND
¥ COMPOSITION ~_50g
RECEIVE : RESPONSE
RESPONSE | |]
> FROM |« i
COMPOSITION
SEND RESPONSE(S i
504 SEND RESPONS (8) SERVICE | !
\ !
511 l
|

END

WO 2004/027661 PCT/GB2003/003943

L16
SYMBOL MEANING
ENTITY
L WEAK ENTITY
<> RELATIONSHIP
— D ATTRIBUTE
© MULTIVALUED
Er £.] TOTAL PARTICIPATION
2] OF £ INR
E 1N "E, | CARDINALITY RATIO
TN FOR 51 . EZ INR
/R\@in, max)] STRUCTURAL CONSTRAINT
N4 (MIN, MAX) ON PARTICIPATION OF £ IN R)
FIG. 6
90\0 90\4 9/08 | 912
COMBINATION REMgT
cLENT |LREQUEST, | DIRECTORY | REQUEST | COMPOSITION | INSTRUCTIONS METASER\E
7 SERVICE |/ SERVICE N R
902 906 910 R
FIG. 9
REQUEST
10&2
> DIRECTORY | REQUEST | COMPOSITION
FIG. 70 |ouenr | v SERVICE [N SERVICE
1006

’ 1010 7
1000 RESPONSE 9004 1808

PCT/GB2003/003943

WO 2004/027661

516

& OIA

3N3HOS
NOLLYNIGW0D

9¢L

A
20L
3SVaviva

AYOLSIH

SINH

80L

4
| SAUNVNOLLONNS |~ 07/ NOLLYNIBINOD
£5301A0dd N m Q3AIN3C 0L
051 ! _ r
| \\3ZISFHINAS
i | aoHEN || g1/
| 917 | NOLLYNISWOD
1 |
I
1
i " JIGYNIEN0D
1
vl N

N I — ,
I [SIILYNOLLONNA

NOLLYNIGWOO ¢S301A0¥d i e epl/

8L ! N
| | \S301A0Yd
NOLLYNIGNOD _
e ! 39vSN
1 OLL
1444 |)\
“ clL
|
— ININOJWOD
N S

“ 90/ 0L
“ JIN3S
| AY0103¥10
1
I
1

WO 2004/027661

618

COMPONENTS AND CONSTRAINTS

'

RECORD COMBINATION
IN HISTORY DATABASE

ée&zo

END

CALL SUBROUTINE AT “A” TO FIND { ~ 800

PCT/GB2003/003943

FiG. &8

~ ANY
MORE FUNCTIONAL

NO

REQUIREMENTS?

COMPONENTS SELECTED SO

IS THERE
A REQUIREMENT MET BY
AN ALREADY SELECTED
COMPONENT?

[S THERE
A REQUIREMENT MET BY

!

RETURN FROM SUBROUTINE }~804

YES

!

RECURSIVELY CALL
SUBROUTINE AT “A”
10 FIND COMPONENTS
MEETING THE
REQUIREMENTS OF
THE COMBINATION

819

L ~818

ARE
NO COMPONENTS
COMBINABLE?

JYES

A SINGLE YET UNSELECTED
COMPONENT?

IS THERE
A REQUIREMENT THAT CAN BE
MET WITH A COMBINATION OF
FUNCTIONS?

Y

ADD COMPONENT(S) TO
COMPONENTS SO FAR

>

4

ADD USAGE INFORMATION
TO CONSTRAINTS SO FAR [>810

!

RECURSIVELY CALL
SUBROUTINE AT “A” TO
ADDRESS ANY REMAINING [>811

FUNCTIONAL REQUIREMENTS

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

