US 20200382443A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0382443 A1

Tang et al.

43) Pub. Date: Dec. 3, 2020

(54)

(71)
(72)

(73)

@

(22)

(60)

(60)

SYSTEM AND METHODS FOR SHARING
MEMORY SUBSYSTEM RESOURCES
AMONG DATACENTER APPLICATIONS

Applicant: Google LL.C, Mountain View, CA (US)

Inventors: Lingjia Tang, Charlottesville, VA (US);
Jason Mars, Charlottesville, VA (US);
Robert Hundt, Piedmont, CA (US)

Assignee: Google LL.C, Mountain View, CA (US)

Appl. No.: 16/995,762

Filed: Aug. 17, 2020

Related U.S. Application Data

Continuation of application No. 16/392,852, filed on
Apr. 24, 2019, now Pat. No. 10,778,605, which is a
continuation of application No. 15/189,885, filed on
Jun. 22, 2016, now Pat. No. 10,313,265, which is a
division of application No. 13/908,831, filed on Jun.
3, 2013, now Pat. No. 9,401,869.

Provisional application No. 61/655,360, filed on Jun.
4, 2012.

Publication Classification

(51) Int. CL

HO4L 12/927 (2006.01)
(52) US.CL

() SR HO4L 47/803 (2013.01)
(57) ABSTRACT

Systems and methods for mapping applications onto system
resource of a computing platform are discussed. The com-
puting platform may receive, using control circuitry, a
request to run a plurality of applications on a computing
platform having a plurality of system resources. The com-
puting platform may determine a plurality of mapping
configurations for the plurality of applications onto the
plurality of system resources. The computing platform may
execute the plurality of applications with each of the plu-
rality of mapping configurations. The computing platform
may determine at least one performance metric based on the
executed plurality of applications for each of the plurality of
mapping configurations. The computing platform may select
a selected mapping configuration among the plurality of
mapping configurations based on at least one determined
performance metric.

Z
S

*
R
D

&
SIS

Lo

iy

Dec. 3,2020 Sheet 1 of 4 US 2020/0382443 Al

Patent Application Publication

i

Fedrir

Gy

A
o

P

t\\\ %

S

",
%
s,
s,

S,

Feria,
i
s

7
4

\\\\\\Y\\\‘
: \

SRR

¥

s
B~

ST
N

3

0%

o \\\\\\\\\x\\\\\\\\\.\\\\\\\\\\\\\\\VN' :
R R RN

:\\,&.

Dec. 3,2020 Sheet 2 of 4 US 2020/0382443 Al

Patent Application Publication

i

5
e
5

#ir

s 0525

i

e

e

ity

e i

O R Y N

X

W

RN
R,

33

SO R R
TETTN

Dot
ey

At -
b %

% 2
Lrrrnrserseits
posiensnsssess

s

s,
52
I

%
Gt

Dec. 3,2020 Sheet 3 of 4 US 2020/0382443 Al

Patent Application Publication

\
%
Z
%

Z7
Yy

US 2020/0382443 Al

S
A

R
SR

s

Dec. 3,2020 Sheet 4 of 4

Wiy
9
%y
G

Patent Application Publication

US 2020/0382443 Al

SYSTEM AND METHODS FOR SHARING
MEMORY SUBSYSTEM RESOURCES
AMONG DATACENTER APPLICATIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This U.S. patent application is a continuation of,
and claims priority under 35 U.S.C. § 120 from, U.S. patent
application Ser. No. 16/392,852, filed on Apr. 24, 2019,
which is a continuation of U.S. patent application Ser. No.
15/189,885, filed on Jun. 22, 2016, which is a divisional of,
and claims priority under 35 U.S.C. § 121 from, U.S. patent
application Ser. No. 13/908,831, filed on Jun. 3, 2013, which
claims priority under 35 U.S.C. § 119(e) to U.S. Provisional
Application 61/655,360, filed on Jun. 4, 2012. The disclo-
sures of these prior applications are considered part of the
disclosure of this application and are hereby incorporated by
reference in their entireties.

BACKGROUND

[0002] As datacenters that provide large scale web ser-
vices emerge as important computing environments, under-
standing the interaction between datacenter applications and
the underlying computing architecture is becoming increas-
ingly important. Managing how applications map onto the
various resources in the computing architecture is an impor-
tant step to achieving improved performance. However,
currently there is little understanding about the interaction
between datacenter applications and the underlying com-
puter architecture. As a result of this lack of understanding,
modern datacenters assign applications to resources in an ad
hoc fashion, without clear knowledge of how applications
and the underlying architecture they execute on interact.
This ad hoc assignment can hinder performance and cause
destructive interference among multiple applications or even
within the same application.

SUMMARY

[0003] Accordingly, systems and methods disclosed
herein provide techniques for mapping applications onto
system resources of a computing platform. Certain imple-
mentations relate to a system for managing system resources
on a server. The computing platform may include control
circuitry configured to control the operation of the comput-
ing platform. Processes and operations performed by the
server may be implemented using the control circuitry. The
computing platform may receive a request to run a plurality
of applications on a computing platform having a plurality
of system resources. The computing platform may deter-
mine a plurality of mapping configurations for the plurality
of applications onto the plurality of system resources. The
computing platform may execute the plurality of applica-
tions with each of the plurality of mapping configurations.
The computing platform may determine at least one perfor-
mance metric based on the executed plurality of applications
for each of the plurality of mapping configurations. The
computing platform may select a selected mapping configu-
ration among the plurality of mapping configurations based
on the at least one determined performance metric.

[0004] Certain implementations relate to a system for
managing system resources on a server. The computing
platform may include control circuitry configured to control
the operation of the computing platform. Processes and

Dec. 3, 2020

operations performed by the server may be implemented
using the control circuitry. The computing platform may
receive a request to run a plurality of applications on a
computing platform having a plurality of system resources.
The computing platform may determine a plurality of
resource sharing metrics for each of the plurality of appli-
cations. The computing platform may determine a priority
for each of the plurality of applications. The computing
platform may compare the plurality of resource sharing
metrics and the priority between each of the plurality of the
applications. The computing platform may determine based
on the comparison, a mapping of the plurality of applications
onto the plurality of system resources of the computing
platform.

DESCRIPTION OF DRAWINGS

[0005] The above and other advantages of the disclosure
will be apparent upon consideration of the following
detailed description, taken in conjunction with the accom-
panying drawings, in which like reference characters refer to
like parts throughout, and in which:

[0006] FIG. 1 is a block diagram depicting an implemen-
tation of a computing platform, according to an illustrative
implementation of the disclosure;

[0007] FIG. 2 is block diagram depicting threads of mul-
tiple applications being mapped onto a computing platform,
according to an illustrative implementation of the disclosure;
[0008] FIG. 3 is a block diagram depicting a method for
mapping applications onto a computing platform, according
to an implementation of the disclosure; and

[0009] FIG. 4 is a block diagram depicting an alternative
method for mapping applications onto a computing plat-
form, according to an implementation of the disclosure. A
number of implementations have been described.

[0010] Nevertheless, it will be understood that various
modifications may be made without departing from the spirit
and scope of the disclosure. Accordingly, other implemen-
tations are within the scope of the following claims.

DETAILED DESCRIPTION

[0011] To provide an overall understanding of the disclo-
sure, certain illustrative implementations will now be
described, including systems and methods for sharing
memory subsystem resource among datacenter applications,
on a computing platform. However, it will be understood by
one of ordinary skill in the art that the systems and methods
described herein may be adapted and modified as is appro-
priate for the application being addressed and that the
systems and methods described herein may be employed in
other suitable applications, and that such other additions and
modifications will not depart from the scope thereof.
[0012] The systems and methods described herein are
directed to mapping threads of an application onto processor
cores of a computing platform. The systems and methods
described herein further include mapping threads of an
application onto a computing platform with shared memory
subsystems to improve the performance of the application.
To improve performance, multiple mapping techniques are
disclosed.

[0013] Internet service datacenters and cloud computing
economies of scale have gained significant momentum in
today’s computing environments. This momentum is fueled
not only by consumer demand, but by the continued perfor-

US 2020/0382443 Al

mance increase in the computing platforms that make up the
datacenters. These computing platforms are increasing com-
putational performance by increasing not only the number of
processors within a server but also the number of processing
cores within each processor. These processing cores share a
number of components like memory, processor caches and
buses. As the number of processing cores increases, man-
aging the processing cores and the shared components
become extremely important to the computational perfor-
mance of the computing platform.

[0014] In modem datacenters, application scheduling is
done in a hierarchical fashion. A global application sched-
uler manages a number of machines and selects a particular
machine for each application based on the amount of
memory or the number of processor cores the application
requires. Once a machine is selected, the application, and its
individual threads, is then managed by the OS scheduler.
The OS scheduler decides how the application threads are
mapped to the individual processing cores of this machine.
At this level, general purpose system software such as the
Linux kernel may be adapted for, and used, in the datacenter
for finer grain scheduling.

[0015] Current application scheduling does not take
memory resource sharing into account. The scheduler’s
thread-to-core mapping is determined without regard to, or
knowledge of, the application characteristics or the under-
lying resource sharing topology. The state-of-the-art kernel
scheduler focuses on load balancing and prioritizes cache
affinity to reduce cache warm-up overhead. Although devel-
opers can specify which cores to use manually, this must be
done on an application by application, and architecture by
architecture basis. As a result, this option is seldom used as
it places a significant burden on the developer. Furthermore,
when co-locating threads from multiple applications, the
optimal thread to core mappings changes.

[0016] One approach to mapping an application’s threads
onto a computing platform, when running alone, as well as
with threads of other applications, may be by leveraging
knowledge of each application’s sharing characteristics.
Examples of these sharing characteristics include the
amount of sharing between threads, the amount of memory
bandwidth the application requires, and the cache footprint
of the application. By determining an application’s sharing
characteristics and comparing them with other application’s
sharing characteristics, a thread to core mapping may be
generated.

[0017] Alternatively, an online adaptive learning approach
may be used to generate thread to core mappings in the
datacenter, as it is agnostic to applications’ sharing charac-
teristics. Using an online adaptive learning approach, allows
thread to core mappings to be generated without determining
sharing characteristics about the applications. This may be
beneficial if the applications or their sharing characteristics
are not known ahead of time. The online adaptive learning
approach may be able to reconfigure the thread to core
mappings after specific predetermined intervals of time or
due to a change in the system resources available to the
computing platform.

[0018] Although each of these approaches are discussed
with regards to a computing platform, the thread to core
mapping that is generated by a computing platform may be
used on other computing platforms that execute the same
applications. This may be beneficial since many of the
computing platforms in the datacenter may have similar

Dec. 3, 2020

system resource characteristics and the computation and
system resource cost of generating and selecting a thread to
core mapping configuration may be saved for other com-
puting platforms that can use the same thread to core
mapping configuration.

[0019] Data Center Compute Platform

[0020] FIG. 1 is a block diagram depicting an implemen-
tation of a computing platform 106, according to an illus-
trative implementation of the disclosure. Modern datacen-
ters include servers 104 located in server racks 102. These
servers 104 include components that make up computing
platform 106, which datacenter applications are processed
on. The computing platform 106 may include control cir-
cuitry configured to control the operation of the computing
platform. Processes and operations performed by the com-
puting platform may be implemented using the control
circuitry. The computing platforms 106 receive computer
instructions that make up the datacenter applications and
process the instructions along with received data. The com-
puting platforms 106 include a variety of different compo-
nents including processors 108, memory controllers 110, and
memory 112. Each of these components communicates with
each other through a variety of data buses 122.

[0021] Processors 108 include multiple components.
These components include processor cores 114, processor
caches 116 and 120, and processor data buses 118. The
processor cores 114 process the computer instructions that
make up the datacenter applications. The processor cores
114 utilize the different processor caches 116 and 120 and
communicate over the processor buses 118. An example
computing platform 106, shown in FIG. 1, includes two
processors 108, each with four processor cores 114, wherein
each processor core 114 communicates with a first level
cache (L1) 116, and every two processor cores 114 share a
second level cache (I.2) 120. Processor cores 114 and
processor caches 116 and 120 may communicate with each
other through processor buses 118. All the processors 108
may share the same memory 112, and communicate to
memory 112 through memory controller 110. Computing
platform 106 may be configured in many different ways. The
number of processors 108, the number of processor cores
114, the number of levels of cache 116 and 120, the
configuration of the processor buses 118 and data buses 122,
the number of the processor buses 118 and data buses 122,
how the processor 118 components are connected, and the
number of memory controllers 110 and memory 112, may be
selected and configured in any combination, and is not
limited to the example described in FIG. 1.

[0022] On multi-processor multi-core computing plat-
forms 106, processing cores 114 may or may not share
certain memory resources including the last level cache
(LLC) 120, which is the last layer of cache shown as [.2 in
FIG. 2, and memory bandwidth. Memory bandwidth may be
shared through a data bus 122 connected to each processor
108. Thus for a given subset of processing cores 114, there
may be a particular sharing configuration among the cores
114 of that subset. For example, for two processing cores
114, there may be three possible sharing configurations
among two cores 114; the two processing cores 114 sharing
the same LL.C 120 and data bus 122 (such as Core 1 and
Core 2), the two processing cores 114 each using a different
LLC 120 but sharing the same data bus 122 (such as Core
1 and Core 3), and the two processing cores 114 each using
a different LL.C 120 and data bus 122 (such as Core 1 and

US 2020/0382443 Al

Core 5). The cache hierarchy, memory topology, and the
number of processors 108, and the number of processing
cores 114 of the specific machine determine the possible
sharing configurations among multiple processing cores 114.
[0023] These computing platforms process the datacenter
applications and receive and produce data based on the
instructions of the applications. These applications may be
mapped or scheduled onto these computing platforms in
various configurations.

[0024] Application Mapping onto Compute Platform

[0025] FIG. 2 is block diagram depicting threads of mul-
tiple applications 202A-B being mapped onto a computing
platform 106, according to an illustrative implementation of
the disclosure. Datacenter applications 202A and 202B may
be configured to run on computing platform 106. Datacenter
applications 202A-B may include multiple application
threads, 204A-D and 206A-D. In the example shown in FIG.
2, ecach application 202A-B includes four application
threads, 204A-D and 206A-D. These application threads
204A-D and 206A-D include computer instructions, which
the processor 108 may inerpret, and may work together on
the computing platform 106 to process received data. Each
application thread, 204A-D and 206A-D, may be mapped
onto processor cores 114. Mapping an application thread,
204A-D and 206 A-D, onto a processor core 114 indicates to
the computing platform 106 that the application thread,
204A-D and 206A-D, should be run on that specific pro-
cessor core 114. As an example, in FIG. 2, each application
thread, 204A-D and 206A-D, is mapped onto a different
processor core 114. Although the example shows one appli-
cation thread, 204A-D and 206A-D, being mapped per
processor core 114, multiple application threads, 204A-D
and 206A-D, may be mapped onto the same processor core
14. Additionally, application threads, 204A-D and 206A-D,
of different applications 202A-B, can be mapped together on
the same processor core 114. The number of threads of an
application may vary based on the application itself. In
certain implementations, the application may dynamically
change the number of threads within the application based
on application parameters. These application parameters
may be based on data received by the application, or based
on the system resources on the computing platform 106.

[0026] Determining which processor cores 14 to map
application threads of the same application may affect the
performance of the application. For example, if threads of an
application do not share data, then mapping all the applica-
tion threads such that they share the same LL.C 120 may be
worse than mapping each thread to utilize a different LL.C
120. This may be because application threads of the same
application may require different data, and because the LL.C
120 is limited in size, the threads would have to compete for
placing its data in the LLC 120, causing cache pressure.
Threads competing within a LL.C 120 may lead to perfor-
mance degradation due to the cache pressure. By utilizing
multiple LL.Cs 120, the total size of cache available to the
application threads is larger, thus reducing the cache pres-
sure on each LLC 120. Alternatively, if the application
threads share significant amounts of data among each thread,
then the application threads may want to be mapped to use
the same LLC 120. If the application threads were to be
mapped to use different LLCs 120, then the data within each
LLC 120 would have to be passed between the different
LLCs 120, introducing unnecessary overhead to the appli-
cation and to the computing platform 106, and thus degrad-

Dec. 3, 2020

ing performance. In addition to data sharing, determining
which processor cores 114 to map the application threads of
the same application may also add pressure to the data buses
122 if the amount of traffic required by each of the appli-
cation threads is high, then mapping the application threads
such that they utilize the maximum number of data buses
122 may improve performance. By utilizing multiple data
buses 122, the total effective data bus bandwidth may be
maximized, improving performance since more data can be
transmitted at a time. However, if the application threads
communicate frequently with each other, then mapping the
application threads to processors cores 114, such that the
latency to communicate between threads is minimized may
be the most beneficial. Determining the characteristics of the
application and its threads may lead to determining the best
mapping of application threads to processor cores 114 to
maximize the performance of the application.

[0027] Application Mapping Processes

[0028] Applications may be first scheduled by a global
application scheduler. The global application scheduler may
select, based on the application, which server it should run
on, based on the amount of memory 112, the number of
processors 108, or the number of processor cores 114 the
application requires. Once a server is selected, the applica-
tion, and its threads may be mapped onto the computing
platform 106 of the server 104. In certain implementations,
an OS scheduler may allow the user to manually specify how
application threads are mapped onto processor cores 114.
The application scheduling and mapping processes for the
global and server level are discussed. These processes take
into consideration the application characteristics and the
underlying configuration of the computing platform 106 to
generate a scheduling and mapping configuration which the
servers 104 and computing platforms 106 may be configured
with.

[0029] Resource-Characteristics
Thread to Processor Core Mapping
[0030] Based on an application’s characteristics, thread-
to-core mappings that take advantage of the memory sharing
topology may be determined. An application may be char-
acterized based on its potential bottlenecks, for example bus
usage, shared cache usage and the level of data sharing.
Thread-to-core mapping should maximize the potential ben-
efit from sharing and avoid mapping threads that have the
same resource bottlenecks. For example, if the application
has a high level of data sharing, the mapping should allow
its threads to share resources such as LL.C 120. Additionally,
a performance priority should be determined based on the
latency-sensitivity of an application over other application
scheduled on the same computing platform 106. This may
ensure that applications with high latency-sensitivity have
priority in performance over application with lower latency-
sensitivity.

[0031] FIG. 3 is a block diagram depicting a method for
mapping applications onto computing platform 106, accord-
ing to an implementation of the disclosure. At 302, com-
puting platform 106 may be configured to receive a request
to run a plurality of applications. In another implementation,
computing platform 106 may be configured to receive a
request to run a single application. At 304, computing
platform 106 may be configured to determine one or more
resource sharing metrics for each application. The resource
sharing metrics may include memory bandwidth usage,
cache data sharing, a cache footprint, and processor core

Based Application

US 2020/0382443 Al

resource usage. At 306, computing platform 106 may be
configured to determine a priority for each application. At
308, computing platform 106 may be configured to compare
the resource sharing metrics and the priorities among each of
the applications. Based on the comparison of the resource
sharing metrics and the priorities, at 310, computing plat-
form 106 may be configured to determine a mapping con-
figuration for the threads of each application onto the
processor cores 114 of computing platform 106. For
example, applications with high priorities may be mapped
onto system resources with applications with low priorities
and applications with high resource sharing metrics may be
mapped onto system resources with application with low
resource sharing metrics. In another implementation, com-
puting platform 106 may be configured to determine a
mapping configuration for the threads of the applications
onto the system resources of computing platform 106. For
example, the applications and threads of each application
may be configured to use a selected amount of a system
resource. For example, one application may be allocated 70
percent of the LLC 120, while another application is
assigned 30 percent of the LL.C 120. The amount of the
system resources allocated to each application may vary
based on the demands of each application or determined
based on system resource availability.

[0032] In certain implementations, the resource sharing
metrics may be based on data sharing metrics, bus usage
metrics, or LL.C footprint metrics. Data sharing metrics may
be based on the percentage of cache lines that are in a shared
state. If the percentage of cache lines that are in a shared
state are greater than a pre-determined threshold, then the
application may be considered as a high data sharing appli-
cation. Alternatively, if the percentage of cache lines that are
in a shared state are less than a pre-determined threshold,
then the application may be considered as a low data sharing
application. Although, two levels of data sharing are
described, there may be multiple threshold values used,
corresponding to multiple levels of sharing. Bus usage
metrics may be based on the amount of bus bandwidth used
on either the data buses 122 or processor buses 118, or both.
The bus usage metric may indicate the amount of memory
bandwidth used. The bus usage metric may also indicate
how much communication is performed between threads of
an application. In certain implementations, the amount of
bus bandwidth used may be determined based on a value
stored in internal counter circuitry on the processor 108. One
example of internal counter circuitry on the processor is
BUS_TRANS_BURST, which is located on an INTEL
processor, but any internal counter circuitry on any proces-
sor 108 that indicates the amount of bus bandwidth used may
be used. LL.C footprint metrics may be based on the LL.C
miss rate. The LL.C miss rate may be determined based on
a value stored in internal counter circuitry on the processor
108. These metrics are examples of resource sharing metrics
that computing platform 106 may be configured to deter-
mine. Other metrics that determine the usage of system
resources on the computing platform 106 may also be
determined. In certain implementations, the resource sharing
metrics of each application are compared with each other.
Based on the comparison of the resource sharing metrics of
each application, the applications are mapped onto the
system resources to maximize the performance of the appli-
cations onto the system resources of the computing platform
106.

Dec. 3, 2020

[0033] In certain implementations, determining the prior-
ity for each application may include determining the latency
sensitivity of the application Applications may have differ-
ent priorities. Higher priority may be assigned to an appli-
cation based on its latency sensitivity. The latency sensitivity
indicates how sensitive an application may be to changes in
a resource sharing metric. If resources decreased from the
application, the latency of response for that application may
drop dramatically. For example, latency sensitive applica-
tions, like web search and database, are considered high
priority applications because their latency of response is
highly sensitive to changes in resource sharing metrics,
whereas applications like image processing and background
maintenance may be considered lower priority applications
because their latency of response does not change in
response to changes in resource sharing metrics. The lower
priority applications may not have as strict timing require-
ments as higher priority applications may require. Thus
degradation in performance may not be as important. Alter-
natively, priority may be assigned based on the importance
of the application. Applications which are more critical to
the operation of the datacenter may have higher priority than
applications which are not as critical. For example, the
application web search may be the main critical application
in the datacenter, whereas maintenance application, such as
background maintenance, may be of low importance and
may not be essential to the datacenter. In certain implemen-
tations, the priorities of each application are compared with
each other. Applications with higher priorities are mapped
onto the system resources with applications with lower
priorities. It should be known that any technique for assign-
ing priorities to applications may be used, such as deter-
mining priority based on system resource usage, determin-
ing priority based on an application completion deadline, or
determining priority based on a monetary cost metric for
completing the application.

[0034] Adaptive Based Application Thread to Processor
Core Mapping
[0035] The performance of a thread to processor core 114

mapping configuration may change when the number of
threads of an application, the applications running on the
computing platform 106, or the availability of system
resources in the computing platform 106 changes. To
account for these variations, an adaptive learning approach
may provide improved performance. Using a competition
heuristic to adaptively search for the optimal thread to core
assignment for a given set of threads, these variations can be
accounted for. This approach may include two phases: a
learning phase and an execution phase. These phases may be
performed together or separately.

[0036] During the learning phase, various thread to pro-
cessor core 114 mappings may be generated for a set of
applications. The thread to processor core 114 mappings
may be compared to each other in order to determine which
mapping achieves the greatest performance. Each thread to
core mapping may be given an equal amount of time to
execute, and the mapping which provides the greatest per-
formance for a set of applications may be selected. Although
a large amount of thread to processor core 114 mappings
may be generated, because most of the memory topologies
are symmetric, the number of equivalent mappings may be
greatly reduced. For example, for a two processor core 114
mapping configuration, there may be three classes of map-
pings that represent three different sharing configurations.

US 2020/0382443 Al

During the execution phase, the greatest performing thread
to core mapping is run for a fixed or adaptive period of time
before another comparison is held. In certain implementa-
tions, the greatest performing thread to processor core 114
mapping may be run indefinitely until a signal to change the
thread to processor core 114 mapping is received.

[0037] FIG. 4 is a block diagram depicting an adaptive
based method for mapping applications onto a computing
platform 106, according to an implementation of the disclo-
sure. At 402, computing platform 106 may be configured to
receive a request to run a plurality of applications. In another
implementation, computing platform 106 may be configured
to receive a request to run a single application. At 404,
computing platform 106 may be configured to determine one
or more mapping configurations for the set of applications
requested to run on the computing platform 106. At 406,
each determined mapping configuration is executed for a
pre-determined amount of time. At 408, after the determined
mapping configuration has executed for the predetermined
amount of time, a performance metric is determined. At 410,
once all the mapping configurations are executed, comput-
ing platform 106 may be configured to select the mapping
configuration based on the performance metric for each
executed mapping configuration.

[0038] In certain implementations, the performance metric
may be application specific performance metrics or system
specific performance metrics. Application specific perfor-
mance metrics may include application throughput, appli-
cation latency, and application performance. These applica-
tion specific performance metrics may indicate how well the
mapping configuration is performing for the set of applica-
tions with respect to the application itself. System specific
performance metrics may include cache performance, pro-
cessor utilization, memory bandwidth utilization, memory
utilization network throughput, network bandwidth utiliza-
tion, power usage, and system temperature. Each of these
metrics may not indicate directly how the applications are
performing, but may indicate how well the system resources
on the computing platform 106 are being utilized. For
example, low processor 108 utilization may indicate that the
computing platform 106 is not being utilized properly.

[0039] In certain implementations, selecting the mapping
configuration based on the performance metric for each
executed mapping configuration may include comparing the
performance metrics of each of the mapping configurations.
Based on the comparison, the mapping configuration which
includes the greatest performance metric may be selected. In
certain implementations, the comparison may be based on
multiple performance metrics for each of the executed
mapping configurations. In certain implementations, mul-
tiple performance metrics may be used to generate a con-
solidated performance metric for the executed mapping
configurations, wherein different pre-determined weights for
each performance metric may be used based on their impor-
tance to weigh the performance metrics differently. The
selected mapping configuration may be executed on com-
puting platform 106 until an event indicating that a change
in mapping configuration may be required. The event may
include either a predetermined amount of time, or based on
a performance metric. For example, if the processor 108
utilization becomes low, this may indicate to the computing
platform 106 that the current mapping configuration is not
performing well. Based on the event, computing platform
106 may be configured to determine a new mapping con-

Dec. 3, 2020

figuration by repeating method 400 of determining a map-
ping configuration. In certain implementations, the mapping
configuration selected may be run indefinitely.

[0040] It will be apparent to one of ordinary skill in the art
that aspects of the present disclosure, as described above,
may be implemented in many different forms of software,
firmware, and hardware in the implementations illustrated in
the figures. The actual software code or specialized control
hardware used to implement aspects consistent with the
principles of the disclosure is not limiting of the disclosure.
Thus, the operation and behavior of the aspects of the
disclosure were described without reference to the specific
software code—it being understood that one of ordinary
skill in the art would be able to design software and control
hardware to implement the aspects based on the description
herein.

[0041] Similarly, while operations are depicted in the
drawings in a particular order, this should not be understood
as requiring that such operations be performed in the par-
ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
In certain circumstances, multitasking and parallel process-
ing may be advantageous. Further, certain portions of the
disclosure may be implemented as “logic” or a “component”
that performs one or more functions. This logic may include
hardware, such as an application specific integrated circuit
or a field programmable gate array, software, or a combi-
nation of hardware and software.

What is claimed is:
1. A method comprising:
executing a plurality of applications at a computing
platform, each application allocated a respective
amount of system resources of the computing platform;

receiving, at the computing platform, a request to monitor
execution of a single application of the plurality of
applications executing at the computing platform;

collecting, by the computing platform, system perfor-
mance data for the plurality of applications executing at
the computing platform based on consumed system
resources;

determining, by the computing platform, an application

specific performance metric associated with the single
application;

determining, by the computing platform, whether the

application specific performance metric associated with
the single application exceeds the respective amount of
system resources allocated to the single application;
and

when the application specific performance metric associ-

ated with the single application exceeds the respective
amount of system resources allocated to the single
application, increasing, by the computing platform, the
respective amount of system resources allocated to the
single application.

2. The method of claim 1, further comprising, determin-
ing, by the computing platform, one or more system specific
performance metrics based on the collected system perfor-
mance data, the one or more system specific performance
metrics indicating utilization of system resources of the
computing platform during execution of the plurality of
applications at the computing platform.

3. The method of claim 2, further comprising:

US 2020/0382443 Al

determining, by the computing platform, that one or more
of the system resources of the computing platform are
underutilized based on the one or more system specific
performance metrics; and

reconfiguring, by the computing platform, a mapping

configuration of the plurality of applications executing
at the computing platform.

4. The method of claim 3, wherein determining that the
one or more of the system resources of the computing
platform are underutilized comprises determining that a
processing resource of the computing platform is underuti-
lized based on one of the one or more system specific
performance metrics indicating that utilization of the pro-
cessing resource is low.

5. The method of claim 2, wherein the one or more system
specific performance metrics comprise at least one of cache
performance, processor utilization, memory bandwidth uti-
lization, power usage, or system temperature.

6. The method of claim 1, further comprising:

detecting, by the computing platform, that an event det-

rimentally affects the application specific performance
metric associated with the single application, the event
corresponding to a change in system resources of the
computing platform; and

reconfiguring, by the computing platform, a respective

thread-to-processor core mapping of the single appli-
cation.

7. The method of claim 1, further comprising determining,
by the computing platform, an operational health of the
single application of the plurality of applications based on a
comparison of the application specific performance metric
associated with the single application and a system specific
performance metric, the system specific performance metric
indicating utilization of system resources of the computing
platform.

8. The method of claim 1, wherein the application specific
performance metric comprises at least one of application
throughput, application latency, or application performance.

9. The method of claim 1, further comprising assigning,
by the computing platform, a priority level to the single
application based on the request to monitor the single
application, the priority level indicating how sensitive the
single application is to changes in system resources of the
computing platform utilized by the respective application.

10. The method of claim 9, wherein assigning the priority
level to the single application comprises assigning a high
priority level to the single application, the high priority level
indicating that the single application is highly sensitive to
changes in the system resources of the computing platform
utilized by the single application.

11. A computing platform comprising:

one or more processors; and

memory hardware in communication with the one or more

processors and storing instructions executable on the

one or more processors to cause the one or more

processors to perform operations comprising:

executing a plurality of applications, each application
allocated a respective amount of system resources of
the computing platform;

receiving a request to monitor execution of a single
application of the plurality of applications executing
at the computing platform;

Dec. 3, 2020

collecting system performance data for the plurality of
applications executing at the computing platform
based on consumed system resources;
determining an application specific performance metric
associated with the single application;
determining whether the application specific perfor-
mance metric associated with the single application
exceeds the respective amount of system resources
allocated to the single application; and
when the application specific performance metric asso-
ciated with the single application exceeds the respec-
tive amount of system resources allocated to the
single application, increasing the respective amount
of system resources allocated to the single applica-
tion.
12. The computing platform of claim 11, wherein the
operations further comprise determining one or more system
specific performance metrics based on the collected system
performance data, the one or more system specific perfor-
mance metrics indicating utilization of system resources of
the computing platform during execution of the plurality of
applications at the computing platform.
13. The computing platform of claim 12, wherein the
operations further comprise:
determining that one or more of the system resources of
the computing platform are underutilized based on the
one or more system specific performance metrics, and
reconfiguring a mapping configuration of the plurality of
applications executing at the computing platform.
14. The computing platform of claim 13, wherein deter-
mining that the one or more of the system resources of the
computing platform are underutilized comprises determin-
ing that a processing resource of the computing platform is
underutilized based on one of the one or more system
specific performance metrics indicating that utilization of
the processing resource is low.
15. The computing platform of claim 12, wherein the one
or more system specific performance metrics comprise at
least one of cache performance, processor utilization,
memory bandwidth utilization, power usage, or system
temperature.
16. The computing platform of claim 11, wherein the
operations further comprise:
detecting that an event detrimentally affects the applica-
tion specific performance metric associated with the
single application, the event corresponding to a change
in system resources of the computing platform; and

reconfiguring a respective thread-to-processor core map-
ping of the single application.

17. The computing platform of claim 11, wherein the
operations further comprise determining an operational
health of the single application of the plurality of applica-
tions based on a comparison of the application specific
performance metric associated with the single application
and a system specific performance metric, the system spe-
cific performance metric indicating utilization of system
resources of the computing platform.

18. The computing platform of claim 11, wherein the
application specific performance metric comprises at least
one of application throughput, application latency, or appli-
cation performance.

19. The computing platform of claim 11, wherein the
operations further comprise assigning a priority level to the
single application based on the request to monitor the single

US 2020/0382443 Al

application, the priority level indicating how sensitive the
single application is to changes in system resources of the
computing platform utilized by the respective application.
20. The computing platform of claim 19, wherein assign-
ing the priority level to the single application comprises
assigning a high priority level to the single application, the
high priority level indicating that the single application is
highly sensitive to changes in the system resources of the
computing platform utilized by the single application.

#* #* #* #* #*

Dec. 3, 2020

