
(19) United States
US 2016O197814A1

(12) Patent Application Publication (10) Pub. No.: US 2016/0197814 A1
Inaba et al. (43) Pub. Date: Jul. 7, 2016

(54)

(71)

(72)

(73)

(21)

(22)

(30)

METHOD AND APPARATUS FOR SOFTWARE
DETECTION

Applicant: FUJITSU LIMITED, Kawasaki-shi (JP)

Inventors: Tatsushige Inaba, Osaka (JP); Jun
Sugii, Kobe (JP); Hideo Nishi, Miki
(JP); Kiyotaka Iwamoto, Toyonaka (JP)

Assignee: FUJITSU LIMITED, Kawasaki-shi (JP)

Appl. No.: 14/977,727

Filed: Dec. 22, 2015

Foreign Application Priority Data

Jan. 6, 2015 (JP) 2015-000772

Publication Classification

(51) Int. Cl.
H04L 2/26 (2006.01)

(52) U.S. Cl.
CPC H04L 43/14 (2013.01)

(57) ABSTRACT
An information processing apparatus detects the presence of
specific Software on the information processing apparatus
utilizing a first detection condition, in which the specific
Software was judged to be installed on the information pro
cessing apparatus in prior detection utilizing the first detec
tion condition, and the first detection condition is generated
by any one of a plurality of generating rules on detection
conditions for software. If this detection utilizing the first
detection condition fails, the information processing appara
tus detects the specific Software utilizing a second detection
condition that is one of a plurality of detection conditions
generated by the plurality of generating rules and is different
from the first detection condition.

200 MANAGEMENT
SERVER

TERMINAL DEVICE

Patent Application Publication Jul. 7, 2016 Sheet 1 of 16 US 2016/0197814 A1

INFORMATION
O PROCESSINGAPPARATUS

GGS " (os ver,7) N GENERATING RULE 11a
(APPLICABLE ENVIRONMENT:

OS, ver,7) 13
GENERATING RULE SOFTWARE

(APPLICABLE ENVIRONMENT: DETECT
OS, ver,8)

OPERATING UNIT

12a DETECTION CONDITION
REGISTRY (X) HAS VALUE

OF (a)

OS UPGRADE

INFORMATION
PROCESSINGAPPARATUS

(, ES) (OS, ver,8) GENERATING RULE
(A 13

OS, wer.7) PPLICABLE ENVIRONMENT:
SOFTWARE

GENERATING RULE
(APPLICABLE ENVIRONMENT:

OS, wer.8)

10

REGISTRY
OPERATING UNIT (NONE)

12a DETECTION CONDITION

REGISTRY (X) HAS VALUE OF (a)

12b DETECTION CONDITION

RETURN VALUE OF API(n) IS (a)

FIG. 1

Patent Application Publication Jul. 7, 2016 Sheet 2 of 16 US 2016/O197814 A1

200 MANAGEMENT
SERVER

TERMINAL DEVICE

FIG. 2

Patent Application Publication Jul. 7, 2016 Sheet 3 of 16 US 2016/O197814 A1

21 MONITOR

100 TERMINAL
DEVICE O4

101

s | GRAPHICS
PROCESSOR PROCESSING 22 KEYBOARD

DEVICE

102

23 MOUSE
MEMORY

24 OPTICAL DISC 103

25 MEMORY 108 DEVICE

NE TWORK

INTERFACE J INTERFACE

109 BUS

MEMORY
READER-WRITER

2O 27
MEMORY CARD

FIG. 3

Patent Application Publication Jul. 7, 2016 Sheet 4 of 16 US 2016/O197814 A1

MANAGEMENT
DETECTION INFORMATIO SERVER

STORAGE UNIT

SOFTWARE
DICTIONARY

DETECTION DETECTION INVENTORY
CONDITION CONDITION
GENERATION DATABASE
INFORMATION

DETECTION-RELATED
INFORMATION

MANAGEMENT UNIT

TERMINAL
DETECTION-RELATED DEVICE

INFORMATION
TRANSCEIVER UNIT

DETECTION INFORMATION
STORAGE UNIT

SOFTWARE
DICTIONARY DETECTION UNIT

DETECTION DETECTION
CONDITION CONDITION
GENERATION
INFORMATION

DETECTION
CONDITION

GENERATION UNIT

FIG. 4

Patent Application Publication Jul. 7, 2016 Sheet 5 of 16 US 2016/0197814 A1

121 DETECTION CONDITION
GENERATION INFORMATION

CONDITION
DEFINITION

MANAGEMENT TABLE

CANDIDATE SETTING
VALUE MANAGEMENT

TABLE

ARRANGEMENT
MANAGEMENT TABLE

FIG. 5

Patent Application Publication Jul. 7, 2016 Sheet 7 of 16 US 2016/0197814 A1

121b CANDIDATE SETTING VALUE
MANAGEMENT TABLE

VALUE ID DEFINITION CATEGORY VALUE

V0000 D00001 FROMWERE KLMSOFTWAREVendorAYProductAY. KeyAAA
VOOOO2 DOOOO1 FROM WHERE HKLMYSOFTWAREYVendorAYProductBY.

KeyBBB

VOO003 DOOOO1 READ FROM REGISTRY WITH API

VOOOO4 DOOOO READ FROM INIFILE WITH API

VOO005 DOOOO AAS 5th ARGUMENT FOR RegQueryValueX()
ANALYSIS 5th ARGUMENT FOR

VOO006 DOOOO METHOD GetPrivateProfileString()

USE
V00007 D00001 INEoNATIONUSER ID

USE
V00008 D00001 | NEoNATION VALUENAME

HOW TO
VOOOO9 DOOOO OBTAIN USE OBTAN LOGONUSERNAME WITH API

INFORMATION

Patent Application Publication Jul. 7, 2016 Sheet 8 of 16 US 2016/O197814 A1

121C ARRANGEMENT
MANAGEMENT TABLE

ARRANGEMENT DEFINITION

COOO1 DOOOO1

COOO1 DOOOO3
OSA(Ver.7) DESKTOP APPLICATION

COOO1 DOOOO5

COOO2 DOOO31

COOO2 DOOO32
OS A(Ver.8) DESKTOP APPLICATION

COOO2 DOOO33

COOO3 DOO 101

COOO3 DOO 102
OS ANON DESKTOP APPLICATION

COOO3 DOO 103

COO77 DOO2O1

COO77 DOO2O2

OSB, APPLICATION
COO77 DOO2O3

CO1 OO DOO901

CO1 OO DOO902

FIG. 8

Patent Application Publication Jul. 7, 2016 Sheet 9 of 16 US 2016/O197814 A1

122 SOFTWARE DICTIONARY

TARGET SOFTWARE
MANAGEMENT TABLE

DETECTION
CONDITION

MANAGEMENT TABLE

FIG. 9

Patent Application Publication Jul. 7, 2016 Sheet 10 of 16 US 2016/O197814 A1

122 TARGET SOFTWARE
a MANAGEMENT TABLE

; ; ;

FIG. 10

Patent Application Publication Jul. 7, 2016 Sheet 12 of 16 US 2016/O197814 A1

MANAGEMENT SERVER 211 TERMINAL DEVICE 121

DETECTION CONDITION DISTRIB- DETECTION CONDITION
GENERATION INFORMATION UTE GENERATION INFORMATION

212

SOFTWARE DICTIONARY 31
SOFTWARE DICTIONARY 41

31 SOFTWARE DETECTION CONDITION 1 Distrip VIDETECTION CONDITION 1
32 32 42

DETECTION CONDITION 2 DETECTION CONDITION 2 SOFARE

122

MANAGEMENT SERVER TERMINAL DEVICE
211 121

DETECTION CONDITION DETECTION CONDITION
GENERATION INFORMATION GENERATION INFORMATION

212
SOFTWARE DICTIONARY 3
DETECTION CONDITION 1

32
DETECTION CONDITION 2

MANAGEMENT SERVER 211

DETECTION CONDITION
GENERATION INFORMATION

212
SOFTWARE DICTIONARY

DETECTION CONDITION 1

DETECTION CONDITION 2 33 5
DETECTION CONDITION 3

SOFTWARE GEN
DICTIONARY ERA

FEEDBACK FIG. 1 2

Patent Application Publication Jul. 7, 2016 Sheet 13 of 16 US 2016/0197814 A1

100
121 TERMINAL DEVICE

DETECTION CONDITION 41
GENERATION INFORMATION SOFTWARE

A

150 SOFTWARE DICTIONARY

DETECTION CONDITION
CONDITION A-1
REGISTRY (X) HAS VALUE REGISTRY
OF (a) X:a
CONDITION A-2 Y:b
REGISTRY (Y) HAS VALUE
OF (b)

ENVIRONMENTAL
CHANGE

100
TERMINAL DEVICE

DETECTION CONDITION 121 41
GENERATION INFORMATION SOFTWARE

A 122
SOFTWARE DICTIONARY
DETECTION CONDITION

CONDITION A-1
REGISTRY (X) HAS VALUE
OF (a)
CONDITION A-2
REGISTRY (Y) HAS VALUE
OF (b)

CHANGE VARIABLE
ELEMENT

100
TERMINAL DEVICE

DETECTION CONDITION 121 41
GENERATION INFORMATION

122 SOFTWARE
A

150

SOFTWARE DICTIONARY

DETECTION CONDITION
CONDITION A-1
REGISTRY (X) HAS VALUE
OF (a)
CONDITION A-2
REGISTRY (Y) HAS VALUE
OF (c)

200

MANAGEMENT
SERVER

FEEDBACK FIG. 1 3

Patent Application Publication Jul. 7, 2016 Sheet 14 of 16 US 2016/0197814 A1

MANAGEMENT SERVER

DETECTION CONDITION
GENERATION INFORMATION FIG. 14

100

TERMINAL DEVICE
(OSA, wer.7)

41
SOFTWARE A

121
DETECTION CONDITION

GENERATION INFORMATION

REGISTRY DISTRIBUTE CONDITION A-1
REGISTRY (X) HAS VALUE X:a
OF (a) Y:b
CONDITION A-2
REGISTRY (Y) HAS VALUE
OF (b)

121-1 TERMINAL DEVICE
(OSA, wer.8)

44

DETECTION CONDITION
51 GENERATION INFORMATION

52

CONDITION A-1
RETURN VALUE OF API(n) IS (a)
CONDITION A-1
RETURN VALUE OF API(m) IS (b)

Patent Application Publication Jul. 7, 2016 Sheet 15 of 16 US 2016/O197814 A1

START

OBTAIN SOFTWARE DICTIONARY
AND DETECTION CONDITION
GENERATION INFORMATION

S101

S102
NO IS THERE

PREVIOUSLY GENERATED
DETECTION CONDITION2

YES S103
LOOP FOREACH DETECTION

CONDITION

S104 NO
IS

DETECTION CONDITION S105
SATISFIED2

EXTRACT VALUES
CORRESPONDING TO DEFINITION ID

LOOP FOREACH SO6
EXTRACTED VALUE

S107

MODIFY VALUE AND OBTAIN
INFORMATION S108

END OF LOOP FOR
EXTRACTED VALUES

S109

so S111 NO
ADD UNDETECTED SOFTWARE

TO DETECTION RESULT

S112

ADD DETECTED SOFTWARE
TO DETECTION RESULT

END OF LOOP FOR
DETECTION CONDITIONS

S113
DETECTION CONDITION Y

GENERATION AND APPLICATION
S114

NOTIFY MANAGEMENT SERVER OF /
GENERATED DETECTION CONDITIONS

S115
REPORT SOFTWARE DETECTION

RESULT TO MANAGEMENT SERVER
FIG. 15

Patent Application Publication Jul. 7, 2016 Sheet 16 of 16 US 2016/O197814 A1

DETECTION CONDITION GENERATION
AND APPLICATION

START

EXTRACT COMBINATIONS OF
CONDITION DEFINITIONS

APPROPRIATE FOR ENVIRONMENT
OF TERMINAL DEVICE

LOOP FOREACH EXTRACTED
COMBINATION

SET VALUES SATISFYING
CONDITION, WITH RESPECT TO
EACH CONDITION DEFINITION OF

COMBINATION

S204

HAS SOFTWARE BEEN
DETECTED?

REGISTER DETECTION CONDITION

ADD DETECTED SOFTWARE TO
DETECTION RESULT

END OF LOOPFOR EXTRACTED
COMBINATIONS

FIG. 16

US 2016/O 197814 A1

METHOD AND APPARATUS FOR SOFTWARE
DETECTION

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is based upon and claims the ben
efit of priority of the prior Japanese Patent Application No.
2015-000772, filed on Jan. 6, 2015, the entire contents of
which are incorporated herein by reference.

FIELD

0002. The embodiments discussed herein relate to a
method and apparatus for Software detection.

BACKGROUND

0003. In a computer network that interconnects a number
of devices, a management server collects inventory data from
these devices. Inventory data indicates a list of software and
other resources installed on an individual device, such as a
terminal device, in a network. To collect such inventory data
from a terminal device, the management server makes a
request for inventory collection to the terminal device, for
example. In response to the request, the terminal device
detects what software is locally installed, for example, and
then sends the detection result as inventory data to the man
agement server. Such collected inventory data is used to
monitor the current state for license management and security
maintenance.

0004 One example of techniques for managing devices
over a network is to provide a user support server for provid
ing propertroubleshooting and Support promptly in the events
of failures and setups of computers, installation of applica
tions, and others. This user Support server generates Support
information about user computers on the basis of configura
tion information of software and others of individual user
computers and information about user inquiries.
0005 Virtual machines may be under management. One
example of techniques for managing virtual machines is to
compare one or more files used for operating each virtual
machine with one or more template files, and generate con
figuration information of the virtual machine on the basis of
the comparison result.
0006 Please see, for example, Japanese Laid-open Patent
Publication Nos. 2004-005413 and 2012-203640.

0007 Software is detected under detection conditions that
are prepared in advance. For example, Software that satisfies
Such detection conditions is judged to be installed. The detec
tion conditions are manually set by a resource management
vendor or administrators of the user system, for example. The
detection conditions indicate criteria for detecting the pres
ence of software on the basis of whether specific files exist or
not, values of predetermined environment setting, or others.
0008. Using detection conditions enables to detect the
presence of Software at high speed and low load, because
what needs to be done is only to determine whether the
detection conditions are satisfied or not. However, since the
detection conditions are fixed, they do not follow software
upgrades or changes in the operating environment of Soft
ware, and therefore software may not be detected by the same
Software conditions as previously used. As a result, it is dif
ficult to monitor the state of software installation accurately.

Jul. 7, 2016

SUMMARY

0009. According to one aspect, there is provided a non
transitory computer-readable storage medium storing therein
a software detection program that causes a computer to
execute a process including: detecting a presence of a specific
Software on the computer utilizing a first detection condition,
the specific software being judged to be installed on the
computer by prior detection utilizing the first detection con
dition, the first detection condition being generated by one of
a plurality of detection condition generating rules for the
specific Software; and detecting the specific software utilizing
a second detection condition when the specific Software is not
detected by the first detection condition, the second detection
condition being one of a plurality of detection conditions
generated by the plurality of detection condition generating
rules and being different from the first detection condition.
0010. The object and advantages of the invention will be
realized and attained by means of the elements and combina
tions particularly pointed out in the claims.
0011. It is to be understood that both the foregoing general
description and the following detailed description are exem
plary and explanatory and are not restrictive of the invention.

BRIEF DESCRIPTION OF DRAWINGS

0012 FIG. 1 illustrates an example of an information pro
cessing apparatus according to a first embodiment;
0013 FIG. 2 illustrates an example of a system configu
ration according to a second embodiment;
0014 FIG. 3 illustrates an example of a hardware configu
ration of a terminal device;
0015 FIG. 4 is a block diagram illustrating an example of
functions of each device;
0016 FIG. 5 illustrates an example of detection condition
generation information;
0017 FIG. 6 illustrates an example of a condition defini
tion management table;
0018 FIG. 7 illustrates an example of a candidate setting
value management table;
0019 FIG. 8 illustrates an example of an arrangement
management table;
0020 FIG. 9 illustrates an example of a software dictio
nary,
0021 FIG. 10 illustrates an example of a target software
management table;
0022 FIG. 11 illustrates an example of a detection condi
tion management table;
0023 FIG. 12 illustrates an example of generating a detec
tion condition for detecting newly installed software;
0024 FIG. 13 illustrates an example of modifying a detec
tion condition according to a change in environment;
0025 FIG. 14 illustrates an example of generating a detec
tion condition appropriate for an environment;
0026 FIG. 15 illustrates an example of a software detec
tion process; and
0027 FIG. 16 is a flowchart illustrating a detection con
dition generation and application process.

DESCRIPTION OF EMBODIMENTS

0028 Several embodiments will be described below with
reference to the accompanying drawings, wherein like refer
ence numerals refer to like elements throughout. Features of
the embodiments may be combined unless they exclude each
other.

US 2016/O 197814 A1

First Embodiment

0029 FIG. 1 illustrates an example of an information pro
cessing apparatus according to a first embodiment. An infor
mation processing apparatus (computer) 10 includes a stor
age unit 11 and an operating unit 12. Software 13 is installable
on the information processing apparatus 10, and for example,
includes executable files and data used to execute programs
described in the files. At the time of the installation of the
software 13, the operating environment for the software 13 is
set up on the information processing apparatus 10. For
example, this setup involves storing setting values for the
Software 13 in a registry 14 of the information processing
apparatus 10. The registry 14 is a database for recording
Software setting values.
0030 The information processing apparatus 10 is pro
vided with a function of detecting the presence of the software
13 (i.e., detecting whether the software 13 is installed). The
information processing apparatus 10 having Such a function
may be called a software detection apparatus. For example,
when receiving, from an external server, a request for inven
tory collection, the information processing apparatus 10
detects the presence of the software 13, and then sends a
detection result to the server.
0031. The storage unit 11 stores a plurality of detection
condition generating rules 11a and 11b on detection condi
tions for software. The detection conditions are used for
detecting the presence of the software 13. A plurality of
detection conditions 12a and 12b are respectively generated
by the plurality of generating rules 11a and 11b. It is now
assumed that the software 13 was judged to be installed on the
information processing apparatus 10 by prior detection uti
lizing the detection condition 12a generated by the generating
rule 11a.
0032. When detecting the presence of the software 13 on
the information processing apparatus 10, the operating unit
12 of the information processing apparatus 10 uses the same
detection condition 12a as used in the prior detection. The
software 13 is judged to be installed if the detection condition
12a is satisfied. The operating unit 12 fails to detect the
software 13 if the detection condition 12a is not satisfied.
0033. If the detection utilizing the detection condition 12a

fails, then the operating unit 12 detects the software 13 uti
lizing a detection condition 12b that is one of the plurality of
detection conditions 12a and 12b generated by the plurality of
generating rules 11a and 11b and is different from the detec
tion condition 12a. For example, the operating unit 12 uses
the detection condition 12b generated by the generating rule
11b. Alternatively, the operating unit 12 may use another
detection condition for the detection. The other detection
condition may be generated by modifying values included in
the detection condition 12a such that they still follow the
generating rule 11a, from which the detection condition 12a
is generated. The software 13 is judged to be installed if any
of these detection conditions is satisfied.
0034. If the operating unit 12 fails to detect the presence of
the Software 13 utilizing any of the detection conditions gen
erated by the plurality of generating rules 11a and 11b, then
the operating unit 12 judges that the software 13 is already
deleted (uninstalled) from the information processing appa
ratus 10.
0035. In this connection, the plurality of generating rules
11a and 11b may be stored in association with their applicable
Software operating environments in the storage unit 11. In this
case, if the operating unit 12 fails to detect the presence of the

Jul. 7, 2016

software 13 utilizing the detection condition 12a, it performs
the detection again utilizing the detection condition 12b gen
erated by a generating rule corresponding to the operating
environment of this detection time. Referring to the example
of FIG. 1, the generating rule 11a is applicable to Operating
System (OS) version 7, whereas the generating rule 11b is
applicable to OS version 8.
0036. It is assumed that a setting item “X” with a value of
'a' is set in the registry 14 when the software is installed on
the OS version 7. The detection condition 12a generated by
the generating rule 11a applicable to the OS version 7 may
specify that the setting item “X” with a value of “a” in the
registry 14 proves that the software 13 has been installed.
Therefore, in detecting the presence of the software 13 utiliz
ing the detection condition 12a, a value satisfying this con
dition is obtained from the registry 14 and it is judged that the
software 13 is installed.
0037. It is assumed that the OS is now upgraded. In this OS
upgrading, the setting value for the software 13 is deleted
from the registry 14, and a method of obtaining the setting
value is changed to one of obtaining it as an argument for
Application Programming Interface (API) 15.
0038. When the presence of the software 13 is detected
after the OS upgrading, it is first determined whether the
detection condition 12a used previously is satisfied or not.
Referring to the example of FIG. 1, the detection condition
12a is not satisfied because the value is already deleted from
the registry 14. Then, the detection condition 12b is generated
by the generating rule 11b that is applicable to the upgraded
OS. The detection condition 12b specifies that the return
value of “a” from the API(n) proves that the software 13 is
installed. When the presence of the software 13 is detected by
the detection condition 12b, a return value of “a” from the
API(n) is obtained. Therefore, it is possible to accurately
judge that the software 13 is installed.
0039. As described above, the first embodiment makes it
possible to detect the presence of the software 13 accurately
even after the operating environment for the software 13 is
changed, thereby improving the accuracy of detection of the
Software 13.
0040. In the case of a failure in detecting the software 13
utilizing any of the detection conditions generated by the
plurality of generating rules 11a and 11b, the software 13 is
judged to be already uninstalled. Therefore, it is possible to
accurately judge that the software 13 is already uninstalled.
0041. In this connection, for example, the operating unit
12 may be implemented by using a processor provided in the
information processing apparatus 10, and the storage unit 11
may be implemented by using a memory provided in the
information processing apparatus 10.

Second Embodiment

0042. A second embodiment will now be described. The
second embodiment is designed Such that a management
server sends a plurality of terminal devices detection condi
tion generation information indicating a plurality of detection
condition generating rules on detection conditions for Soft
ware, and each terminal device automatically generates
detection conditions from the detection condition generation
information. Each terminal device then sends, among the
generated detection conditions, detection conditions that
have actually led to the detection of software, to the manage
ment server. The management server manages the received
detection conditions.

US 2016/O 197814 A1

0043 FIG. 2 illustrates an example of a system configu
ration according to the second embodiment. The management
server 200 is connected to a plurality of terminal devices 100,
100-1, 100-2, ... over a network 20. The management server
200 collects inventory data from the plurality of terminal
devices 100, 100-1, 100-2, ..., and manages their states of
software installation. The plurality of terminal devices 100,
100-1, 100-2, ... detect their locally installed software uti
lizing detection conditions. If the plurality of terminal devices
100, 100-1, 100-2, . . . fail to detect software previously
detected, utilizing the current detection conditions, the plu
rality of terminal devices 100, 100-1, 100-2, ... generate new
detection conditions from detection condition generation
information. The plurality of terminal devices 100, 100-1,
100-2, ... then make attempts to detect software utilizing the
generated detection conditions. Such automatic generation of
detection conditions makes it possible to detect software even
if the software is upgraded or if the execution platform for the
Software is changed.
0044 FIG.3 illustrates an example of a hardware configu
ration of a terminal device. The terminal device 100 is entirely
controlled by a processor 101. To the processor 101, a
memory 102 and a plurality of peripheral devices are con
nected via a bus 109. The processor 101 may be a multipro
cessor. For example, the processor 101 may be a Central
Processing Unit (CPU), Micro Processing Unit (MPU), or
Digital Signal processor (DSP). At least part of functions
implemented by the processor 101 executing programs may
be implemented by using an Application Specific Integrated
Circuit (ASIC), Programmable Logic Device (PLD), or other
electronic circuits.
0045. The memory 102 may be used as a primary storage
device of the terminal device 100. The memory 102 tempo
rarily stores at least part of OS and application programs to be
executed by the processor 101. The memory 102 also stores
various data to be used while the processor 101 operates. As
the memory 102, a Volatile semiconductor storage device,
such as a Random Access Memory (RAM), may be used, for
example.
0046. The peripheral devices connected to the bus 109
include a Hard Disk Drive (HDD) 103, a graphics processing
device 104, an input device interface 105, an optical drive
device 106, a device interface 107, and a network interface
108.

0047. The HDD 103 magnetically writes and reads data on
a built-in disk. The HDD 103 is used as an auxiliary storage
device of the terminal device 100. The HDD 103 Stores the OS
and application programs, and various data. In this connec
tion, as the auxiliary storage device, a non-volatile storage
device (Solid State Drive (SSD)), such as a flash memory,
may be used.
0048. A monitor 21 is connected to the graphics process
ing device 104. The graphics processing device 104 displays
images on the screen of the monitor 21 in accordance with
instructions from the processor 101. As the monitor 21, a
Cathode Ray Tube (CRT) display device, a liquid crystal
display device, or others may be used.
0049. A keyboard 22 and a mouse 23 are connected to the
input device interface 105. The input device interface 105
gives signals received from the keyboard 22 and mouse 23 to
the processor 101. In this connection, the mouse 23 is an
example of a pointing device, and other pointing devices may
be used. Other pointing devices include a touch panel, tablet,
touchpad, and trackball.

Jul. 7, 2016

0050. The optical drive device 106 reads data from an
optical disc 24 with laser light or the like. The optical disc 24
is a portable recording medium on which data is recorded
such as to be readable with reflection of light. As the optical
disc 24, a Digital Versatile Disc (DVD), DVD-RAM, Com
pact Disc Read Only Memory (CD-ROM), CD-Recordable
(CD-R), CD-Rewritable (CD-RW), or others may be used.
0051. The device interface 107 is a communication inter
face that allows peripheral devices to be connected to the
terminal device 100. For example, a memory device 25 and a
memory reader-writer 26 are connected to the device inter
face 107. The memory device 25 is a recording medium that
has a function of communication with the device interface
107. The memory reader-writer 26 performs data read and
write on a memory card 27, which is a card-type recording
medium.

0052. The network interface 108 is connected to the net
work 20. The network interface 108 exchanges data with
another computer or communication device over the network
20.

0053 With the above hardware configuration, the process
ing functions of the second embodiment may be imple
mented. In this connection, the other terminal devices 100-1,
100-2, ... and management server 200 may be implemented
with the same hardware configuration as the terminal device
100 illustrated in FIG.3. In addition, the information process
ing apparatus 10 of the first embodiment may also be imple
mented with the same hardware configuration as the terminal
device 100 of FIG. 3.

0054 The terminal device 100 implements the processing
functions of the second embodiment by executing programs
recorded on a computer-readable recording medium, for
example. The programs describing the processing content to
be executed by the terminal device 100 may be recorded in a
variety of recording media. For example, such programs may
be stored on the HDD 103, for example. The processor 101
loads at least part of the programs from the HDD 103 to the
memory 102, and executes it. Alternatively, the programs to
be executed by the terminal device 100 may be recorded on a
portable recording medium, Such as the optical disc 24, the
memory device 25, or the memory card 27. The programs
stored in Such a portable recording medium become execut
able after being installed on the HDD 103 under the control of
the processor 101, for example. Alternatively, the processor
101 may execute the programs directly read from the portable
recording medium.
0055 FIG. 4 is a block diagram illustrating an example of
functions of each device. The management server 200
includes a detection information storage unit 210, a detection
related information management unit 220, an inventory data
base 230, and an inventory management unit 240.
0056. The detection information storage unit 210 stores
information to be used for software detection. For example,
the detection information storage unit 210 stores detection
condition generation information 211 and a software dictio
nary 212. The detection condition generation information 211
relates to rules for generating detection conditions. The Soft
ware dictionary 212 contains a collection of detection condi
tions to be used for detecting software. Each detection con
dition is a combination of information to be used for software
detection. If each piece of information specified by a detec
tion condition satisfies conditions indicated by the detection
condition, this means that Software is present. The detection

US 2016/O 197814 A1

information storage unit 210 is implemented as partial space
ofa memory or HDD provided in the management server 200,
for example.
0057 The detection-related information management unit
220 manages the detection condition generation information
211 and the software dictionary 212. For example, the detec
tion-related information management unit 220 sends the
detection condition generation information 211 and the Soft
ware dictionary 212 to the terminal device 100. In addition,
the detection-related information management unit 220
obtains updated detection conditions from the plurality of
terminal devices 100,100-1,100-2,..., and stores them in the
detection information storage unit 210.
0058. The inventory database 230 stores inventory data on
software resources introduced in the individual terminal
devices 100, 100-1, 100-2,
0059. The inventory management unit 240 obtains infor
mation about software installed on the individual terminal
devices 100, 100-1, 100-2, . . . therefrom, and stores the
obtained information in the inventory database 230.
0060. The terminal device 100 includes a detection-re
lated information transceiver unit 110, a detection informa
tion storage unit 120, a detection condition generation unit
130, and a detection unit 140.
0061. The detection-related information transceiver unit
110 receives the detection condition generation information
211 and software dictionary 212 from the management server
200, and stores them in the detection information storage unit
120. The detection-related information transceiver unit 110
also reads detection conditions generated by the detection
condition generation unit 130 from the detection information
storage unit 120, and sends the detection conditions to the
management server 200.
0062. The detection information storage unit 120 stores
detection condition generation information 121 and a soft
ware dictionary 122.
0063. The detection condition generation unit 130 gener
ates detection conditions on the basis of the detection condi
tion generation information 121, and stores the generated
detection conditions in the detection information storage unit
120.

0064. The detection unit 140 detects software installed on
the terminal device 100 utilizing the detection conditions
stored in the detection information storage unit 120, and
sends a software detection result to the management server
2OO.
0065. With the above configuration, the terminal device
100 detects software, and the management server 200 collects
inventory data. FIG. 4 illustrates the functions of the terminal
device 100, and the other terminal devices 100-1, 100-2, ...
have the same functions as the terminal device 100. In addi
tion, lines connecting the units illustrated in FIG. 4 represent
Some of communication paths, and other communication
paths than the illustrated ones may be configurable. Further,
the functions of each unit illustrated in FIG. 4 may be imple
mented by causing a computer to execute a program module
corresponding to the unit.
0066. The following describes information stored in the
detection information storage units 120 and 210.
0067 FIG. 5 illustrates an example of detection condition
generation information. The detection condition generation
information 121 includes a condition definition management
table 121a, a candidate setting value management table 121b,
and an arrangement management table 121c.

Jul. 7, 2016

0068. The condition definition management table 121a
indicates elements constituting conditions that are usable in
detection conditions, and the categories of values to be set for
the elements. The candidate setting value management table
121b manages candidate setting values for the elements
specified in the condition definitions. The arrangement man
agement table 121C manages condition definitions constitut
ing individual detection conditions.
0069 FIG. 6 illustrates an example of a condition defini
tion management table. The condition definition manage
ment table 121a contains a plurality of condition definitions.
The condition definition management table 121a includes the
following fields: “Definition ID, "Detection Requirement'.
“Environment”, “When”, “From Where”, “How”, “Analysis
Method”, “Use information', and “How to Obtain Use Infor
mation'. Out of these fields, the “Detection Requirement'.
“Environment”, “When”, “From Where”, “How”, “Analysis
Method”, “Use information', and “How to Obtain Use Infor
mation' fields are elements whose values are variable, and
appropriate values are set when a detection condition is gen
erated. In addition, the “When”, “From Where”, “How',
Analysis Method”. “Use information', and “How to Obtain
Use Information” fields are elements (information acquisi
tion elements) that specify how to obtain information sought
by a detection requirement.
0070. The “Definition ID field contains the identifier
(definition ID) of a condition definition.
(0071. The “Detection Requirement” field specifies a
requirement for detecting software. For example, assume that
a condition definition includes “name as a detection require
ment. If a specific software name is obtained based on the
values set for the information acquisition elements, this
means that a condition generated according to this condition
definition is satisfied. Detection requirements include the
name, display version, bundle version, vendor name, license
identification information, such as a product ID, of Software
to be detected.
(0072. The “Environment” field specifies in which system
environment the corresponding condition definition is appli
cable. In this “Environment” field, OS type, device configu
ration, installation destination, environment variable, CPU
architecture, or others may be specified, for example.
(0073. The “When” field specifies when to obtain informa
tion sought by a detection requirement. For example, this
“When field may specify that such information is to be
obtained at the time of inventory collection.
(0074 The “From Where' field specifies from where to
obtain information sought by a detection requirement. Infor
mation sought by a detection requirement may be obtained
from a file, registry, process, network, service, event, mes
sage, or another. In the case where a condition definition
includes “registry’ in the “From Where field, a condition
generated according to this condition definition specifies
where in the registry to obtain such information from.
(0075. The “How' field specifies how to obtaininformation
sought by a detection requirement (acquisition method).
Acquisition methods include file access, registry access, API
call, command execution, communication, and others. In the
case where a condition definition includes “API in the
“How' field, for example, a condition generated according to
this condition definition specifies the use of the API to obtain
Such information.
(0076. The “Analysis Method” field specifies what part of
information obtained as sought by a detection requirement is

US 2016/O 197814 A1

to be analyzed and how to analyze the partial information
(analysis method). Analysis methods include access position,
return value determination and analysis, and others. For
example, in the case where a condition definition includes
“API return value (character string) in the Analysis
Method field, a condition generated according to this con
dition definition specifies, as an analysis method, how to
analyze a character string obtained as an API return value.
0077. The “Use Information” field specifies use informa
tion to be used for obtaining information sought by a detec
tion requirement. Use information includes a path, process
name, command argument, userID, package name, and oth
ers, for example.
0078. The “How to Obtain Use Information” field speci
fies how to obtain use information. For example, in the case
where use information is a userID, this "How to Obtain Use
Information field may specify that a user ID is to be obtained
from a logon user name. In the “How to Obtain Use Informa
tion” field, an environment for obtaining use information,
when to obtain it, from where to obtain it, and how to obtain
it may be specified.
007.9 FIG. 7 illustrates an example of a candidate setting
value management table. The candidate setting value man
agement table 121b lists candidate values that are settable for
the following elements: “From Where”, “How”, “Analysis
Method”, “Use Information', and “How to Obtain Use Infor
mation' in the condition definitions of FIG. 6. The candidate
setting value management table 121b includes the following
fields: “ValueID”, “DefinitionID”, “Category', and “Value".
0080. The “Value ID field contains the identification
number (value ID) of a value. The “Definition ID' field con
tains the definition ID of a condition definition to which a
value is applicable. The “Category” field specifies the cat
egory of an element (one of “from where”, “how”, “analysis
method”, “use information', and “how to obtain use informa
tion') for which a value is set. The “Value” field contains a
specific value that is settable for the element specified by the
“Category” field.
0081 FIG. 8 illustrates an example of an arrangement
management table. An arrangement management table 121C
contains combinations of condition definitions forming gen
eration information for detection conditions. The arrange
ment management table 121c has the following fields:
“Arrangement ID' and “Definition ID. for example. The
“Arrangement ID field contains the identification informa
tion (arrangement ID) of generation information formed of a
combination of condition definitions. The “Definition ID'
field contains the definition ID of a condition definition form
ing generation information. A set of definitions IDS corre
sponding to the same arrangement ID represents a combina
tion of condition definitions forming detection condition
generation information. Each combination of condition defi
nitions is treated as a generating rule for a detection condition.
0082 Referring to the example of FIG. 8, a plurality of
definition IDs are registered in association with an arrange
ment ID “C0001. In this case, if all conditions respectively
generated according to the condition definitions identified by
the definition IDs corresponding to the arrangement ID
“C0001' are satisfied, this means that the corresponding soft
ware is present. In this connection, the combination of con
dition definitions corresponding to the arrangement ID
“C0001' is used for generating a detection condition for
detecting a desktop application whose OS name is “OS A'.

Jul. 7, 2016

I0083. The example of the detection condition generation
information 121 stored in the terminal device 100 has been
described with reference to FIGS. 5 to 8. The detection con
dition generation information 211 stored in the management
server 200 have the same content as the detection condition
generation information 121.
I0084. The software dictionary 122 will now be described.
I0085 FIG. 9 illustrates an example of a software dictio
nary. The software dictionary 122 includes a target software
management table 122a and a detection condition manage
ment table 122b, for example. The target Software manage
ment table 122a indicates software to be detected using detec
tion conditions. The detection condition management table
122b contains detection conditions.
I0086 FIG. 10 illustrates an example of a target software
management table. The target Software management table
122a includes the following fields: “Condition ID', "Name”,
and “Version'. The “Condition ID' field contains the identi
fier (conditionID) of a detection condition. The “Name” field
contains the name of software to be detected by a detection
condition identified by a corresponding condition ID. The
“Version' field contains the version number of software to be
detected.
I0087 FIG. 11 illustrates an example of a detection condi
tion management table. Each entry registered in the detection
condition management table 122b indicates an information
acquisition condition to be used in a detection condition. The
detection condition management table 122b includes the fol
lowing fields: “Condition ID', 'Arrangement ID”, “Defini
tion ID, “From Where”, “How', 'Analysis Method”, “Use
Information', and "How to Obtain Use Information'.
0088. The “Condition ID field contains the condition ID
of a detection condition. A combination of information acqui
sition conditions corresponding to the same condition ID is
treated as a single detection condition. The Arrangement ID
field contains an arrangement ID indicating a combination of
condition definitions forming a detection condition. The
“Definition ID' field contains the definition ID of a condition
definition from which a corresponding information acquisi
tion condition forming the detection condition is generated.
The “From Where' field contains a specific value specifying
from where to obtain information sought by a detection
requirement. The “How' field contains a specific value speci
fying how to obtain information sought by a detection
requirement. The “Analysis Method field contains a specific
value specifying how to analyze information sought by a
detection requirement. The “Use Information” field contains
a specific value specifying use information to be used for
obtaining information sought by a detection requirement. The
“How to Obtain Use Information” field contains a specific
value specifying how to obtain use information.
I0089. The example of the software dictionary 122 stored
in the terminal device 100 has been described with reference
to FIGS. 9 to 11. The software dictionary 212 stored in the
management server 200 have the same content as the software
dictionary 122.
0090. In the above-described system, the management
server 200 distributes the detection condition generation
information 211 and the software dictionary 212 to the ter
minal device 100. The terminal device 100 stores the detec
tion condition generation information 121 and the Software
dictionary 122 having the same content as the received detec
tion condition generation information 211 and Software dic
tionary 212.

US 2016/O 197814 A1

0091. The detection condition generation unit 130 of the
terminal device 100 generates detection conditions from the
detection condition generation information 121. For
example, the terminal device 100 extracts a combination of
definition IDs that match the environment of the terminal
device 100, from among the combinations of definition IDs
indicated in the arrangement management table 121c of the
detection condition generation information 121. Then, the
terminal device 100 extracts candidate values corresponding
to the information acquisition elements of each condition
definition included in the extracted combination, from the
candidate setting value management table 121b. Then, the
terminal device 100 generates candidate detection conditions
by applying the values extracted from the candidate setting
value management table 121b to the information acquisition
elements of the condition definitions. The terminal device
100 makes an attempt to detect software on the terminal
device 100 utilizing each candidate detection condition, and
takes a candidate detection condition that has led to the detec
tion of the Software, as a detection condition for detecting the
software.
0092. The terminal device 100 detects the presence of
Software utilizing a plurality of detection conditions gener
ated from the detection condition generation information
121. In this software detection, software is judged to be
installed if a corresponding detection condition is satisfied on
the terminal device 100, and the software is judged not to be
installed if the detection condition is not satisfied. The termi
nal device 100 executes the software detection periodically
(for example, once daily).
0093. The terminal device 100 may fail to detect specific
Software utilizing a first detection condition included in a
plurality of detection conditions although the software was
previously judged to be installed utilizing the first detection
condition. In this case, the terminal device 100 detects the
presence of the specific software utilizing another detection
condition included in the plurality of detection conditions.
0094. In the case where software is not detected by a
generated detection condition under which the Software was
previously detected, the terminal device 100 detects a change
in the environment or uninstallment through the following
processes, which are performed in the following order. In this
connection, changes in the environment include a change due
to upgrading of software and a change due to upgrading of an
operating platform (OS or the like) for executing software.
0095 a) The terminal device 100 extracts values that are
applicable as values for information acquisition elements in
condition definitions corresponding to the current detection
condition, from the candidate setting value management table
121b, and detects software using the extracted values.
0096 b) If software is not detected through the processa),
the terminal device 100 causes the detection condition gen
eration unit 130 to generate another detection condition
(changes a means for detection) and then detects the Software
utilizing the generated detection condition.
0097. If the software is detected through either of the
processes a) and b), the terminal device 100 determines that
the environment has been changed. If the software is not
detected through these processes a) and b), the terminal
device 100 judges that the software is already uninstalled.
0098. If the terminal device 100 detects specific software
utilizing another detection condition, the terminal device 100
uses the other detection condition in the next software detec
tion. In addition, if there has been no change in the environ

Jul. 7, 2016

ment of the software, the terminal device 100 uses the gener
ated detection condition in the next software detection. This
minimizes the cost (speed, load) for the generation and keeps
a high processing performance. In addition, if the terminal
device 100 fails to detect specific software utilizing any of the
plurality of detection conditions, the terminal device 100
judges that the specific software is already uninstalled.
0099 Meantime, the management server 200 obtains
detection conditions dynamically generated by the terminal
device 100 via the detection-related information management
unit 220, and automatically adds the obtained detection con
ditions to the locally owned software dictionary 212. If a
detection condition generated by the terminal device 100 has
different values for information acquisition elements from a
prior one, the management server 200 updates the corre
sponding detection condition.
0100. The above-described system makes it possible to
generate a detection condition for detecting software newly
installed on the terminal device 100, for example. In addition,
when the environment of the terminal device 100 is changed,
the detection condition is modified according to the change.
In the case where the environment is changed too much and
this change is not followed by modifying the detection con
dition, then it is possible to generate another detection con
dition appropriate for the new environment.
0101 FIG. 12 illustrates an example of generating a detec
tion condition for detecting newly installed software. The
management server 200 distributes detection condition gen
eration information 211 and software dictionary 212 to the
terminal device 100. The terminal device 100 holds detection
condition generation information 121 and Software dictio
nary 122 that have the same content as the received detection
condition generation information 211 and Software dictio
nary 212. Then, the terminal device 100 periodically detects
software utilizing the detection conditions 31 and 32 included
in the software dictionary 122. Referring to the example of
FIG. 12, software 41 named “software A' is detected by the
detection condition 31 and software named “software B' is
detected by the detection condition 32.
0102. It is now assumed that software 43 named “software
C is additionally installed on the terminal device 100 after
that. In this case, the terminal device 100 does not detect the
software 43 utilizing the existing detection conditions 31 and
32. Then, the terminal device 100 makes an attempt to gen
erate a candidate detection condition appropriate for the envi
ronment of the terminal device 100, according to the detec
tion condition generation information 121, and then to detect
the software 43. Referring to the example of FIG. 12, the
software 43 is detected by a detection condition 33.
(0103. The detection condition 33 that has led to the detec
tion of the software 43 is sent to the management server 200
and then is stored in the software dictionary 212 of the man
agement server 200. Thereby, the terminal device 100 feeds a
result of generating the detection condition back to the man
agement server 200.
0104. As described above, it is possible to automatically
generate a detection condition that leads to the detection of
the software 43, for which a detection condition is not stored
in the software dictionary 212 of the management server 200.
This makes it possible to reduce the time and cost that are
needed from generation and update of a detection condition
by a user or resource management vendor up to application
thereof.

US 2016/O 197814 A1

0105. If software is not detected by detection conditions
provided by the management server 200, a conventional sys
tem would need workload from an administrator because a
new detection condition needs to be manually defined for the
software to be detected. This means that the software is not
detected until the administrator adds the new detection con
dition. By contrast, the second embodiment makes it possible
to automatically generate a new detection condition and to
detect software, which is not detected by existing detection
conditions, utilizing the new detection condition. The auto
matic generation of detection conditions reduces the admin
istrators workload. In addition, the automatic generation of
detection conditions is done at the time of inventory collec
tion. Therefore, when the new software 43 is added, its cor
responding detection condition 33 is generated immediately.
0106 FIG. 13 illustrates an example of modifying a detec
tion condition according to a change in environment. Refer
ring to the example of FIG. 13, the detection condition 31 for
the Software 41 includes a plurality of conditions using setting
values that are set in the registry150. The first condition is that
an item “X” has a setting value of “a” in the registry150. The
second condition is that an item “Y” has a setting value of “b'
in the registry 150. The software 41 is judged to be installed
if these conditions are both satisfied.
0107. It is now assumed that the software 41 is upgraded
and setting values are changed in the registry 150 after the
software 41 is detected by the detection condition 31 and
before the next software detection. Referring to the example
of FIG. 13, the setting value of the item “Y” is changed from
“b' to “c'. In this case, the second condition is not satisfied
even if there is an attempt to detect the software 41 utilizing
the detection condition 31. Thus, the software 41 is not
detected.

0108. When the terminal device 100 fails to detect the
software 41, which was previously detected successfully, the
terminal device 100 modifies the values of information acqui
sition elements included in the current detection condition 31,
and makes an attempt to detect the Software 41 again. In this
case, the second condition is modified to indicate that the item
“Y” has a setting value of “c”, so that the second condition
gets satisfied, and thus the Software 41 is accurately judged to
be installed.
0109. The detection condition 31a that has led to the
detection of the Software 41 is sent to the management server
200 and is stored in the software dictionary 212 of the man
agement server 200. That is, the terminal device 100 feeds a
result of generating the detection condition back to the man
agement server 200.
0110. As described above, in the case where the software
41 is not detected because the detection condition 31 defined
in the software dictionary 122 specifies values that are no
longer appropriate due to a change in the environment of the
terminal device 100, the values of the information acquisition
elements are modified and thereby the software 41 is
detected. As a result, it is possible to appropriately distinguish
between a change in the environment due to Software upgrad
ing and uninstallment of the Software, thereby improving the
accuracy of detection of the software 41.
0111 FIG. 14 illustrates an example of generating a detec
tion condition appropriate for an environment. Referring to
the example of FIG. 14, a plurality of terminal devices 100
and 100-1 having different platforms are illustrated. These
terminal devices 100 and 100-1 have different versions of the
same OS. In the version of the OS installed on the terminal

Jul. 7, 2016

device 100, the setting values for the environment for the
software 41 named “software A” are held in the registry 150.
In the version of the OS installed on the terminal device
100-1, the setting values for the environment for the software
44 that is the same type as the Software 41 are stored in a place
different from a registry 150-1, and are read using an API 160.
0112. In such a case, the management server 200 distrib
utes the detection condition generation information 211 to the
terminal devices 100 and 100-1. The detection condition gen
eration information 211 includes a plurality of generating
rules on detection conditions. For example, a generating rule
51 corresponding to the arrangement ID “C0001” and a gen
erating rule 52 corresponding to the arrangement ID “C0002
are included in the detection condition generation informa
tion 211. The generating rule 51 corresponding to the
arrangement ID “C0001' is applicable to systems with the
version 7 of OS A, whereas the generating rule 52 corre
sponding to the arrangement ID “C0002 is applicable to
systems with the version 8 of OS A (see FIG. 8).
0113. The terminal device 100 is a system with the version
7 of OS. A. Therefore, a detection condition 31 is generated
from the generating rule 51 corresponding to the arrangement
ID “C0001” out of the generating rules 51 and 52 included in
the stored detection condition generation information 121.
The generated detection condition 31 is stored in the software
dictionary 122. The detection condition 31 needs confirma
tion of setting values in the registry 150, for example. FIG. 14
illustrates an example in which the correct setting values exist
in the registry 150, and therefore the software 41 is accurately
judged to be installed.
0114. The terminal device 100-1 is a system with the ver
sion 8 of OS. A. Therefore, a detection condition 34 is gen
erated from the generating rule 52 corresponding to the
arrangement ID “C0002 out of the generating rules 51 and
52 included in stored detection condition generation informa
tion 121-1. The generated detection condition 34 is stored in
a software dictionary 122-1. The detection condition 34 needs
confirmation of a return value from an API 160. FIG. 14
illustrates an example in which the correct return value is
obtained from the API 160, and therefore the software 44 is
accurately judged to be installed.
0.115. As described above, there are cases where new
detection conditions need to be added to the software dictio
nary 122, 122-1 because a new platform is adopted (new OS
or operating environment for application is added) or the
specifications of OS or software are changed. In Such cases, a
conventional system needs to change both detection condi
tions and a detection process. By contrast, the second
embodiment makes it possible to automatically generate
detection conditions from detection condition generation
information. As a result, Software is accurately detected even
if the operating environment for the Software is greatly
changed.
0116. The following describes how to detect software in
detail.
0117 FIG. 15 illustrates an example of a software detec
tion process.
0118 (Step S101) The detection-related information
transceiver unit 110 obtains a software dictionary and detec
tion condition generation information from the management
server 200. The detection-related information transceiver unit
110 stores a software dictionary and detection condition gen
eration information that have the same content as the obtained
ones, in the detection information storage unit 120.

US 2016/O 197814 A1

0119 (Step S102) The detection unit 140 determines
whether the software dictionary 122 stores a previously gen
erated detection condition. For example, if at least one soft
ware is registered in association with a condition ID in the
target Software management table 122a, the detection unit
140 determines that a previously generated detection condi
tion exists. In this case, the process proceeds to step S103. If
there is no previously generated detection condition, then the
process proceeds to step S113.
0120 (Step S103) The detection unit 140 executes steps
S104 to S111 with respect to each of the detection conditions
corresponding to the condition IDs registered in the target
Software management table 122a.
0121 (Step S104) The detection unit 140 determines
whether a detection condition of attention is satisfied or not.
For example, the detection unit 140 extracts information
acquisition conditions corresponding to the condition ID of
the detection condition of attention, from the detection con
dition management table 122b. Then, the detection unit 140
makes an attempt to obtain information on the basis of each of
the extracted information acquisition conditions. When
appropriate information is obtained based on all of the
extracted information acquisition conditions, the detection
unit 140 determines that the detection condition of attention is
satisfied. When the detection condition is satisfied, the pro
cess proceeds to step S110. If the detection condition is not
satisfied, the process proceeds to step S105.
0122 (Step S105) The detection unit 140 specifies the
definition ID of an information acquisition condition based
on which no information was obtained at step S104, and
extracts values corresponding to the definition ID from the
candidate setting value management table 121b.
(0123 (Step S106) The detection unit 140 repeats step
S107 for each of the extracted values.
(0.124 (Step S107) The detection unit 140 modifies the
value corresponding to the category of an extracted value to
the extracted value, in the information acquisition condition,
and makes an attempt to obtain information utilizing the new
information acquisition condition.
0125 (Step S108) When the detection unit 140 completes
step S107 for all the extracted values, the process proceeds to
step S109.
0126 (Step S109) The detection unit 140 judges whether
software has been detected by the detection condition of
attention. If software has been detected, the process proceeds
to step S110. If software has not been detected, the process
proceeds to step S111. In this connection, when the software
has been detected successfully, the detection unit 140 updates
the values of the information acquisition condition to the
values used for the successful detection of the software, in the
detection condition management table 122b.
0127 (Step S110) The detection unit 140 adds the soft
ware detected by the detection condition of attention to a
detection result as detected software. For example, the detec
tion unit 140 records the name and version of the software,
which are registered in association with the condition ID of
the detection condition of attention in the target software
management table 122a, with a detection flag attached thereto
in the detection result. Then, the process proceeds to step
S112.

0128 (Step S111) The detection unit 140 adds the soft
ware previously detected by the detection condition of atten
tion to the detection result as undetected software. For
example, the detection unit 140 records the name and version

Jul. 7, 2016

of the software, which are registered in association with the
condition ID of the detection condition of attention in the
target Software management table 122a, with an undetection
flag attached thereto in the detection result.
I0129 (Step S112) When the detection unit 140 has used all
the detection conditions, the process proceeds to step S113.
0.130 (Step S113) The detection condition generation unit
130 performs a detection condition generation and applica
tion process. This process will be described in detail later
(refer to FIG. 16).
I0131 (Step S114) The detection-related information
transceiver unit 110 notifies the management server 200 of
generated detection conditions. For example, the detection
related information transceiver unit 110 extracts detection
conditions generated by the detection condition generation
unit 130 from the software dictionary 122 and sends the
detection conditions to the management server 200. In addi
tion, if there is a detection condition whose information
acquisition condition includes a value updated at step S109,
the detection-related information transceiver unit 110 sends
the detection condition to the management server 200. In the
management server 200, the detection-related information
management unit 220 receives and stores the detection con
ditions in the software dictionary 212.
(0132 (Step S115) The detection unit 140 reports the
detection result to the management server 200. For example,
the detection unit 140 sends a list of detected software and a
list of undetected software to the management server 200.
0133) The following describes the detection condition
generation and application process in detail.
0.134 FIG. 16 is a flowchart illustrating a detection con
dition generation and application process.
0.135 (Step S201) The software condition generation unit
130 extracts combinations of condition definitions (generat
ing rules) appropriate for the environment of the terminal
device 100 from the detection condition generation informa
tion 121. For example, the detection condition generation unit
130 specifies the definition IDs corresponding to an arrange
ment ID that matches the environment of the terminal device
100, from the arrangement management table 121c. Then, the
detection condition generation unit 130 extracts the condition
definitions corresponding to the specified definition IDs from
the condition definition management table 121a.
0.136 (Step S202) The detection condition generation unit
130 repeats steps S203 to S206 for each combination
extracted at step S201. Using only combinations of condition
definitions appropriate for the environment eliminates the
need of generating detection conditions that are not appli
cable to the terminal device 100, thereby streamlining the
processing.
0.137 (Step S203) The detection condition generation unit
130 sets candidate setting values for information acquisition
elements with respect to each condition definition included in
a combination of attention, and then makes an attempt to
obtain information. The candidate setting values are obtained
from the candidate setting value management table 121b. In
the case where there are a plurality of candidate setting values
for one information acquisition element, the detection condi
tion generation unit 130 makes an attempt to obtain informa
tion using each of the candidates. Then, the detection condi
tion generation unit 130 specifies values satisfying the
condition with respect to each condition definition. In the case
where values satisfying the conditions are specified with

US 2016/O 197814 A1

respect to all condition definitions of the combination of
attention, this means that Software has been detected.
0138 (Step S204) The detection condition generation unit
130 judges whether software has been detected. If software
has been detected, the process proceeds to step S205. If soft
ware has not been detected, the process proceeds to step S207.
0139 (Step S205) The detection condition generation unit
130 registers the detection condition based on the setting
values of the condition definitions that have led to the detec
tion of the software, in the software dictionary 122. For
example, the detection condition generation unit 130 gener
ates and registers a new condition ID in the target Software
management table 122a. Then, the detection condition gen
eration unit 130 registers the name and version of the software
detected at step S203 in association with the registered con
dition ID in the target software management table 122a. Fur
ther, the detection condition generation unit 130 registers the
arrangement ID of the combination of condition definitions
that have led to the detection of the software and the definition
IDs of the condition definitions in association with the gen
erated condition ID in the detection condition management
table 122b. Then, the detection condition generation unit 130
registers the setting values used for the information acquisi
tion elements in the condition definitions corresponding to
the definition IDs for the detection of the software, in asso
ciation with the registered definition IDs in the detection
condition management table 122b.
0140 (Step S206) The detection unit 140 receives a noti
fication of the detection of the software utilizing the new
detection condition from the detection condition generation
unit 130, and adds the software as detected software to a
detection result. In this connection, if the detected software
appears in the list of undetected software, the detection unit
140 deletes the detected software from the list.

0141 (Step S207) When the detection condition genera
tion unit 130 has used all the combinations extracted at step
S201, this detection condition generation and application
process is completed.
0142. As described above, even if software is not detected
by the same detection condition as used previously due to a
change in environment, it is possible to detect the Software
utilizing another detection condition. This approach makes it
possible to improve the accuracy of software detection and to
send an accurate detection result to the management server
2OO.

0143. In addition, it is possible to detect software, without
the need for a resource management product vendor or an
administrator of a user system to generate detection condi
tions for individual software. This reduces administrators
workload.

0144. Still further, it is possible to automatically update
the software dictionary 212 in the management server 200.
This enables the management server 200 to distribute the
latest software dictionary to the terminal devices 100, 100-1,
100-2, . . . , thereby improving the accuracy of software
detection.

0145. In this connection, detection conditions generated
by the terminal devices 100, 100-1, 100-2, ... are held in the
terminal devices 100, 100-1, 100-2, ... and are used repeat
edly. This makes it possible to detect software without
degrading the performance of the terminal devices 100, 100
1, 100-2,..., except for the first detection and the case where
the environment is changed.

Jul. 7, 2016

0146 In the second embodiment, inventory data is col
lected from the terminal devices 100, 100-1, 100-2,
Alternatively, inventory data may be collected from servers
and other computers. In this case, computers from which
inventory data is collected are provided with the same func
tion as the terminal device 100 of FIG. 4. In addition, the
terminal devices 100, 100-1, 100-2, ... may include portable
information terminals and tablet terminals. Alternatively, the
terminal devices 100, 100-1, 100-2, . . . may be virtual
machines.
0147 Heretofore, the embodiments have been exempli
fied. In this connection, the components described in the
embodiments may be replaced with other components having
equivalent functions or other components or processing
operations may be added. In addition, desired two or more
configurations (features) in the embodiments may be com
bined.
0.148. According to one aspect, it is possible to improve
the accuracy of Software detection.
0149 All examples and conditional language provided
herein are intended for the pedagogical purposes of aiding the
reader in understanding the invention and the concepts con
tributed by the inventor to further the art, and are not to be
construed as limitations to Such specifically recited examples
and conditions, nor does the organization of such examples in
the specification relate to a showing of the Superiority and
inferiority of the invention. Although one or more embodi
ments of the present invention have been described in detail,
it should be understood that various changes, substitutions,
and alterations could be made hereto without departing from
the spirit and scope of the invention.
What is claimed is:
1. A non-transitory computer-readable storage medium

storing therein a software detection program that causes a
computer to execute a process comprising:

detecting a presence of a specific Software on the computer
utilizing a first detection condition, the specific Software
being judged to be installed on the computer by prior
detection utilizing the first detection condition, the first
detection condition being generated by one of a plurality
of detection condition generating rules for the specific
Software; and

detecting the specific Software utilizing a second detection
condition when the specific software is not detected by
the first detection condition, the second detection con
dition being one of a plurality of detection conditions
generated by the plurality of detection condition gener
ating rules and being different from the first detection
condition.

2. The non-transitory computer-readable storage medium
according to claim 1, wherein the process further includes
judging that the specific software is already uninstalled from
the computer when the specific software is not detected by
any of second detection conditions among the plurality of
detection conditions.

3. The non-transitory computer-readable storage medium
according to claim 1, wherein the detecting utilizing the sec
ond detection condition includes generating the second detec
tion condition by modifying values included in the first detec
tion condition to other values that are preset candidate setting
values.

4. The non-transitory computer-readable storage medium
according to claim 1, wherein:

US 2016/O 197814 A1

the plurality of detection condition generating rules are
associated with corresponding operating environments
for the software;

the detecting utilizing the second detection condition
includes detecting the specific software utilizing the sec
ond detection condition generated by a detection condi
tion generating rule corresponding to an operating envi
ronment of the computer at a detection time.

5. A software detection method comprising:
detecting, by a processor of a computer, a presence of a

specific software on the computer utilizing a first detec
tion condition, the specific Software being judged to be
installed on the computer by prior detection utilizing the
first detection condition, the first detection condition
being generated by one of a plurality of detection con
dition generating rules for the specific Software; and

detecting, by the processor, the specific Software utilizing a
second detection condition when the specific software is
not detected by the first detection condition, the second
detection condition being one of a plurality of detection

Jul. 7, 2016

conditions generated by the plurality of detection con
dition generating rules and being different from the first
detection condition.

6. A Software detection apparatus for detecting software,
the apparatus comprising:

a memory that stores a plurality of detection condition
generating rules for the software; and

a processor that executes a process including:
detecting a presence of a specific Software on the Soft
ware detection apparatus utilizing a first detection
condition, the specific Software being judged to be
installed on the Software detection apparatus by prior
detection utilizing the first detection condition, the
first detection condition being generated by one of the
plurality of detection condition generating rules; and

detecting the specific software utilizing a second detec
tion condition when the specific software is not
detected by the first detection condition, the second
detection condition being one of a plurality of detec
tion conditions generated by the plurality of detection
condition generating rules and being different from
the first detection condition.

k k k k k

