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METHODS, DEVICES AND SYSTEMS FOR
DETERMINING A TARGET PATH IN A
NETWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/159,239 filed on Oct. 12, 2018. All
sections of the aforementioned application(s) and/or patent
(s) are incorporated herein by reference in their entirety.

FIELD OF THE DISCLOSURE

[0002] The subject disclosure relates to methods, devices,
and systems for determining a target path for a network.

BACKGROUND

[0003] The traveling salesman problem is one in which a
target path is found between a starting point and stopping
point with several intermediate nodes The target path can be
a shortest path or most efficient path. Further, the target path
includes each and every one of the intermediate nodes. In
addition, the starting point and stopping point can be the
same node. The calculating of the target path can require
many computations and take significant time and processing
resources.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Reference will now be made to the accompanying
drawings, which are not necessarily drawn to scale, and
wherein:

[0005] FIG. 1 is a block diagram illustrating an example,
non-limiting embodiment of a communications network in
accordance with various aspects described herein.

[0006] FIGS. 2A-2F are block diagrams and associated
paths illustrating an example, non-limiting embodiment of a
system functioning within the communication network of
FIG. 1 in accordance with various aspects described herein.
[0007] FIGS. 2G-20 are diagrams of associated paths
illustrating an example, non-limiting embodiment of sys-
tems functioning within the communication network of FI1G.
1 in accordance with various aspects described herein.
[0008] FIG. 2P depicts an illustrative embodiment of a
method in accordance with various aspects described herein.
[0009] FIG. 3 is a block diagram illustrating an example,
non-limiting embodiment of a virtualized communication
network in accordance with various aspects described
herein.

[0010] FIG. 4 is a block diagram of an example, non-
limiting embodiment of a computing environment in accor-
dance with various aspects described herein.

[0011] FIG. 5 is a block diagram of an example, non-
limiting embodiment of a mobile network platform in accor-
dance with various aspects described herein.

[0012] FIG. 6 is a block diagram of an example, non-
limiting embodiment of a communication device in accor-
dance with various aspects described herein.

DETAILED DESCRIPTION

[0013] The subject disclosure describes, among other
things, illustrative embodiments iteratively providing, from
a Message Handler of a processing system, messages to each
of a group of Node Processors of the processing system.
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Each of the group of Node Processors represents a node of
a group of nodes also called a graph of the nodes. The
iteratively providing of the messages comprises providing,
by the Message Handler to a Node Bus, a group of first
messages. Each first message includes a cost associated with
a path of nodes visited by each first message. Further, the
iteratively providing of the messages comprises determin-
ing, by each of the group of Node Processors, paths having
common endpoints among a portion of the group of first
messages, identifying, by each of the group of Node Pro-
cessors, a cost for each of the paths having common end-
points resulting in a group of common endpoint costs,
identifying, by each of the group of Node Processors, a
lowest cost from among the group of common endpoint
costs, identifying, by each of the group of Node Processors,
a selected path associated with the lowest cost, wherein a
next group of messages includes the selected path. The
iteratively providing of the messages results in rejected or
pruned paths having higher costs among any set of paths
traversing a common set of nodes. Also, embodiments
include determining, by the processing system, a target path
remaining after pruning paths throughout the graph of
nodes. Other embodiments are described in the subject
disclosure.

[0014] One or more of the techniques described herein can
be applied to various types of optimization problems that
seek to more efficiently utilize resources where costs asso-
ciated with those resources are known. One or more solu-
tions to the particular problem can be determined according
to the exemplary embodiments described herein.

[0015] One or more aspects of the subject disclosure
include a method. The method, comprising iteratively pro-
viding, from a Message Handler of a processing system,
messages to each of a group of Node Processors of the
processing system. Each of the group of Node Processors
represents a node of a group of nodes. The iteratively
providing of the messages comprises providing, by the
Message Handler to a Node Bus, a group of first messages.
Each first message includes a cost associated with a path of
nodes visited by each first message. Further, the iteratively
providing of the messages comprises determining, by each
of the group of Node Processors, paths having common
endpoints among a portion of the group of first messages,
identifying, by each of the group of Node Processors, a cost
for each of the paths having common endpoints resulting in
a group of common endpoint costs, identifying, by each of
the group of Node Processors, a lowest cost from among the
group of common endpoint costs, identifying, by each of the
group of Node Processors, a selected path associated with
the lowest cost, wherein a next group of messages includes
the selected path. The iteratively providing of the messages
results in rejected or pruned paths having higher costs
among any set of paths traversing a common set of nodes.
Further, the method comprises determining, by the process-
ing system, a target path remaining after pruning paths
throughout the graph of nodes.

[0016] One or more aspects of the subject disclosure
include a device, a processing system including a processor,
a group of Node Processors, and a Message Handler. Each
of'the group of Node Processors represents a node of a group
of nodes. A memory that stores executable instructions that,
when executed by the processing system, facilitates perfor-
mance of operations. The operations comprising iteratively
providing messages to each of the group of Node Processors.
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The iteratively providing of the messages comprises pro-
viding a group of first messages by the Message Handler to
a Node Bus. Each first message includes a cost associated
with a path of nodes visited by each first message. Further,
the iteratively providing of the messages comprises deter-
mining by each of the group of Node Processors, paths
having common endpoints among a portion of the group of
first messages, identifying by each of the group of Node
Processors, a cost for each of the paths having common
endpoints resulting in a group of common endpoints costs,
identifying by each of the group of Node Processors a lowest
cost from among the group of common endpoint costs,
identifying by each of the group of Node Processors a
selected path associated with the lowest cost. A next group
of messages includes the selected path. The iteratively
providing of the messages results in a rejected or pruned
paths having higher costs among any set of paths traversing
a common set of nodes. Operations can include determining
a target path remaining after pruning paths throughout the
graph of nodes.

[0017] One or more aspects of the subject disclosure
include a machine-readable medium, comprising executable
instructions that, when executed by a processing system
including a processor, a group of Node Processors, and a
Message Handler. Each of the group of Node Processors
represents a node of a group of nodes, facilitate performance
of operations. The operations comprise iteratively providing
messages to each of the group of Node Processors. The
iteratively providing of the messages comprises providing a
group of first messages by the Message Handler to a Node
Bus. Each first message includes a quantifiable metric asso-
ciated with a path of nodes visited by each first message.
Further, the iteratively providing of the messages comprises
determining by each of the group of Node Processors, paths
having common endpoints among a portion of the group of
first messages. Each of the paths having common endpoints
traverses a same subgroup of the group of nodes. In addition,
the iteratively providing of the messages comprises identi-
fying by each of the group of Node Processors, a quantifi-
able metric for each of the paths having common endpoints
resulting in a group of common endpoint quantifiable met-
rics, identifying by each of the group of Node Processors a
lowest quantifiable metric from among the group of com-
mon endpoint quantifiable metrics, identifying by each of
the group of Node Processors a selected path associated with
the lowest quantifiable metric. A next group of messages
includes the selected path. The iteratively providing of the
messages results in a rejected or pruned paths having higher
costs among any set of paths traversing a common set of
nodes. Operations can include determining a target path
remaining after pruning paths throughout the graph of
nodes. Referring now to FIG. 1, a block diagram is shown
illustrating an example, non-limiting embodiment of a com-
munications network 100 in accordance with various aspects
described herein. System 200 in FIG. 2A and the systems in
FIGS. 2H-2M can be located in communication network 100
and implement the method 260 as described herein.

[0018] In particular, a communications network 125 is
presented for providing broadband access 110 to a plurality
of data terminals 114 via access terminal 112, wireless
access 120 to a plurality of mobile devices 124 and vehicle
126 via base station or access point 122, voice access 130 to
a plurality of telephony devices 134, via switching device
132 and/or media access 140 to a plurality of audio/video
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display devices 144 via media terminal 142. In addition,
communication network 125 is coupled to one or more
content sources 175 of audio, video, graphics, text and/or
other media. While broadband access 110, wireless access
120, voice access 130 and media access 140 are shown
separately, one or more of these forms of access can be
combined to provide multiple access services to a single
client device (e.g., mobile devices 124 can receive media
content via media terminal 142, data terminal 114 can be
provided voice access via switching device 132, and so on).
[0019] The communications network 125 includes a plu-
rality of network elements (NE) 150, 152, 154, 156, etc. for
facilitating the broadband access 110, wireless access 120,
voice access 130, media access 140 and/or the distribution
of content from content sources 175. The communications
network 125 can include a circuit switched or packet
switched network, a voice over Internet protocol (VoIP)
network, Internet protocol (IP) network, a cable network, a
passive or active optical network, a 4G, 5G, or higher
generation wireless access network, WIMAX network,
UltraWideband network, personal area network or other
wireless access network, a broadcast satellite network and/or
other communications network.

[0020] In various embodiments, the access terminal 112
can include a digital subscriber line access multiplexer
(DSLAM), cable modem termination system (CMTS), opti-
cal line terminal (OLT) and/or other access terminal. The
data terminals 114 can include personal computers, laptop
computers, netbook computers, tablets or other computing
devices along with digital subscriber line (DSL) modems,
data over coax service interface specification (DOCSIS)
modems or other cable modems, a wireless modem such as
a 4G, 5G, or higher generation modem, an optical modem
and/or other access devices.

[0021] In various embodiments, the base station or access
point 122 can include a 4G, 5G, or higher generation base
station, an access point that operates via an 802.11 standard
such as 802.11n, 802.11ac or other wireless access terminal.
The mobile devices 124 can include mobile phones, e-read-
ers, tablets, phablets, wireless modems, and/or other mobile
computing devices.

[0022] In various embodiments, the switching device 132
can include a private branch exchange or central office
switch, a media services gateway, VoIP gateway or other
gateway device and/or other switching device. The tele-
phony devices 134 can include traditional telephones (with
or without a terminal adapter), VoIP telephones and/or other
telephony devices.

[0023] In various embodiments, the media terminal 142
can include a cable head-end or other TV head-end, a
satellite receiver, gateway or other media terminal 142. The
display devices 144 can include televisions with or without
a set top box, personal computers and/or other display
devices.

[0024] In various embodiments, the content sources 175
include broadcast television and radio sources, video on
demand platforms and streaming video and audio services
platforms, one or more content data networks, data servers,
web servers and other content servers, and/or other sources
of media.

[0025] In various embodiments, the communications net-
work 125 can include wired, optical and/or wireless links
and the network elements 150, 152, 154, 156, etc. can
include service switching points, signal transfer points,
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service control points, network gateways, media distribution
hubs, servers, firewalls, routers, edge devices, switches and
other network nodes for routing and controlling communi-
cations traffic over wired, optical and wireless links as part
of the Internet and other public networks as well as one or
more private networks, for managing subscriber access, for
billing and network management and for supporting other
network functions.

[0026] FIGS. 2A-2F are block diagrams and associated
paths illustrating an example, non-limiting embodiment of a
system functioning within the communication network of
FIG. 1 in accordance with various aspects described herein.
Further, the embodiments shown in FIGS. 2A-2F illustrate
a concept of pruning paths in calculating a target path (that
can be a complete shortest path). Pruning can include
discarding intermediate paths that may be costlier than less
costly intermediate paths. Referring to FIG. 2A, the system
200 comprises group nodes 202-218 including a source node
202, an intermediate 210, and a destination node 218, all of
which interconnected to each other. In further embodiments,
the group of nodes 202-218 may be processors (i.e. Node
Processors) in a computing/processing environment includ-
ing a cloud computing environment and/or virtual comput-
ing environment. In additional embodiments, the group of
nodes may be network elements in a communication net-
work. In some embodiments, the second destination node
can be the same node as the source node. Further, an
intermediate node 210 can be identified as node within the
group of nodes 202-218 that is traversed between a first
portion of the group of nodes 209 and a second portion of the
group of nodes 219. The group of nodes can be a network of
nodes or a collection of nodes each of which implement
functions (some of which may be the same). The embodi-
ments shown in FIG. 2A-2F use intermediate node 210 as an
example node to illustrate pruning intermediate paths in
calculating a target path (e.g. complete shortest path).

[0027] In one or more embodiments, a server (or group of
servers) that can be one or a portion of the group of nodes
202-218 can determine a target path between the source
node 202 and the destination node 218 that includes each of
the nodes (204-216). In addition, the server can be an
administration service or processor separate or outside of the
group of nodes though the preferred embodiment is for each
node in the graph of nodes to be represented by its own
server or computer processor called a Node Processor.
Further, the servers can identity a first target path for the first
portion of the group of nodes 209 and identify a second
target path for a second portion of the first group of nodes
219. The first target path or second target path can be a
shortest path or a most efficient path. The first target path and
the second target path can be combined to determine an
overall target path. However, note that every intermediate
node conducts pruning at the same time such that although
FIGS. 2A-2F show the pruning from the perspective of
intermediate node 210, each node 204-216 conducts pruning
and an overall target path can be determined as the remain-
ing shortest path after all pruning operations are completed.

[0028] In one or more embodiments, each link between
two nodes in the group of nodes can be associated with a
cost. For example, the cost between the source node 202 and
node A 204 can be 4. The cost, which can also be any
quantifiable metric, can be a term that can be include the
time for data or message to travel, distance, monetary cost,
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available bandwidth, latency, throughput, risk, probability-
of-success or any other metric from one node to another.

[0029] In one or more embodiments, each node can be a
Node Processor within a computing environment. Any Node
Processor can receive a message originating from another
Node Processor and having an accumulated cost from the
totality of node travels up to the other node which originates
the message. The current Node Processor adds to the prior
accumulated cost, the cost of travel between the node
originating the message and the current node. Further, the
Node Processor may request a Message Handler to drop a
message onto a communication bus of the computing envi-
ronment, receivable by other Node Processors in the com-
puting environment. In this embodiment, Node Processors
do not directly communicate with one another, but instead
via a Message Handler that coordinates message flows on a
common communication bus. For example, node A 204 can
receive several messages. A first message can be received
directly from the source node 202 at a cost of 2. In response
to receiving the first message, node A 204 can forward
provide a message to a communication bus which is
received by node B 206 with accumulated costs of 3 and the
intermediate node 210 with accumulated costs of 5. A
second message received by node A 204 can be from the
source node 202 and node B 206 at a cost of 5. In response
to receiving the second message, node A 204 can provide a
message which can be received by source node 202 and the
intermediate node 210. The message traveling between
nodes carries a history of node visitations and the source
node 202, being part of the travel history, ignore the message
from node A 204 which traveled from source node 202 via
node B 206 and then to node A 204. Alternatively, interme-
diate node 210 receives the same message and does not
ignore it, because the same node has not been visited
previously as evidenced in the visitation record in the
message. A third message is received by node A 204 from
source node 202, node C 208, and node B at a cost of 6. In
response to receiving the third message, node A 204 can
forward a message to source node 202 and the intermediate
node 210. Again, source node 202 ignores this message due
to its own presence in the travel history evidenced in the
visitation record in the message. Intermediate node 210 can
know from the visitation records in each of the received
messages that one message traversed only the source node
202 and one other node A 204. One other message added
node B 206 and the third message also added node C 208.
Therefore, the three messages received by the intermediate
node 210 do not present the same set of visited nodes.

[0030] Referring to FIG. 2B, in one or more embodiments,
the cost of each of the different, multiple paths within the
group of nodes are calculated and listed for the first portion
of'the group of nodes 209. The Node Processor for node 210
compares the cost for all messages including a complete
path from source node 202 to node 210 and having visited
all other intermediate nodes in-between being node A 204,
node B 206, and node C 208. Comparisons of path costs,
conducted by any Node Processor, must be for paths having
the same visited set of nodes. After calculating different,
multiple paths, the path source node-node C-node B-node
A-intermediate node is the first target path for the first
portion of the group of nodes 209.

[0031] Referring to FIG. 2C, the target path 203, source
node-node C-node B-node A-intermediate node is high-
lighted for the first portion of the group of nodes 209. Thus,
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the overall target path between the source node 202 and the
destination node 218 can include the first target path 203 of
the first portion of the group of nodes 209. Further, in
determining the overall target path that includes all nodes
202-218, a server can forgo calculating the cost of any first
target path that includes a path in the first portion of the
group of nodes other than path 203. For example, any path
between the source node 202 and the destination node 218
that includes the path source node-node A-node B-node
C-intermedia node cannot be a target path between the
source node 202 and the destination node and is not used to
compute the overall target path between the source node 202
and the destination node 218. Intermediate node 210, having
received multiple messages from the first portion of the
group of nodes 209 including longer paths than path 203
does not provide any corresponding messages onto the
communication bus for such longer paths, thereby effec-
tively terminating any subsequent computation that would
otherwise include them. The elimination of messaging to the
communication bus, effects the concept of pruning of paths.
Thus, from a point of view, the server or Node Processor for
intermediate node 210 is able to prune or eliminate the
number of calculations to determine the overall target path
between the source node 202 and the destination node 218
by determining the first target path 203 of the first portion of
the group of nodes 209. The target path can be a shortest path
or a most efficient path.

[0032] Referring to FIG. 2D, in one or more embodiments,
the cost of each of the different, multiple paths within the
group of nodes are calculated and listed for the second
portion of the group of nodes 219. After calculating differ-
ent, multiple paths, the path intermediate node-node D-node
E-node F-destination node is the second target path for the
second portion of the group of nodes 219. The computation
of the second target path occurs after the computation of the
first target path 203 and should be considered as an exten-
sion of the first target path.

[0033] Referring to FIG. 2FE, the target path 213, interme-
diate node-node D-node E-node F-destination is highlighted
for the second portion of the group of nodes 219. Thus, the
overall target path between the source node 202 and the
destination node 218 can include the first target path 203 of
the first portion of the group of nodes 209 and the second
target path 213 of the second portion of the group of nodes
219. The overall target path is the combination of first target
path 203 and second target path 213, which can be a
complete path and/or shortest/most efficient path through the
graph of all nodes 200.

[0034] Referring to FIG. 2F, the cost, in terms of time, is
listed for each path in the group of nodes. Each path is listed
according to an index for reference. Further, the calculation
of paths are sequenced according to cost in terms of time.
Note, in some embodiments, the cost of time does not
indicate the amount of time to determine the cost of path. In
such embodiments the cost of time is an indicator of when
to place messages on the Node Bus to be received by all
Node Processors which may then process costs by accumu-
lating total travel costs and comparing the costs for mes-
sages associated with multiple paths having the same groups
of visited nodes.

[0035] As listed in index 12, the first target path 203 for
the first portion of the group of nodes is calculated with cost
9, with the first target path 203 being source node-node
C-node B-node A-intermediate node. Further, the interme-
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diate node 210 continues to provide to a messaging bus,
messages that can be received by nodes D 212, node E 214,
and node F 216 until index 16, with includes the path source
node-node A-node B-node C-intermediate node. The path
for index 16 traverses the same nodes as the first target path
203, but has more cost. Thus, the intermediate node 210 may
not forward any messages from any other path traversing the
set of nodes source node, node A, node B, node C, and
intermediate node other than the path of index 12. Thus, the
Node Processor for the intermediate node provides a mes-
sage for the messaging bus corresponding to index 12, but
not one for index 16. Terminating the message flow for index
16 and any other path containing the nodes source node,
node A, node B, node C, intermediate node and having
higher cost than index 12 removes subsequent calculations
for every possible target path that would have otherwise
used the paths for those indexes. Any Node Processor can
prune (stop messaging) for all but one path having a com-
mon set of visited nodes. The intermediate Node Processor,
can prune the paths for indices 16, 20, 21, 27, and 31, after
observing the cost for each of these paths is higher than that
of index 12, by terminating message flows from the inter-
mediate node process to the messaging bus for these paths,
thereby eliminating all subsequent calculations that would
otherwise include these paths.

[0036] As listed in index 34, the overall target path (i.e.
combination of first path 203 and second target path 213) is
calculated by the Destination node processor 218 with cost
18, and includes the path source-node C-node B-node A-in-
termediate node-node D-node E-node F-destination node.
The cost 18 is the first observed cost for this complete path
and is stored by Destination node processor for comparison
to costs for other equivalent paths containing the same set of
visited nodes. If any other path with the same set of nodes
has a higher cost, then Destination node processor prunes
those paths by terminating messaging including such paths
to the messaging bus. For example, the path for index 40
traverses the same nodes as the path from index 34, but has
more cost 22. The Destination node processor 218 does not
forward the message from index 40 to the Message Handler,
thereby effectively pruning the path for index 40. If the
Destination node processor 218 is the last node in the graph
of'all nodes, then it is synonymous with being the Stop Node
and a Stop Node, observing a lowest-cost, complete path
through the entire graph of nodes announces to all Node
Processors that a solution has been found, which then causes
all Node Processors to cease processing. This eliminates all
subsequent computational costs that would otherwise occur.
Also being of higher costs than the path of index 34, the
paths associated with indices 41, 42, and 43, are pruned
(terminated) by the Destination node processor.

[0037] In one or more embodiments, the cost for each of
the first plurality of paths comprises an available bandwidth
between the source node, each of the first group of inter-
mediate nodes, and the first destination node, wherein the
cost for each of the second plurality of paths comprises an
available bandwidth between the first destination node, each
of the second group of intermediate nodes, and the second
destination node. In further embodiments, the source node,
the first destination node, the second destination node, the
first group of intermediate nodes, and the second group of
intermediate nodes comprise a network element in a com-
munication network.
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[0038] Further, portions of embodiments can be combined
with portions of other embodiments.

[0039] In one or more embodiments, to calculate the
shortest path through each node in a computing environ-
ment, a signal (electrical or optical) is launched into the
computing environment (circuit) having components repre-
senting the nodes to be visited. The signal would move as
fast as the path would allow it to. With each node visit, the
signal would be modified to reflect the visitation. Such a
signal moves between the nodes, flowing like waves on a
transmission line or a swimming pool. To make the com-
puting environment behave this way, the architecture of the
computing environment allocates a computing resource to
each node that would receive messages from other nodes
and rebroadcast them in a manner to reflect the visitation. In
this manner, signals launch as waves that would automati-
cally move between the nodes without supervision from a
single computer resource. No single node has complete
knowledge of actions of the other nodes, but handles its own
piece of the overall computation, independent of other
processors (nodes). Such a method or system can be desig-
nated as crowd processing and it is distinct from distributed
computing, which shares a computing task among many
computing devices, but still under the supervision of a
master computing device. The nodes communicate with
each other, building path knowledge along the way. A Stop
Node (a final destination node—can be the same as the Start
Node (e.g. source node)) processor listens for a message
from any Node Processor that must have two properties to
find and assert the target path through the graph of all nodes.
The first property is that the message would announce that
it had visited all possible nodes (complete path), and the
second property is that the message would have the lowest
travel time among all complete paths. Such embodiments
can be time-based, indicating that the message pertaining to
the shortest total path, the target path, is presented on the
messaging bus before many other messages have traveled a
complete path. Once this first complete path of the message
is found by the Stop Processor, all remaining computation
can cease because the solution has been found. Again, this
is a distinctly different concept than a computer analyzing all
possibilities and finding the best one. There is no centralized
computing resource controlling the calculation of the short-
est complete path. A message (wave) is launched and every
member of the graph of nodes communicate among them-
selves and when the lowest cost (time) path is presented, the
calculation of the shortest complete path is done. In such
embodiments, the solution presents itself as a natural con-
sequence of the flow of messages traveling through all the
available nodes comprising the graph of nodes.

[0040] Conventional techniques for solving the shortest
path through each node of a group of nodes cause each
possible path among the nodes to be assigned a computing
thread or central processing unit (CPU). Even with moder-
ately sized groups of nodes, the total number of threads or
CPUs that must be managed can exceed the administrative
capability of operating systems of the computing environ-
ments for the group of nodes. Embodiments described
herein instead assigns exactly one computing resource to
each node, one for the Stop Node (which may be coincident
with the Start Node), a Message Handler, and an Adminis-
tration Processor that provides initial conditions to all other
processors and an initialization message to start the process-
ing task. With a one thousand node group, one thousand
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processing threads are assigned potentially across many
servers that do not need to be under the control of a single
computer. Conventional techniques may need billions or
trillions of computing threads, which require swapping and
time-sharing of the memory and CPU resources.

[0041] For embodiments described herein, the terms dis-
tance, time, and cost can be interchanged as the accumulat-
ing measure while the messages traverse the Node Proces-
sors. Embodiments can keep track of an accumulating
quantity that could be a representation of distance, time,
cost, or anything else that could be numerically accumu-
lated. Embodiments can handle both perfect and approxi-
mate solutions. A perfect solution is one where travel can
occur between any pair of nodes in the graph of all nodes.
An approximate solution is one where travel between nodes
is constrained (such as being limited to nearby nodes).
Determining that certain paths cannot yield the shortest path,
allows pruning of those paths and all larger paths including
those paths up to complete paths. Path pruning early in the
flow of messaging has a more significant effect on the
elimination of subsequent processing than pruning later in
the messaging flow. Referencing FIG. 2G, this is akin to
pruning a large trunk of a tree as opposed to pruning a twig
at the top of the tree. Every twig represents a computable
path and pruning a large branch can eliminate millions of
twigs or paths. Given the factorial (n!) growth in computa-
tional cost of the traveling salesman problem and related
problems with n nodes, graphs with even hundreds of nodes
can present intractably large computational costs. Some
embodiments provide for large scale pruning of message
flows by every node in the graph such that the composite
reduction in total computational costs approaches linear
growth with the number of nodes, rather than factorial
growth. Benefits of some embodiments can include the
ability to stop computation once a complete, shortest path is
found, thereby eliminating remaining computations. For
example, consider any set of visited nodes, including n
nodes plus the START and STOP nodes. Exactly n!-1
branches can be pruned between START and STOP. This
ability is based on a basic property of the geometry and
embodiments herein exploiting it. Given any four locations
(including two nodes, START, and STOP) one complete
path can be pruned between START and STOP. For example,
given nodes A, B, C, and D, a message can travel from A to
D two ways, ABCD or ACBD. These two paths either have
exactly the same length or one is longer. If, for example,
ACBD is longer than ABCD, it can be seen that any path
including the sequence ACBD could be shorter if that path
used ABCD instead (and all other prior or subsequent nodes
visits were exactly the same). This shows that any path
sequence containing ACBD cannot be the target path, so any
computation for any path containing ACBD can be termi-
nated. If both paths ABCD and ACBD are equal length, one
can be picked (e.g. based on a logical value such as a
processor ID) and the other ignored. The task is to find “a”
lowest cost path, not all equally lowest cost paths. Similarly,
among any four nodes one of two possible paths can be
pruned from A to B (traversing C and D), A to C (traversing
B and D), B to C (traversing A and D), B to D (traversing
A and C), and C to D (traversing A and B). There is another
attribute of some embodiments which applies when the cost
of traveling between any two nodes is bilateral. This means
that distance or cost ABC is exactly the same as CBA. If path
ABCD has a lower cost than ACBD, then we can use this
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argument to claim that path DCBA has a lower cost than
DBCA. This means any path can be pruned containing the
sequences ACBD or DBCA. This allows more opportunities
for pruning during processing. FIG. 2G depicts the pruning
of branches and the benefit of finding an early complete
shortest path which terminates the remaining processing.
Note, in some embodiments, a test run can be done, a priori,
to determine an existence of a complete path where all nodes
are visited.

[0042] In some embodiments Node Processors can be
implemented as processing threads of one or more comput-
ers. Functionality of Node Processors or any other process-
ing of the embodiment can be defined logically or virtually,
e.g. virtual machine.

[0043] Referring to FIG. 2H, the system includes several
processing components including an Administration Proces-
sor shown in FIG. 2I. The Administration Processor asserts
to cost of travel between nodes. If the problem involves
computing travel time between geographic nodes, the
Administration Processor knows the geographic locations of
start, stop, and all other nodes. The Administration Processor
asserts the bilateral costs/distance/time between them as part
of a problem-set-up phase of processing. In the case of the
equal bilateral cost assumption between all node pairs, a
special message is provided by the Administration Processor
to other processors to indicate as such. In problems where
visitations between nodes are constrained leading to an
approximate result rather than an exact result, the Admin-
istration Processor notifies each node processor about the
local, neighboring nodes that it should listen to. If the
complete, shortest path is approximate, there is a potential
for creating stranded islands of nodes in the graph of nodes,
because the nearest neighbors to all members of a cluster are
part of the cluster and not other clusters. It is possible for no
members of a cluster to connect to any node outside of the
cluster. Therefore, a graph theory mechanism is indicated to
find clusters and also find the lowest cost connections
between clusters to ensure a path to completion and no
stranded clusters. The Administration Processor also initi-
ates the final process to find the lowest cost path. Referring
to FIG. 21, the basic functionality of the Administration
Processor is shown whereby it can send cost information to
all other processors and also invoke a first mode of operation
to test for the presence of any complete path through the
node graph as well as a second mode of operation which is
to find the target path.

[0044] Embodiments provide one Node Processor per
node. Each Node Processor receives (from the Administra-
tion Processor) a list of other nodes that are permitted to be
in its path (its local neighborhood). For small groups of
nodes, all Node Processors can listen to each other with
manageable computational impact. For large groups of
nodes, restricting node connections to a local community is
one manner in which to reduce complexity with relatively
low impact on finding a target path, but the result cannot be
guaranteed, only approximated. However, embodiments
described herein work with or without node neighbor con-
straints. Each Node Processor continuously monitors the
Node Bus/buses and receives all of the messages deposited
thereon of the form (cost,,; .4 Dode_mask, pointer, node
1Ds, costs,, node ID,, cost,s, node ID;, cost,,, node ID,,
cost,, node ID,). The node_mask provides an exact visita-
tion record of all nodes visited and contributing to the cost,
€OStyp07 parn- Lhe node_mask does not show the order of
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historical node visitations. Only the node visitation order for
the last five nodes visited is presented in the message. The
remaining elements of the message provide the sequence
and costs of recent node visits to be compared with the
contents of other messages by any Node Processor. At the
start of messaging on the Node Bus, all five historical nodes
visited are exactly the Start Node and costs between them
are all exactly zero. When messages have visited three nodes
beyond the Start Node comparisons allow pruning to begin.
At this depth of processing, Node ID,, Node ID,, and Node
1D still all indicate the Start Node. Only Node ID5 and Node
1D, show other node IDs. A Node Processor inspects the last
five nodes of travel to compare costs for paths with common
sets of nodes between Node 1D, and the current node. There
can 24 distinct paths to the current node when looking back
at the last five nodes visited ((depth-1)!). All but one of
these paths can be pruned. An embodiment can be built
using longer sequences of prior-visited nodes than five, in
which case the form of the message would merely be
extended using the same logic. Looking back at the last five
visited nodes yields significant pruning opportunities, but
with factorial growth in the processing by the Node Proces-
sors. For instance, looking back six nodes would allow
comparison of 120 paths with all pruned except one, but the
cost of comparisons is increasingly as a factorial of depth.
Beyond five, there is a questionable tradeoff between reduc-
tion of total path computations and Node Processor process-
ing. The choice of this messaging depth (number of histori-
cal visited nodes) may be a determinable function of the size
of the node graph and bilaterality of node pair costs. Recall,
for exact solution computations, all nodes are neighbors of
all other nodes. For each of the Node Bus messages received
by any Node Processor, each Node Processor first checks the
last visited node ID against its neighbor list to determine if
it is a permitted neighbor. If not, the message is ignored,
otherwise the “node mask” in the message is inspected for
a self-match which could prove this node has already been
visited in the history of the received message. The node
mask is binary and has a position for each node in the graph
of nodes. It merely indicates what nodes have been visited,
but does not provide the order of visitation. If there is no
self-match in the node mask, checks are run by a Node
Processor on the sequence of the last 5 node IDs to compare
its node visitation cost with the costs of other node
sequences from other messages already received. It does this
by comparing the cost (from prior messages) of visiting the
same set of the 5 most-recent nodes visited, having the same
starting node, but in a different sequence. For example, a
Node Processor may receive a message where the last five
nodes visited are JGECA. This could be compared in terms
of cost to the path GJECA or JGCEA. To compare costs
between any two messages, the final cost to get to the
processing node must be included, not just the total cost,
COSlyp01 pan» Provided in the received messages. For
example, two messages may arrive at Node Processor F
containing costs for visiting prior nodes ABCDE and
ACBDE respectively. In order to assert the lower cost of the
two, the cost of getting to F must be included so that the total
costs will be for paths ABCDEF and ACBDEF respectively.
If alower or equal cost path is observed by a Node Processor
for a prior message, the current message is ignored, thereby
effecting pruning of the equal or higher cost path presented
in the message. If no lower cost path was previously
observed by a Node Processor, the current message is
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updated with the cost to arrive at the current node as well as
the shifting of the recent node visit information to the right
and insertion of the most current node of travel. The pointer
value in the message (which will be discussed further) is
retained in the updated message. The node mask is then
updated and the message is sent to the Message Handler
processor. The Node Processor may compute that a path for
the current received message has a lower cost than a prior
path for which an updated message was already sent to the
Message Handler. In this event, the Node Processor can send
a “delete prior message” request to the Message Handler via
the Administration Bus which then deletes the prior message
before placing it on the Node Bus. This action obviates all
subsequent processing otherwise associated with the termi-
nated message and its path. To effect this ability to drop
messages already sent to the Message Handler, a critical
component of the apparatus is that messages are dropped
onto the Node Bus by the Message Handler with sequen-
tially increasing cost or time. This guarantees the prior
message has not been placed onto the Node Bus yet and can
therefore be deleted prior to placement. When sending
messages to the Message Handler, the first Node Processor
(number zero) places its message onto the Administration
Bus and then electrically toggles a line or sends a unique
message pattern. This line (or message) is monitored by all
Node Processors and is used as a means of avoiding colli-
sions among Node Processors on the Node Bus. Each Node
Processor waits its turn as it counts the number of toggles on
the line (or sends the unique message). If a Node Processor
has no message to send to the Message Handler, it toggles
the line on its turn anyway. When a new message is placed
onto the Node Bus by the Message Handler, all Node
Processors use this to reset their own toggle counter, observe
the new message, conduct required processing, and then
wait their turn to report back to the Message Handler. This
looping continues until the Stop Processor sends a message
to all other processors to stop processing. Referring to FIG.
2], it shows the functionality of a Node Processor.

[0045] A Message Handler comprises a processor that
manages the sequence (ranked by increasing time, cost, or
distance) of messages it places onto the Node Bus. The
Message Handler receives messages from Node Processors
over the Administration Bus, receives updated pointers (that
point in memory to a sequence of visited node IDs) from the
Stop Processor via the Pointer Bus, and then updates mes-
sages in the stack with these updated pointers, ranked by
time, distance, or cost and then places the next message in
the sequence on the Node Bus after all Node Processors have
completed reporting pursuant to the prior message placed
onto the Node Bus. The Message Handler maintains a stack
of' node messages to be placed onto the Node Bus. When two
messages have the same cost, the node ID of the last node
visited can be used as an arbiter for ordering. For scalability,
the stack may be effected as a set of stacks where each
sub-stack holds messages from a prescribed subset of nodes.
For example, messages one subset of nodes go to sub-stack
1 while messages from another subset of nodes go to
sub-stack 2. Doing so allows the Message Handler to
multi-thread and expedite message insertion and deletion in
the full stack that could otherwise become significant for
large groups of nodes. The embodiment of a Message
Handler may also use a stack ranking architecture where
stack subsets can have their own subsets in a cascade or
arbitrary depth. Using multiple message stacks also implies
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that messages cannot be placed onto the Node Bus until the
costs are compared for the “next” message on each sub-
stack. This same logic applies to cascaded sub-stacks of
arbitrary depth. For example, if the stack has sub-stacks
(layer A) and each sub-stack has sub-stacks (layer B) the all
layer B sub-stacks must have their “next” message time-
compared before choosing one for each layer A sub-stack.
Then all layer A times or costs are compared to arrive at a
single message which is the next message to be placed on the
Node Bus. Otherwise, messages could be placed on the
Node Bus out of sequence. As described in the embodiments
herein, the messages placed onto the Node Bus do not
present 100% of visited node IDs along the traveled path.
The reason is that for large groups of nodes, the bandwidth
of the Administration Bus and Node Bus would be con-
sumed by this movement of information. Pointers allow us
to replace long sequences of node IDs on a traveled path
with a pointer to that sequence stored on the Stop Processor.
Each time a path has to diverge (branch), a new pointer is
created for it by the Stop Processor and the Message Handler
is made aware of that path divergence when informed by the
Stop Processor via the Pointer Bus. The Message Handler
can delete a message from the message stack if requested to
do so by a Node Processor, which can happen if the Node
Processor discovers a shorter path sequence (from the prun-
ing process) and wants to eliminate a prior message and
insert one for the shorter path. Sending any delete or add
message happens when a Node Processor gets its turn to
communicate on the Administration Bus. After placing a
message onto the Node Bus, the Message Handler monitors
the toggle line on the Administration Bus as each Node
Processor takes its turn with updating the Message Handler
(sometimes sending a message and sometimes not but
always toggling the line at the end of its turn). The Message
Handler knows how many Node Processors there are (it was
informed at set up by the Administration Processor), so by
observing the toggle counter, it knows when all Node
Processors are done working. When it places a new message
onto the Node Bus, it resets its own toggle counter, as do the
Node Processors. Referring to FIG. 2K, it shows the func-
tionality of the Message Handler.

[0046] The Stop Processor monitors the Node Bus mes-
sages and uses the node mask to identify when a path has
completed visitation to all nodes. For maximum speed, a
completion check on the node mask can be accomplished in
hardware using open collector transistors, tied together in
tandem and pulled up to a high (1) voltage state using a pull
up resistor. All of the node mask bits are inverted, so if they
are all in a high state (all nodes visited), the inverse is all Os.
This turns off all transistors, causing the tandem connections
at all transistor collectors to be pulled high by the pull-up
resistor. If any node mask bit is 0, at least one inverted bit
will be in a high state, turning on at least one transistor and
pulling V_,, to a low state. The Stop Processor observes a
complete node visitation mask when V_,, transitions to a
high state. (See FIG. 2L).

[0047] In a message with a complete node mask, the Stop
Processor sees the total travel cost to the last node visited.
It then adds the cost of travel between the last node and the
Stop Node to the accumulated cost, thereby asserting a
“complete cost”. This allows the Stop Processor to have a
potential target path which can be designated as the “current
candidate target path”. There may be a lower complete cost
path that shows up later on the Node Bus if the cost of travel

out
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from its last node visited to the Stop Node is lower than for
earlier messages. The target path must include the cost of the
final step to the Stop Node before it can be asserted as the
target path. For example, the Stop Processor may see a path
(start, A, B, C, E, D) which is complete, and then the Stop
Processor adds the total cost of travel between D and the
Stop Node. Another message with the path (start, A, B, C, D,
E) may show up on the Node Bus a bit later, but if the cost
from E to the Stop Node is less than the cost from D to the
Stop Node, the second message may have the lowest com-
plete cost, distance, or time in which case it can replace the
current shortest complete path. If not, the later message is
ignored. When the Stop Processor sees any message on the
Node Bus having a total travel cost greater than the cost of
the current shortest complete path, then it is not possible for
any subsequent message to have a lower total cost. This is
because messages are always placed onto the Node Bus in
time or cost-ordered sequence. There can never be another
message with a lower travel cost presented. Since the Stop
Processor can then positively know that the current shortest
complete path is the “final shortest complete path”, the Stop
Processor then sends a message on the Node Bus to all
processors to stop processing and it delivers the “final
shortest complete path” to the Administration Processor via
the Administration Bus. The Stop Processor also manages
the pointers to arrays that contain the traveled sequences of
nodes for any path. It monitors the Administration Bus and
receives messages sent from Node Processors to the Mes-
sage Handler. It determines when a path has to be split and
it creates new pointers to the new paths and informs the
Message Handler via the Pointer Bus. Because the Stop
Processor performs the task of pointer maintenance, once it
finds a path that has a complete node mask and the “final
shortest complete path”, it uses the corresponding pointer
from that message to look up the exact node visitation
sequence that it then sends to the Administration Processor.
An additional mechanism for stopping all processing is
when then Message Handler sends a message on the Node
Bus that it has “no more messages™. If the Stop Processor
sees this message, it asserts the current shortest complete
path to be the final shortest complete path and delivers the
same set of information to the Administration Processor
using the node visitation sequence pointed to by the last
observed pointer.

[0048] In referring to the Administration Bus, this com-
munication bus is used by the Administration Processor to
initially inform all Node Processors about their node neigh-
bor lists and the bilateral costs of travel to and from each of
those neighbors, to reset all processing, clear counters, clear
pointers, and inform each Node Processor about its node 1D
and to inform the Stop Processor and Message Handler
about the total node count. This bus is also used by the Stop
Processor to send the shortest complete path (the target path)
to the Administration Processor at the conclusion of pro-
cessing.

[0049] The Node Bus is used by the Message Handler to
broadcast messages (from individual Node Processors) to all
Node Processors. The messages placed on the Node Bus are
placed in rank order of cost, time, or distance, thereby
achieving the “flow” character of the embodiments describe
herein. It is this flow character that allows one to unequivo-
cally know when it is impossible for any remaining path to
have a lower cost, time, or distance than the “current shortest
complete path”.
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[0050] The Pointer Bus is a communication bus used to
communicate pointers between the Stop Processor and the
Message Handler. The Message Handler may send queries to
the Stop Processor to update a pointer if needed or the Stop
Processor may proactively send an update to the Message
Handler on the same bus.

[0051] The upper bounds to the embodiments described
herein are set by the bandwidth of these communication
buses, so multiple instances of each of these buses are
allowed, thereby permitting scalability.

[0052] In an exemplary embodiment, to prepare for pro-
cessing, the Administration Processor determines for every
node, what its neighbor nodes should be up to and including
all other nodes. The Administration Processor also deter-
mines the bilateral time, distances, or costs of traveling
between all node pairs that are neighbors. These neighbor
relationships and costs are sent via the Administration Bus
and are held in memory by the Node Processors.

[0053] After all pre-processing tasks are completed, the
Administration Processor initiates the path length computa-
tions by sending a start message to the Message Handler on
the Administration Bus. This start message has a start time
of'0, includes a node mask which is all zeros (with optionally
a single one representing the Start Node), a pointer (ex-
plained below) of 0, and includes a node ID=0 for each of
the last five node IDs visited (each being the Start Node) and
sends incremental travel costs between nodes of 0. The
message appears in the general form:
0,0000000000000000000000000,0,0,0,0,0,0,0,0,0,0 (accu-
mulated total cost, mask, pointer, node ID5, cost54, node
1D4, costd3, node ID3, cost32, node 1D2, cost21, node ID1.
The Message Handler immediately places this message on
the Node Bus to begin processing. The Stop Processor
observes this initial message on the Node Bus and creates a
first pointer, called 0, pointing to an in-memory array on the
Stop Processor with the single value “0” (denoting the Start
Node). The Message Handler sets its own toggle counter to
zero and all Node Processors, seeing the new message (total
cost=0) on the Node Bus, also set their own toggle counters
to zero.

[0054] Each Node Processor is constantly listening for
messages on the Node Bus and conducts processing for
messages originating from its “neighbor nodes™ (as deter-
mined and announced by the Administration Processor via
the Administration Bus during pre-processing). The first step
of processing is to inspect the node mask to ensure the
message has not yet traversed that node. Each node may
only be visited once, so a prior visit to the node causes the
message to be ignored. The Message Handler places mes-
sages on the Node Bus sequentially in time, cost, or distance
as non-limiting examples. This does not mean that it places
the messages on the Node Bus at the prescribed time, but
instead in ascending sequence. In one or more embodiments,
this temporal character can be significant or critical to the
particular embodiment because it is where the “flow” char-
acteristic is achieved, mimicking the flow of a signal through
a circuit or waves moving on a surface.

[0055] If a received message passes these tests, the last
five node IDs and travel costs are checked for path pruning
opportunities. FIG. 2M shows a simple example of two
possible paths between start and node C, traversing node A
and node B where only one path is ultimately allowed to be
used.
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[0056] To accomplish this pruning test, the Node Proces-
sor checks to see if it has stored a copy of a message
previously sent to the Message Handler with the same node
IDs as are contained in the currently received message and
having the same node ID,. This means the start of the
five-node path begins at the same node and ends with the
current node and the paths have the same visited nodes in
between. If the Node Processor finds such a comparable
prior message, it compares the total cost of travel to the
current node for both messages. If the prior message has the
lower or equal cost, the current message is discarded and
nothing is sent to the Message Handler. Otherwise, a mes-
sage is sent to the Message Handler to delete the prior
message and the Node Processor sends a new message to the
Message Handler after updating the total cost/time/distance
(up to the current node), updating the node mask, retaining
the same pointer, and FIFO (first in, first out) shifting the
node IDs and incremental costs to the right in order to insert
the current node ID and incremental cost from the last node
ID. This new message is sent to the Message Handler on the
Administration Bus. It does so on its turn which is deter-
mined when the toggle count matches its own node ID.
[0057] The comparison of costs among the most recently
visited five nodes allows for pruning of up to 23 paths
between node ID1 (from the received message) and the
current node. Various embodiments may use different pro-
cessing depths. A minimum depth of three nodes is required
for pruning travel paths. If the depth of nodes in the received
messages in more than 5, the processing resources of the
Node Processor grow rapidly, by (depth—1)! The optimum
depth may vary based on different problem constraints.
[0058] Both the Message Handler and the Stop Processor
see this message on the Administration Bus. The Message
Handler and Stop Processor work together to update the
pointer if needed and then the Message Handler inserts the
updated message in rank-ordered sequence with other mes-
sages in its stack of messages.

[0059] The Message Handler does not place any messages
on the Node Bus until all Node Processors have sent any
messages they need to send to the Message Handler via the
Administration Bus as indicated by the toggle counter. When
the Message Handler’s toggle counter accumulates up to the
count of nodes in the graph of all nodes, the Message
Handler knows that all Node Processors have provided
whatever messages they have based on the last message
placed on the Node Bus. After a final check with the Stop
Processor for a pointer update (discussed below) the next
message is placed on the Node Bus by the Message Handler.
[0060] The creation of new messages by Node Processors
are caused by prior messages received from the Node Bus.
Unless terminated (pruned), each message iteratively moves
between Node Processors and the Message Handler while its
travel cost and node mask evolve. The Stop Processor keeps
checking for complete node masks, but during processing
keeps creating new pointers to new travel paths as required.
For example, there may be an existing pointer “X” to a path
BCDEF stored on the Stop Processor. The Stop Processor
then sees a message on the Administration Bus that includes
pointer X. The message also has a new node ID added, such
as . .. CDEFT. The Stop Processor compares the last node
ID of pointer X (stored on the Stop Processor) with the
second to last node ID of the message . . . CDEFT. If they
are the same, then the current message contains the first
extension beyond path . . . BCDEF. If T is the first extension
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beyond . . . BCDEF, then the updated path can continue to
use pointer X whose path sequence will be appended with T,
stored on the Stop Processor. In this case, there is no need
for the Stop Processor to inform the Message Handler to
update the pointer and the Message Handler can simply
insert the message into its stack for eventual placement on
the Node Bus. Suppose another message is obtained with the
same pointer X, but for path . . . CDEFM. This means that
a single message placed on the Node Bus caused more than
one Node Processor to generate a new message. Since the
last node ID of pointer X (which is now T) is not the same
as the second to last node ID in the new message (which is
F), the Stop Processor can generate a new pointer, copy
pointer X to it and correct the last visited node, removing T
and appending M. Then the Stop Processor must inform the
Message Handler via the Pointer Bus that the pointer in this
message must be updated. Before the Message Handler
places any message on the Node Bus, it must either get a
message from the Stop Processor indicating either “no
pointer update” or “pointer update”. This is required to
ensure a message doesn’t get placed on the Node Bus with
the wrong pointer.

[0061] The path processing can progress only as fast as the
Message Handler places messages on the Node Bus which
has a maximum communication bandwidth. Similarly, the
Message Handler can place messages onto any one of
several Node Buses to increase maximum handling speed. If
this architecture is used, it is imperative for every Node
Processor to be able to simultaneously listen to every Node
Bus. When the Message Handler has no remaining messages
in its message stacks, it sends a “no more messages”
message on the Node Bus. With this message, the Node
Processors can stop all processing. When the Stop Processor
hears this message, it can deliver to the Administration Bus
the best current path information (cost and node visitation
sequence). The node visitation sequence is retrieved from
memory on the Stop Processor using the pointer associated
with the message demonstrating the lowest complete total
path cost, being the target path.

[0062] FIG. 2N shows an example of three nodes between
the Start Node and the Stop Node in the traveling salesman
problem. The locations of nodes are depicted in the shaded
area along with the computed distances between them.
Below the shaded area, is shown what each processor is
doing after the initial start message is sent. Because there are
no neighbor constraints specified, each Node Processor must
respond to messages originating from all nodes, add an
increment of travel time and then submit the new message
to the Message Handler. For this example, the updates of
node masks and pointers are omitted for simplicity. The
Message Handler deposits the messages onto the Node Bus
in increasing temporal order where they can be further
processed by more Node Processors. Three shaded cells in
the spreadsheet, show where Node Processors detects that a
prior node path with exactly the same node visits has a
shorter time than a prior observation, so no message is sent
to the Message Handler. This is the pruning action described
above.

[0063] The Stop Processor takes no action until it sees a
full complement of visited nodes. Even then it must add-in
the time from the last visited node to the location of Stop
Node. Even if a first complete node mask is observed, there
is still a possibility that another complete message, arriving
later, could have a lower total oath time if it has a lower final
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time to the Stop Node. Therefore, the Stop Processor must
wait for one of two things to occur to be certain there are no
shorter complete solutions. Either the Message Handler
must announce that there are no more messages to inspect
(in which case the Stop Processor uses its current shortest
complete path) or the Stop Processor waits for the Message
Handler to place a message onto the Node Bus having a time
greater than that of the current shortest complete path (in
which case it also delivers the current shortest complete
path). For this second case, if the Stop Processor were to add
any non-zero time to the time (or cost) in the received
message for the final travel to the Stop Node, the time or cost
could only increase. If the time or cost is already higher than
that of the shortest current complete path, then it is not
possible to have any subsequent complete solutions with
lower time or cost. Either way, it is not possible for there to
be a shorter path once one of these two events has occurred.
This is due to the temporal flow characteristic of the appa-
ratus. In this simple example, only three paths have been
pruned and yet the total number of additions and compari-
sons have been reduced. Using classical solution methods,
finding the shortest path requires 24 additions and 6 com-
parisons. This simplified example requires 15 additions and
9 comparisons. The savings in computation increase rapidly
as the number of nodes increases.

[0064] The example in FIG. 20 shows what happens with
four nodes between the Start Node and the Stop Node.
Following the same methodology, one can see that the
number of shaded cells (indicating a shorter path has been
observed by a Node Processor and to not send a message)
has increased greatly. The larger group of nodes grows the
complexity, but the number of branches being pruned is also
growing quickly. All of the rows with shaded cells on the far
left would not normally exist, due to message termination
(pruning), when the embodiment is executing. They are only
shown to indicate processing that can never occur because
the message on the far left cannot be placed onto the Node
Bus by the Message Handler. The shaded cells with text in
the processor columns do have to be computed and com-
pared with prior messages in order to assert that the message
is not to be sent to the Message Handler, so there is a Node
Processor processing cost to these, but not a bandwidth or
subsequent computational cost. In this example, there is a
first instance of a complete message at t=24.6, but once the
time going from the last node to the Stop Node is included,
the final time is 35.91. This cannot be declared the lowest
time solution until either the Message Handler either
declares no more messages in its stack or the time present in
any subsequent message on the message bus exceeds 35.91,
and no other complete path with total time less than 35.91
is found. Almost immediately after finding the first complete
path, we show another complete path at t=25.79 having a
final time (including time for the final travel leg to the Stop
Node) of 32.6 which eventually turns out to be the lowest
complete path time. At time 32.6, no more messages have
been observed with complete visitation paths, so the Stop
Processor sends a “stop processing” command on the Node
Bus. The Administration Processor then receives a message
from the Stop Processor which includes the final time and
node visitation sequence for the target path.

[0065] The computation cost of this four-node example
again shows the benefit of the apparatus. Classical methods
take 24 compares and 120 additions while this embodiment
accomplishes the job in 42 compares and 53 additions. The
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historical method for a five node embodiment requires 120
compares and 720 additions where this embodiment finds
the result in 143 compares and 168 additions. With more
nodes, the gap in computation cost diverges exponentially
from the classical methods. Just to see how the problem
normally grows as adding nodes 6, 7, and 8 . . . total
compares increases to 720, 5040, and 40320 while count of
additions increases to 5040, 40320, and 362880 respectively.
When considering problems with hundreds or thousands of
nodes, the quantity of required calculations rapidly exceeds
worldwide computational resources. Since the number of
possible paths increases by n! assume having a 1000 node
problem requiring a large data center of servers to solve the
problem within time T. If the size of the problem increases
by just one node, there is then need 1001 data centers to
solve the problem. Just one more node might require more
data centers than are available in the world. If prune 119 out
of every 120 paths are pruned (looking at the last five nodes)
and such pruning occurs at every Node Processor at every
step of processing, the total requirement for processing is
reduced drastically.

[0066] There are many practical applications for the
embodiments described herein that can use the ability to
terminate processing shortly after a first solution is found,
the ability to vigorously prune calculation branches with
crowd processing, and use scalable, high bandwidth com-
munication buses. Some applications include genetic engi-
neering, cryptography, linear programming, systems optimi-
zation, graph theoretical problems, complex systems
modeling and numerical methods.

[0067] In one or more embodiments, all of the nodes
(graph) in an exact traveling salesman problem can be
visited by any of the other nodes, irrespective of cost,
distance or time between them. It makes sense that transiting
between nodes on opposite sides of the graph (the multidi-
mensional space containing the nodes) is likely to incur a
higher cost than transiting between nodes in the immediate
vicinity of each other. This however is not guaranteed.
[0068] Some algorithms can group nodes within a graph
having relatively close proximity to each other (closer than
the average distance between all adjacent nodes in the
graph). A graph of nodes may have multiple groups and
neighbor relationships must be made between at least one
pair of nodes where there is one node in each of two groups
to be connected. Some of the difficulties in classical graph
theory algorithms for determining these groups is whether
the group’s encompassing contour should be “round” or
whether they can be encompassed by complex shapes.
Constraints on the shape of a group’s encompassing contour
lead to even more complex theories regarding the ability to
ensure “complete graph connectivity” (all nodes can be
visited between starting and ending points).

[0069] One or more embodiments can include a unique
mode of operation and capability to ensure complete graph
connectivity. To test for complete graph connectivity, the
Message Handler (knowing which node is the Start Node, as
informed by the Administration Processor) drops a “start”
message onto the Node Bus. This message is heard by all
Node Processors connected to the bus. In this mode of
operation, each node that is a neighbor (defined as having a
predetermined cost of travel between nodes) of the Start
Node sets its own flag, indicating it has something to report
to the Message Handler. In sequence, using the node 1D,
each of these neighbor Node Processors reports to the



US 2020/0382410 Al

Message Handler via the Administration Bus, that it is a
neighbor of the node sourcing the message observed on the
Node Bus (in this case, the Start Node) along with the cost
between the nodes. The Message Handler is able to collect
the list of all nodes which are neighbors of the Start Node.
Such a list can be called a “start neighbor list.” The Message
Handler has previously received the full set of nodes in the
graph from the Administration Processor. By subtraction the
Message Handler determines which nodes are missing from
“start neighbor list.” For instance, if there are 112 nodes in
the graph and 54 are in the “start neighbor list”, then 58
nodes are “unconnected” because they are not neighbors of
the Start Node. The Message Handler rank-orders the “start
neighbor list” based on reported cost from lowest to highest.
If complete graph connectivity has not been established
(evidenced by no missing nodes), the Message Handler
drops another message onto the Node Bus corresponding to
the nearest (lowest cost) neighbor of the Start Node, being
the first neighbor in the “start neighbor list.” In this mode of
operation, all nodes that have previously responded to the
Message Handler are disabled and can send no more mes-
sages to the Message Handler. When this next message is
dropped onto the Node Bus, any additional nodes that are
neighbors of the sourcing node (on behalf of which the
message is sent by the Message Handler) send their conse-
quential messages to the Message Handler (assuming they
have not been disabled). This set of responses is given a new
name which is designated “start neighbor list 1 which
means it is the neighbor list associated with the first node in
the “start neighbor list”. The Message Handler again checks
for graph connectivity completeness and if not found, the
Message Handler drops another message onto the Node Bus
from the second member of the list “start neighbor list.”
Again, the Message Handler receives responses from the
Node Processors and creates another list called “start neigh-
bor list 2.” Each Node Processor that provides a message to
the Message Handler is disabled from subsequent process-
ing. This process repeats using messages from “start neigh-
bor list” until the Message Handler finds complete graph
connectivity. If complete graph connectivity is not found by
the end of all messages in “start neighbor list”, the Message
Handler has to extend the search by dropping a message onto
the Node Bus corresponding to the first listed entry of “start
neighbor list 1.” Responses to this message create another
list called “start neighbor list 1, 1.” During the search
process, this can be extended to “start neighbor list 1, N”
where N is the number of listed neighbors in the “start
neighbor list 1.” Perhaps there is no path to graph complete-
ness, irrespective of how many layers deep this process
goes. Note that as processing down these many paths and
sub-paths progresses, the remaining unconnected node lists
get smaller. Again, this is because each time any node
reports to the Message Handler, it is permanently removed
from sending any more messages to the Message Handler. In
another example, assume an extended node list called “start
neighbor list 2, 4, 8, 2, 1, 1, 7, 9, 11.” This means that the
start message was sent, resulting in a list of unconnected
nodes called “start neighbor list.” Then a message for the
second of these nodes resulted in another list call “start
neighbor list 2.” A message for the fourth member of that list
caused a list “start neighbor list 2, 4” to be generated. The
remaining sequential lists resulted from dropping the eighth,
second, first, first, seventh, ninth, and eleventh entries in the
resulting lists respectively. If any message is dropped onto

Dec. 3, 2020

the Node Bus by the Message Handler without any Node
Processor responses, the Message Handler simply moves to
the next message. If after searching all possible paths for
complete graph connectivity, the Message Handler cannot
find it, the Message Handler informs the Administration
Processor accordingly and the Administration Processor
returns a message back to a client computer system such as
“error, graph connectivity incomplete.” Without graph con-
nectivity, it is not possible to find any solution to the
traveling salesman problem.

[0070] With a large number of nodes, the cascading of
these visited neighbor lists while testing for any complete
path can become computationally expensive, but still much
less than the computational cost to find the target path. In the
absence of any complete path, we can avoid the computa-
tional cost of finding the target path. Recall that if there are
no neighbor constraints between nodes, there cannot be any
stranded islands of nodes and complete graph connectivity is
guaranteed. Each subsequent response list gets smaller as
the search for graph completeness progresses, so even
though the total number of lists may grow rapidly, this is
partially mitigated by rapidly reducing counts of uncon-
nected nodes. Further optimization of checking complete
graph connectivity may be accomplished by treating all
nodes within a node group as a node cluster. A requirement
of this approach is that all nodes within a node cluster must
have connectivity to all other nodes in the node cluster. Any
neighbor of any node within the node cluster is then con-
sidered a neighbor of the node cluster. Once this is com-
pleted, the node cluster behaves computationally like a
single node with a lot of neighbors. Some embodiments can
test for complete graph connectivity between nodes and
nodes clusters, which requires less processing.

[0071] Once an embodiment ensures complete graph con-
nectivity, its mode of operation changes to searching for the
target path. Processing reduction/optimization using graph
clusters to produce node groups cannot guarantee a “com-
plete” solution to the traveling salesman problem, but can
present an acceptable tradeoff between processing cost and
exactness of the solution.

[0072] FIG. 2P depicts an illustrative embodiment of a
method 260 in accordance with various aspects described
herein. In one or more embodiments, the method 260 can be
implemented by a server, computing device, or any other
processing system. The method 260 can include iteratively
providing, from a Message Handler of a processing system,
messages to each of a group of Node Processors of the
processing system. Each of the group of Node Processors
represents a node or a group of nodes.

[0073] The method 260 can include, at 262, providing, by
the Message Handler to a Node Bus, a group of first
messages. Each first message includes a cost associated with
a path of nodes visited by each first message. Further, the
method 260 can include, at 264, determining, by each of the
group of Node Processors, paths having common endpoints
among a portion of the group of first messages. In addition,
the method 260 can include the processing system, at 266,
identifying, by each of the group of Node Processors, a cost
for each of the paths having common endpoints resulting in
a group of common endpoint costs. Also, the method 260, at
268, identifying, by each of the group of Node Processors,
a lowest cost from among the group of common endpoint
costs. Further, the method 260 can include, at 270, identi-
fying, by each of the group of Node Processors, a selected
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path associated with the lowest cost. A next group of
messages includes the selected path. The iteratively provid-
ing of the messages results and comparison of travel costs
between paths having common endpoints, provides for
pruning of a majority of paths, leaving permissible paths for
continued processing. If a target path is not found, the
method 260 can include the recursive processing step 272,
providing a next group of messages to be processed for
extension of a selected path. In addition, the method 260,
determines by processing step 274, a target path which is the
final permissible path after pruning of all other paths for
having higher costs.

[0074] While for purposes of simplicity of explanation,
the respective processes are shown and described as a series
of blocks in FIG. 20, it is to be understood and appreciated
that the claimed subject matter is not limited by the order of
the blocks, as some blocks may occur in different orders
and/or concurrently with other blocks from what is depicted
and described herein. Moreover, not all illustrated blocks
may be required to implement the methods described herein.
[0075] Inone or more embodiments, the target path will be
a complete path, a complete shortest path, and/or a most
efficient path. If every node in the graph of nodes is
permitted to be a neighbor of every other node, then the
target path will also provide an exact solution, otherwise it
will provide an approximate solution. The pruning of paths
allows the processing system to only use the remaining paths
to find/calculate the target path and forego using terminated/
pruned paths to find/calculate the target path, thereby
improving the efficiency in finding/calculating the target
path by the processing system.

[0076] In one or more embodiments, the lowest cost of a
path is associated with a first path from the common paths.
Further, in method 260, identifying the lowest cost from
among the costs of a group of paths having common
endpoints can comprise identifying a next higher cost from
among these costs. The next higher cost is associated with a
second path from the common paths, comparing the lowest
cost to the next higher cost, and determining the lowest cost
is lower than the next highest cost. The cost of any path can
be one of time, distance, available bandwidth, latency, or
throughput.

[0077] In one or more embodiments, a method can com-
prise a processing system obtaining, by a Message Handler
of a processing system, an initiation message, wherein the
initiation message identifies an initial cost and a Start Node
visited. Further, the method can comprise the processing
system providing, by the Message Handler, the initiation
message on a communication bus of the processing system,
In addition, the method can comprise the processing system
receiving, by the Message Handler, a first group of messages
from a group of computing threads that each represent a
different one of a group of nodes. Each of the first group of
messages includes first costs and first nodes visited. Each of
the first costs and each of the first nodes visited are associ-
ated with a corresponding one of the group of nodes. The
receiving of the first group of messages is responsive to the
providing of the initiation message on the communication
bus. Also, the method can include the processing system
providing, by the Message Handler, the first group of
messages on the communication bus according to a first
order that is based on the first costs. Further, the method can
include the processing system receiving, by the Message
Handler, a second group of messages from a first subset of
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the group of computing threads. Each of the second group of
messages includes second costs and second nodes visited.
Each of the second costs and each of the second nodes
visited are associated with a corresponding one of the first
subset of the group of nodes. The receiving of the second
group of messages is responsive to the providing of one of
the first group of messages on the communication bus. In
addition, the method can include the processing system
providing, by the Message Handler, the second group of
messages on the communication bus according to a second
order that is based on the second costs. Also, the method can
include the processing system receiving, by the Message
Handler, a third group of messages from a second subset of
the group of threads. Each of the third group of messages
includes third costs and third nodes visited. Each of the third
costs and each of the third nodes visited are associated with
a corresponding one of the second subset of the group of
nodes. The receiving of the third group of messages is
responsive to the providing of one of the second group of
messages on the communication bus. Further, the method
can include the processing system providing, by the Mes-
sage Handler, the third group of messages on the commu-
nication bus according to a third order that is based on the
third costs. At least one of the group of computing threads
determines a lower cost associated with the third nodes
visited and does not generate a message that is part of the
third group of messages based on the lower cost being
determined. The method can include the processing system
stopping a message being placed on the communication bus
if the cost associated with the message is greater than a total
cost for another message that indicates all of the same nodes
have been visited with the same common endpoints. The
group of computing threads can be part of the processing
system. The Message Handler and group of computing
threads can be part of a distributed computing environment.

[0078] Referring now to FIG. 3, a block diagram 300 is
shown illustrating an example, non-limiting embodiment of
a virtualized communication network in accordance with
various aspects described herein. In particular a virtualized
communication network is presented that can be used to
implement some or all of the subsystems and functions of
communication network 100, the subsystems and functions
of system 200 in FIG. 2A and the systems in FIGS. 2H-2M
and implement method 260 as described herein.

[0079] In particular, a cloud networking architecture is
shown that leverages cloud technologies and supports rapid
innovation and scalability via a transport layer 350, a
virtualized network function cloud 325 and/or one or more
cloud computing environments 375. In various embodi-
ments, this cloud networking architecture is an open archi-
tecture that leverages application programming interfaces
(APIs); reduces complexity from services and operations;
supports more nimble business models; and rapidly and
seamlessly scales to meet evolving customer requirements
including traffic growth, diversity of traffic types, and diver-
sity of performance and reliability expectations.

[0080] In contrast to traditional network elements—which
are typically integrated to perform a single function, the
virtualized communication network employs virtual net-
work elements (VNEs) 330, 332, 334, etc. that perform
some or all of the functions of network elements 150, 152,
154, 156, etc. For example, the network architecture can
provide a substrate of networking capability, often called
Network Function Virtualization Infrastructure (NFVI) or
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simply infrastructure that is capable of being directed with
software and Software Defined Networking (SDN) proto-
cols to perform a broad variety of network functions and
services. This infrastructure can include several types of
substrates. The most typical type of substrate being servers
that support Network Function Virtualization (NFV), fol-
lowed by packet forwarding capabilities based on generic
computing resources, with specialized network technologies
brought to bear when general purpose processors or general
purpose integrated circuit devices offered by merchants
(referred to herein as merchant silicon) are not appropriate.
In this case, communication services can be implemented as
cloud-centric workloads.

[0081] As an example, a traditional network element 150
(shown in FIG. 1), such as an edge router can be imple-
mented via a VNE 330 composed of NFV software modules,
merchant silicon, and associated controllers. The software
can be written so that increasing workload consumes incre-
mental resources from a common resource pool, and more-
over so that it’s elastic: so the resources are only consumed
when needed. In a similar fashion, other network elements
such as other routers, switches, edge caches, and middle-
boxes are instantiated from the common resource pool. Such
sharing of infrastructure across a broad set of uses makes
planning and growing infrastructure easier to manage.

[0082] In an embodiment, the transport layer 350 includes
fiber, cable, wired and/or wireless transport elements, net-
work elements and interfaces to provide broadband access
110, wireless access 120, voice access 130, media access
140 and/or access to content sources 175 for distribution of
content to any or all of the access technologies. In particular,
in some cases a network element needs to be positioned at
a specific place, and this allows for less sharing of common
infrastructure. Other times, the network elements have spe-
cific physical layer adapters that cannot be abstracted or
virtualized, and might require special DSP code and analog
front-ends (AFEs) that do not lend themselves to implemen-
tation as VNEs 330, 332 or 334. These network elements can
be included in transport layer 350.

[0083] The virtualized network function cloud 325 inter-
faces with the transport layer 350 to provide the VNEs 330,
332, 334, etc. to provide specific NFVs. In particular, the
virtualized network function cloud 325 leverages cloud
operations, applications, and architectures to support net-
working workloads. The VNEs 330, 332 and 334 can
employ network function software that provides either a
one-for-one mapping of traditional network element func-
tion or alternately some combination of network functions
designed for cloud computing. For example, VNEs 330, 332
and 334 can include route reflectors, domain name system
(DNS) servers, and dynamic host configuration protocol
(DHCP) servers, system architecture evolution (SAE) and/or
mobility management entity (MME) gateways, broadband
network gateways, IP edge routers for IP-VPN, Ethernet and
other services, load balancers, distributors and other network
elements. Because these elements don’t typically need to
forward large amounts of traffic, their workload can be
distributed across a number of servers—each of which adds
a portion of the capability, and overall which creates an
elastic function with higher availability than its former
monolithic version. These VNEs 330, 332, 334, etc. can be
instantiated and managed using an orchestration approach
similar to those used in cloud compute services.
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[0084] The cloud computing environments 375 can inter-
face with the virtualized network function cloud 325 via
APIs that expose functional capabilities of the VNEs 330,
332, 334, etc. to provide the flexible and expanded capa-
bilities to the virtualized network function cloud 325. In
particular, network workloads may have applications dis-
tributed across the virtualized network function cloud 325
and cloud computing environment 375 and in the commer-
cial cloud, or might simply orchestrate workloads supported
entirely in NFV infrastructure from these third party loca-
tions.

[0085] Turning now to FIG. 4, there is illustrated a block
diagram of a computing environment in accordance with
various aspects described herein. In order to provide addi-
tional context for various embodiments of the embodiments
described herein, FIG. 4 and the following discussion are
intended to provide a brief, general description of a suitable
computing environment 400 in which the various embodi-
ments of the subject disclosure can be implemented. In
particular, computing environment 400 can be used in the
implementation of network elements 150, 152, 154, 156,
access terminal 112, base station or access point 122,
switching device 132, media terminal 142, and/or VNEs
330, 332, 334, etc. Each of these devices can be imple-
mented via computer-executable instructions that can run on
one or more computers, and/or in combination with other
program modules and/or as a combination of hardware and
software.

[0086] Generally, program modules comprise routines,
programs, components, data structures, etc., that perform
particular tasks or implement particular abstract data types.
Moreover, those skilled in the art will appreciate that the
inventive methods can be practiced with other computer
system configurations, comprising single-processor or mul-
tiprocessor computer systems, minicomputers, mainframe
computers, as well as personal computers, hand-held com-
puting devices, microprocessor-based or programmable con-
sumer electronics, and the like, each of which can be
operatively coupled to one or more associated devices.
[0087] As used herein, a processing circuit includes one or
more processors as well as other application specific circuits
such as an application specific integrated circuit, digital
logic circuit, state machine, programmable gate array or
other circuit that processes input signals or data and that
produces output signals or data in response thereto. It should
be noted that while any functions and features described
herein in association with the operation of a processor could
likewise be performed by a processing circuit.

[0088] The illustrated embodiments of the embodiments
herein can be also practiced in distributed computing envi-
ronments where certain tasks are performed by remote
processing devices that are linked through a communica-
tions network. In a distributed computing environment,
program modules can be located in both local and remote
memory storage devices.

[0089] Computing devices typically comprise a variety of
media, which can comprise computer-readable storage
media and/or communications media, which two terms are
used herein differently from one another as follows. Com-
puter-readable storage media can be any available storage
media that can be accessed by the computer and comprises
both volatile and nonvolatile media, removable and non-
removable media. By way of example, and not limitation,
computer-readable storage media can be implemented in
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connection with any method or technology for storage of
information such as computer-readable instructions, pro-
gram modules, structured data or unstructured data.

[0090] Computer-readable storage media can comprise,
but are not limited to, random access memory (RAM), read
only memory (ROM), electrically erasable programmable
read only memory (EEPROM), flash memory or other
memory technology, compact disk read only memory (CD-
ROM), digital versatile disk (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices or other tangible
and/or non-transitory media which can be used to store
desired information. In this regard, the terms “tangible” or
“non-transitory” herein as applied to storage, memory or
computer-readable media, are to be understood to exclude
only propagating transitory signals per se as modifiers and
do not relinquish rights to all standard storage, memory or
computer-readable media that are not only propagating
transitory signals per se.

[0091] Computer-readable storage media can be accessed
by one or more local or remote computing devices, e.g., via
access requests, queries or other data retrieval protocols, for
a variety of operations with respect to the information stored
by the medium.

[0092] Communications media typically embody com-
puter-readable instructions, data structures, program mod-
ules or other structured or unstructured data in a data signal
such as a modulated data signal, e.g., a carrier wave or other
transport mechanism, and comprises any information deliv-
ery or transport media. The term “modulated data signal” or
signals refers to a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in one or more signals. By way of example, and
not limitation, communication media comprise wired media,
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other
wireless media.

[0093] With reference again to FIG. 4, the example envi-
ronment can comprise a computer 402, the computer 402
comprising a processing unit 404, a system memory 406 and
a system bus 408. The system bus 408 couples system
components including, but not limited to, the system
memory 406 to the processing unit 404. The processing unit
404 can be any of various commercially available proces-
sors. Dual microprocessors and other multiprocessor archi-
tectures can also be employed as the processing unit 404.
The devices and nodes in system 200 in FIG. 2A and the
systems in FIGS. 2H-2M can comprise computer 402.
[0094] The system bus 408 can be any of several types of
bus structure that can further interconnect to a memory bus
(with or without a memory controller), a peripheral bus, and
a local bus using any of a variety of commercially available
bus architectures. The system memory 406 comprises ROM
410 and RAM 412. A basic input/output system (BIOS) can
be stored in a non-volatile memory such as ROM, erasable
programmable read only memory (EPROM), EEPROM,
which BIOS contains the basic routines that help to transfer
information between elements within the computer 402,
such as during startup. The RAM 412 can also comprise a
high-speed RAM such as static RAM for caching data.
[0095] The computer 402 further comprises an internal
hard disk drive (HDD) 414 (e.g., EIDE, SATA), which
internal HDD 414 can also be configured for external use in
a suitable chassis (not shown), a magnetic floppy disk drive
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(FDD) 416, (e.g., to read from or write to a removable
diskette 418) and an optical disk drive 420, (e.g., reading a
CD-ROM disk 422 or, to read from or write to other high
capacity optical media such as the DVD). The HDD 414,
magnetic FDD 416 and optical disk drive 420 can be
connected to the system bus 408 by a hard disk drive
interface 424, a magnetic disk drive interface 426 and an
optical drive interface 428, respectively. The hard disk drive
interface 424 for external drive implementations comprises
at least one or both of Universal Serial Bus (USB) and
Institute of FElectrical and Electronics Engineers (IEEE)
1394 interface technologies. Other external drive connection
technologies are within contemplation of the embodiments
described herein.

[0096] The drives and their associated computer-readable
storage media provide nonvolatile storage of data, data
structures, computer-executable instructions, and so forth.
For the computer 402, the drives and storage media accom-
modate the storage of any data in a suitable digital format.
Although the description of computer-readable storage
media above refers to a hard disk drive (HDD), a removable
magnetic diskette, and a removable optical media such as a
CD or DVD, it should be appreciated by those skilled in the
art that other types of storage media which are readable by
a computer, such as zip drives, magnetic cassettes, flash
memory cards, cartridges, and the like, can also be used in
the example operating environment, and further, that any
such storage media can contain computer-executable
instructions for performing the methods described herein.
[0097] A number of program modules can be stored in the
drives and RAM 412, comprising an operating system 430,
one or more application programs 432, other program mod-
ules 434 and program data 436. All or portions of the
operating system, applications, modules, and/or data can
also be cached in the RAM 412. The systems and methods
described herein can be implemented utilizing various com-
mercially available operating systems or combinations of
operating systems.

[0098] A user can enter commands and information into
the computer 402 through one or more wired/wireless input
devices, e.g., a keyboard 438 and a pointing device, such as
a mouse 440. Other input devices (not shown) can comprise
a microphone, an infrared (IR) remote control, a joystick, a
game pad, a stylus pen, touch screen or the like. These and
other input devices are often connected to the processing
unit 404 through an input device interface 442 that can be
coupled to the system bus 408, but can be connected by other
interfaces, such as a parallel port, an IEEE 1394 serial port,
a game port, a universal serial bus (USB) port, an IR
interface, etc.

[0099] A monitor 444 or other type of display device can
be also connected to the system bus 408 via an interface,
such as a video adapter 446. It will also be appreciated that
in alternative embodiments, a monitor 444 can also be any
display device (e.g., another computer having a display, a
smart phone, a tablet computer, etc.) for receiving display
information associated with computer 402 via any commu-
nication means, including via the Internet and cloud-based
networks. In addition to the monitor 444, a computer typi-
cally comprises other peripheral output devices (not shown),
such as speakers, printers, etc.

[0100] The computer 402 can operate in a networked
environment using logical connections via wired and/or
wireless communications to one or more remote computers,
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such as a remote computer(s) 448. The remote computer(s)
448 can be a workstation, a server computer, a router, a
personal computer, portable computer, microprocessor-
based entertainment appliance, a peer device or other com-
mon network node, and typically comprises many or all of
the elements described relative to the computer 402,
although, for purposes of brevity, only a remote memory/
storage device 450 is illustrated. The logical connections
depicted comprise wired/wireless connectivity to a local
area network (LAN) 452 and/or larger networks, e.g., a wide
area network (WAN) 454. Such LAN and WAN networking
environments are commonplace in offices and companies,
and facilitate enterprise-wide computer networks, such as
intranets, all of which can connect to a global communica-
tions network, e.g., the Internet.

[0101] When used in a LAN networking environment, the
computer 402 can be connected to the LAN 452 through a
wired and/or wireless communication network interface or
adapter 456. The adapter 456 can facilitate wired or wireless
communication to the LAN 452, which can also comprise a
wireless AP disposed thereon for communicating with the
adapter 456.

[0102] When used in a WAN networking environment, the
computer 402 can comprise a modem 458 or can be con-
nected to a communications server on the WAN 454 or has
other means for establishing communications over the WAN
454, such as by way of the Internet. The modem 458, which
can be internal or external and a wired or wireless device,
can be connected to the system bus 408 via the input device
interface 442. In a networked environment, program mod-
ules depicted relative to the computer 402 or portions
thereof, can be stored in the remote memory/storage device
450. It will be appreciated that the network connections
shown are example and other means of establishing a
communications link between the computers can be used.
[0103] The computer 402 can be operable to communicate
with any wireless devices or entities operatively disposed in
wireless communication, e.g., a printer, scanner, desktop
and/or portable computer, portable data assistant, commu-
nications satellite, any piece of equipment or location asso-
ciated with a wirelessly detectable tag (e.g., a kiosk, news
stand, restroom), and telephone. This can comprise Wireless
Fidelity (Wi-Fi) and BLUETOOTH® wireless technologies.
Thus, the communication can be a predefined structure as
with a conventional network or simply an ad hoc commu-
nication between at least two devices.

[0104] Wi-Fi can allow connection to the Internet from a
couch at home, a bed in a hotel room or a conference room
at work, without wires. Wi-Fi is a wireless technology
similar to that used in a cell phone that enables such devices,
e.g., computers, to send and receive data indoors and out;
anywhere within the range of a base station. Wi-Fi networks
use radio technologies called IEEE 802.11 (a, b, g, n, ac, ag,
etc.) to provide secure, reliable, fast wireless connectivity. A
Wi-Fi network can be used to connect computers to each
other, to the Internet, and to wired networks (which can use
IEEE 802.3 or Ethernet). Wi-Fi networks operate in the
unlicensed 2.4 and 5 GHz radio bands for example or with
products that contain both bands (dual band), so the net-
works can provide real-world performance similar to the
basic 10BaseT wired Ethernet networks used in many
offices.

[0105] Turning now to FIG. 5, an embodiment 500 of a
mobile network platform 510 is shown that is an example of
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network elements 150, 152, 154, 156, and/or VNEs 330,
332, 334, etc. System 200 in FIG. 2A and the systems in
FIGS. 2H-2M can be located in mobile network platform
510 and implement method 260 as described herein.

[0106] In one or more embodiments, the mobile network
platform 510 can generate and receive signals transmitted
and received by base stations or access points such as base
station or access point 122. Generally, mobile network
platform 510 can comprise components, e.g., nodes, gate-
ways, interfaces, servers, or disparate platforms, that facili-
tate both packet-switched (PS) (e.g., internet protocol (IP),
frame relay, asynchronous transfer mode (ATM)) and cir-
cuit-switched (CS) traffic (e.g., voice and data), as well as
control generation for networked wireless telecommunica-
tion. As a non-limiting example, mobile network platform
510 can be included in telecommunications carrier net-
works, and can be considered carrier-side components as
discussed elsewhere herein. Mobile network platform 510
comprises CS gateway node(s) 512 which can interface CS
traffic received from legacy networks like telephony net-
work(s) 540 (e.g., public switched telephone network
(PSTN), or public land mobile network (PLMN)) or a
signaling system #7 (SS7) network 560. CS gateway node(s)
512 can authorize and authenticate traffic (e.g., voice) aris-
ing from such networks. Additionally, CS gateway node(s)
512 can access mobility, or roaming, data generated through
SS7 network 560; for instance, mobility data stored in a
visited location register (VLR), which can reside in memory
530. Moreover, CS gateway node(s) 512 interfaces CS-
based traffic and signaling and PS gateway node(s) 518. As
an example, in a 3GPP UMTS network, CS gateway node(s)
512 can be realized at least in part in gateway GPRS support
node(s) (GGSN). It should be appreciated that functionality
and specific operation of CS gateway node(s) 512, PS
gateway node(s) 518, and serving node(s) 516, is provided
and dictated by radio technology(ies) utilized by mobile
network platform 510 for telecommunication over a radio
access network 520 with other devices, such as radiotele-
phone 575.

[0107] In addition to receiving and processing
CS-switched traffic and signaling, PS gateway node(s) 518
can authorize and authenticate PS-based data sessions with
served mobile devices. Data sessions can comprise traffic, or
content(s), exchanged with networks external to the mobile
network platform 510, like wide area network(s) (WAN)
550, enterprise network(s) 570, and service network(s) 580,
which can be embodied in local area network(s) (LANs), can
also be interfaced with mobile network platform 510
through PS gateway node(s) 518. It is to be noted that WAN
550 and enterprise network(s) 570 can embody, at least in
part, a service network(s) like IP multimedia subsystem
(IMS). Based on radio technology layer(s) available in
technology resource(s) of radio access network 520, PS
gateway node(s) 518 can generate packet data protocol
contexts when a data session is established; other data
structures that facilitate routing of packetized data also can
be generated. To that end, in an aspect, PS gateway node(s)
518 can comprise a tunnel interface (e.g., tunnel termination
gateway (TTG) in 3GPP UMTS network(s) (not shown))
which can facilitate packetized communication with dispa-
rate wireless network(s), such as Wi-Fi networks.

[0108] In embodiment 500, mobile network platform 510
also comprises serving node(s) 516 that, based upon avail-
able radio technology layer(s) within technology resource(s)
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in the radio access network 520, convey the various pack-
etized flows of data streams received through PS gateway
node(s) 518. It is to be noted that for technology resource(s)
that rely primarily on CS communication, server node(s) can
deliver traffic without reliance on PS gateway node(s) 518;
for example, server node(s) can embody at least in part a
mobile switching center. As an example, in a 3GPP UMTS
network, serving node(s) 516 can be embodied in serving
GPRS support node(s) (SGSN).

[0109] For radio technologies that exploit packetized com-
munication, server(s) 514 in mobile network platform 510
can execute numerous applications that can generate mul-
tiple disparate packetized data streams or flows, and manage
(e.g., schedule, queue, format . . . ) such flows. Such
application(s) can comprise add-on features to standard
services (for example, provisioning, billing, customer sup-
port . . . ) provided by mobile network platform 510. Data
streams (e.g., content(s) that are part of a voice call or data
session) can be conveyed to PS gateway node(s) 518 for
authorization/authentication and initiation of a data session,
and to serving node(s) 516 for communication thereafter. In
addition to application server, server(s) 514 can comprise
utility server(s), a utility server can comprise a provisioning
server, an operations and maintenance server, a security
server that can implement at least in part a certificate
authority and firewalls as well as other security mechanisms,
and the like. In an aspect, security server(s) secure commu-
nication served through mobile network platform 510 to
ensure network’s operation and data integrity in addition to
authorization and authentication procedures that CS gate-
way node(s) 512 and PS gateway node(s) 518 can enact.
Moreover, provisioning server(s) can provision services
from external network(s) like networks operated by a dis-
parate service provider; for instance, WAN 550 or Global
Positioning System (GPS) network(s) (not shown). Provi-
sioning server(s) can also provision coverage through net-
works associated to mobile network platform 510 (e.g.,
deployed and operated by the same service provider), such
as the distributed antennas networks shown in FIG. 1(s) that
enhance wireless service coverage by providing more net-
work coverage.

[0110] Itis to be noted that server(s) 514 can comprise one
or more processors configured to confer at least in part the
functionality of mobile network platform 510. To that end,
the one or more processor can execute code instructions
stored in memory 530, for example. It is should be appre-
ciated that server(s) 514 can comprise a content manager,
which operates in substantially the same manner as
described hereinbefore.

[0111] In example embodiment 500, memory 530 can
store information related to operation of mobile network
platform 510. Other operational information can comprise
provisioning information of mobile devices served through
mobile network platform 510, subscriber databases; appli-
cation intelligence, pricing schemes, e.g., promotional rates,
flat-rate programs, couponing campaigns; technical specifi-
cation(s) consistent with telecommunication protocols for
operation of disparate radio, or wireless, technology layers;
and so forth. Memory 530 can also store information from
at least one of telephony network(s) 540, WAN 550, SS7
network 560, or enterprise network(s) 570. In an aspect,
memory 530 can be, for example, accessed as part of a data
store component or as a remotely connected memory store.
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[0112] In order to provide a context for the various aspects
of the disclosed subject matter, FIG. 5, and the following
discussion, are intended to provide a brief, general descrip-
tion of a suitable environment in which the various aspects
of the disclosed subject matter can be implemented. While
the subject matter has been described above in the general
context of computer-executable instructions of a computer
program that runs on a computer and/or computers, those
skilled in the art will recognize that the disclosed subject
matter also can be implemented in combination with other
program modules. Generally, program modules comprise
routines, programs, components, data structures, etc. that
perform particular tasks and/or implement particular
abstract data types.

[0113] Turning now to FIG. 6, an illustrative embodiment
of a communication device 600 is shown. The communica-
tion device 600 can comprise the nodes and devices in
system 200 in FIG. 2A and the systems in FIGS. 2H-2M as
described herein.

[0114] The communication device 600 can serve as an
illustrative embodiment of devices such as data terminals
114, mobile devices 124, vehicle 126, display devices 144 or
other client devices for communication via either commu-
nications network 125.

[0115] The communication device 600 can comprise a
wireline and/or wireless transceiver 602 (herein transceiver
602), a user interface (Ul) 604, a power supply 614, a
location receiver 616, a motion sensor 618, an orientation
sensor 620, and a controller 606 for managing operations
thereof. The transceiver 602 can support short-range or
long-range wireless access technologies such as Blu-
etooth®, ZigBee®, WiFi, DECT, or cellular communication
technologies, just to mention a few (Bluetooth® and Zig-
Bee® are trademarks registered by the Bluetooth® Special
Interest Group and the ZigBee® Alliance, respectively).
Cellular technologies can include, for example, CDMA-1x,
UMTS/HSDPA, GSM/GPRS, TDMA/EDGE, EV/DO,
WiMAX, SDR, LTE, as well as other next generation
wireless communication technologies as they arise. The
transceiver 602 can also be adapted to support circuit-
switched wireline access technologies (such as PSTN),
packet-switched wireline access technologies (such as TCP/
1P, VoIP, etc.), and combinations thereof.

[0116] The UI 604 can include a depressible or touch-
sensitive keypad 608 with a navigation mechanism such as
a roller ball, a joystick, a mouse, or a navigation disk for
manipulating operations of the communication device 600.
The keypad 608 can be an integral part of a housing
assembly of the communication device 600 or an indepen-
dent device operably coupled thereto by a tethered wireline
interface (such as a USB cable) or a wireless interface
supporting for example Bluetooth®. The keypad 608 can
represent a numeric keypad commonly used by phones,
and/or a QWERTY keypad with alphanumeric keys. The Ul
604 can further include a display 610 such as monochrome
or color LCD (Liquid Crystal Display), OLED (Organic
Light Emitting Diode) or other suitable display technology
for conveying images to an end user of the communication
device 600. In an embodiment where the display 610 is
touch-sensitive, a portion or all of the keypad 608 can be
presented by way of the display 610 with navigation fea-
tures.

[0117] The display 610 can use touch screen technology to
also serve as a user interface for detecting user input. As a
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touch screen display, the communication device 600 can be
adapted to present a user interface having graphical user
interface (GUI) elements that can be selected by a user with
a touch of a finger. The display 610 can be equipped with
capacitive, resistive or other forms of sensing technology to
detect how much surface area of a user’s finger has been
placed on a portion of the touch screen display. This sensing
information can be used to control the manipulation of the
GUI elements or other functions of the user interface. The
display 610 can be an integral part of the housing assembly
of the communication device 600 or an independent device
communicatively coupled thereto by a tethered wireline
interface (such as a cable) or a wireless interface.

[0118] The UI 604 can also include an audio system 612
that utilizes audio technology for conveying low volume
audio (such as audio heard in proximity of a human ear) and
high volume audio (such as speakerphone for hands free
operation). The audio system 612 can further include a
microphone for receiving audible signals of an end user. The
audio system 612 can also be used for voice recognition
applications. The Ul 604 can further include an image sensor
613 such as a charged coupled device (CCD) camera for
capturing still or moving images.

[0119] The power supply 614 can utilize common power
management technologies such as replaceable and recharge-
able batteries, supply regulation technologies, and/or charg-
ing system technologies for supplying energy to the com-
ponents of the communication device 600 to facilitate long-
range or short-range portable communications.
Alternatively, or in combination, the charging system can
utilize external power sources such as DC power supplied
over a physical interface such as a USB port or other suitable
tethering technologies.

[0120] The location receiver 616 can utilize location tech-
nology such as a global positioning system (GPS) receiver
capable of assisted GPS for identifying a location of the
communication device 600 based on signals generated by a
constellation of GPS satellites, which can be used for
facilitating location services such as navigation. The motion
sensor 618 can utilize motion sensing technology such as an
accelerometer, a gyroscope, or other suitable motion sensing
technology to detect motion of the communication device
600 in three-dimensional space. The orientation sensor 620
can utilize orientation sensing technology such as a magne-
tometer to detect the orientation of the communication
device 600 (north, south, west, and east, as well as combined
orientations in degrees, minutes, or other suitable orientation
metrics).

[0121] The communication device 600 can use the trans-
ceiver 602 to also determine a proximity to a cellular, WiF1i,
Bluetooth®, or other wireless access points by sensing
techniques such as utilizing a received signal strength indi-
cator (RSSI) and/or signal time of arrival (TOA) or time of
flight (TOF) measurements. The controller 606 can utilize
computing technologies such as a microprocessor, a digital
signal processor (DSP), programmable gate arrays, applica-
tion specific integrated circuits, and/or a video processor
with associated storage memory such as Flash, ROM, RAM,
SRAM, DRAM or other storage technologies for executing
computer instructions, controlling, and processing data sup-
plied by the aforementioned components of the communi-
cation device 600.

[0122] Other components not shown in FIG. 6 can be used
in one or more embodiments of the subject disclosure. For
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instance, the communication device 600 can include a slot
for adding or removing an identity module such as a
Subscriber Identity Module (SIM) card or Universal Inte-
grated Circuit Card (UICC). SIM or UICC cards can be used
for identifying subscriber services, executing programs,
storing subscriber data, and so on.

[0123] The terms “first,” “second,” “third,” and so forth,
as used in the claims, unless otherwise clear by context, is
for clarity only and doesn’t otherwise indicate or imply any
order in time. For instance, “a first determination,” “a second
determination,” and “a third determination,” does not indi-
cate or imply that the first determination is to be made before
the second determination, or vice versa, etc.

[0124] In the subject specification, terms such as “store,”
“storage,” “data store,” data storage,” “database,” and sub-
stantially any other information storage component relevant
to operation and functionality of a component, refer to
“memory components,” or entities embodied in a “memory”
or components comprising the memory. It will be appreci-
ated that the memory components described herein can be
either volatile memory or nonvolatile memory, or can com-
prise both volatile and nonvolatile memory, by way of
illustration, and not limitation, volatile memory, non-volatile
memory, disk storage, and memory storage. Further, non-
volatile memory can be included in read only memory
(ROM), programmable ROM (PROM), electrically pro-
grammable ROM (EPROM), electrically erasable ROM
(EEPROM), or flash memory. Volatile memory can com-
prise random access memory (RAM), which acts as external
cache memory. By way of illustration and not limitation,
RAM is available in many forms such as synchronous RAM
(SRAM), dynamic RAM (DRAM), synchronous DRAM
(SDRAM), double data rate SDRAM (DDR SDRAM),
enhanced SDRAM (ESDRAM), Synchlink DRAM
(SLDRAM), and direct Rambus RAM (DRRAM). Addi-
tionally, the disclosed memory components of systems or
methods herein are intended to comprise, without being
limited to comprising, these and any other suitable types of
memory.

[0125] Moreover, it will be noted that the disclosed subject
matter can be practiced with other computer system con-
figurations, comprising single-processor or multiprocessor
computer systems, mini-computing devices, mainframe
computers, as well as personal computers, hand-held com-
puting devices (e.g., PDA, phone, smartphone, watch, tablet
computers, netbook computers, etc.), microprocessor-based
or programmable consumer or industrial electronics, and the
like. The illustrated aspects can also be practiced in distrib-
uted computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network; however, some if not all aspects of the
subject disclosure can be practiced on stand-alone comput-
ers. In a distributed computing environment, program mod-
ules can be located in both local and remote memory storage
devices.

[0126] Some of the embodiments described herein can
also employ artificial intelligence (Al) to facilitate automat-
ing one or more features described herein. The embodiments
(e.g., in connection with automatically identifying acquired
cell sites that provide a maximum value/benefit after addi-
tion to an existing communication network) can employ
various Al-based schemes for carrying out various embodi-
ments thereof. Moreover, the classifier can be employed to
determine a ranking or priority of each cell site of the
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acquired network. A classifier is a function that maps an
input attribute vector, x=(x1, x2, x3, x4, . . ., xn), to a
confidence that the input belongs to a class, that is, f(x)
=confidence (class). Such classification can employ a proba-
bilistic and/or statistical-based analysis (e.g., factoring into
the analysis utilities and costs) to determine or infer an
action that a user desires to be automatically performed. A
support vector machine (SVM) is an example of a classifier
that can be employed. The SVM operates by finding a
hypersurface in the space of possible inputs, which the
hypersurface attempts to split the triggering criteria from the
non-triggering events. Intuitively, this makes the classifica-
tion correct for testing data that is near, but not identical to
training data. Other directed and undirected model classifi-
cation approaches comprise, e.g., naive Bayes, Bayesian
networks, decision trees, neural networks, fuzzy logic mod-
els, and probabilistic classification models providing differ-
ent patterns of independence can be employed. Classifica-
tion as used herein also is inclusive of statistical regression
that is utilized to develop models of priority.

[0127] As will be readily appreciated, one or more of the
embodiments can employ classifiers that are explicitly
trained (e.g., via a generic training data) as well as implicitly
trained (e.g., via observing UE behavior, operator prefer-
ences, historical information, receiving extrinsic informa-
tion). For example, SVMs can be configured via a learning
or training phase within a classifier constructor and feature
selection module. Thus, the classifier(s) can be used to
automatically learn and perform a number of functions,
including but not limited to determining according to pre-
determined criteria which of the acquired cell sites will
benefit a maximum number of subscribers and/or which of
the acquired cell sites will add minimum value to the
existing communication network coverage, etc.

[0128] As used in some contexts in this application, in
some embodiments, the terms “component,” “system” and
the like are intended to refer to, or comprise, a computer-
related entity or an entity related to an operational apparatus
with one or more specific functionalities, wherein the entity
can be either hardware, a combination of hardware and
software, software, or software in execution. As an example,
a component may be, but is not limited to being, a process
running on a processor, a processor, an object, an executable,
a thread of execution, computer-executable instructions, a
program, and/or a computer. By way of illustration and not
limitation, both an application running on a server and the
server can be a component. One or more components may
reside within a process and/or thread of execution and a
component may be localized on one computer and/or dis-
tributed between two or more computers. In addition, these
components can execute from various computer readable
media having various data structures stored thereon. The
components may communicate via local and/or remote
processes such as in accordance with a signal having one or
more data packets (e.g., data from one component interact-
ing with another component in a local system, distributed
system, and/or across a network such as the Internet with
other systems via the signal). As another example, a com-
ponent can be an apparatus with specific functionality pro-
vided by mechanical parts operated by electric or electronic
circuitry, which is operated by a software or firmware
application executed by a processor, wherein the processor
can be internal or external to the apparatus and executes at
least a part of the software or firmware application. As yet
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another example, a component can be an apparatus that
provides specific functionality through electronic compo-
nents without mechanical parts, the electronic components
can comprise a processor therein to execute software or
firmware that confers at least in part the functionality of the
electronic components. While various components have
been illustrated as separate components, it will be appreci-
ated that multiple components can be implemented as a
single component, or a single component can be imple-
mented as multiple components, without departing from
example embodiments.

[0129] Further, the various embodiments can be imple-
mented as a method, apparatus or article of manufacture
using standard programming and/or engineering techniques
to produce software, firmware, hardware or any combination
thereof to control a computer to implement the disclosed
subject matter. The term “article of manufacture” as used
herein is intended to encompass a computer program acces-
sible from any computer-readable device or computer-read-
able storage/communications media. For example, computer
readable storage media can include, but are not limited to,
magnetic storage devices (e.g., hard disk, floppy disk, mag-
netic strips), optical disks (e.g., compact disk (CD), digital
versatile disk (DVD)), smart cards, and flash memory
devices (e.g., card, stick, key drive). Of course, those skilled
in the art will recognize many modifications can be made to
this configuration without departing from the scope or spirit
of the various embodiments.

[0130] In addition, the words “example” and “exemplary”
are used herein to mean serving as an instance or illustration.
Any embodiment or design described herein as “example”
or “exemplary” is not necessarily to be construed as pre-
ferred or advantageous over other embodiments or designs.
Rather, use of the word example or exemplary is intended to
present concepts in a concrete fashion. As used in this
application, the term “or” is intended to mean an inclusive
“or” rather than an exclusive “or”. That is, unless specified
otherwise or clear from context, “X employs A or B” is
intended to mean any of the natural inclusive permutations.
That is, if X employs A; X employs B; or X employs both
A and B, then “X employs A or B” is satisfied under any of
the foregoing instances. In addition, the articles “a” and “an”
as used in this application and the appended claims should
generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form.

[0131] Moreover, terms such as “user equipment,”
“mobile station,” “mobile,” subscriber station,” “access ter-
minal,” “terminal,” “handset,” “mobile device” (and/or
terms representing similar terminology) can refer to a wire-
less device utilized by a subscriber or user of a wireless
communication service to receive or convey data, control,
voice, video, sound, gaming or substantially any data-stream
or signaling-stream. The foregoing terms are utilized inter-
changeably herein and with reference to the related draw-
ings.

[0132] Furthermore, the terms “user,” “subscriber,” “cus-
tomer,” “consumer’ and the like are employed interchange-
ably throughout, unless context warrants particular distinc-
tions among the terms. It should be appreciated that such
terms can refer to human entities or automated components
supported through artificial intelligence (e.g., a capacity to
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make inference based, at least, on complex mathematical
formalisms), which can provide simulated vision, sound
recognition and so forth.

[0133] As employed herein, the term “processor” can refer
to substantially any computing processing unit or device
comprising, but not limited to comprising, single-core pro-
cessors; single-processors with software multithread execu-
tion capability; multi-core processors; multi-core processors
with software multithread execution capability; multi-core
processors with hardware multithread technology; parallel
platforms; and parallel platforms with distributed shared
memory. Additionally, a processor can refer to an integrated
circuit, an application specific integrated circuit (ASIC), a
digital signal processor (DSP), a field programmable gate
array (FPGA), a programmable logic controller (PLC), a
complex programmable logic device (CPLD), a discrete gate
or transistor logic, discrete hardware components or any
combination thereof designed to perform the functions
described herein. Processors can exploit nano-scale archi-
tectures such as, but not limited to, molecular and quantum-
dot based transistors, switches and gates, in order to opti-
mize space usage or enhance performance of user
equipment. A processor can also be implemented as a
combination of computing processing units.

[0134] As used herein, terms such as “data storage,” data
storage,” “database,” and substantially any other informa-
tion storage component relevant to operation and function-
ality of a component, refer to “memory components,” or
entities embodied in a “memory” or components comprising
the memory. It will be appreciated that the memory com-
ponents or computer-readable storage media, described
herein can be either volatile memory or nonvolatile memory
or can include both volatile and nonvolatile memory.
[0135] What has been described above includes mere
examples of various embodiments. It is, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing these
examples, but one of ordinary skill in the art can recognize
that many further combinations and permutations of the
present embodiments are possible. Accordingly, the embodi-
ments disclosed and/or claimed herein are intended to
embrace all such alterations, modifications and variations
that fall within the spirit and scope of the appended claims.
Furthermore, to the extent that the term “includes” is used in
either the detailed description or the claims, such term is
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” is interpreted when employed
as a transitional word in a claim.

[0136] In addition, a flow diagram may include a “start”
and/or “continue” indication. The “start” and “continue”
indications reflect that the steps presented can optionally be
incorporated in or otherwise used in conjunction with other
routines. In this context, “start” indicates the beginning of
the first step presented and may be preceded by other
activities not specifically shown. Further, the “continue”
indication reflects that the steps presented may be performed
multiple times and/or may be succeeded by other activities
not specifically shown. Further, while a flow diagram indi-
cates a particular ordering of steps, other orderings are
likewise possible provided that the principles of causality
are maintained.

[0137] As may also be used herein, the term(s) “operably

coupled to”, “coupled to”, and/or “coupling” includes direct
coupling between items and/or indirect coupling between
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items via one or more intervening items. Such items and
intervening items include, but are not limited to, junctions,
communication paths, components, circuit elements, cir-
cuits, functional blocks, and/or devices. As an example of
indirect coupling, a signal conveyed from a first item to a
second item may be modified by one or more intervening
items by modifying the form, nature or format of informa-
tion in a signal, while one or more elements of the infor-
mation in the signal are nevertheless conveyed in a manner
than can be recognized by the second item. In a further
example of indirect coupling, an action in a first item can
cause a reaction on the second item, as a result of actions
and/or reactions in one or more intervening items.

[0138] Although specific embodiments have been illus-
trated and described herein, it should be appreciated that any
arrangement which achieves the same or similar purpose
may be substituted for the embodiments described or shown
by the subject disclosure. The subject disclosure is intended
to cover any and all adaptations or variations of various
embodiments. Combinations of the above embodiments, and
other embodiments not specifically described herein, can be
used in the subject disclosure. For instance, one or more
features from one or more embodiments can be combined
with one or more features of one or more other embodi-
ments. In one or more embodiments, features that are
positively recited can also be negatively recited and
excluded from the embodiment with or without replacement
by another structural and/or functional feature. The steps or
functions described with respect to the embodiments of the
subject disclosure can be performed in any order. The steps
or functions described with respect to the embodiments of
the subject disclosure can be performed alone or in combi-
nation with other steps or functions of the subject disclosure,
as well as from other embodiments or from other steps that
have not been described in the subject disclosure. Further,
more than or less than all of the features described with
respect to an embodiment can also be utilized.

What is claimed is:
1. A method, comprising:
iteratively providing, from a message handler of a pro-
cessing system including a processor, messages to each
of a group of node processors of the processing system,
wherein each of the group of node processors repre-
sents a node of a group of nodes, wherein the iteratively
providing of the messages comprises:
providing, by the message handler to a node bus, a
group of first messages, wherein each first message
of the group of first messages includes a cost asso-
ciated with a path of nodes visited by the each first
message;
obtaining, by the message handler, from each of the
group of node processors, a selected path associated
with a lowest cost of a group of common endpoint
costs for paths having common endpoints among a
portion of the group of first messages; and
providing, by the processing system, a next group of
messages that includes the selected path, wherein the
iteratively providing of the messages results in a
plurality of selected paths; and
responsive to the iteratively providing of the messages,
determining, by the message handler, a target path that
is a remaining path of the plurality of selected paths,
wherein the remaining path is identified from the
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iteratively providing of the messages, and wherein the
target path is through each node of the group of nodes.

2. The method of claim 1, further comprising determining,
by the processing system, an existence of a complete path.

3. The method of claim 1, wherein the target path is a
complete shortest path.

4. The method of claim 1, wherein the group of nodes
further comprises a source node, an intermediate node, and
a destination node, the intermediate node being situated,
with respect to the target path between the source node and
the destination node, and wherein the target path is a shortest
path connecting at least the source node, the intermediate
node, and the destination node.

5. The method of claim 1, wherein each of the paths
having common endpoints traverses a same subgroup of the
group of nodes.

6. The method of claim 1, wherein the lowest cost is
associated with a first path from the paths having common
endpoints, wherein the identifying of the lowest cost from
among the group of common endpoint costs comprises:

identifying, by each of the group of node processors, a
next higher cost from among the group of common
endpoint costs, wherein the next higher cost is associ-
ated with a second path from the paths having common
endpoints;

comparing, by each of the group of node processors, the
lowest cost to the next higher cost; and

determining, by each of the group of node processors, the
lowest cost is lower than the next higher cost.

7. The method of claim 1, wherein the identifying of the
selected path associated with the lowest cost further com-
prises identifying, by each of the group of node processors,
the selected path and eliminating one or more pruned paths,
wherein the cost is one of time, distance, monetary cost,
available bandwidth, latency, throughput, risk, or probability
of success.

8. A device, comprising:

a processing system including a processor, a group of
node processors, an administration processor, and a
message handler, wherein each of the group of node
processors represents a node of a group of nodes; and

a memory that stores executable instructions that, when
executed by the processing system, facilitates perfor-
mance of operations, the operations comprising:
iteratively providing messages to each of the group of

node processors, wherein the iteratively providing of

the messages comprises:

providing a group of first messages by the message
handler to a node bus, wherein each first message
of the group of first messages includes a cost
associated with a path of nodes visited by the each
first message;

obtaining from each of the group of node processors
a selected path associated with a lowest cost of a
group of common endpoint costs for paths having
common endpoints among a portion of the group
of first messages; and

providing a next group of messages that includes the
selected path, wherein the iteratively providing of
the messages results in a plurality of selected
paths; and

responsive to the iteratively providing of the messages,
determining a target path that is a remaining path of
the plurality of selected paths, wherein the remaining
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path is identified from the iteratively providing of the
messages, wherein the target path is through each
node of the group of nodes.
9. The device of claim 8, wherein the target path is a
complete path.
10. The device of claim 8, wherein the target path is a
complete shortest path.
11. The device of claim 8, wherein each of the paths
having common endpoints traverses a same subgroup of the
group of nodes.
12. The device of claim 8, wherein the lowest cost is
associated with a first path from the paths having common
endpoints, wherein the identifying of the lowest cost from
among the group of common endpoint costs further com-
prises:
identifying by each of the group of node processors a next
higher cost from among the group of common endpoint
costs, wherein the next higher cost is associated with a
second path from the paths having common endpoints;

comparing by each of the group of node processors the
lowest cost to the next higher cost; and

determining by each of the group of node processors the

lowest cost is lower than the next higher cost.

13. The device of claim 8, wherein the cost is one of time,
distance, monetary cost, available bandwidth, latency,
throughput, risk or probability of success.

14. A non-transitory, machine-readable medium, compris-
ing executable instructions that, when executed by a pro-
cessing system including a processor, a group of node
processors, an administration processor, and a message
handler, wherein each of the group of node processors
represents a node of a group of nodes, facilitate performance
of operations, the operations comprising:

iteratively providing messages to each of the group of

node processors, wherein the iteratively providing of

the messages comprises:

providing a group of first messages by the message
handler to a node bus, wherein each first message of
the group of first messages includes a quantifiable
metric associated with a path of nodes visited by the
each first message;

identifying by each of the group of node processors a
selected path associated with the lowest quantifiable
metric of a group of common endpoint quantifiable
metrics for paths having common endpoints among
a portion of the group of first messages; and

providing a next group of messages that includes the
selected path, wherein the iteratively providing of
the messages results in a plurality of selected paths;
and

responsive to the iteratively providing of the messages,

determining a target path that is a remaining path of the
plurality of selected paths, wherein the remaining path
is identified from the iteratively providing of the mes-
sages, wherein the target path is through each node of
the group of nodes.

15. The non-transitory, machine-readable medium of
claim 14, wherein the target path is a complete path.

16. The non-transitory, machine-readable medium of
claim 14, wherein the target path is a complete shortest path.

17. The non-transitory, machine-readable medium of
claim 14, wherein the target path is a shortest path.

18. The non-transitory, machine-readable medium of
claim 14, wherein the quantifiable metric is one of time,
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distance, monetary cost, available bandwidth, latency,
throughput, risk or a probability of success.

19. The non-transitory, machine-readable medium of
claim 14, wherein the lowest quantifiable metric is associ-
ated with a first path from the paths having common
endpoints, wherein the identifying of the lowest quantifiable
metric from among the group of endpoint quantifiable
metrics comprises:

identifying by each of the group of node processors a next

higher quantifiable metric from among the group of
common endpoint quantifiable metrics, wherein the
next higher quantifiable metric is associated with a
second path from the paths having common endpoints;
and

comparing by each of the group of node processors the

lowest quantifiable metric to the next higher quantifi-
able metric.

20. The non-transitory, machine-readable medium of
claim 19, wherein the identifying of the lowest quantifiable
metric from among the group of common endpoint quanti-
fiable metric comprises determining by each of the group of
node processors the lowest quantifiable metric is lower than
the next higher quantifiable metric.
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