
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
38

3
07

9
A

2
EP004383079A2

(11) EP 4 383 079 A2
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
12.06.2024 Bulletin 2024/24

(21) Application number: 24164417.8

(22) Date of filing: 21.12.2021

(51) International Patent Classification (IPC):
G06F 9/54 (2006.01)

(52) Cooperative Patent Classification (CPC):
G06F 9/546

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 11.01.2021 US 202117145917
11.01.2021 US 202117145971

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
21844897.5 / 4 275 121

(71) Applicants:
• IEX Group, Inc.

New York, NY 10007 (US)

• Park, Robert
New York, NY 10007 (US)

(72) Inventor: PARK, Robert
New York, 10007 (US)

(74) Representative: D Young & Co LLP
3 Noble Street
London EC2V 7BQ (GB)

Remarks:
This application was filed on 19.03.2024 as a
divisional application to the application mentioned
under INID code 62.

(54) SCHEMA AND APPLICATION CODE MANAGEMENT USING AN EVENT STREAM

(57) In a message processing system, an application
connected to an event stream publishes a schema for
the structure of data payloads contained in messages
from the application. Other readers and writers within the
system can receive the schema and apply it to subse-
quent inbound and/or outbound messages as appropri-
ate. The application may dynamically update the schema
and publish a revised schema for use by other applica-
tions connected to the event stream for subsequent mes-

sages. In a processing system, an identifier for a current
version of code for an application is published in a mes-
sage to a shared event stream. Any instances of the ap-
plication within the processing system may update to the
current version before processing other messages hav-
ing sequence numbers after the message containing the
identifier. This way, multiple instances of the application
may be periodically updated to maintain global consist-
ency of the application and the shared event stream.

EP 4 383 079 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Patent
Application No. 17/145,917, entitled "Schema Manage-
ment Using an Event Stream" and filed on January 11,
2021, and to U.S. Patent Application No. 17/145,971,
entitled "Application Code Management Using an Event
Stream" and filed on January 11, 2021, each of which is
incorporated by reference herein in its entirety.

TECHNICAL FIELD

[0002] This disclosure relates to managing event
streams in a shared computer environment, and more
specifically to techniques for updating schemas for data
communicatedon the event stream and application logic
for applications using the event stream.

BACKGROUND

[0003] A shared event stream provides a useful medi-
um for globally ordering messages from different sources
at high speed. This can support high throughput and low
latency when processing transactions or other informa-
tion within a local computing environment, a distributed-
computing environment, or some combination of these.
However, users of the event stream mayperiodically want
or need to change the format in which they share data,
or the manner in which they process data. There remains
a need for techniques by which a user of the event stream
can update how data is shared or processed in a time-
based manner synchronized with the event stream so
that other users can reliably encode and decode event
stream messages.

SUMMARY

[0004] In a message processing system, an applica-
tion connected to an event stream publishes a schema
for the structure of data payloads contained in messages
from the application. Other readers and writers within the
system can receive the schema and apply the schema
to subsequent inbound and/or outbound messages as
appropriate. The application may from time to time dy-
namically update the schema and publish a revised sche-
ma for use by the other applications connected to the
event stream for subsequent messages. In another as-
pect, the application may receive code update instruc-
tions or identify code versions using the event stream.
[0005] In an aspect, a method disclosed herein in-
cludes: reading sequenced messages from an event
stream, the sequenced messages having globally unique
sequence numbers within the event stream; processing
the sequenced messages with an application to provide
a first number of unsequenced messages responsive to
the sequenced messages, where the application gener-

ates messages using a first schema identified by a first
schema identifier; writing the first number of unse-
quenced messages to the event stream without globally
unique sequence numbersusing a first data structure
specified by the first schema; revising the first data struc-
ture to provide a second data structure specified by a
second schema; writing a schema change messageto
the event stream with a second schema identifier that
identifies the second schema; and, after writing the sche-
ma change message to the event stream and receiving
a sequenced version of theschema change message on
the event stream, writing a second number of unse-
quenced messagesto the event stream using the second
data structure specified by the second schema.
[0006] Implementations may include one or more of
the following features. The globallyunique sequence
numbers may be monotonically increasing numbers as-
signed by a sequencer forthe event stream according to
a time received by the sequencer. The method may fur-
ther include adding a time stamp to each of the se-
quenced messages with the sequencer. The method may
further include, in response to receiving a second sche-
ma change message with one of the globally unique se-
quence numbers on the event stream from a second ap-
plication, applying a corresponding schema to one or
more sequenced messages from the second application
that havereference sequence numbers greater than or
equal to the one of the globally unique sequence numbers
for the second schema change message. The method
may further comprise including a corresponding one of
the first schema identifier or the second schema identifier
in each of the unsequenced messages from the applica-
tion. The method may further include executing a plurality
of instances of the application at a plurality of venues
coupled in a communicating relationship with the event
stream. The method may further include digitally signing
each of the unsequenced messages before writing to the
event stream. The method may further include filtering
the sequenced messages to remove one or more of the
sequenced messages from a local queue for the appli-
cation. The application may process the sequenced mes-
sages with an order of execution determined by the glo-
bally unique sequence numbers. The method may further
includeprocessing one of the sequenced messages from
the application sourcing the schema change message
with a second application, where the second application
uses the first schema when a reference sequence
number for the one of the sequenced messages is less
than the globally unique sequence number for the sche-
ma change message, and where the second application
uses the second schema when the reference sequence
number for the one of the sequenced messages is equal
to or greater than the globally unique sequence number
for the schema change message. The method may fur-
ther include sequencing messages on the event stream
with a sequencer by: reading unsequenced messages
from the event stream, applying a time stamp to each of
the unsequenced messages corresponding to a time re-

1 2

EP 4 383 079 A2

3

5

10

15

20

25

30

35

40

45

50

55

ceived at the sequencer, arranging the unsequenced
messages in a chronological order according to the time
received at the sequencer, assigning monotonically in-
creasing sequence numbers according to the chronolog-
ical order to the unsequenced messages as the globally
unique sequence numbers, and writing the unsequenced
messages with the monotonically increasing sequence
numbers to the event stream as sequenced messages.
The method may further include processing an inbound
message to the application using an updated schema
from a source application based on all applicable schema
update messages having globally unique sequence iden-
tifiers up to and including a reference sequence number
for the inbound message. The method may further in-
clude writing an outboundmessage from the application
using an updated schema for the application based on
all applicableschema update messages having globally
unique sequence identifiers up to and including a refer-
ence sequence number for the outbound message.
[0007] In an aspect, a computer program product dis-
closed herein includes computer executable code em-
bodied in a non-transitory computer readable medium
that, when executing on one or more computing devices,
updates schemas used in messages among users of an
event stream by performing the steps of: reading se-
quenced messages from the event stream, the se-
quenced messages including sequence numbers;
processing the sequenced messages with an application
to provide a first number of unsequenced messages re-
sponsive to the sequenced messages, where the appli-
cation generates messages using a first schema identi-
fied by a first schema identifier; writing the first number
of unsequenced messages to the event stream without-
sequence numbers using a first data structure specified
by the first schema, each unsequenced message includ-
ing a digital signature for authenticating the application;
revising the first data structure to provide a second data
structure specified by a second schema; writing a sche-
ma change message to the event stream with a second
schema identifier that identifies the second schema; and,
after writing the schema change message to the event
stream and receiving a sequenced version of the schema
change message on the event stream, writing a second
numberof unsequenced messages to the event stream
using the second data structure specified by the second
schema.
[0008] Implementations may include one or more of
the following features. The computer program product
may further include code that sequences messages on
the event stream by performing the steps of: reading un-
sequenced messages from the event stream, applying a
time stamp to each of the unsequenced messages cor-
responding to a time received at asequencer, arranging
the unsequenced messages in a chronological order ac-
cording to the time received at the sequencer, assigning
monotonically increasing sequence numbers to the un-
sequenced messages as the sequence numbers accord-
ing to the chronological order, and writing the unse-

quenced messages with the monotonically increasing
sequence numbers to the event stream as sequenced
messages. The sequence numbers may be monotoni-
cally increasing numbers assigned by the sequencer for
the event stream according to a time received by the
sequencer. The computer program product may further
include code that performs the step of adding a time
stamp to each of the sequenced messages with the se-
quencer. Each of the sequencenumbers may be a glo-
bally unique sequence number within the event stream.
The computer program product may further include code
that performs the step of, in response to receiving a sec-
ond schema change message with one of the sequence
numbers on the event stream from a second application,
applying a corresponding schema to one or more se-
quenced messages from the second application having
a reference sequence number greater than or equal to
the one of the sequence numbers for the second schema
change message. The computer program product may
further include code that performs the step of processing
an inbound message to the application using an updated
schema from a source application based on all applicable
schema update messages having globally unique se-
quence identifiers up to and including a reference se-
quence number for the inbound message. The computer
program product may further include code that performs
the step of writing an outbound message from the appli-
cation using an updated schema for messages from the
application based on all applicable schema update mes-
sages having globally unique sequence identifiers up to
and including a reference sequence number for the out-
bound message.
[0009] In an aspect, a computing system disclosed
herein includes: an event stream; a sequencer that re-
ceives unsequenced messages from users of the event
stream, arranges the unsequenced messages into se-
quenced messages having a global sequence in the
event stream, and publishes the sequenced messages
to the event stream; and an application coupled in a com-
municating relationship with the event stream and the
sequencer, the application including awriter configured
to publish one or more of the unsequenced messages,
a reader to read the sequenced messages from the event
stream, and a processing engine that sends a first mes-
sage tothe event stream containing a description of a
schema that specifies a structure for data in one ormore
other messages published by the writer of the application.
[0010] Implementations may include one or more of
the following features. The application may receive one
or more of the sequenced messages from a second ap-
plication coupled to the event stream, determine a sec-
ond schema used by the second application based on-
schema information for the second application in the
event stream, and process the sequenced messages
from the second application according to the second
schema. The application may be configured to change
the schema to a second schema and to publish a schema
update message tothe event stream notifying other users

3 4

EP 4 383 079 A2

4

5

10

15

20

25

30

35

40

45

50

55

of the event stream of the second schema.
[0011] In an aspect, a method disclosed herein in-
cludes: generating a first number of unsequenced mes-
sages with an application using a first schema identified
by a first schema identifier; writing the first number of
unsequenced messages to an event stream without glo-
ballyunique sequence numbers for the event stream us-
ing a first data structure specified by the first schema;
revising the first data structure to provide a second data
structure specified by a second schema; writing a sche-
ma change message to the event stream with a second
schema identifier that identifies the second schema; and,
after receiving a sequenced version of the schema
changemessage from a sequencer for the event stream,
writing a second number of unsequenced messages to
the event stream using the second data structure spec-
ified by the second schema.
[0012] Implementations may include one or more of
the following features. Revising thefirst data structure
may include revising the first data structure in response
to an update in application logic for the application. Re-
vising the first data structure may include revising the
first data structure in response to a schema update re-
ceived from schema management application coupled
to the event stream. One of the first number of unse-
quenced messages may be generated by the application
independently from messages received on the event
stream. Oneof the first number of unsequenced messag-
es may be generated by the application in response toa
message received on the event stream, where the meth-
od further includes adding a reference sequence number
to the one of the first number of unsequenced messages
based on a globally unique sequence identifier for the
message received on the event stream. The method may
further include reading sequenced messages from the
event stream, the sequenced messages having globally
unique sequence numbers within the event stream, and
processing the sequencedmessages with the applica-
tion.
[0013] In a processing system, an identifier for a cur-
rent version of code for an application is published in a
message to a shared event stream. Any instances of the
application within the processing system may update to
the current version before processing other message-
shaving sequence numbers after the message contain-
ing the identifier. In this manner, multiple instances of the
application may be periodically updated to maintain glo-
bal consistency of the application and the shared event
stream.
[0014] In an aspect, a method disclosed herein in-
cludes: reading sequenced messages from an event
stream, the sequenced messages including globally
unique sequence identifiers; writing unsequenced mes-
sages to the event stream from an application without
globally unique sequence identifiers; in response to iden-
tifying one of the sequenced messages containing a sec-
ond version number for the application different than a
first version number corresponding toa current version

of the application, retrieving a different version of the ap-
plication corresponding to the second version number
and replacing the current version of the application with
the different version of the application; and processing
one or more of the sequenced messages having a ref-
erence sequence number greater than or equal to the
one of the globally unique sequence identifiers for the
one of the sequenced messages containing the second
versionnumber using the different version of the applica-
tion.
[0015] Implementations may include one or more of
the following features. The globallyunique sequence
identifiers may be monotonically increasing numbers as-
signed by a sequencer for the event stream according to
a time received by the sequencer. The method may fur-
ther include adding a time stamp to each of the se-
quenced messages with the sequencer. The globally
unique sequence identifiers may include monotonically
increasing sequence numbers assigned according to an
arrival at a sequencer. The method may further include,
in response to the one of the sequenced messages con-
taining the second version number, retrieving the differ-
ent version ofthe application from a code repository. The
method may further include, in response to the one ofthe
sequenced messages containing the second version
number, retrieving the different version of the application
from the event stream. The method may further comprise
including a corresponding one of the first version number
or the second version number in each of the unse-
quenced messages from the application indicating a
source application version associated with each of the
unsequenced messages. The method may further in-
clude executing a plurality of instances of the application
at a plurality of venues coupled in a communicating re-
lationship withthe event stream. The method may further
include digitally signing each of the unsequenced mes-
sages before writing to the event stream. The method
may further include filtering the sequenced messages to
remove one or more of the sequenced messages from
a local queue for the application. The application may
process the sequenced messages with an order of exe-
cution determined by the globally unique sequence iden-
tifiers. The method may further include processing one
of the sequenced messages having a reference identifier
preceding a first globallyunique sequence identifier of the
sequenced messages containing the second version
number with a version of the application corresponding
to the first version number. The method may further in-
clude sequencing messages on the event stream by:
reading unsequenced messages from the event stream,
applying a time stamp to each of the unsequenced mes-
sages corresponding to a time received at a sequencer,
arranging the unsequenced messages in a chronological
order according to the time received at the sequencer,
assigning monotonically increasing sequence numbers
to the unsequenced messages according to the chrono-
logical order, and writing the unsequenced messages to
the even stream using the monotonically increasing se-

5 6

EP 4 383 079 A2

5

5

10

15

20

25

30

35

40

45

50

55

quence numbers as the globally unique sequence iden-
tifiers. The method may further include processing an
inbound message received by the application using an
updated version of the application based on all revisions
to the application up to and including any revisions cor-
responding to a reference sequence number for the in-
bound message. The method may furtherinclude
processing an outbound message written from the appli-
cation using an updated version of the application based
on all revisions to the application up to and including any
revisions corresponding to a reference sequence
number for the outbound message.
[0016] In an aspect, a computer program product dis-
closed herein includes computer executable code em-
bodied in a non-transitory computer readable medium
that, when executingon one or more computing devices,
updates application logic in a processing system by per-
forming the steps of: reading sequenced messages from
an event stream, the sequenced messages including se-
quence numbers; processing the sequenced messages
with an application identified by a first version number;
writing unsequenced messages from the application to
the event stream without sequence numbers; in response
to identifying one of the sequenced messages containing
a second version number for the application, retrieving
a different version of the application corresponding to the
second version number and replacing the application
withthe different version of the application; and process-
ing one or more of the sequenced messages having a
reference sequence number greater than or equal to the
one of the sequenced messages containing the second
version number according to the different version of the
application.
[0017] Implementations may include one or more of
the following features. The computer program product
may further include code that sequences messages on
the event stream by performing the steps of: reading un-
sequenced messages from the event stream, applying a
time stamp to each of the unsequenced messages cor-
responding to a time received at asequencer, arranging
the unsequenced messages in a chronological order ac-
cording to the time received at the sequencer, assigning
monotonically increasing sequence numbers to the un-
sequenced messages according to the chronological or-
der, and writing the unsequenced messages to the event
stream as sequenced messages using the monotonically
increasing sequence numbers as the sequence num-
bers. The sequence numbers may be monotonically in-
creasing numbers assigned by a sequencer for the event
stream according to a time received by the sequencer,
and each of the sequence numbers may be a globally
unique sequence number within the event stream. The
computer program product may further include code that
performs the step of processing an inbound message
received by the application using an updated version of
the application based on all revisions to the application
up to and including any revisions corresponding to a ref-
erence sequence number for the inbound message. The

computer program product may further include code that
performs the step of processing an outbound message
written from the application using an updated version of
the application based on all revisions to the application
up to and including any revisions corresponding to a ref-
erence sequence number for the outbound message.
[0018] In an aspect, a computing system disclosed
herein includes: an event stream; a sequencer that re-
ceives unsequenced messages from users of the event
stream, arranges the unsequenced messages into se-
quenced messages having a global sequence in the
event stream, and publishes the sequenced messages
to the event stream; and an application coupled in a com-
municating relationship with the event stream and the
sequencer, the application including a writer configured
to publish one or more of the unsequenced messages,
a reader to read one or more of the sequenced messages
from the event stream, and a processing engine config-
ured to process messages by at least one of processing
one or more of the sequenced messages received on
the event stream and creating one or more of the unse-
quenced messages for writing to the event stream, the
application responsive to an update in the version by
sending a second messageto the event stream contain-
ing an updated version number for the application corre-
sponding to anupdated version of the processing engine.
[0019] Implementations may include one or more of
the following features. The application may respond to
the updated version number for the application received
on the eventstream by updating the processing engine
of the application to the updated version. The application
may be updated out-of-band from the event stream.
[0020] In an aspect, a computing system disclosed
herein includes: an event stream; a sequencer that re-
ceives unsequenced messages from users of the event
stream, arranges the unsequenced messages into se-
quenced messages having a global sequence in the
event stream, and publishes the sequenced messages
to the event stream; and an application coupled in a com-
municating relationship with the event stream and the
sequencer, the application including awriter configured
to publish one or more of the unsequenced messages,
a reader to read one or more of the sequenced messages
from the event stream, and a processing engine config-
ured to process messages by at least one of processing
one or more of the sequenced messages receivedon the
event stream and creating one or more of the unse-
quenced messages for writing to the event stream, the
application responsive to an update message received
on the event stream and containing an updated version
number for the processing engine by updating the
processing engine to the updated version.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The foregoing and other objects, features, and
advantages of the devices, systems,and methods de-
scribed herein will be apparent from the following de-

7 8

EP 4 383 079 A2

6

5

10

15

20

25

30

35

40

45

50

55

scription of particular embodiments thereof, as illustrated
in the accompanying drawings. The drawings are not
necessarily to scale, emphasis instead being placed up-
on illustrating the principles of the devices,systems, and
methods described herein. In the drawings, like reference
numerals generally identify corresponding elements.

FIG. 1 shows a sequencer and an application using
an event stream.
FIG. 2 shows a cloud implementation of an applica-
tion.
FIG. 3 shows a computing system using an event
stream as a messaging bus.
FIG. 4 shows a method for managing schemas on
an event stream.
FIG. 5 shows a method for managing code updates
on an event stream.
FIG. 6 illustrates a technique for managing versions
of schemas or code as they are updated.

DETAILED DESCRIPTION

[0022] Embodiments will now be described with refer-
ence to the accompanying figures. The foregoing may,
however, be embodied in many different forms and
should not be construedas limited to the illustrated em-
bodiments set forth herein.
[0023] All documents mentioned herein are hereby in-
corporated by reference in their entirety. References to
items in the singular should be understood to include
items in the plural,and vice versa, unless explicitly stated
otherwise or clear from the text. Grammatical conjunc-
tions are intended to express any and all disjunctive and
conjunctive combinations of conjoined clauses, sentenc-
es, words, and the like, unless otherwise stated or clear
from the context. Thus, for example, the term "or" should
generally be understood to mean "and/or."
[0024] Recitation of ranges of values herein are not
intended to be limiting, referring instead individually to
any and all values falling within the range, unless other-
wise indicated herein, and each separate value within
such a range is incorporated into the specification as if
itwere individually recited herein. The words "about," "ap-
proximately" or the like, when accompanying a numerical
value, are to be construed as indicating a deviation as
would be appreciated by one of ordinary skill in the art
to operate satisfactorily for an intended purpose. Simi-
larly, words of approximation such as "approximately" or
"substantially" when used in reference to physical char-
acteristics, should be understood to contemplate a range
of deviationsthat would be appreciated by one of ordinary
skill in the art to operate satisfactorily for a corresponding
use, function, purpose, or the like. Ranges of values
and/or numeric values are provided herein as examples
only, and do not constitute a limitation on the scope of
the described embodiments. Where ranges of values are
provided, they are also intended to includeeach value
within the range as if set forth individually, unless ex-

pressly stated to the contrary. The use of any and all
examples, or exemplary language ("e.g.," "such as," or
the like) providedherein, is intended merely to better il-
luminate the embodiments, and does not pose a limita-
tion on the scope of the embodiments. No language in
the specification should be construed as indicating any
unclaimed element as essential to the practice of the em-
bodiments.
[0025] In the following description, it is understood that
terms such as "first," "second,""top," "bottom," "up,"
"down," and the like, are words of convenience and are
not to be construed as limiting terms unless specifically
stated to the contrary.
[0026] FIG. 1 shows a sequencer and an application
using an event stream. In general, the system 100 may
include a sequencer 102 that sequences messages in
an event stream 103, more specifically by receiving an
unsequenced stream of messages 104 and publishing a
corresponding sequenced stream of messages 106. The
system 100 may also include an application 108 contain-
ing a reader 110 that receives the sequenced stream of
messages 106, a filter 112, a processing engine 114, and
a writer 116 that publishes messages to the unse-
quenced stream of messages 104. While the system 100
may be used in a distributed computing environment,
e.g., where a number of applications are separated from
the event stream 103, e.g., by a gateway or the like, the
system 100 may also or instead include a locally distrib-
uted computing environment where a number of appli-
cations locally access the event stream 103 fromone or
more computing platforms, or a local computing system
where the applications are all interconnected locally by
a single physical communications infrastructure. Regard-
less of the architecture or scale of the system 100, the
sequencer 102 generally operates to provide a globally
consistent event stream 103 as described herein.
[0027] The sequencer 102 may receive messages
from users of the event stream 103 or any other
source(s), e.g., in an unsequenced stream of messages
104 (also referred to herein as "unsequenced messages
104") and may arrange the unsequenced messages into
sequenced messages having a global sequence (using
globally unique sequence identifiers assigned by the se-
quencer 102) within the event stream 103. The sequenc-
er 102 may publish these sequenced messages to the
event stream 103 as a sequenced stream of messages
106 (also referred to hereinas "sequence messages
106") for consumption by other users. Thus, in one as-
pect, the sequencer102 helps to ensure that the event
stream 103 provides a globally consistent view of mes-
sages among all applications within the system 100, in-
cluding the chronological order thereof. While messages
in the unsequenced stream of messages 104 may arrive
at different times (relative to when they were created by
applications), and sequenced messages 104 may arrive
at different times at each application when published to
the event stream 103 by the sequencer 102, the sequenc-
er 102 can ensure that all applications agree on a chron-

9 10

EP 4 383 079 A2

7

5

10

15

20

25

30

35

40

45

50

55

ological ordering of messages relative to one another
with reference to a specific time source. As generally
used herein, a ’message’ refers to any tangible record
transmitted or processed within the event stream 103 of
the system 100, and an ’event’ refers to the content of a
message, e.g., the occurrence, instruction, observation,
analysis, or the like described by the contents of one of
the messages. However, these terms are also occasion-
ally used interchangeably to refer more generally to da-
tain the event stream 103, and both meanings may be
intended unless a more specific meaning is provided or
otherwise clear from the context.
[0028] In operation, when the sequencer 102 receives
a message in the unsequenced stream of messages 104,
the sequencer 102 may determine an arrival time of the
message and may place a time stamp on each arriving
message. The sequencer 102 may then place each mes-
sage in a chronological order with a number of other mes-
sages in the unsequenced stream of messages 104 ac-
cording to a time of arrival at the sequencer 102. In an-
other aspect, the messagesmay be ordered based in part
on a time stamp from a source application or some other
intermediate resource, e.g., where there is an alternative
time source that provides a suitably synchronized, relia-
ble and/or verifiable time. The sequencer 102 may also
or instead use some combination of these, e.g., by relying
on an external, cryptographically verifiable time stamp in
an arriving, unsequenced message where such a time
stamp is present, and providing a time stamp upon arrival
where such a time stamp is not provided in the arriving
message.
[0029] Once the messages are placed in a global
chronological order (e.g., relative to other messages re-
ceived at the sequencer 102), the sequencer 102 may
assign a monotonically increasing sequence number or
some other globally unique identifier to each message
signifying the message’s global chronological order.
Among other advantages, this enables detection of lost-
packets in the sequenced stream of messages 106 pub-
lished by the sequencer 102 because receivers such as
the application 108 can examine the sequence numbers
for any unexpected gaps. Once marked in this manner,
the messages may be committed to the system 100 and
forwarded to applications via the event stream 103. The
sequencer 102 may also locally store any window of se-
quenced messages. In another aspect, a logging device
or the like may log some or all of the messages in the
event stream 103 for subsequent audit, troubleshooting,
recovery and so forth.
[0030] In general, messages may be forwarded from
the sequencer 102 to all applicationsin parallel using a
fan-out or one-to-many pattern. For example, the event
stream 103 may employ User Datagram Protocol (UDP)
multicast network communications, along with repeaters-
to support fast reliable messaging, as described for ex-
ample in commonly-owned U.S. Pat. No. 9,547,565, in-
corporated herein by reference. By sequencing messag-
es with globally unique sequence numbers and providing

repeaters to replay dropped, sequential packets, each
message in the sequenced stream of messages 106 may
be reliably delivered using the (otherwise inherently un-
reliable) UDP multicast protocol. Because the sequencer
102 performs only the narrow task of time ordering mes-
sages, it can operate with extreme speed, accommodat-
ing a veryhigh message throughput with low latency.
When coupled with fast and reliable messaging (e.g., us-
ing the event stream 103 described below), this architec-
ture advantageously supports massive scaling in which
many independent applications can run in parallel while
sharing a consistent global state.
[0031] The event stream 103 may generally include
any sequence of messages, objects, or other data ele-
ments or the like that are made available over time. In
the context of this disclosure, the event stream 103 may
also include any hardware and/or software that supports
thecreation, storage, and communication of messages
on the event stream 103, including without limitation, any
corresponding communications infrastructure, network
interfaces, and hardware/software or the like to enable
publishing, logging, and/or reading of messages associ-
ated with the event stream 103.
[0032] It will be understood that the unsequenced
stream of messages 104 in the event stream 103 are
depicted as separate from the sequenced stream of mes-
sages 106 in the event stream 103 in order to distinguish
the globally sequenced messages 106 that are published
by thesequencer 102 from the unsequenced messages
104 that are published by users such as the application
108. However, this separation is not required. The unse-
quenced stream of messages 104 and the sequenced
stream of messages 106 may use the same communi-
cations infrastructure, or similar or identical but parallel
communications infrastructures, without departing from
the scope of this disclosure. Thus, in one aspect, the
unsequenced stream of messages 104 may use same
communications infrastructure that carries the globally
sequenced messages from the sequencer 102, or a dif-
ferent infrastructure, or some combination of these. Sim-
ilarly, while a single logical or physical event stream 103
may carry both unsequenced messages 104 and se-
quenced messages 106, these two message streams
may also or instead be logically and/or physically sepa-
rated. Thus, for example, in one aspect, the event stream
103 may consist exclusively of sequenced messages 106
that have been ordered by the sequencer 102 and a sec-
ond message stream may provide a medium for unse-
quenced messages. Thus, while the term"event stream"
is generally used herein to refer to streams of both se-
quenced and unsequenced messages, the communica-
tions medium may also or instead be configured as or
described as an "event stream" of sequenced messages
and a "second event stream" or "message stream" of
unsequenced messages, all without departing from the
scope of this disclosure.
[0033] The sequencer 102 and event stream 103 gen-
erally cooperate to provide a messaging bus for a time-

11 12

EP 4 383 079 A2

8

5

10

15

20

25

30

35

40

45

50

55

ordered data processing system at high capacity, high
availability, and with low latency, and the resulting event
stream 103 may serve as the information backbone of
the system 100. In this context, the event stream 103, or
more specifically, the sequenced stream of messages
106 in the event stream 103, may generally serve as a
master sequenced stream of messages reflecting any
changes or updates in data within the system 100, in-
cluding internal message traffic among applications, alert
to external resources, and so forth. The event stream
103 may also synchronize a global state for all internal
(and external) applications, with each consuming from
and contributing to the shared event stream 103 while
independently performingany local processing functions.
The event stream 103 may also provide a sequenced
audit trail of all sequenced messages in the operating
history of the event stream 103 (or some chronological
or topical subset thereof) to facilitate subsequent audit,
troubleshooting, compliance, analysis, and so forth.
[0034] In one aspect, the sequencer 102 may be im-
plemented using the same architectureand resources
used for the application 108 as described below. That is,
the sequencer 102 may use a reader to receive messag-
es from the event stream 103 and a writer to publish
events to the event stream 103. Thus, while illustrated
as separate from an application 108, the sequencer 102
may be implemented in the same manner as other ap-
plications in the system 100, with the particular, narrow
function of ordering and numbering messages in the
event stream 103. Additionally, multiple instances of the
sequencer 102 may be executed concurrently, provided
there is a mechanism for globally synchronizing messag-
es for all instances, such as the technique described in
commonly-owned U.S. Pat. No. 10,678,694 issued on
June 9, 2020, incorporated herein by reference in its en-
tirety. In one aspect, the sequencer 102 may usefully be
positioned ata central communications point within a log-
ical network infrastructure such as a switch or gateway
that carries traffic for the event stream 103 and/or other
applications in the system 100.
[0035] The event stream 103 and sequencer 102, as
described herein, can provide many advantages. UDP
multicast can be used to efficiently fan messages out to
a large audience in a single communication, albeit with-
out inherently providing reliable delivery. At the same
time, the unique and monotonically increasing message
numbers from the sequencer 102 permit each listener to
confirm that all messages have been received. The re-
sulting sequenced stream of messages 106 helps to en-
sure that all users (such as the application 108) arrive at
the same globalstate, with messages recorded in a
chronological order, e.g., based on the time of arrival at
the sequencer 102. At the same time, the event stream
103 may support historical playback, e.g., for audit, re-
construction of historical messages, and so forth, or to
permit new applications coupling to the event stream 103
to synch to the current global state as needed. The indi-
vidual users of thestream, such as the application 108

can be independently implemented in any desired fash-
ion, with each application programmable to make auton-
omous decisions about what information to read from the
event stream 103, what functions to perform, how to per-
form them, and what to publish to the event stream 103.
[0036] It will be appreciated that, while the system 100
may advantageously use a UDP multicast of sequenced
messages as the foundation of a messaging bus, other
techniques may also or instead be employed. For exam-
ple, a wide variety of message stream processing and
other message-driven systems and architectures are
available for processing time-based data andmay be
adapted for use as a messaging architecture with the
systems and methods described herein, provided they
meet the performance requirements of any intended use
and context for thesystem 100.
[0037] The application 108 may be coupled in a com-
municating relationship with the event stream 103 and
the sequencer 102 as described herein. The application
108 generally operates as a compute engine within the
system 100 and may perform any of a variety of specifi-
croles including, e.g., a client gateway, a transaction en-
gine, an external monitor, a database writer, a sequencer
(as discussed above), and so forth. While a single appli-
cation 108 is illustrated for simplicity, it will be understood
that the system 100 may include any number of similarly
configured applications, each performing any number of
different functions that, in theaggregate, provide the func-
tionality of the system 100. Additionally, two or more in-
stances of the application 108 may execute in parallel
using different data, or redundantly using the same data,
e.g., to support distributed computing and/or parallel
processing as desired.
[0038] The application 108 may include a writer 116
configured to publish one or more of the unsequenced
stream of messages 104 to the event stream 103, a read-
er 110 to read the sequenced stream of messages 106
from the event stream 103, and a processing engine 114
that processes messages from the sequenced stream of
messages 106. Some or all of the applicationswithin the
system 100 may adopt this common input and output
architecture and may more generally adopt a common
framework of internal components. One notable excep-
tion is the sequencer 102, which will generally read un-
sequenced messages and write sequenced messages.
[0039] In one aspect, the application 108 may be con-
figured to synchronize code updatesusing the event
stream 103. While a single instance of an application may
readily be updated using any suitable local technique,
the event stream 103 may advantageously facilitate a
synchronized update to multiple instances of the appli-
cation 108 that are geographically or computationally dis-
tributed. For example, the processing engine 114 may
be configured to respond to a version number identifying
a version update for the application 108 received in one
of the messages on the event stream 103 by retrieving
the version update from a remote resource and updating
the application 108 according to the version update. The

13 14

EP 4 383 079 A2

9

5

10

15

20

25

30

35

40

45

50

55

version update may be a partial update of the application
108 such as an update to the reader 110, the filter 112,
the processing engine 114, or the writer 116, or one or
more computational components of any of theforegoing.
The processing engine 114 may also respond to multiple,
consecutive version numbers for multiple consecutive
updates with a corresponding series of updates to the
application. While the update may be initiated using a
message on the event stream 103, it will be understood
that an update may also or instead be initiated in a local
programming environment of the application 108, e.g.,
through any corresponding programming interface or the
like. In this case, the application 108 may, after a suc-
cessful update, write an update messageand/or a new
version number to the event stream 103 to alert other
applications to the change. The application 108 may also
use the sequenced version of such a message from the
sequencer102 as an initial check on a successful com-
pletion of the update.
[0040] The manner in which an update is performed
will depend upon the computing context in which appli-
cations are executed. The update may be performed,
e.g., by communicating new executable code segments
or libraries using the event stream 103, or by using re-
flection methods or the like to modify the structure or
behavior of the code. More generally, any techniques for
updating code, e.g., for a number of distributed instances
of an application 108, may be used to update code as
described herein, depending, for example, on thepro-
gramming language, programming environment, physi-
cal or virtual machine environment, and so forth. In gen-
eral, any suitable technique for enforcing permissions,
controlling access, authenticating identity, and/or cre-
dentialing or otherwise authorizing users of the applica-
tion 108may be used to control whether and how updates
are authorized.
[0041] A reader 110 of the application 108 may receive
committed, e.g., sequenced, messages on the event
stream 103, such as UDP multicast messages with glo-
bally unique, sequential numbers or other globally unique
identifiers as described herein. Each application in the
system 100 will receive the same stream of sequenced
messages. The reader 110 may detect out-of-sequence
messages and may recover messages as needed based
on gaps in sequence numbers, e.g., using a repeater or
other messaging infrastructure that supports reliable
messaging. The reader 110 may also check that unse-
quenced messages from the application 108 are being
received and sequenced by the sequencer 102 by check-
ing for a return of sequenced (e.g., globally numbered)
instances of messages generated by the writer 116 of
the application. Inanother aspect, this messaging integ-
rity function may be performed by the processing engine
114or some other component of the application 108. The
reader 110 may also, under certain circumstances, play-
back from historically recorded streams to simulate how
new logic processors would behave on previous produc-
tion traffic, e.g., before changing or updating the process-

ing engine 114.
[0042] A filter 112 may optionally be included in the
application 108 that determines which message(s) the
processing engine 114 requires from the event stream
103 as input. The filter 112 may usefully remove any un-
wanted or unneeded messages, and only forward cer-
tainnon-filtered messages to the processing engine 114
for processing according to the function ofthe application
108.
[0043] The processing engine 114 of the application
108 applies rules, functions, programming logic and the
like to process messages received from the event stream
103, and to create new messages for publication to the
unsequenced stream of messages 104. The processin-
gengine 114 may include any suitable code, using any
suitable coding language, platform, or environment, to
implement desired user functions, and may generally
function to support any desired (e.g., user configured)
role(s) of the application 108 within the system 100. For
example,the processing engine 114 may support a trans-
action engine, a monitoring system, an alert/notification
platform, or any combination of these.
[0044] The writer 116 may generally manage outbound
communications to the system 100, e.g., by creating and
transmitting unsequenced messages to a messaging
medium such as theevent stream 103 for communication
to the sequencer 102. While this may include any mes-
sages output by the processing engine 114 and consist-
ent with operation of the application 108, the writer 116
may also or instead publish a number of writer-specific
message types to support operation of the system 100,
e.g., to manage connectivity, manage schema usage,
and so forth. It will be understood that in this context,
"unsequenced messages" refers to messages that have
not received a globally unique sequence identifier from
the sequencer 102. It may be useful in some deployments
for the application 108 and/or the writer 116 to create
local sequence numbers and append them to messages
from the application 108. Although such messages might
contain sequence numbers, these messages are not "se-
quenced messages" as described herein unless/until
they receive globally unique sequence identifiers from
the sequencer.
[0045] In one aspect, the writer 116 may employ a RE-
SEND protocol to ensure reliability. The application 108
will generally expect to see its own messages published
to the event stream 103 as sequenced messages once
they have been received and ordered by the sequencer
102. If a message is not returned after a predetermined
interval such as a time-out period, the writer 116 may
resend the message in order to ensure that it is included
in the global state maintained by the event stream 103.
The time-out period may be variably controlled by thep-
rocessing engine 114 or controlled by the sequencer 102
or otherwise enforced globally for thesystem 100, or
some combination of these.
[0046] The writer 116 may also employ a throttling
mechanism to ensure that the application 108 does not

15 16

EP 4 383 079 A2

10

5

10

15

20

25

30

35

40

45

50

55

crowd out other users of the messaging bus and the se-
quencer 102. For example, the writer 116 may employ
an N-in-Flight throttling mechanism to enforce an upper
bound (N) on the number of messages that can be sent
to the sequencer 102 without receiving an explicit ac-
knowledgment in the form of a "sequenced" message.
Messages beyond the bound (N) are queued at the writer
116 until one or more other messages from the applica-
tion 108 are sequenced and received by the application
108. This approach ensures fair access to the sequencer
102 among multiple applications and prevents denial-of-
service attacks or other similarly orchestrated malicious
activity. As with the time-out period, the upper bound for
outstanding messages may be variably controlled by the
processing engine 114 or controlled by the sequencer
102 or otherwise enforced globally for the system 100,
or some combination of these. Thus, for example, differ-
ent time-out limits may be used by different applications,
and/orat different times during the day or week.
[0047] In one aspect, the writer 116 may send a mes-
sage containing a description of a schema used by the
writer 106 to publish data. This schema may specify a
structure for data in messages published by the writer
116 and may be used by other applications connected
to the system 100 in order to decode and interpret mes-
sages from the application 108, or to format messages
for communication to the application 108. The schema
may periodically change, e.g., by a user or administrator
of the application 108, and the new schema may be pub-
lished to the stream of unsequenced stream of messages
104 prior to messages from the application 108 using the
new schema. In this manner, the application 108 may
flexibly and periodically revise the schema as necessary
or helpful for operation of the application 108. For exam-
ple, the schema may change when the processing engine
114 is changed or updated, or when the processing en-
gine 114 wishes to provide additional information, or oth-
erwise change the type and/or amountof data shared in
messages on the event stream 103, or when the appli-
cation 108 would like to receive additional or different
information from other applications. The overall architec-
ture is intended to be flexible, and schema changes may
arise in a variety of contexts such as changes inthe data
environment for the application 108, changes in the pur-
pose or function of the application 108, changes in the
performance or capabilities of the application 108, and
so forth. Under any of these or other circumstances, the
processing engine 114 may provide a new schemafor
messages, and the new schema may be shared with oth-
er applications through the event stream 103.
[0048] Any messages sequenced by the sequencer
102 from the application 108 after theschema revision
message can be interpreted by other applications ac-
cording to the new schema. The sequencer 102 facili-
tates this process by ensuring that any messages from
the application 108 created after processing (e.g., se-
quencing) the schema update message will have a ref-
erence sequence number greater or equal to the schema

update message. Thus, the schema update message
may be accurately chronologically placed among other
messages from the application 108 by the sequencer
102. The processing engine 114 (and or writer 116) may
continue to updatethe schema, e.g., by subsequently
publishing additional messages each including a revision
to theschema used by the application 108. It will be un-
derstood that, while management of the schemaversions
is generally attributed in this description to the writer 116,
this versioning may also or instead be managed by the
processing engine 114, which may provide schema up-
date information for the writer 116 to publish as appro-
priate. Thus, a message containing a description of a
schema that specifies a structure for data in one or more
other ones of the messages may be sent or published
by the processing engine 114 to the writer 116, from the
writer 116 to the stream of unsequenced stream of mes-
sages 104, or some combination of these. In another
aspect, schemas may be managed by a separate, ded-
icated application that issues schema updates for other
applications, either independently or in response to re-
quests from the applications (or some combination of
these).
[0049] FIG. 2 shows a cloud implementation of an ap-
plication. In general, the components of the application
108 described above may be distributed in a cloud envi-
ronment inany number of ways, with separate functions
performed at different locations and/or with different com-
puting resources, deployments, or the like. For example,
as depicted in FIG. 2, the system 200 may include an
application 208 that receives a sequenced stream of
messages 206 with a reader 210, filters the messages
with a filter 212, processes the messages (and/or other
data) with a processing engine 214, and writes messages
to the unsequenced stream of messages 204 with a writer
216, all as generally described above. These compo-
nents may individually be located in separate network
locations according to, e.g., a location of application us-
ers, co- location of certain applications, adjacency to re-
sources such as transaction engines, databases and the
like, adjacency to shared parallel processing resources,
and so forth.
[0050] In the embodiment of FIG. 2, the reader 210
and the filter 212 (collectively, an application filter 230)
may be deployed separately from the processing engine
214 and the writer216 (collectively, application logic 240).
More specifically, the application filter 230 may be cou-
pled to the application logic 240 through a wide area net-
work 220 such as the Internet, or any other public inter-
network, private internetwork, or combination of these.
Since applications process a subset of a global event
stream 103, message reading and filtering can be de-
ployed natively on a multicast group used by the se-
quencer 102, and application logic 240 including thep-
rocessing engine 214 can be deployed remotely, e.g., on
a remote cloud computing platform or the like, or on a
number of other data centers and cloud computing re-
sources in parallel. This arrangement permits individual

17 18

EP 4 383 079 A2

11

5

10

15

20

25

30

35

40

45

50

55

users of the system 200 in general, and the event stream
103 in particular, to employ any desired technology plat-
form(s) for, e.g., database storage, messaging, process-
ing, and so forth, and to independently design (and price)
features such as compute resources and storage. By
placing the filter 212 on the source side of a message
stream, the traffic carried by the wide area network 220
can also advantageously be reduced, thus reducing po-
tentially harmful network effects (e.g., bandwidth limita-
tions, latency) of network components220 that are exter-
nal to the event stream architecture.
[0051] FIG. 3 shows a computing system using an
event stream 302 as a messaging bus. In general, the
system 300 may include an event stream 302 and one
or more applications 304 such as those described herein.
As described above, the event stream 302 may provide
a consistent, global view of the context (e.g., the history
of messages communicated among users of the event
stream 302) in which the applications 304 operate. It will
be understood that, while the event stream 302 is depict-
ed as a single communication medium, the system 300
may use two different messaging mediums for the unse-
quenced messages sourced from individual applications
304 and the sequenced messages containing globally
unique sequence identifiers added by the sequencer 305.
In general, each application 304 may operate independ-
ently to readfrom and write to the event stream 302, which
serves as a messaging bus among the applications304
and other resources.
[0052] For example, a first application 304 may send
a first message containing a schemathat specifies a data
structure used to communicate information. A second
application 304 may receive the message and may use
the message to interpret subsequent messages from the
first application 304. More specifically, the second appli-
cation 304 may receive a second message occurring af-
ter the first message in a chronological order based on
arrival time at the sequencer 305 (which applies se-
quence numbers accordingly) and may process the sec-
ond message from the first application 304 using the
schema specified in the first message.
[0053] Each gateway 306 may couple the network sup-
porting the event stream 302 to one or more other net-
works or remote resources. This may, for example, in-
clude connections tothe Internet, as well as connections
to campus or corporate networks and other non-public
computing venues that host users of the event stream
302. Although not depicted, the system 300may also in-
clude any number of additional applications 304 coupled
to the event stream 302 through the gateways 306 or
coupled to parallel instances of the event stream 302 that
are in tumcoupled to the event stream 302 through the
gateways 306. Thus, the system 300 may include any
number of applications 304 executing in any number of
venues. This may also include executing a plurality of
instances of a single application at a number of geograph-
ically distributed, local venues that are all coupled in a
communicating relationship with the event stream 302,

e.g., through one or more of the gateways 306. In this
manner, multiple, distributed, concurrent instances of a
single application may be executed, e.g., to provide com-
putationally and/or geographically distributed access to
a resource such as a transaction engine (e.g., for a trad-
ing floor or an online marketplace) shared by one or more
of the applications 304.
[0054] The system 300 may include an audit log 308
or other similar repository that retains any desired history
of messages on the event stream 302. In general, the
audit log 308 will receive messages from, but not write
messages to, the event stream 302, which may advan-
tageously isolate the audit log 308 from bi-directional ac-
cess by users of the event stream302 and help to ensure
the integrity of data contained therein. The audit log 308
may generally facilitate review and investigation of his-
torical operations in the system 300 and may be deployed
as a database or other data repository that supports que-
ries and the like for reviewing historical activity out-of-
band from the event stream 302.
[0055] The system 300 may optionally include a sche-
ma registry 310. This may providea searchable archive
of schemas used by applications 304 that communicate
using the event stream 302. The schema registry 310
provides a convenient mechanism for determining sche-
mas of other applications 304, e.g., when a new applica-
tion 304 couples to the event stream 302. In another as-
pect, this permits applications using large, complex sche-
mas to store a new schema in the schema registry 310
and communicate the schema to other applications using
a pointer or thelike to the schema registry 310. It will be
appreciated that the system 300 may instead omit the
schema registry 310 and may rely exclusively on the
event stream 302 as an archive of application schemas
that is accessible to all applications 304 using the system
300.
[0056] The system 300 may also or instead include a
code repository. This may include a local code repository
or a global code repository (such as GitHub or the like),
which may serve as a remote resource for storing code
updates in a manner accessible to the event stream 302.
The code repository 312 may be responsive to a request
from one of the applications 304 for a version update by
placing the version update on the event stream 302, or
by otherwise making the code available for use in an
update of the application 304. In another aspect, the code
repository 312 may be out-of-band from the event stream
302 and made available to users of theevent stream 302
as necessary or helpful through other local or wide area
network pathways.
[0057] FIG. 4 shows a method for managing schemas
on an event stream. In general, an application connected
to an event stream may publish a schema for the structure
of data payloads contained in messages from the appli-
cation. Other applications within the system can receive
theschema and apply the schema to subsequent mes-
sages from the originating application. The application
may from time to time dynamically update the schema

19 20

EP 4 383 079 A2

12

5

10

15

20

25

30

35

40

45

50

55

and publish a revised schema for use by the other appli-
cations connected to the event stream for subsequent
messages. In general, applications may manage sche-
mas using the event stream 402 as a messaging bus as
described below. While the following description empha-
sizes schemas used by applications to write messages,
it will be understood that applications may also or instead
use schemas to describe the data structure for other ap-
plications to use when sending data to the application. If
both inbound and outbound schemas are employed, the
method 400 may also include suitable adaptations for
reconciling whether (and when) a writer versus a reader
establishes the schema for a particular inter-application
communication.
[0058] As shown in step 404, the method 400 may be-
gin with the application reading sequenced messages
from the event stream 402, where each of the sequenced
messages includes a sequence number such as the glo-
bally unique sequence numbers described herein. These
may, for example, include monotonically increasing num-
bers assigned by the sequencer according to time
stamps for the time of arrival of unsequenced messages
at the sequencer from a plurality of writers (of applica-
tions) to the event stream 402. Each sequence number
may be a globally unique sequence number or other glo-
bally unique identifier within the event stream 402 in order
to ensure a globally consistent view of messages within
a system using the event stream 402. As described
above, reading sequenced messages may also include
filtering the sequenced messagesto remove one or more
of the sequenced messages from a local queue for the
application. This may include, e.g., filtering based on
source, time, size, sequence number, message type,
content, and/or any other criteria applicable to se-
quenced messages.
[0059] Each sequenced message may also include a
reference sequence number that identifies a second one
of the globally unique sequence identifiers (preceding
the sequence number for the message) for another se-
quenced message that triggered the sequenced mes-
sage from a source application. In certain edge cases,
e.g., where the source application is responding to an
external sensor or stimulus, the source application may
use a temporal proxy for a referencesequence number
such as one of the globally unique sequence identifiers
that the source application is currently processing or a
most recent globally unique sequence identifier in a read-
er queue for the source application.
[0060] As shown in step 406 the method 400 may in-
clude processing the sequenced messages with the ap-
plication, e.g., with a processing engine of the applica-
tion. This may include decoding messages from other
applications using schemas previously published by tho-
seapplications to the event stream. This may also or in-
stead include processing the sequenced messages with
an order of execution determined by the sequence num-
bers. It will be understood that some applications may
perform functions such as external monitoring that are

independent of the event stream 402, and thus in some
instances an application may operate without reading
any messages from the event stream 402, while still writ-
ing periodically to the event stream, e.g.,in response to
events locally detected by the application. In one aspect,
such an application may nonetheless read messages on
the event stream 402, e.g., to confirm that the applica-
tion’s published messages have been sequenced and
committed, or to obtain reference sequence numbers for
outbound messages as described above.
[0061] As shown in step 408, the method may include
generating messages responsive tothe sequenced mes-
sages received on the event stream 402. This may result,
for example, in a number of unsequenced messages re-
sponsive to the sequenced messages, each containing
a reference sequence number that identifies (by corre-
sponding globally unique sequence identifier)an in-
bound, sequenced message that triggered a correspond-
ing one of the unsequenced messages.In general, the
application may generate these messages using a first
schema identified by a first schema identifier, e.g., that
specifies the schema being used by the application. The
schema identifier may be placed onto the event stream
402 in a separate schema update message, or the sche-
ma identifier may be included in each message generat-
ed by the application using the schema. As noted above,
while the processing engine may generate output mes-
sages that are specifically responsive to received mes-
sages, the processing engine of an application may also
or instead generate output messages independent of oth-
er data on the event stream 402. This may, for example,
included messages responsive to sensor data locally re-
ceived by the application, user input locally received
through a user interface at a console for the application,
time-based data that is periodically generated by the ap-
plication, and so forth. In these cases, the reference se-
quence number may, for example, include a globally
unique sequence identifier for a messagecurrently being
processed by the application.
[0062] In one aspect, the schema identifier may be the
schema itself, or any other complete description of the
data structure specified by the schema. Thus, the appli-
cation may identify the schema by simply writing the
structure of the schema to the event stream with each
message. In another aspect, the schema identifier may
be a name, numerical identifier or other identifier that
specifies the schema and/or provides a pointer to a lo-
cation where the schema can be retrieved. While the
schema identifier provides a useful way to uniquely and
robustly identify an appropriate schema to applications
that receive the corresponding messages, the global con-
sistency provided by the event stream 402 also makes
it possible to update schemas without explicitly providing
schema identification numbers. For example, when an-
other application receives a message from the applica-
tion, the receiving application may simply go sequentially
backward in the event stream 402 until a schema de-
scription from the application is found. It willalso be un-

21 22

EP 4 383 079 A2

13

5

10

15

20

25

30

35

40

45

50

55

derstood that the use of schema identifiers permits an
application to dynamically interchange a number of dif-
ferent schemas, such as where the application switches
back and forth among different message types according
to message content, message context, intended recipi-
ents, and so forth.
[0063] As shown in step 410, the method 400 may in-
clude writing the first number of unsequenced messages
to the event stream using a first data structure specified
by the first schema. The unsequenced messages will typ-
ically be without any globally unique sequence numbers
uniquely identifying such messages. However, these
messages may include globally unique sequence num-
bers from other messages received at the application,
which may be used asreference sequence numbers as
described herein. These messages may also usefully be
locally sequenced by an application and/or writer, e.g.,
so that an order of messages from a particular writer can
be subsequently determined. In order to clarify these var-
ious pieces of sequence- identifying information, the term
"unsequenced," as used herein describes a message (or
stream of messages) without a globally unique sequence
identifier assigned by the sequencer. Such an unse-
quenced message may nonetheless include other se-
quence numbers indicating temporal order such as num-
bers locally assigned by an application using the event
stream 402, or reference sequence numbers obtained
from other sequence messages on the event stream 402.
Similarly, the term "sequenced," is used herein to de-
scribe a message having a globally uniquesequence
identifier assigned to the message by the sequencer.
[0064] As shown in step 412, the method 400 may in-
clude revising the data structure used for the messages,
thus providing a second data structure specified by a
second schema. Thismay be, e.g., where the application
is changing between two or more alternative schemas
that areused serially or intermittently. In another aspect,
this may occur when the processing engine is updated,
or more generally, when it is necessary or helpful for an
application to change the structure used to communicate
messages on the event stream 402. In general, this may
include completely replacing an existing schema and/or
incrementally modifying an existing schema, e.g., by
changing a data type, adding an attribute, removing an
attribute, modifying default values, and so forth.
[0065] As shown in step 414, the method 400 may in-
clude writing a schema change message to the event
stream with a second schema identifier that identifies the
second schema. Itwill be appreciated that, in comple-
mentary fashion, the method 400 may include receiving
a schema change message from another application
(with one of the sequence numbers) on the event stream
402 and applying a corresponding schema to a se-
quenced message from the secondapplication having a
reference sequence number greater than or equal to the
one of the sequence numbers for the second schema
change message. The ‘equal to’ range boundary here
specifically contemplates a case in which the schema

change message itself triggers the next sequenced mes-
sage from the second application. In this context, the
application may process the sequenced messages hav-
ing a reference sequence number less than the sequence
number of the schema change message with the first
schema (e.g., the prior schema) and may process se-
quenced messages having a reference sequence
number greater than (or equal to) the sequence number
ofthe schema change message with the second schema
(e.g., the updated schema). More generally,it will be un-
derstood that the schema management techniques may
be used by applications to publish new schemas from
the application, and in similar fashion, to receive schema
updates from other applications.
[0066] It will be appreciated that a new schema may
be used generally by readers and writers within the sys-
tem. In certain cases, e.g., where the schema adds a
new variable or attribute, and a writer with pre-update
code does not recognize or provide information for that
field, the schema may usefully specify a default value to
permit the application logic for the writer to communicate
using the updated schema. The default values may, for
example, be included in the schema definition or schema
update message for use as needed by applications using
the event stream. It will also be appreciated that, while a
schema for application output is generally described
above, the same techniques may readily be adapted to
permit an applicationto specify formats in which it expects
to receive data.
[0067] As shown in step 416, the method 400 may in-
clude, after writing the schema change message to the
event stream 402 (or concurrently with writing the sche-
ma change message to the event stream 402), writing
unsequenced messages to the event stream 402 using
the second data structure specified by the second sche-
ma, e.g., using a writer for the application.In order to
maintain schema consistency across users of the event
stream 402, the application may wait for the schema
change message to return to the application from the
sequencer as a sequenced message. In one aspect,
messages may include a corresponding schema identi-
fier so that receiving applications can accurately identify
the appropriate schema. In another aspect, a receiving
application may apply a particular schema to any mes-
sages having a reference sequence number greater than
or equal to the sequence number for the schema change
message. Each message received from sequencer on
the event stream 402 may also include, e.g., a time stamp
from the sequencer that places a schema update at a
particular point in time (with reference to an associated
clock), and or a digital signature from the sequencer
and/or the sourceapplication for purposes of verification.
[0068] Concurrently with operation of the application
as described above, a sequencer may operate to se-
quence messages and publish them to the event stream
402 as generally described herein. For example, this may
include reading unsequenced messages from the event
stream 402 as shown in step 420, generating time stamps

23 24

EP 4 383 079 A2

14

5

10

15

20

25

30

35

40

45

50

55

for the time of arrival of each message, arranging the
unsequenced messages in a chronological order of ar-
rival, e.g., according to the time stamps, as shown in step
422, assigning monotonically increasing sequence num-
bers (or other globally unique sequence identifiers) to the
unsequenced messages according to the chronological
order as shown in step 424, and writing these messages
with the monotonically increasing sequence numbers to
the event stream 402 as sequenced messages as shown
in step 426. In this context, it will be understood that the
term "sequenced" refers to messages having globally
unique sequence identifiers within the event stream 402.
It is additionally possible that each application may as-
sign sequence numbers to outbound messages for other
purposes, however these messages are not "se-
quenced" within the context of the event stream 402 be-
cause the sequencer does not generally ensure that
these writer-assigned sequence numbers are globallyu-
nique within the event stream 402. It will also be under-
stood that in some cases, the globally unique sequence
identifiers may be implied. For example, where a number
of messages (e.g., at the application layer) are commu-
nicated in a single network packet (e.g., at the network
layer), the first message in the network packet may have
an explicit sequence number, and the sequence number
of subsequent messages in the packet may be inferred
based on their order within the packet.
[0069] In addition to assigning sequence numbers, the
sequencer may append any additional information nec-
essary or helpful for operation of the system. For exam-
ple, the sequencer may digitally sign each message,
and/or digitally sign the time stamp or other information
(e.g., the sequence number) within each message. The
sequencer may also or insteadinclude a signature and/or
time stamp from the source application if such informa-
tion is providedby the source. Alternatively, where secure
or authenticated activity is necessary or helpful, the se-
quencer may authenticate digital signatures from source
applications before sequencing messages, or otherwise
take steps to cryptographically or otherwise verify the
source and/or contents of unsequenced messages re-
ceived on the event stream 402. More generally, the se-
quencer may apply any suitable technique to receive un-
sequenced messages and arrange and publish them in
a sequenced order, e.g., with globally unique, monoton-
ically increasing sequencenumbers, as well as any useful
techniques for ensuring security, authenticity, chronolog-
ical accuracy, and so forth.
[0070] FIG. 5 shows a method for managing applica-
tion code updates using an eventstream. This method
500 may include any of the steps described herein in-
cluding those for managing schema updates above, with
differences as noted below. In a system such as any
ofthose described herein, an identifier for a current ver-
sion of code for an application may be published in a
message to a shared event stream. Any instances of the
application within the system may update to this current
version before processing other messages having refer-

ence sequence numbers after the message containing
the identifier. In this manner, multiple instances of the
application may be periodically updated to maintain glo-
bal consistency of the application(s) and the shared event
stream.
[0071] As shown in step 504, the method 500 may be-
gin with the application reading sequenced messages
from the event stream 502, each of the sequenced mes-
sages including a sequence number such as any of the
globally unique sequence identifiers described herein.
Thesemay, for example, include monotonically increas-
ing numbers assigned by the sequencer. Each sequence
number may be a globally unique sequence number with-
in the event stream 502 in order to establish and ensure
a globally consistent view of messages within a system
by applications using the event stream 502. As described
above, reading sequenced messages may also include
filtering the sequenced messages to remove one or more
of the sequenced messages from a local queue for an
application.
[0072] As shown in step 506 the method 500 may in-
clude processing the sequenced messages with the ap-
plication, e.g., with a processing engine of the applica-
tion. This may include decoding messages from other
applications using schemas previously published by tho-
seapplications to the event stream. This may also or in-
stead include processing the sequenced messages with
an order of execution determined by the sequence num-
bers.
[0073] As shown in step 508, the method may include
generating messages responsive tothe sequenced mes-
sages received on the event stream 502. This may result,
for example, includea number of unsequenced messag-
es responsive to the sequenced messages, or other mes-
sages independently generated by the application, e.g.,
in response to external inputs or stimuli. In general, the
application may generate these messages using a first
schema identified by a first schema identifier, e.g., that
specifies the schema being used by the application. The
schema identifier may be placed onto the event stream
502 in a separate schema update message, or the sche-
ma identifier may be included in each message generat-
ed by the application using the schema, all as described
above. The application may also be identified by a version
number or other similar identifier, which may be included
in messages from the application in order for other ap-
plications to detect and suitably respond to changes in
the application as described herein.
[0074] As shown in step 510, the method 500 may in-
clude writing a first number of unsequenced messages
to the event stream based on the current version of the
application, as identified in the first version identifier.
These unsequenced messages will typically be withou-
tany sequence numbers, which are instead assigned
subsequently by the sequencer, although inone aspect,
local sequencer numbers may be used, and in another
aspect, the messages may include reference sequence
numbers that identify the sequence numbers for other

25 26

EP 4 383 079 A2

15

5

10

15

20

25

30

35

40

45

50

55

inbound messages to which the application is respond-
ing.
[0075] As shown in step 512, the method 500 may in-
clude updating the application code. For example, this
may include, in response to identifying one of the se-
quenced messages containing a second version number
for the application, retrieving a different version of the
application corresponding to the second version number
and replacing the application with the different version of
the application. This usefully permits an update instruc-
tion to be received from another source within the system
using the event stream 502 (subject to any suitable au-
thentication or the like), or for an update to an instance
of an application to automatically propagate to any par-
allel and/or redundant instances of the application within
the system. For multiple, sequential updates, this may
further include, in response to a sequenced message
containing a second version number, retrieving the dif-
ferent version of the application (corresponding to the
second version number) from a code repository. The up-
date may also or instead be performed based on a direct
interaction with the application through any suitable pro-
gramming interface, e.g., by an owner or administrator
of the application. The mechanics of the code update will
depend on the programming environment and the com-
plexity of the application code and may generally employ
any techniques suitable for updating multiple instances
of code, e.g., in a computationally or geographically dis-
tributed computing environment. The update may include
changes to objects, function libraries, code components,
and so forth, and may be performed using reflection, in-
stallers, uninstallers, updaters, compilers, and so forth
to assist with incremental or complete code updates/re-
placements as appropriate.
[0076] As shown in step 514, the method 500 may in-
clude writing an application updatemessage to the event
stream with a second version number that identifies the
updated version ofthe application code. It will be appre-
ciated that, in complementary fashion, the method 500
may include receiving an application update message
from another application (with a new version number and
one of the sequence numbers) on the event stream 502,
and interpreting messages from the other application
(and having reference sequence numbers greater than
or equal to the sequence number for the application up-
date message) accordingly. This may also or instead in-
clude a schema change as described above. In this con-
text, the application may process the sequenced mes-
sages having a reference sequence number less than
the sequence number of theapplication update message
based on the prior application version and may process
sequenced messages having a reference sequence
number greater than or equal to the sequence number
ofthe application update message based on the updated
application version.
[0077] As shown in step 516, the method 500 may in-
clude, after writing the application update message to
the event stream 502 (or concurrently with writing the

schema change message to the event stream 502), writ-
ing unsequenced messages to the event stream using
the updated application code, e.g., using a writer for the
application. Each message may optionally include a cur-
rent version number for the application code correspond-
ing to each message, as wellas a reference sequence
number for an inbound message to which the application
is responding. Each unsequenced message may also be
digitally signed and/or time stamped by the application
before writing to the event stream 502. As described be-
low, an application may maintain multiple instances or
versions in order to execute incoming messages using
application logic synchronized to the reference sequence
number from the message source. To maintain these
multiple instances, the application may use pointers to
different binary versions, or any other suitable mecha-
nism for making multiple versions available as needed
for the temporal state of event stream users. In this con-
text, the temporal state may be measured based on, e.g.,
the oldest reference sequence number currently in use
among the most recent sequenced messages of all of
the applications using the event stream.
[0078] Concurrently with execution of the application,
a sequencer may operate to sequence messages and
publish them to the event stream 502 as generally de-
scribed herein. For example, this may include reading
unsequenced messages from the event stream as shown
in step 520, arranging the unsequenced messages in a
chronological order, e.g., according to a time of arrival at
the sequencer, as shown in step 522, assigning monot-
onically increasing sequence numbers to the unse-
quenced messages according to the chronological order
as shown in step 524, and writing the unsequenced mes-
sages with the monotonically increasing sequence num-
bersto the event stream as sequenced messages as
shown in step 526. The sequencer may also or instead
perform additional steps and append additional informa-
tion. For example, the sequencer may add time stamps
to incoming unsequenced events at the time of arrival.
The sequencer may also or instead verify message
sources for some or all of the messages based on a digital
signature from the source or any other available informa-
tion. The sequencer may also or insteaddigitally sign out-
bound, sequenced messages, and/or contents thereof.
More generally, the sequencer may apply any suitable
technique to receive unsequenced messages, arrange
the messages in chronological order, and publish the
messages in a sequenced order, e.g., with unique, mo-
notonically increasing sequence numbers.
[0079] Fig. 6 illustrates a technique for managing ver-
sions of schemas or application logic as they are updated.
It will be noted that the architecture described herein does
not generally guarantee that messages from applications
will be received by a sequencer in the orderof creation,
or that these messages from applications are received
at all. This creates the possibility for race conditions, e.g.,
where one application publishes an update to a schema
or binary code, but before that schema update is se-

27 28

EP 4 383 079 A2

16

5

10

15

20

25

30

35

40

45

50

55

quenced and available to other applications, the other
applications have generated messages relying on the
prior version, and thus using a now outdated schema, or
relying on an outdated processing model. At best, this
may result in ambiguity in the results of subsequent com-
munications. At worst, it may result in system failures.
[0080] In order to resolve these potential race condi-
tions, each application writing to theevent stream may
include a reference sequence number as described
above that explicitly identifies the sequence number that
an output is responding to, or where there is no specific
preceding input, a most recent sequenced message re-
ceived by the application. This reference sequence
number may be included in an output message from an
application and used by receiving applications to select
the temporally correct (input or output) schema from
among for applications receiving output message. For
simplicity, the following description refers to schemaup-
dates, however it should be understood that the same
technique may be used to synchronize code updates,
e.g., using pointers to binary for different versions, and
the following description should be understood to apply
to code updates as well as schema updates, unless ex-
plicitly notedto the contrary.
[0081] As shown in FIG. 6, a system 600 may include
a number of applications such as afirst application 602,
a second application 604, and a third application 606, as
well as a repository 608 of schema definitions, which may
be stored locally at one of the applications, remotely at
a central data repository, or some combination of these.
In general, the repository 608 may store complete and/or
incremental schema descriptions for communications
with other application in a manner that permits a selection
of schemas based on the current sequence number. Us-
ing this repository, the second application 604 may apply
all sequence-dependent schemas synchronized to the
globally unique identifiers for sequenced messages on
the event stream. For example, when the second appli-
cation 604 reads a message, the second application 604
may apply all schema update messages for a source
application up to and including any schema update cor-
responding to the reference sequence number for the
inbound message. When the second application 604
writes a message to other applications, the second ap-
plication 604 may apply all schema update messages up
to and including any schema update messages corre-
sponding to the reference sequence number for the out-
bound number (e.g., a sequence number for an inbound
message that triggered the outbound message). In this
context, applying aschema update for the reference se-
quence number itself (e.g., for schemas up to and includ-
ing the reference number) ensures consistency for cases
in which a schema update message triggers the output
message.
[0082] In general, the first application 602 may receive
message 1, and may subsequently output a schema up-
date message 610 that is sequenced with globally unique
sequence identifier X. In general, message 1 may be an

external instruction for the first application 602 to revise
a schema, or message 1 may simply be a most recently
received, sequenced message before the first applica-
tion 602 independently initiates a schema change. The
schema update message may contain a definition of a
schema that the first application 602 will use to interpret
data in inboundmessages after the globally unique se-
quence identifier, X, or a schema that the first application
602 will use to format data in outbound messages after
the globally unique sequence identifier, or some combi-
nation of these. The schema update message may also
or instead include a pointerto a remote resource contain-
ing any of the foregoing.
[0083] When the second application 604 receives the
schema update message 610, the second application
604 may, as necessary, retrieve and/or locally store the
new schema information applicable to messages to/from
the first application 602 having reference sequence num-
bers greater than (or equal to) the globally unique se-
quence identifier, X, for the schema update message
610. This timing rule may ensure that only application
messages issued and sequenced after the schema up-
date message has been processed by the application-
i.e., becausethey have an input reference sequence
number greater than or equal to the globally unique se-
quence number of the schema update-will use the up-
dated schema, while messages with reference sequence
numbers less than the globally unique sequence identi-
fier, X, will globally continue to use the earlier schema
version(s). While this general approach permits applica-
tions to self-manage their own schemas, it will be under-
stood that a separate application may also or instead be
used to manage schema change requests and issue
schema update messages. This may enable central con-
trol of schema formats, e.g., to ensure that schemas fol-
low any desired system-wide rules on syntax, format,
content, etc. More generally, each schema and a corre-
sponding, globally unique sequence identifier, may be
stored by each application, or alternatively in some cen-
tral repository for use in determining the appropriate
schema for processing inbound and outbound messag-
es. In any case, by referencing schema updates tempo-
rally to the globally unique sequence identifiers, the sys-
tem can ensure consistency of schemas across applica-
tions using the event stream.
[0084] Independent of the schema update above, the
first application 602 may receive message 2 having glo-
bally unique sequence identifier, Y, and in response, gen-
erate message 3. Message 3 will use Y as its reference
sequence number, and may subsequently be received
by the sequencer and sequenced with globally unique
sequence identifier, Z. When message 3 is received by
the second application 604, the second application 604
may retrieve the schema stored in the schema definitions
608 up to and including schema updates corresponding
to globally unique sequence identifier, 100, the reference
sequence number for the incoming message. This sche-
ma may then be used by the second application 604 to

29 30

EP 4 383 079 A2

17

5

10

15

20

25

30

35

40

45

50

55

process the content of message 3.
[0085] As indicated, in response to message 3, the
second application 604 may also senda reply message,
message 3’, e.g., to the first application 602 or to some
other application. In thisoutbound message 3’, the sec-
ond application 604 may select a suitable schema based
on the outbound message’s reference sequence
number, e.g., the sequence number for message 3,
whichis globally unique sequence number, Z. For mes-
sage 3’, the second application will apply all appropriate
schema updates up to and including any schema updates
for the reference sequence number, Z, for message 3’.
[0086] Similarly, where message 5 is received from a
third application 606, independentfrom the schema up-
date by the first application 602, a schema lookup may
be performed for theinbound message 5 based on the
reference sequence number, Y+10, and a schema
lookup for an outbound, responsive message 5’ based
on the reference sequence number Z+Δ for message
5’,which is also the sequence number for predicate in-
bound message 5.
[0087] According to the foregoing, processing an in-
bound message with an application according to a dy-
namic schema as described herein may include process-
ing an inbound messageto the application using an up-
dated schema based on all applicable schema update
messages having globally unique sequence identifiers
up to and including a reference sequence number forthe
inbound message. Writing an outbound message from
an application may include writing theoutbound message
from the application using an updated schema based on
all applicable schemaupdate messages having globally
unique sequence identifiers up to and including a refer-
ence sequence number for the outbound message. Sim-
ilarly, with respect to application versions, processing an
inbound message with an application may include
processing an inbound messagereceived by the applica-
tion using an updated version of the application based
on all revisions to the application up to and including any
revisions corresponding to a reference sequence
number for the inbound message. Conversely, process-
ing an outbound message written from the application
may include processing the outbound message using an
updated version of the application based on all revisions
to the application up to and including any revisions cor-
responding to a reference sequence number for the out-
bound message.
[0088] The above systems, devices, methods, proc-
esses, and the like may be realized in hardware, soft-
ware, or any combination of these suitable for a particular
application. The hardware may include one or more gen-
eral-purpose computers, dedicated computing devices,
cloud-based computing devices, virtual computers, and
so forth. This includes realization in one or more micro-
processors, microcontrollers, embedded microcontrol-
lers, programmable digital signal processors or other pro-
grammable devices or processing circuitry, along with
internal and/or external memory. This may also, or in-

stead, include one or more application specific integrated
circuits, programmable gate arrays, programmable array
logic components, or any other device or devices that
may be configured to process electronic signals. It will
further be appreciated that a realization of the processes
or devices described above may include computer-exe-
cutable code created using a structured programming
language such as C, an object oriented programming
language such as C++, or any other high-level or low-
level programming language(including assembly lan-
guages, hardware description languages, and database
programming languages and technologies) that may be
stored, compiled or interpreted to run on one of the above
devices, as well as heterogeneous combinations of proc-
essors, processor architectures, or combinations of dif-
ferent hardware and software. In another aspect, the
methods may be embodied in systems that perform the
steps thereof and may be distributed across devices in
a number of ways. At the same time, processing may be
distributed across devices such as the various systems
described above, or all of the functionality may be inte-
grated into a dedicated, standalone device or other hard-
ware. In another aspect, means for performing the steps
associated with the processes described above may in-
clude any of the hardware and/or software described
above. All such permutations and combinations are in-
tended to fall within the scope ofthe present disclosure.
[0089] Embodiments disclosed herein may include
computer program products comprising computer-exe-
cutable code or computer-usable code that, when exe-
cuting on one or more computing devices, performs any
and/or all of the steps thereof. The computer program
product may include non-transitory computer-executable
code, which may be stored, e.g., in a non-transitory com-
puter-readable memory such as a memory from which
the program executes (such as random-access memory
associated with a processor) or a storage device such
as a disk drive, flash memory or any other optical, elec-
tromagnetic, magnetic, infrared, or other device orcom-
bination of devices. In another aspect, any of the systems
and methods described above maybe embodied in any
suitable transmission or propagation medium carrying
computer-executablecode and/or any inputs or outputs
from same.
[0090] The method steps of the implementations de-
scribed herein are intended to includeany suitable meth-
od of causing such method steps to be performed, con-
sistent with the patentability of the following claims, un-
less a different meaning is expressly provided or other-
wise clear from the context. So, for example, performing
the step of X includes any suitablemethod for causing
another party such as a remote user, a remote processing
resource (e.g., a server or cloud computer) or a machine
to perform the step of X. Similarly, performing steps X,
Y, and Z may include any method of directing or control-
ling any combination of such other individuals or resourc-
es to perform steps X, Y, and Z to obtain the benefit of
such steps. Thus, method steps of the implementations

31 32

EP 4 383 079 A2

18

5

10

15

20

25

30

35

40

45

50

55

described herein are intended to include any suitable
method of causing one or more other parties or entities
to perform the steps, consistent with the patentability of
the following claims, unless a different meaning is ex-
pressly provided or otherwise clear from the context.
Such parties or entities need not be under the direction
orcontrol of any other party or entity and need not be
located within a particular jurisdiction.
[0091] It will be appreciated that the methods and sys-
tems described above are set forth by way of example
and not of limitation. Absent an explicit indication to the
contrary, the disclosed steps may be modified, supple-
mented, omitted, and/or re-ordered without departing
from the scope of this disclosure. Numerous variations,
additions, omissions, and other modifications will be ap-
parent to one of ordinary skill in the art. In addition, the
order or presentation of method steps in the description
and drawings above is not intended to require thisorder
of performing the recited steps unless a particular order
is expressly required or otherwise clear from the context.
Thus, while particular embodiments have been shown
and described, it will be apparent to those skilled in the
art that various changes and modifications in form and
details may be made therein without departing from the
spirit and scope of this disclosure and areintended to
form a part of the present teachings as defined by the
following claims.

Clauses

[0092]

1. A method comprising:

reading sequenced messages from an event
stream, the sequenced messages having glo-
bally unique sequence numbers within the event
stream;
processing the sequenced messages with an
application to provide a first number of unse-
quenced messages responsive to the se-
quenced messages, wherein the application
generatesmessages using a first schema iden-
tified by a first schema identifier;
writing the first number of unsequenced mes-
sages to the event stream without globally
unique sequence numbers using a first data
structure specified by the first schema;
revising the first data structure to provide a sec-
ond data structure specified by a second sche-
ma;
writing a schema change message to the event
stream with a second schema identifier that
identifies the second schema; and
after writing the schema change message to the
event stream and receiving a sequenced ver-
sion of the schema change message on the
event stream, writing a second number of unse-

quenced messages to the event stream using
the second data structure specified by the sec-
ond schema.

2. The method of clause 1 wherein the globally
unique sequence numbers are monotonicallyin-
creasing numbers assigned by a sequencer for the
event stream according to a time received bythe se-
quencer.

3. The method of clause 2 further comprising adding
a time stamp to each of the sequenced messages
with the sequencer.

4. The method of clause 1 further comprising, in re-
sponse to receiving a second schema change mes-
sage with one of the globally unique sequence num-
bers on the event stream from a second application,
applying a corresponding schema to one or more
sequenced messages from the second application
that have reference sequence numbers greater than
or equal to the one of the globally unique sequence
numbers for the second schema change message.

5. The method of clause 1 further comprising includ-
ing a corresponding one of the first schema identifier
or the second schema identifier in each of the unse-
quenced messages from the application.

6. The method of clause 1 further comprising exe-
cuting a plurality of instances of the application at a
plurality of venues coupled in a communicating re-
lationship with the event stream.

7. The method of clause 1 further comprising digitally
signing each of the unsequenced messages before
writing to the event stream.

8. The method of clause 1 further comprising filtering
the sequenced messages to remove one or more of
the sequenced messages from a local queue for the
application.

9. The method of clause 1 wherein the application
processes the sequenced messages with anorder
of execution determined by the globally unique se-
quence numbers.

10. The method of clause 1 further comprising
processing one of the sequenced messages from
the application sourcing the schema change mes-
sage with a second application, wherein thesecond
application uses the first schema when a reference
sequence number for the one of the sequenced mes-
sages is less than the globally unique sequence
number for the schema change message, and
wherein the second application uses the second
schema when the reference sequence number for

33 34

EP 4 383 079 A2

19

5

10

15

20

25

30

35

40

45

50

55

the one of the sequenced messages is equal to or
greater than the globally unique sequence number
for the schema change message.

11. The method of clause 1 further comprising se-
quencing messages on the event stream witha se-
quencer by:

reading unsequenced messages from the event
stream;
applying a time stamp to each of the unse-
quenced messages corresponding to a time re-
ceived at the sequencer;
arranging the unsequenced messages in a
chronological order according to the time re-
ceived at the sequencer;
assigning monotonically increasing sequence
numbers according to the chronological order to
the unsequenced messages as the globally
unique sequence numbers; and
writing the unsequenced messages with the mo-
notonically increasing sequence numbers to the
event stream as sequenced messages.

12. The method of clause 1 further comprising
processing an inbound message to the application
using an updated schema from a source application
based on all applicable schema update messages
having globally unique sequence identifiers up to and
including a reference sequence number for the in-
bound message.

13. The method of clause 1 further comprising writing
an outbound message from the application using an
updated schema for the application based on all ap-
plicable schema update messages having globally
unique sequence identifiers up to and including a
reference sequence number for the outbound mes-
sage.

14. A computer program product comprising com-
puter executable code embodied in a non-transitory
computer readable medium that, when executing on
one or more computing devices, updates schemas
used in messages among users of an event stream
by performing the steps of:

reading sequenced messages from the event
stream, the sequenced messages including se-
quence numbers;
processing the sequenced messages with an
application to provide a first number of unse-
quenced messages responsive to the se-
quenced messages, wherein the application
generatesmessages using a first schema iden-
tified by a first schema identifier;
writing the first number of unsequenced mes-
sages to the event stream without sequence

numbers using a first data structure specified by
the first schema, each unsequenced message
including a digital signature for authenticating
the application;
revising the first data structure to provide a sec-
ond data structure specified by a second sche-
ma;
writing a schema change message to the event
stream with a second schema identifier that
identifies the second schema; and
after writing the schema change message to the
event stream and receiving a sequenced ver-
sion of the schema change message on the
event stream, writing a second number of unse-
quenced messages to the event stream using
the second data structure specified by the sec-
ond schema.

15. The computer program product of clause 14 fur-
ther comprising code that sequences messages on
the event stream by performing the steps of:
reading unsequenced messages from the event
stream;

applying a time stamp to each of the unse-
quenced messages corresponding to a time re-
ceived at a sequencer;
arranging the unsequenced messages in a
chronological order according to the time re-
ceived at the sequencer;
assigning monotonically increasing sequence
numbers to the unsequenced messages as the
sequence numbers according to the chronolog-
ical order; and
writing the unsequenced messages with the mo-
notonically increasing sequence numbers to the
event stream as sequenced messages.

16. The computer program product of clause 14
wherein the sequence numbers are monotonically
increasing numbers assigned by the sequencer for
the event stream according to atime received by the
sequencer.

17. The computer program product of clause 14 fur-
ther comprising code that performs the step of add-
ing a time stamp to each of the sequenced messages
with the sequencer.

18. The computer program product of clause 14
wherein each of the sequence numbers is a globally
unique sequence number within the event stream.

19. The computer program product of clause 14 fur-
ther comprising code that performs the step of, in
response to receiving a second schema change
message with one of the sequence numbers on the
event stream from a second application, applying a

35 36

EP 4 383 079 A2

20

5

10

15

20

25

30

35

40

45

50

55

corresponding schema to oneor more sequenced
messages from the second application having a ref-
erence sequence number greater than or equal to
the one of the sequence numbers for the second
schema change message.

20. The computer program product of clause 14 fur-
ther comprising code that performs the step of
processing an inbound message to the application
using an updated schema from a sourceapplication
based on all applicable schema update messages
having globally unique sequence identifiers up to and
including a reference sequence number for the in-
bound message.

21. The computer program product of clause 14 fur-
ther comprising code that performs the step of writing
an outbound message from the application using an
updated schema for messagesfrom the application
based on all applicable schema update messages
having globally unique sequence identifiers up to and
including a reference sequence number for the out-
bound message.

22. A computing system, comprising:an event
stream;

a sequencer that receives unsequenced mes-
sages from users of the event stream, arrang-
esthe unsequenced messages into sequenced
messages having a global sequence in the event
stream, and publishes the sequenced messag-
es to the event stream; and
an application coupled in a communicating re-
lationship with the event stream and the se-
quencer, the application including a writer con-
figured to publish one or more of the unse-
quenced messages, a reader to read the se-
quenced messages from the event stream, and
a processing engine that sends a first message
to the event stream containing a description of
a schema that specifies a structure for data in
one or more other messages published by the
writer of the application.

23. The computing system of clause 22, wherein the
application receives one or more of the sequenced
messages from a second application coupled to the
event stream, determines a secondschema used by
the second application based on schema information
for the second application in the event stream, and
processes the sequenced messages from the sec-
ond applicationaccording to the second schema.

24. The computing system of clause 22, wherein the
application is configured to change the schema to a
second schema and to publish a schema update
message to the event stream notifying other users

of the event stream of the second schema.

25. A method comprising:

generating a first number of unsequenced mes-
sages with an application using a first schema
identified by a first schema identifier;
writing the first number of unsequenced mes-
sages to an event stream without globally unique
sequence numbers for the event stream using
a first data structure specified by the first sche-
ma;
revising the first data structure to provide a sec-
ond data structure specified by a second sche-
ma;
writing a schema change message to the event
stream with a second schema identifier that
identifies the second schema; and
after receiving a sequenced version of the sche-
ma change message from a sequencer for the
event stream, writing a second number of unse-
quenced messages to the event stream using
the second data structure specified by the sec-
ond schema.

26. The method of clause 25 wherein revising the
first data structure includes revising the firstdata
structure in response to an update in application logic
for the application.

27. The method of clause 25 wherein revising the
first data structure includes revising the firstdata
structure in response to a schema update received
from schema management application coupled to
the event stream

28. The method of clause 25 wherein one of the first
number of unsequenced messages is generated by
the application independently from messages re-
ceived on the event stream

29. The method of clause 25 wherein one of the first
number of unsequenced messages is generated by
the application in response to a message received
on the event stream, the method further comprising
adding a reference sequence number to the one of
the first number of unsequenced messages based
on a globally unique sequence identifier for the mes-
sage received on the event stream.

30. The method of clause 25 further comprising read-
ing sequenced messages from the event stream, the
sequenced messages having globally unique se-
quence numbers within the event stream, and
processing the sequenced messages with the appli-
cation.

31. A method comprising:

37 38

EP 4 383 079 A2

21

5

10

15

20

25

30

35

40

45

50

55

reading sequenced messages from an event
stream, the sequenced messages including glo-
bally unique sequence identifiers;
writing unsequenced messages to the event
stream from an application without globally
unique sequence identifiers;
in response to identifying one of the sequenced
messages containing a second version number
for the application different than a first version
number corresponding to a current version of
the application, retrieving a different version of
the application corresponding to the second ver-
sion number and replacing the current version
of the application with the different version of the
application; and
processing one or more of the sequenced mes-
sages having a reference sequence number
greater than or equal to the one of the globally
unique sequence identifiers for the one of the
sequenced messages containing the second
version number using the different version of the
application.

32. The method of clause 31 wherein the globally
unique sequence identifiers are monotonically in-
creasing numbers assigned by a sequencer for the
event stream according to a time received by the
sequencer.

33. The method of clause 32 further comprising add-
ing a time stamp to each of the sequencedmessages
with the sequencer.

34. The method of clause 31 wherein the globally
unique sequence identifiers include monotonically
increasing sequence numbers assigned according
to an arrival at a sequencer.

35. The method of clause 31 further comprising, in
response to the one of the sequenced messages
containing the second version number, retrieving the
different version of the application from a code re-
pository.

36. The method of clause 31 further comprising, in
response to the one of the sequenced messages
containing the second version number, retrieving the
different version of the application from the event
stream.

37. The method of clause 31 further comprising in-
cluding a corresponding one of the first version
number or the second version number in each of the
unsequenced messages from the application indi-
cating a source application version associated with
each of the unsequenced messages.

38. The method of clause 31 further comprising ex-

ecuting a plurality of instances of the application at
a plurality of venues coupled in a communicating re-
lationship with the event stream.

39. The method of clause 31 further comprising dig-
itally signing each of the unsequenced messages
before writing to the event stream.

40. The method of clause 31 further comprising fil-
tering the sequenced messages to remove one or
more of the sequenced messages from a local queue
for the application.

41. The method of clause 31 wherein the application
processes the sequenced messages with anorder
of execution determined by the globally unique se-
quence identifiers.

42. The method of clause 31 further comprising
processing one of the sequenced messages having
a reference identifier preceding a first globally unique
sequence identifier of the sequenced messages
containing the second version number with a version
of the application corresponding to the first version
number.

43. The method of clause 31 further comprising se-
quencing messages on the event stream by:

reading unsequenced messages from the event
stream;
applying a time stamp to each of the unse-
quenced messages corresponding to a time re-
ceived at a sequencer;
arranging the unsequenced messages in a
chronological order according to the time re-
ceived at the sequencer;
assigning monotonically increasing sequence
numbers to the unsequenced messages ac-
cording to the chronological order; and
writing the unsequenced messages to the even
stream using the monotonically increasingse-
quence numbers as the globally unique se-
quence identifiers.

44. The method of clause 31 further comprising
processing an inbound message received by the ap-
plication using an updated version of the application
based on all revisions to the application up to and
including any revisions corresponding to a reference
sequence number for the inbound message.

45. The method of clause 31 further comprising
processing an outbound message written fromthe
application using an updated version of the applica-
tion based on all revisions to the application up to
and including any revisions corresponding to a ref-
erence sequence number for the outbound mes-

39 40

EP 4 383 079 A2

22

5

10

15

20

25

30

35

40

45

50

55

sage.

46. A computer program product comprising com-
puter executable code embodied in a non-transitory
computer readable medium that, when executing on
one or more computing devices, updates application
logic in a processing system by performing the steps
of:

reading sequenced messages from an event
stream, the sequenced messages including se-
quence numbers;
processing the sequenced messages with an
application identified by a first version number;
writing unsequenced messages from the appli-
cation to the event stream without sequence-
numbers;
in response to identifying one of the sequenced
messages containing a second version number
for the application, retrieving a different version
of the application corresponding to the second
version number and replacing the application
with the different version of the application; and
processing one or more of the sequenced mes-
sages having a reference sequence number
greater than or equal to the one of the se-
quenced messages containing the second ver-
sion numberaccording to the different version of
the application.

47. The computer program product of clause 46 fur-
ther comprising code that sequences messages on
the event stream by performing the steps of:
reading unsequenced messages from the event
stream;

applying a time stamp to each of the unse-
quenced messages corresponding to a time re-
ceived at a sequencer;
arranging the unsequenced messages in a
chronological order according to the time re-
ceived at the sequencer;
assigning monotonically increasing sequence
numbers to the unsequenced messages ac-
cording to the chronological order; and
writing the unsequenced messages to the event
stream as sequenced messages using the mo-
notonically increasing sequence numbers as the
sequence numbers.

48. The computer program product of clause 46
wherein the sequence numbers are monotonically
increasing numbers assigned by a sequencer for the
event stream according to a time received by the
sequencer, and wherein each of the sequence num-
bers is a globally unique sequence number within
the event stream.

49. The computer program product of clause 46 fur-
ther comprising code that performs the step of
processing an inbound message received by the ap-
plication using an updated version of the application
based on all revisions to the application up to and
including any revisions corresponding to a reference
sequence number for the inbound message.

50. The computer program product of clause 46 fur-
ther comprising code that performs the step of
processing an outbound message written from the
application using an updated version of the applica-
tion based on all revisions to the application up to
and including any revisions corresponding to a ref-
erence sequence number for the outbound mes-
sage.

51. A computing system, comprising:

an event stream;
a sequencer that receives unsequenced mes-
sages from users of the event stream, arrang-
esthe unsequenced messages into sequenced
messages having a global sequence in the event
stream, and publishes the sequenced messag-
es to the event stream; and
an application coupled in a communicating re-
lationship with the event stream and the se-
quencer, the application including a writer con-
figured to publish one or more of the unse-
quenced messages, a reader to read one or
more of the sequenced messages from the
event stream, and a processing engine config-
ured to process messages by at least one of
processing oneor more of the sequenced mes-
sages received on the event stream and creating
one or more of the unsequenced messages for
writing to the event stream, the application re-
sponsive to an update in the version by sending
a second message to the event stream contain-
ing an updated version number for the applica-
tion corresponding to an updated version of the
processing engme.

52. The computing system of clause 51, wherein the
application responds to the updated version number
for the application received on the event stream by
updating the processing engine of the application to
the updated version.

53. The computing system of clause 51, wherein the
application is updated out-of-band from the event
stream

54. A computing system, comprising:

an event stream;
a sequencer that receives unsequenced mes-

41 42

EP 4 383 079 A2

23

5

10

15

20

25

30

35

40

45

50

55

sages from users of the event stream, arrang-
esthe unsequenced messages into sequenced
messages having a global sequence in the event
stream, and publishes the sequenced messag-
es to the event stream; and
an application coupled in a communicating re-
lationship with the event stream and the se-
quencer, the application including a writer con-
figured to publish one or more of the unse-
quenced messages, a reader to read one or
more of the sequenced messages from the
event stream, and a processing engine config-
ured to process messages by at least one of
processing oneor more of the sequenced mes-
sages received on the event stream and creating
one or more of the unsequenced messages for
writing to the event stream, the application re-
sponsive to an update message received on the
event stream and containing an updated version
number for the processing engine by updating
the processing engine to the updated version.

Claims

1. A method comprising:

reading sequenced messages from an event
stream, the sequenced messages including glo-
bally unique sequence identifiers;
writing unsequenced messages to the event
stream from an application without globally
unique sequence identifiers;
in response to identifying one of the sequenced
messages containing a second version number
for the application different than a first version
number corresponding to a current version of
the application, retrieving a different version of
the application corresponding to the second ver-
sion number and replacing the current version
of the application with the different version of the
application; and
processing one or more of the sequenced mes-
sages having a reference sequence number
greater than or equal to the one of the globally
unique sequence identifiers for the one of the
sequenced messages containing the second
version number using the different version of the
application.

2. The method of claim 1 wherein the globally unique
sequence identifiers are monotonically increasing
numbers assigned by a sequencer for the event
stream according to a time received by the sequenc-
er, for example further comprising adding a time
stamp to each of the sequenced messages with the
sequencer.

3. The method of claim 1 or claim 2 wherein the globally
unique sequence identifiers include monotonically
increasing sequence numbers assigned according
to an arrival at a sequencer.

4. The method of any preceding claim further compris-
ing, in response to the one of the sequenced mes-
sages containing the second version number, re-
trieving the different version of the application from
a code repository or from the event stream.

5. The method of any preceding claim further compris-
ing including a corresponding one of the first version
number or the second version number in each of the
unsequenced messages from the application indi-
cating a source application version associated with
each of the unsequenced messages.

6. The method of any preceding claim further compris-
ing executing a plurality of instances of the applica-
tion at a plurality of venues coupled in a communi-
cating relationship with the event stream.

7. The method of any preceding claim further compris-
ing digitally signing each of the unsequenced mes-
sages before writing to the event stream.

8. The method of any preceding claim further compris-
ing filtering the sequenced messages to remove one
or more of the sequenced messages from a local
queue for the application, and/or the application
processes the sequenced messages with an order
of execution determined by the globally unique se-
quence identifiers.

9. The method of any preceding claim further compris-
ing processing one of the sequenced messages hav-
ing a reference identifier preceding a first globally
unique sequence identifier of the sequenced mes-
sages containing the second version number with a
version of the application corresponding to the first
version number.

10. The method of any preceding claim further compris-
ing sequencing messages on the event stream by:

reading unsequenced messages from the event
stream;
applying a time stamp to each of the unse-
quenced messages corresponding to a time re-
ceived at a sequencer;
arranging the unsequenced messages in a
chronological order according to the time re-
ceived at the sequencer;
assigning monotonically increasing sequence
numbers to the unsequenced messages ac-
cording to the chronological order; and
writing the unsequenced messages to the even

43 44

EP 4 383 079 A2

24

5

10

15

20

25

30

35

40

45

50

55

stream using the monotonically increasing se-
quence numbers as the globally unique se-
quence identifiers.

11. The method of any preceding claim further compris-
ing processing an inbound message received by the
application using an updated version of the applica-
tion based on all revisions to the application up to
and including any revisions corresponding to a ref-
erence sequence number for the inbound message,
and/or processing an outbound message written
from the application using an updated version of the
application based on all revisions to the application
up to and including any revisions corresponding to
a reference sequence number for the outbound mes-
sage.

12. A computer program product comprising computer
executable code encoded in a computer readable
medium that, when executing on one or more com-
puting devices, updates application logic in a
processing system by performing the steps of:

reading sequenced messages from an event
stream, the sequenced messages including se-
quence numbers;
processing the sequenced messages with an
application identified by a first version number;
writing unsequenced messages from the appli-
cation to the event stream without sequence
numbers;
in response to identifying one of the sequenced
messages containing a second version number
for the application, retrieving a different version
of the application corresponding to the second
version number and replacing the application
with the different version of the application; and
processing one or more of the sequenced mes-
sages having a reference sequence number
greater than or equal to the one of the se-
quenced messages containing the second ver-
sion number according to the different version
of the application.

13. A computing system, comprising:

an event stream;
a sequencer that receives unsequenced mes-
sages from users of the event stream, arranges
the unsequenced messages into sequenced
messages having a global sequence in the event
stream, and publishes the sequenced messag-
es to the event stream; and
an application coupled in a communicating re-
lationship with the event stream and the se-
quencer, the application including a writer con-
figured to publish one or more of the unse-
quenced messages, a reader to read one or

more of the sequenced messages from the
event stream, and a processing engine config-
ured to process messages by at least one of
processing one or more of the sequenced mes-
sages received on the event stream and creating
one or more of the unsequenced messages for
writing to the event stream,
the application responsive to an update in the
version by sending a second message to the
event stream containing an updated version
number for the application corresponding to an
updated version of the processing engine.

14. The computing system of claim 13, wherein the ap-
plication responds to the updated version number
for the application received on the event stream by
updating the processing engine of the application to
the updated version, and/or the application is updat-
ed out-of-band from the event stream.

15. A computing system, comprising:

an event stream;
a sequencer that receives unsequenced mes-
sages from users of the event stream, arranges
the unsequenced messages into sequenced
messages having a global sequence in the event
stream, and publishes the sequenced messag-
es to the event stream; and
an application coupled in a communicating re-
lationship with the event stream and the se-
quencer, the application including a writer con-
figured to publish one or more of the unse-
quenced messages, a reader to read one or
more of the sequenced messages from the
event stream, and a processing engine config-
ured to process messages by at least one of
processing one or more of the sequenced mes-
sages received on the event stream and creating
one or more of the unsequenced messages for
writing to the event stream,
the application responsive to an update mes-
sage received on the event stream and contain-
ing an updated version number for the process-
ing engine by updating the processing engine
to the updated version.

45 46

EP 4 383 079 A2

25

EP 4 383 079 A2

26

EP 4 383 079 A2

27

EP 4 383 079 A2

28

EP 4 383 079 A2

29

EP 4 383 079 A2

30

EP 4 383 079 A2

31

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 14591721 [0001]
• US 14597121 [0001]

• US 9547565 B [0030]
• US 10678694 B [0034]

	bibliography
	abstract
	description
	claims
	drawings
	cited references

