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1182

Receive a biophysical signal of a subject

Y

Determine at least one template-signal vector characteristic of a 5‘ 204
representative quasi-periodic pattern of the subject

Y

Apply the determined template-signal vectors, or a vector selected from 5—206
the group thereof, to one or more denoising vectors

!

Generate a filtered biophysical signal of the biophysical signal, or a S‘ 208
portion thereof, by merging the portion of the received biophysical
signal to be filtered and the one or more generated denoising vectors

> 202

FIG. 2
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11SZ

Create the representative cycle(s), e.g., from quantification of asynchronous noise

!

Initialize a template vector corresponding in length to the raw signal

!

For each detected cycle in the raw signal, place a peak of the representative cycle at 5_ 306
a same time-index as a peak of the detected cycle

!

S— 308
Fill gaps in the template vector via interpolation

Y

Initiate the denoising process {e.g., select denoising window size; initiate denoised §310
signal vector)

Y

For each window, create a window function centered at the middle of the given §312
window and multiply the window function with the raw signal and template vector

!

314
Calculate the envelope of the modified template vector S—

!

316
Perform FFT of the modified template vector envelope and the modified raw signal S—

Y

Determine weighted average signal based on the FFT signals and perform inverse §318
FFT of the weighted average signal

Y

320
Repeat over one or more of the windows to populate the denoised signal S—

FiG. 3

302

3 304
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4002

Detect the peaks across the biophysical signal

!

404
Using the detected peak locations, determine the median peak-to-peak interval, S-
and set a cycle region around each peak

Y

402

5" 406
Normalize each resultant cycle so it is centered
S‘ 408
Perform PCA on the cycle matrix to extract principal components
S‘ 410
Perform clustering on PCA components

!

Determine representative cycle from cycles that corresponds to dominant PCA 5‘4 12
components

FIG. 4
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SOOZ

Detect the peaks (e.g., R-peaks, maximum depolarization) across the biophysical
signal {e.g., cardiac signal)

!

Using the detected peak locations, determine the median peak-to-peak interval 5_404
{e.g., median R-R peak interval), and set a cycle region around each peak (e.g.,
R-peak) (e.g., that includes both the P and completion of the T wave)

v

402

5“ 406
Normalize each resultant cycle so it is centered
5‘ 408
Perform PCA on the cycle matrix to extract principal components
S‘ 410
Perform clustering on PCA components

!

Determine representative cycle from cycles that corresponds to dominant PCA 3_412
components

'

502
Phase-align the representative cycle with each cycle under examination S—

!

Determine the difference between the representative cycle and phase-alighed 5—504
cycle

!

Differentiate the outlying cycles vs. inlying cycles with respect to their y 506
difference score by using a distribution-based filter

FIG. 5
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FIG. 10A
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FIG. 12
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Remove baseline wander

v

Reconstruct noiseless model signal by decomposing and selecting sets
of candidate basis functions

v

Select low energy frequency subspace components from the selected
basis functions and coefficients

Y

Reconstruct nth order fractional derivatives from the subspace basis
and coefficients to generate a three-dimensional point cloud

v

Perform triangulation operation to generate surface features of the
point cloud

'
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METHODS AND SYSTEMS TO QUANTIFY
AND REMOVE ASYNCHRONOUS NOISE IN
BIOPHYSICAL SIGNALS

RELATED APPLICATIONS

[0001] This application claims to, and the benefit of, U.S.
Provisional Appl. No. 62/686,245, filed Jun. 18, 2018, titled
“METHODS AND SYSTEMS TO QUANTIFY AND
REMOVE ASYNCHRONOUS NOISE IN BIOPHYSICAL
SIGNALS,” which is incorporated by reference herein in its
entirety.

FIELD OF THE INVENTION

[0002] The present disclosure generally relates to non-
invasive methods and systems for characterizing cardiovas-
cular circulation and other physiological systems. More
specifically, in an aspect, the present disclosure relates to the
filtering of asynchronous noise from an acquired biophysical
signal (e.g., a cardiac signal, a brain signal, etc.). In another
aspect, the present disclosure relates to the quality assess-
ment of an acquired signal and the gating of the acquired
signal for analysis. In another aspect, the present disclosure
relates to normalizing a first set of data sets acquired with a
first set of biophysical-signal measurement equipment and
normalizing a second set of data sets acquired with a second
set of biophysical-signal measurement equipment such that
the first set of data sets may be analyzed with the second set
of data sets in a machine learning operation.

BACKGROUND

[0003] Ischemic heart disease, also known as cardiac
ischemia or myocardial ischemia, is a disease or group of
diseases characterized by a reduced blood supply to the heart
muscle, usually due to coronary artery disease (CAD). CAD
typically occurs when the lining inside the coronary arteries
that supply blood to the myocardium, or heart muscle,
develops atherosclerosis (the hardening or stiffening of the
lining and the accumulation of plaque therein, often accom-
panied by abnormal inflammation). Over time, CAD can
also weaken the heart muscle and contribute to, e.g., angina,
myocardial infarction (heart attack), heart failure and
arrhythmia. An arrhythmia is an abnormal heart rhythm and
can include any change from the normal sequence of elec-
trical conduction of the heart and in some cases can lead to
cardiac arrest.

[0004] The evaluation of CAD can be complex, and many
techniques and tools are used to assess the presence and
severity of the condition. In the case of electrocardiography,
a field of cardiology in which the heart’s electrical activity
is analyzed to obtain information about its structure and
function, significant ischemic heart disease can alter ven-
tricular conduction properties of the myocardium in the
perfusion bed downstream of a coronary artery narrowing,
or occlusion. This pathology can express itself at different
locations of the heart and at different stages of severity,
making an accurate diagnosis challenging. Further, the elec-
trical conduction characteristics of the myocardium may
vary from person to person, and other factors such as
measurement variability associated with the placement of
measurement probes and parasitic losses associated with
such probes and their related components can also affect the
biophysical signals that are captured during electrophysi-
ologic tests of the heart. Further still, when conduction
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properties of the myocardium are captured as relatively long
cardiac phase gradient signals, they may exhibit complex
nonlinear variability that cannot be efficiently captured by
traditional modeling techniques.

[0005] The quantification and filtering of asynchronous
noise and artifacts in acquired biophysical signals, e.g.,
cardiac signals, brain signals, etc., that can facilitate more
accurate assessments of pathologies and conditions is
desired.

SUMMARY

[0006] The exemplified methods and systems described
herein facilitate the quantification and/or removal of asyn-
chronous noise, such as skeletal-muscle artifact noise con-
tamination, to more accurately assess complex nonlinear
variabilities in quasi-periodic biophysical-signal systems
such as those in acquired cardiac signals, brain signals, etc.
The exemplified methods and systems described herein
further facilitate the assessment of signal-quality of an
acquired signal for gating the acquired signal for subsequent
analysis.

[0007] The term “cardiac signals” (also referred to as heart
signals), as used herein, refers to signals associated with the
function and/or activity of the electrical conduction system
of the heart, e.g., to cause contraction of the myocardium,
and includes, in some embodiments, electrocardiographic
signals such as those acquired via an electrocardiogram
(ECG). The quantification of levels of asynchronous noise
such as skeletal-muscle-related-signal contamination and
muscle-artifact-noise contamination, and other asynchro-
nous-noise contamination in an acquired signal can be
subsequently used for the automated rejection of such asyn-
chronous noise from measurements of biophysical signals,
such as cardiac signals, to which the presence of such
asynchronous noise could have a negative impact to subse-
quent analyses of the cardiac signals and/or biophysical
signals and/or to the clinical prediction/estimation of disease
state that assess for various quasi-periodic features of such
quasi-periodic biophysical signal.

[0008] The term “brain signals” (also referred to herein as
neurological signals), as used herein, refers to signals asso-
ciated with the brain functions/activities and include, in
some embodiments, electroencephalographic signals such as
those acquired via an electroencephalogram (EEG). The
quantification of levels of asynchronous noise such as
extraocular-muscle noise contamination and facial muscle
noise contamination, and other asynchronous noise contami-
nation in an acquired signal can be subsequently used for the
automated or manual rejection of such asynchronous noise
from measurements of biophysical signals, such as brain
signals, to which the presence of such asynchronous noise
could have a negative impact to subsequent analyses of the
brain signals and/or biophysical signals and/or to the clinical
prediction/estimation of disease state(s) that assess for vari-
ous quasi-periodic features of such.

[0009] For purposes of the present disclosure, the term
“biophysical signal” is not meant to be limited to cardiac
signals and brain signals, but encompasses any mammalian
electrical or electrochemical signal capable of being sensed,
including without limitation those associated with the cen-
tral and peripheral nervous systems (e.g., electrical signals
from the brain, spinal cord, and/or nerves and their associ-
ated neurons), pulmonary, circulatory (e.g., blood), lym-
phatic, endocrine, digestive, musculoskeletal, urinary,
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immune, reproductive, integumentary and reproductive sys-
tems, as well as electrical signals generated at the cellular
level in any place in a mammalian body. While the present
disclosure is directed to the beneficial quantification of
asynchronous noise in the diagnosis and treatment of car-
diac-related pathologies and conditions and/or brain-related
pathologies and conditions (including, e.g., coronary arterial
disease and pulmonary hypertension (e.g., pulmonary arte-
rial hypertension, pulmonary hypertension due to left heart
disease, pulmonary hypertension due to lung disease, pul-
monary hypertension due to chronic blood clots, and pul-
monary hypertension due to other disease), as well as other
cardiac-related conditions and/or disease and/or brain-re-
lated conditions and/or disease mentioned herein), such
quantification can be applied to the diagnosis and treatment
(including pharmacologic treatment) of any pathologies or
conditions in which a biophysical signal is involved in any
relevant system of the mammalian body.

[0010] Skeletal-muscle-related signals (e.g., as character-
ized in electromyograms (EMG)) are often characterized as
being “in-band noise” with respect to a cardiac signal, a
brain signal, etc.—that is, it often occurs in the same or
similar frequency range within the acquired biophysical
signal. For example, for cardiac signals, the dominant fre-
quency components of signals produced are often between
about 0.5 Hz and about 80 Hz. For brain signals, the
frequency components are often between about 0.1 Hz and
about 50 Hz. Also, depending on the degree of contamina-
tion, skeletal-muscle-related signals can also have a same, or
similar, amplitude as typical cardiac-based waveforms and
brain-based waveforms, etc. Indeed, similarity of skeletal-
muscle-related signals to cardiac signals, brain signals, etc.,
can cause significant issues for the automated diagnostic
analysis of biophysical signals. Therefore, quantifying the
level of skeletal-muscle-related contamination and other
asynchronous noise in a measured biophysical signal can be
critical for either the quality assessment of acquired bio-
physical signals and the automated rejection of contami-
nated acquired signals from being used in subsequent analy-
ses, and/or providing information to the subsequent analyses
to enable compensation for the contamination.

[0011] A critical observation when quantifying the level of
skeletal-muscle-related signal in an acquired biophysical
signal, such as cardiac signal, brain signal, etc., is that
skeletal-muscle related signals are not in synchrony with the
cardiac signal, brain signal, etc., because the sources of the
skeletal-muscle-related signal and the biophysical signals
are completely different. For example, cardiac signals are
derived from the summation of the action potentials of the
cardiac myocytes brain signals are derived from the sum-
mation of ionic current within the neurons of the brain, while
the skeletal-muscle related signals are derived from the
summation of the action potentials of an originating muscle
(such as the pectoral muscles, biceps, triceps, etc. Those two
sources are unlikely to share a deeper common source that
could create synchronicity.

[0012] Therefore, skeletal-muscle related signals (and
other asynchronous artifacts) can be quantified by compar-
ing, as described herein, acquired biophysical signal(s) and
cycles therein to an idealized, representative biophysical
signal for that patient to which gross differences between the
acquired and idealized biophysical signals can be accounted
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for as contribution of skeletal-muscle related signals con-
tamination (and other asynchronous signals) in the acquired
biophysical signal.

[0013] In an aspect, a method is disclosed to filter asyn-
chronous noise (skeletal-muscle artifact noise and other
asynchronous noise) from an acquired biophysical-signal
data set. The method includes receiving, by a processor, a
biophysical-signal data set of a subject; determining, by the
processor, at least one template-signal vector data set char-
acteristic of a representative quasi-periodic signal pattern
(e.g., a representative heart-beat pattern) of the subject from
a plurality of detected quasi-periodic signal cycles detected
in the received biophysical-signal data set; applying, by the
processor, the at least one determined template-signal vector
data set to one or more denoising vector data sets, wherein
the one or more denoising vector data sets collectively have
a vector length corresponding to a vector length of a portion
of the received biophysical-signal data set to be filtered, and
wherein the at least one determined template-signal vector
data set is i) applied for each of the detected cycles deter-
mined to be present in the portion of received cardiac signal
data set to be filtered and ii) varied in length to match the
vector length of a corresponding detected cycle of the
portion of the received biophysical-signal data set to be
filtered; and generating a filtered biophysical-signal data set
of the biophysical-signal data set, or a portion thereof, by
merging the portion of the received biophysical-signal data
set to be filtered and the one or more generated denoising
vector data sets (e.g., using a window-based operation that
applies, in the frequency domain, weighted averages of the
received biophysical-signal and the one or more generated
denoising vectors).

[0014] In some embodiments, the method further includes
receiving, by the processor, one or more additional biophysi-
cal-signal data sets each contemporaneously acquired from
the subject with the biophysical-signal data set; determining,
by the processor, at least one template-signal vector data set
characteristic of a representative quasi-periodic signal pat-
tern of the subject from a plurality of detected heart-beat
cycles detected in each of the received one or more addi-
tional biophysical-signal data sets; applying, by the proces-
sor, for each of the received one or more additional bio-
physical-signal data sets, a plurality of determined template-
signal vector data sets to one or more denoising vector data
sets in a repeating manner, wherein the one or more denois-
ing vector data sets collectively have a vector length corre-
sponding to a vector length of a portion of the received
additional biophysical-signal data sets to be filtered, and
wherein each of the plurality of determined template-signal
vector data sets is 1) applied for each of the detected cycles
determined to be present in the portion of received addi-
tional biophysical-signal data sets to be filtered and ii) varied
in length to match the vector length of a corresponding
detected cycle of the portion of the received additional
biophysical-signal data sets to be filtered; and generating a
filtered biophysical-signal data set of the biophysical-signal
data set, or a portion thereof, by merging the portion of the
received biophysical-signal data set to be filtered and the one
or more generated denoising vector data sets (e.g., using a
window-based operation that applies, in the frequency
domain, weighted averages of the received biophysical-
signal data set and the one or more generated denoising
vector data sets).
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[0015] In some embodiments, the step of determining the
at least one template-signal vector data set characteristic of
the representative quasi-periodic signal pattern comprises:
determining, by the processor, a plurality of signal features
(e.g., R-peaks for cardiac signals) characteristically distinct
in the received biophysical-signal data set or a portion
thereof; determining, by the processor, a plurality of cycle
regions (e.g., a median R-R interval) (e.g., stored in a MxN
matrix in which M is a number of detected cycles, and N is
about 40% of the median R-R interval) between each of the
plurality of determined signal features; aligning, by the
processor, each of the plurality of cycle regions to each other
to a same aspect of the plurality of signal features or another
set of signal features located in each of the cycle regions
(e.g., for cardiac signals, features can include initiation of
the Q wave, or the peak of the R wave, or delay estimate by
cross correlation); and determining, by the processor, each
point of the at least one template-signal vector data set using
a mean operation or a median operation performed for each
set of points among the plurality of cycle regions.

[0016] In some embodiments, the received biophysical-
signal data set comprises a cardiac signal data set, and
wherein the plurality of signal features are selected from the
group consisting of: R-peaks in the received cardiac signal
data set or a portion thereof, S-peaks in the received cardiac
signal data set or a portion thereof, T-peaks in the received
cardiac signal data set or a portion thereof, Q-peaks in the
received cardiac signal data set or a portion thereof, and
P-peaks in the received cardiac signal data set or a portion
thereof.

[0017] In some embodiments, the received biophysical-
signal data set comprises a cardiac signal data set, wherein
the plurality of signal features correspond to R-peaks in the
received cardiac signal data set or a portion thereof.
[0018] In some embodiments, the step of determining the
at least one template-signal vector data set characteristic of
the representative quasi-periodic signal pattern further com-
prises determining, by the processor, a normalizing param-
eter (e.g., z-score) derived from each the plurality of cycle
regions.

[0019] In some embodiments, the step of determining the
at least one template-signal vector data set characteristic of
the representative quasi-periodic signal pattern further com-
prises normalizing, by the processor, values, or a parameter
derived therefrom (e.g., z-score), of each of the plurality of
cycle regions to a pre-defined scale (e.g., between “0” and
“1” or between “~1"" and “1”, or between a standard devia-
tion value greater than 0 and less than 10, etc.).

[0020] In some embodiments, the step of determining the
at least one template-signal vector data set characteristic of
the representative quasi-periodic signal pattern further com-
prises performing, by the processor, clustering-based analy-
sis (e.g., PCA+DBSCAN) of the plurality of cycle regions to
determine presence of more than one dominant cycle mor-
phologies, wherein a template-signal vector is determined
for each determined dominant cycle morphology.

[0021] In some embodiments, the plurality of cycle
regions comprises cycles that are neighboring one another.
[0022] In some embodiments, the cycles that are neigh-
boring one another overlaps in part to one another.

[0023] In some embodiments, the cycles that are neigh-
boring one another do not overlap to one another.

[0024] In some embodiments, the filtered biophysical sig-
nal data set is generated by using two or more template-
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signal vector data sets from two or more group of cycles of
the plurality of cycle regions, wherein the two or more
groups of cycles of the plurality of cycle regions are neigh-
boring one another.

[0025] In some embodiments, the filtered biophysical-
signal data set is generated in near real-time as the biophysi-
cal-signal (e.g., cardiac signal, pulmonary signal, brain
signal) is acquired.

[0026] In some embodiments, the filtered biophysical-
signal data set is generated following completed acquisition
of the biophysical signal.

[0027] In some embodiments, the one or more denoising
vector data sets are arranged as a 1-dimensional vector.

[0028] In some embodiments, the one or more denoising
vector data sets are arranged as an N-dimensional vector,
wherein N corresponds to a number of detected cycles
determined to be present in the portion of received biophysi-
cal-signal data set to be filtered.

[0029] In some embodiments, the step of applying the
plurality of the determined template-signal vector data sets
to one or more denoising vector data sets comprises initial-
izing, by the processor, the one or more denoising vector
data set as a 1-dimensional vector having a length corre-
sponding to that of the portion of received biophysical signal
to be filtered; and duplicating, by the processor, the deter-
mined template-signal vectors in the 1-dimensional vector
so as to align at least a data point associated with a peak
(e.g., R-peak or cardiac signals) of the determined template-
signal vectors to each peak (e.g., R-peak) determined in the
received biophysical signal to be filtered.

[0030] Insome embodiments, during the duplication step,
conflict portions of a currently duplicating template-signal
vector data set are assigned average values with respect to
corresponding portions of a previously duplicated template-
signal vector data set to which the currently duplicating
template-signal vector data set has a conflict.

[0031] In some embodiments, during the duplication step,
empty regions in the 1-dimensional vector between a cur-
rently duplicating template-signal vector data set and a
previously duplicated template-signal vector data set are
stored with values interpolated between a last filled value
and a next filled value around the empty region.

[0032] In some embodiments, the window-based opera-
tion comprises: scaling, by the processor, the portion of the
received biophysical-signal data set to be filtered with a
plurality of window functions having a pre-defined window
length to generate a modified biophysical-signal data set;
scaling, by the processor, the one or more generated denois-
ing vector data sets with the plurality of window functions
to generate a modified denoising vector data sets; determin-
ing, by the processor, an envelope of the modified denoising
vector data sets (e.g., by using a low-pass filter); converting,
by the processor, via a FFT operation, the envelope of the
modified denoising vector data sets and of the portion of the
received biophysical-signal data set to be filtered to the
frequency domain; performing, by the processor, a weighted
average operation of the FFT envelope of the modified
denoising vector data sets and of the modified biophysical-
signal data set using a static, or a set of dynamic, interpo-
lation coefficients to generate a resulting data set; and
converting, by the processor, via an inverse FFT operation,
the resulting data set to a time series data set as the filtered
biophysical-signal data set of the biophysical signal.
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[0033] Inanother aspect, a method is disclosed of normal-
izing a first set of data sets acquired with a set of first
measurement equipment (e.g., by removing asynchronous
noise) and a second set of data sets acquired with a second
set of measurement equipment (e.g., that is configured to
remove certain asynchronous noise) such that the first set of
data sets is analyzable with the second set of data sets in a
machine learning operation. The method includes receiving,
by a processor, a set of biophysical-signal data sets of a
subject acquired with a set of first measurement equipment
(e.g., each equipment of the set of first measurement equip-
ment has a similar or same noise performance characteris-
tic); determining, by the processor, at least one template-
signal vector data set characteristic of a representative
quasi-periodic signal pattern of the subject from a plurality
of detected quasi-periodic signal cycles detected in the
received biophysical-signal data set; applying, by the pro-
cessor, a plurality of the determined template-signal vector
data sets, or a vector selected from the group thereof, to one
or more denoising vector data sets, wherein the one or more
denoising vector data sets collectively have a vector length
corresponding to a vector length of a portion of the received
biophysical-signal data set to be filtered, wherein each
applied template-signal vector data set is 1) applied for each
of'the detected cycles determined to be present in the portion
of received biophysical-signal data set to be filtered and ii)
varied in length to match the vector length of a correspond-
ing detected cycle of the portion of the received biophysical-
signal data set to be filtered; and generating a filtered
biophysical-signal data set associated with the biophysical-
signal data set, or a portion thereof, as a normalized data set
of the biophysical signal, wherein the filtered biophysical
signal is generated by merging the portion of the received
biophysical signal to be filtered and the one or more gen-
erated denoising vectors (e.g., using a window-based opera-
tion that applies, in the frequency domain, weighted aver-
ages of the received biophysical signal and the one or more
generated denoising vectors), wherein the normalized data
set associated with the biophysical signal acquired with the
first measurement equipment is analyzable (e.g., with skel-
etal-muscle-related noise/muscle artifact noise removed) as
a machine-learning training data set along with a second
data set acquired with a second measured equipment.

[0034] In some embodiments, a data set of the received
biophysical signal comprises data captured from sensors
(e.g., in a smart device or in a handheld medical diagnostic
equipment) selected from the group consisting of a 12-lead
surface potential sensing electrode system (e.g., electrocar-
diogram system), an intracardiac electrocardiogram, a
Holter electrocardiogram, a 6-lead differential surface
potential sensing electrode system, a 3-lead orthogonal
surface potential sensing electrode system, and a single lead
potential sensing electrode system.

[0035] In some embodiments, a data set of the received
biophysical signal comprises wide-band cardiac phase gra-
dient cardiac signal data (e.g., having at a sampling fre-
quency above about 1 KHz, e.g., above about 10 KHz, above
about 40 KHz, above about 80 KHz, above about 500 KHz)
derived from biopotential signals simultaneously captured
(e.g., having a skew less than about 100 microseconds) from
a plurality of surface electrode placed on surfaces of a body
in proximity to a heart.

[0036] In another aspect, a method is disclosed of reject-
ing an acquired signal, the method comprising: receiving, by
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a processor, a biophysical-signal data set of a subject;
comparing, by the processor, the received biophysical-signal
data set to at least one template-signal vector data set
characteristic of a representative quasi-periodic signal pat-
tern within the biophysical-signal data set; and rejecting, by
the processor, the received biophysical-signal data set based
on the comparison.

[0037] In some embodiments, the step of determining the
at least one template-signal vector data set characteristic of
the representative quasi-periodic signal pattern comprises:
determining, by the processor, a plurality of signal features
(e.g., R-peaks for cardiac signals) characteristically distinct
in the received biophysical-signal data set or a portion
thereof; determining, by the processor, a plurality of cycle
regions (e.g., a median R-R interval) (e.g., stored in a MxN
matrix in which M is a number of detected cycles, and N is
about 40% of the median R-R interval) between each of the
plurality of determined signal features; aligning, by the
processor, each of the plurality of cycle regions to each other
to a same aspect of the plurality of signal features or another
set of signal features located in each of the cycle regions
(e.g., for cardiac signals, features can include initiation of
the Q wave, or the peak of the R wave, or delay estimate by
cross correlation); and determining, by the processor, each
point of the at least one template-signal vector data set using
a mean operation or a median operation performed for each
set of points among the plurality of cycle regions.

[0038] In some embodiments, the step of determining the
at least one template-signal vector data set characteristic of
the representative quasi-periodic signal pattern further com-
prises: performing, by the processor, clustering-based analy-
sis (e.g., PCA+DBSCAN) of the plurality of cycle regions to
determine presence of more than one dominant cycle mor-
phologies, wherein a template-signal vector is determined
for each determined dominant cycle morphology.

[0039] In some embodiments, the method further includes
generating, by the processor, a notification of a failed
acquisition of biophysical-signal data set, wherein the noti-
fication prompts a subsequent acquisition of the biophysical-
signal data set to be performed.

[0040] In some embodiments, the method further includes
causing, by the processor, transmission of the received
biophysical-signal data set over a network to an external
analysis system, wherein the analysis system is configured
to analyze the received biophysical-signal data for presence,
or degree, of a pathology or clinical condition.

[0041] In some embodiments, the comparison comprises
determining presence of asynchronous noise present in the
acquired biophysical-signal data set having a value or
energy over a pre-defined threshold.

[0042] In another aspect, a method is disclosed of quan-
tifying asynchronous noise in an acquired biophysical sig-
nal. The method includes receiving, by a processor, a
biophysical-signal data set of a subject; determining, by the
processor, a plurality of signal features (e.g., R-peaks for
cardiac signals) characteristically distinct in the received
biophysical-signal data set or a portion thereof, determining,
by the processor, a plurality of cycle regions (e.g., a median
R-R interval) (e.g., stored in a MxN matrix in which M is a
number of detected cycles, and N is about 40% of the
median R-R interval) between each of the plurality of
determined signal features; aligning, by the processor, each
of the plurality of cycle regions to each other to a same
aspect of the plurality of signal features or another set of
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signal features located in each of the cycle regions (e.g., for
cardiac signals, features can include initiation of the Q wave,
or the peak of the R wave, or delay estimate by cross
correlation); determining, by the processor, each point of the
at least one template-signal vector data set using a mean
operation or a median operation performed for each set of
points among the plurality of cycle regions; and performing,
by the processor, clustering-based analysis (e.g., PCA+
DBSCAN) of the plurality of cycle regions to determine
presence of more than one dominant cycle morphologies,
wherein a template-signal vector is determined for each
determined dominant cycle morphology.

[0043] In an aspect, a system is disclosed to filter asyn-
chronous noise from an acquired biophysical-signal data set,
the system comprising: a processor and a memory having
instructions stored thereon, wherein execution of the instruc-
tions by the processor cause the processor to receive a
biophysical-signal data set of a subject; determine at least
one template-signal vector data set characteristic of a rep-
resentative quasi-periodic signal pattern of the subject from
a plurality of detected quasi-periodic cycles detected in the
received biophysical-signal data set; apply the at least one
determined template-signal vector data set to one or more
denoising vector data sets, wherein the one or more denois-
ing vector data sets collectively have a vector length corre-
sponding to a vector length of a portion of the received
biophysical-signal data set to be filtered, and wherein the at
least one determined template-signal vector data set is 1)
applied for each of the detected cycles determined to be
present in the portion of received cardiac signal data set to
be filtered and ii) varied in length to match the vector length
of a corresponding detected cycle of the portion of the
received biophysical-signal data set to be filtered; and gen-
erate a filtered biophysical-signal data set of the biophysical-
signal data set, or a portion thereof, by merging the portion
of the received biophysical-signal data set to be filtered and
the one or more generated denoising vector data sets.

[0044] In some embodiments, the instructions when
executed by the processor further cause the processor to
receive one or more additional biophysical signal data sets
each contemporaneously acquired from the subject with the
biophysical signal data set; determine at least one template-
signal vector data set characteristic of a representative
quasi-periodic signal pattern of the subject from a plurality
of detected heart-beat cycles detected in each of the received
one or more additional biophysical signal data sets; apply for
each of the received one or more additional biophysical
signal data sets, a plurality of determined template-signal
vector data sets to one or more denoising vector data sets in
a repeating manner, wherein the one or more denoising
vector data sets collectively have a vector length corre-
sponding to a vector length of a portion of the received
additional biophysical signal data sets to be filtered, and
wherein each of the plurality of determined template-signal
vector data sets is 1) applied for each of the detected cycles
determined to be present in the portion of received addi-
tional biophysical signal data sets to be filtered and ii) varied
in length to match the vector length of a corresponding
detected cycle of the portion of the received additional
biophysical signal data sets to be filtered; and generate a
filtered biophysical signal data set of the biophysical signal
data set, or a portion thereof, by merging the portion of the
received biophysical signal data set to be filtered and the one
or more generated denoising vector data sets.
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[0045] In some embodiments, the operation of determin-
ing the at least one template-signal vector data set charac-
teristic of the representative quasi-periodic signal pattern
comprises determining, by the processor, a plurality of
signal features characteristically distinct in the received
biophysical signal data set or a portion thereof; determining,
by the processor, a plurality of cycle regions between each
of the plurality of determined signal features;

[0046] aligning, by the processor, each of the plurality of
cycle regions to each other to a same aspect of the plurality
of signal features or another set of signal features located in
each of the cycle regions; and determining, by the processor,
each point of the at least one template-signal vector data set
using a mean operation or a median operation performed for
each set of points among the plurality of cycle regions.
[0047] In some embodiments, the received biophysical-
signal data set comprises a cardiac signal data set, and
wherein the plurality of signal features are selected from the
group consisting of: R-peaks in the received cardiac signal
data set or a portion thereof, S-peaks in the received cardiac
signal data set or a portion thereof, T-peaks in the received
cardiac signal data set or a portion thereof, Q-peaks in the
received cardiac signal data set or a portion thereof, and
P-peaks in the received cardiac signal data set or a portion
thereof.

[0048] In some embodiments, the received biophysical-
signal data set comprises a cardiac signal data set, and
wherein the plurality of signal features correspond to
R-peaks in the received cardiac signal data set or a portion
thereof.

[0049] In some embodiments, the operation of determin-
ing the at least one template-signal vector data set charac-
teristic of the representative quasi-periodic pattern further
comprises determining, by the processor, a normalizing
parameter derived from each the plurality of cycle regions.
[0050] In some embodiments, the operation of determin-
ing the at least one template-signal vector data set charac-
teristic of the representative quasi-periodic signal pattern
further comprises normalizing, by the processor, values, or
a parameter derived therefrom, of each of the plurality of
cycle regions to a pre-defined scale.

[0051] In some embodiments, the operation of determin-
ing the at least one template-signal vector data set charac-
teristic of the representative quasi-periodic signal pattern
further comprises performing, by the processor, clustering-
based analysis of the plurality of cycle regions to determine
presence of more than one dominant cycle morphologies,
wherein a template-signal vector is determined for each
determined dominant cycle morphology.

[0052] In some embodiments, the plurality of cycle
regions comprises cycles that are neighboring one another.
[0053] In some embodiments, the cycles that are neigh-
boring one another overlaps in part to one another.

[0054] In some embodiments, the cycles that are neigh-
boring one another do not overlap to one another.

[0055] In some embodiments, the filtered biophysical sig-
nal data set is generated by using two or more template-
signal vector data sets from two or more group of cycles of
the plurality of cycle regions, wherein the two or more
groups of cycles of the plurality of cycle regions are neigh-
boring one another.

[0056] In some embodiments, the filtered biophysical sig-
nal data set is generated in near real-time as the biophysical
signal is acquired.
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[0057] In some embodiments, the filtered biophysical-
signal data set is generated following completed acquisition
of the biophysical signal.

[0058] In some embodiments, the one or more denoising
vector data sets are arranged as a 1-dimensional vector.
[0059] In some embodiments, the one or more denoising
vector data sets are arranged as an N-dimensional vector,
wherein N corresponds to a number of detected cycles
determined to be present in the portion of received biophysi-
cal signal data set to be filtered.

[0060] In some embodiments, the operation applying the
plurality of the determined template-signal vector data sets
to one or more denoising vector data sets comprises initial-
izing, by the processor, the one or more denoising vector
data set as a 1-dimensional vector having a length corre-
sponding to that of the portion of received biophysical signal
to be filtered; and duplicating, by the processor, the deter-
mined template-signal vectors in the 1-dimensional vector
s0 as to align at least a data point associated with a peak of
the determined template-signal vectors to each peak deter-
mined in the received biophysical signal to be filtered.
[0061] In some embodiments, conflict portions of a cur-
rently duplicating template-signal vector data set are
assigned, during the duplication step, average values with
respect to corresponding portions of a previously duplicated
template-signal vector data set to which the currently dupli-
cating template-signal vector data set has a conflict.
[0062] In some embodiments, empty regions in the 1-di-
mensional vector between a currently duplicating template-
signal vector data set and a previously duplicated template-
signal vector data set are stored, during the duplication step,
with values interpolated between a last filled value and a
next filled value around the empty region.

[0063] In some embodiments, the window-based opera-
tion comprises scaling, by the processor, the portion of the
received biophysical signal data set to be filtered with a
plurality of window functions having a pre-defined window
length to generate a modified biophysical signal data set;
scaling, by the processor, the one or more generated denois-
ing vector data sets with the plurality of window functions
to generate a modified denoising vector data sets; determin-
ing, by the processor, an envelope of the modified denoising
vector data sets; converting, by the processor, via a FFT
operation, the envelope of the modified denoising vector
data sets and of the portion of the received biophysical signal
data set to be filtered to the frequency domain; performing,
by the processor, a weighted average operation of the FFT
envelope of the modified denoising vector data sets and of
the modified biophysical signal data set using a static, or a
set of dynamic, interpolation coefficients to generate a
resulting data set; and converting, by the processor, via an
inverse FFT operation, the resulting data set to a time series
data set as the filtered biophysical signal data set of the
biophysical signal.

[0064] In another aspect, a system is disclosed of normal-
izing a first set of data sets acquired with a set of first
measurement equipment and a second set of data sets
acquired with a second set of measurement equipment such
that the first set of data sets is analyzable with the second set
of data sets in a machine learning operation, the system
includes a processor and a memory having instructions
stored thereon, wherein execution of the instructions by the
processor cause the processor to receive a set of biophysical-
signal data sets of a subject acquired with a set of first
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measurement equipment; determine at least one template-
signal vector data set characteristic of a representative
quasi-periodic signal pattern of the subject from a plurality
of detected quasi-periodic signal cycles detected in the
received biophysical-signal data set; apply a plurality of the
determined template-signal vector data sets, or a vector
selected from the group thereof, to one or more denoising
vector data sets, wherein the one or more denoising vector
data sets collectively have a vector length corresponding to
a vector length of a portion of the received biophysical
signal data set to be filtered, wherein each applied template-
signal vector data set is 1) applied for each of the detected
cycles determined to be present in the portion of received
biophysical signal data set to be filtered and ii) varied in
length to match the vector length of a corresponding
detected cycle of the portion of the received biophysical
signal data set to be filtered; and generate a filtered bio-
physical signal data set associated with the biophysical
signal data set, or a portion thereof, as a normalized data set
of the biophysical signal, wherein the filtered biophysical
signal is generated by merging the portion of the received
biophysical signal to be filtered and the one or more gen-
erated denoising vectors, wherein the normalized data set
associated with the biophysical signal acquired with the first
measurement equipment is analyzable as a machine-learning
training data set along with a second data set acquired with
a second measured equipment.

[0065] In some embodiments, the system comprises a
sensor device selected from the group consisting of a
12-lead surface potential sensing electrode system, an
intracardiac electrocardiogram, a Holter electrocardiogram,
a 6-lead differential surface potential sensing electrode sys-
tem, a 3-lead orthogonal surface potential sensing electrode
system, and a single lead potential sensing electrode system.

[0066] In some embodiments, the system comprises a
sensor device configured to acquire biopotential signals
simultaneously captured from a plurality of surface elec-
trode placed on surfaces of a body in proximity to a heart.

[0067] Inanother aspect, a system is disclosed of rejecting
an acquired biophysical signal, the system comprising a
processor and a memory having instructions stored thereon,
wherein execution of the instructions by the processor cause
the processor to receive a biophysical-signal data set of a
subject; compare the received biophysical-signal data set to
at least one template-signal vector data set characteristic of
a representative quasi-periodic pattern within the biophysi-
cal-signal data set; and reject the received biophysical-signal
data set based on the comparison.

[0068] In some embodiments, the operation of determin-
ing the at least one template-signal vector data set charac-
teristic of the representative quasi-periodic pattern com-
prises determining, by the processor, a plurality of signal
features characteristically distinct in the received biophysi-
cal-signal data set or a portion thereof; determining, by the
processor, a plurality of cycle regions between each of the
plurality of determined signal features; aligning, by the
processor, each of the plurality of cycle regions to each other
to a same aspect of the plurality of signal features or another
set of signal features located in each of the cycle regions;
and determining, by the processor, each point of the at least
one template-signal vector data set using a mean operation
or a median operation performed for each set of points
among the plurality of cycle regions.
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[0069] In some embodiments, the operation of determin-
ing the at least one template-signal vector data set charac-
teristic of the representative quasi-periodic pattern further
comprises performing, by the processor, clustering-based
analysis of the plurality of cycle regions to determine
presence of more than one dominant cycle morphologies,
wherein a template-signal vector is determined for each
determined dominant cycle morphology.

[0070] In some embodiments, the instructions when
executed by the processor further cause the processor to
generate a notification of a failed acquisition of biophysical-
signal data set, wherein the notification prompts a subse-
quent acquisition of the biophysical-signal data set to be
performed.

[0071] In some embodiments, the instructions when
executed by the processor further cause the processor to
cause transmission of the received biophysical-signal data
set over a network to an external analysis system, wherein
the analysis system is configured to analyze the received
biophysical-signal data for presence, or degree, of a pathol-
ogy or clinical condition.

[0072] In some embodiments, the comparison comprises
the operation of determining presence of asynchronous noise
present in the acquired biophysical-signal data set having a
value or energy over a pre-defined threshold.

[0073] In another aspect, a system is disclosed that is
configured to quantify asynchronous noise in an acquired
biophysical signal. The system includes a processor and a
memory having instructions stored thereon, wherein execu-
tion of the instructions by the processor cause the processor
to receive a biophysical-signal data set of a subject; deter-
mine a plurality of signal features characteristically distinct
in the received biophysical-signal data set or a portion
thereof; determine a plurality of cycle regions between each
of the plurality of determined signal features; align each of
the plurality of cycle regions to each other to a same aspect
of the plurality of signal features or another set of signal
features located in each of the cycle regions; determine each
point of the at least one template-signal vector data set using
a mean operation or a median operation performed for each
set of points among the plurality of cycle regions; and
perform clustering-based analysis of the plurality of cycle
regions to determine presence of more than one dominant
cycle morphologies, wherein a template-signal vector is
determined for each determined dominant cycle morphol-
ogy.

[0074] In another aspect, a system is disclosed compris-
ing: one or more processors; and a memory having instruc-
tions stored thereon, wherein execution of the instruction by
the one or more processor, cause the one or more processors
to perform any one of the above-recited method.

[0075] In another aspect, a non-transitory computer read-
able medium is disclosed, the computer readable medium
having instructions stored thereon, wherein execution of the
instruction by one or more processors, cause the one or more
processors to perform any one of the above-recited method.

BRIEF DESCRIPTION OF THE DRAWINGS

[0076] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
embodiments and together with the description, serve to
explain the principles of the methods and systems contained
herein. The patent or application file contains at least one
drawing executed in color. Copies of this patent or patent
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application publication with color drawing(s) will be pro-
vided by the Office upon request and payment of the
necessary fee.

[0077] Embodiments of the present invention may be
better understood from the following detailed description
when read in conjunction with the accompanying drawings.
The drawings include the following figures:

[0078] FIG. 1A is a diagram of an example system con-
figured to quantify and remove asynchronous noise and
artifact contamination to more accurately assess complex
nonlinear variabilities in quasi-periodic systems, in accor-
dance with an illustrative embodiment.

[0079] FIG. 1B is a diagram of an example system con-
figured to reject an acquired biophysical signal based on a
quantification of asynchronous noise and artifact contami-
nation, in accordance with another illustrative embodiment.
[0080] FIG. 1C is a diagram of an example system con-
figured to remove asynchronous noise and/or reject an
acquired biophysical signal, in accordance with another
illustrative embodiment.

[0081] FIG. 2 shows an exemplary method of removing
asynchronous noise from an acquired biophysical signal
(e.g., acquired cardiac signal, acquired brain signal, etc.) in
accordance with an illustrative embodiment.

[0082] FIG. 3 is a diagram showing an example imple-
mentation method of the process of FIG. 2, in accordance
with an illustrative embodiment.

[0083] FIG. 4 is a flow diagram of an example method of
representative cycle data set in accordance with an illustra-
tive embodiment.

[0084] FIG. 5 is a diagram of an example method to
quantify asynchronous noise contamination in a biophysical
signal, in accordance with an illustrative embodiment.
[0085] FIG. 6 is a diagram of a representative cycle data
set characteristic of a representative quasi-periodic signal
pattern (e.g., representative heart-beat pattern in an acquired
cardiac signal), in accordance with an illustrative embodi-
ment.

[0086] FIG. 7 shows a diagram of a method to generate the
template-vector data set (e.g., in an acquired cardiac signal),
in accordance with an illustrative embodiment.

[0087] FIG. 8 is an example plot of the raw biophysical-
signal data set, a generated biophysical template-vector data
set, and a resulting denoised biophysical-signal data set, in
accordance with an illustrative embodiment.

[0088] FIG. 9 shows a diagram of a process to segment
biophysical cycles (e.g., cardiac cycles) from the biophysi-
cal-signal data set (e.g., cardiac signal data set) to quantify
asynchronous noise contamination in the biophysical-signal
data set, in accordance with an illustrative embodiment.
[0089] FIG. 10A shows a plot of results of the normaliza-
tion process of FIG. 4 in accordance with an illustrative
embodiment.

[0090] FIG. 10B shows a template-signal vector data set
superimposed on top of a set of stacked cycles for a
high-noise signal.

[0091] FIG. 10C shows a template-signal vector data set
superimposed on top of a set of stacked cycles for a
low-noise signal.

[0092] FIG. 11 shows an example output of a principal
component analysis of a generated cycle matrix, in accor-
dance with an illustrative embodiment.

[0093] FIG. 12 is a plot of a distribution of difference
score determined based on a comparison of the representa-



US 2019/0384757 Al

tive cycle data set and each evaluated cycle, in accordance
with an illustrative embodiment.

[0094] FIGS. 13A, 13B, and 13C show an example wide-
band cerebral phase gradient signal data set acquired from
the measurement system of FIG. 1A, in accordance with an
illustrative embodiment.

[0095] FIG. 14 illustrates the wide-band cerebral phase
gradient signals of FIGS. 13A-13C presented in phase space,
in accordance with an illustrative embodiment.

[0096] FIG. 15 is a diagram of a method to normalize a
first set of data sets acquired with a first set of biophysical-
signal measurement equipment and a second set of data sets
acquired with a second set of biophysical-signal measured
equipment such that the first set of data sets may be analyzed
with the second set of data sets in a machine learning
operation, in accordance with an illustrative embodiment.
[0097] FIG. 16 is an example method of analysis by the
non-invasive cardiac assessment system in accordance with
an implementation of the present disclosure.

DETAILED SPECIFICATION

[0098] Each and every feature described herein, and each
and every combination of two or more of such features, is
included within the scope of the present invention provided
that the features included in such a combination are not
mutually inconsistent.

Example System

[0099] FIG. 1A is a diagram of an example system 100
configured to quantify and remove asynchronous noise such
as skeletal-muscle-related artifact noise contamination and
using such quantification to more accurately assess complex
nonlinear variabilities in quasi-periodic systems, in accor-
dance with an illustrative embodiment. As used herein, the
term “remove” refers to any meaningful reduction, in whole
or in part, in noise contamination that improves or benefits
subsequent analysis.

[0100] In FIG. 1A, a non-invasive measurement system
102 acquires a plurality of biophysical signals 104 (e.g.,
phase gradient biopotential signals) via any number of
measurement probes 114 (shown in the system 100 of FIG.
1 as including six such probes 114a, 1145, 114c, 114d, 114e,
and 114f) from a subject 106 to produce a phase-gradient
biophysical-signal data set 108 that is made available to a
non-invasive biophysical-signal assessment system 110 (la-
beled in FIG. 1 as a “non-invasive biophysical-signal assess-
ment system” 110) to determine a clinical output 112. In
some embodiments, the clinical output includes an assess-
ment of presence or non-presence of a disease and/or an
estimated physiological characteristic of the physiological
system under study.

[0101] In some embodiments, and as shown in FIG. 1A,
the system 102 is configured to remove asynchronous noise
contamination (e.g., via process 118) from the acquired
biophysical-signal data set 117 generated by a front-end
amplification and digitization operation 116. The removal
operation 118 is based on a quantification of the asynchro-
nous noise potentially present in the acquired signal 114.
The process 118 of removing asynchronous noise could be
performed in near real-time once a representative cycle data
set is established, e.g., from a few samples of the acquired
data set. In some embodiments, a few hundred samples can
be used to establish representative cycle data set. In other
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embodiments, a few thousand samples can be used to
establish a representative cycle data set.

[0102] The measurement system 102, in some embodi-
ments, includes a biopotential-based measurement system
configured to acquire wide-band biopotential biophysical
signals. In the electrocardiography context, the measure-
ment system 102 is configured to capture cardiac-related
biopotential or electrophysiological signals of a mammalian
subject (such as a human) as wide-band cardiac phase
gradient signals. An example of the measurement system
102 is described in U.S. Publication No. 2017/0119272 and
in U.S. patent application Ser. No. 15/248,838, each of
which is incorporated by reference herein in its entirety.

[0103] In some embodiments, the wide-band biopotential
biophysical signals are captured as unfiltered mammalian
electrophysiological signals such that the spectral compo-
nent(s) of the signals are not altered. Indeed, the wide-band
biopotential biophysical signals are captured, converted, and
even analyzed without having been filtered (via, e.g., hard-
ware circuitry and/or digital signal processing techniques,
etc.) (e.g., prior to digitization) that otherwise can affect the
phase linearity of the biophysical signal of interest. In some
embodiments, the wide-band biopotential biophysical sig-
nals are captured in in microvolt or sub-microvolt resolu-
tions that are at, or significantly below, the noise floor of
conventional electrocardiographic and other biophysical-
signal acquisition instruments. In some embodiments, the
wide-band biopotential biophysical signals are simultane-
ously sampled having a temporal skew or “lag” of less than
about 1 microseconds, and in other embodiments, having a
temporal skew or lag of not more than about 10 femtosec-
onds. Notably, the exemplified system minimizes non-linear
distortions (e.g., those that can be introduced via certain
filters) in the acquired wide-band phase gradient signal to
not affect the information therein.

[0104] As noted above, the measurement system 102 may
be used to capture other mammalian biopotential or elec-
trophysiological signals, such as, e.g., cerebral/neurological
biopotential signals or other mammalian biopotential signals
associated with various biological systems as described
elsewhere herein.

[0105] Referring still to FIG. 1A, the assessment system
110 is configured to receive the acquired biophysical-signal
data set 108 (e.g., denoised, in some embodiments) (e.g.,
over a network) and to generate, via a transformation
operation 120 (labeled as “phase space transformation”
120), one or more three-dimensional vector cardiogram data
sets 122 for analysis, via, e.g., machine learning operation
and/or a predictor operation (shown as step 124), of the
phase-gradient biophysical-signal data set 108. Examples of
the transformation operation and machine learning/predictor
operation is discussed below as well as in U.S. Publication
No. 2013/0096394, which is incorporated by reference
herein in its entirety.

[0106] In some embodiments, the measurement system
102 is configured to assess the signal quality of the acquired
biophysical signal and to reject the acquired signal data set
based on such assessment. FIG. 1B is a diagram of an
example system configured to reject an acquired biophysical
signal based on a quantification of asynchronous noise and
artifact contamination, in accordance with another illustra-
tive embodiment. In some embodiments, the measurement
system 102 is configured to perform the asynchronous noise
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removal operation 118 and the signal quality assessment
operation 130 based on the quantification of the asynchro-
nous noise.

[0107] Because the clinical analysis of the acquired bio-
physical signal 108 is performed, in some embodiments, on
a separate system (e.g., by the assessment system 110) from
the measurement system 102, a signal quality check ensures
that the acquired biophysical-signal data set 108 is suitable
for subsequent clinical analysis. The near real-time opera-
tion may facilitate the prompting of the re-acquisition of the
biophysical-signal data set by the non-invasive measure-
ment system 102, thus, ensuring that the acquired biophysi-
cal-signal data set is not contaminated by asynchronous
noise (such as skeletal-muscle-related noise) prior to the
biophysical-signal data set being subjected, or made avail-
able, to further processing and analysis for a clinical assess-
ment.

[0108] In some embodiments, the signal quality assess-
ment operation is performed in near real-time, e.g., less than
about 1 minute or less than about 5 minutes, to which the
system can prompt for the re-acquisition of the biophysical-
signal data set. The near real-time assessment allows the
re-acquisition of the biophysical-signal data set prior to the
patient leaving the testing room where the test is conducted.
[0109] In some embodiments, the non-invasive measure-
ment system 102 is configured to generate a notification 126
(labeled in FIG. 1B as “Display failed signal quality assess-
ment” 126) of a failed or unsuitable acquisition of biophysi-
cal-signal data set, wherein the notification prompts that the
re-acquisition of another set of the biophysical-signal data
set. The notification may be a visual output, an audio output,
or a tactile output that is provided to a technician in
proximity to the patient.

[0110] In some embodiments, the rejected biophysical-
signal data set may be stored (128) for further troubleshoot-
ing analysis (132) of defects that led to the rejection of the
acquired signal. To this end, the rejected biophysical-signal
data set is not used in subsequent analysis (e.g., 120, 124) to
yield the clinical output 112.

[0111] FIG. 1C is a diagram of an example system 100
configured to quantify asynchronous noise such as skeletal-
muscle-related artifact noise contamination and using such
quantification to remove such contamination and/or reject an
acquired biophysical signal, in accordance with another
illustrative embodiment. In FIG. 1C, the assessment system
110 is shown configured to further pre-process (134) the
received biophysical-signal data set 108 by rejecting the
received biophysical-signal data set and/or removing the
asynchronous noise from the received biophysical-signal
data set. The pre-processing operation 132 may be per-
formed as a substitute to, or as an additional quality opera-
tion of, the asynchronous noise removal operation 118 (as
performed on the measurement system 102) and/or the
signal-quality assessment operation 130 (as performed on
the measurement system 102).

Asynchronous Noise Removal

[0112] FIG. 2 shows an exemplary method 118 of remov-
ing asynchronous noise from an acquired biophysical signal
in accordance with an illustrative embodiment. As shown in
FIG. 2, the method 118 includes the step of receiving (step
202), by a processor, a biophysical-signal data set (e.g., data
set 108) of a subject 106. As noted above, the removal
operation 118 can be performed by the measurement system
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102 and/or the assessment system 110. For cardiac signals,
ahand-held or other device may be used to collect a patient’s
resting thoracic physiologic signals, e.g., from a set of six
probes or electrodes (e.g., probes 114a-114f), arranged along
three orthogonal axes corresponding to the X, Y, and Z
channels. The electrodes as part of the non-invasive mea-
surement system 102 can acquire the phase-gradient bio-
physical-signal data set 108 without the use of ionizing
radiation, contrast agents, exercise, or pharmacologic stress-
ors. The non-invasive measurement system 102, in some
embodiments, samples at about 8 kHz for a duration of
between about 30 and about 1400 seconds, preferably for
about 210 seconds. The acquired data points are transferred
as part of the data set 108 to the assessment system 110 and
evaluated by an analytic engine therein employing machine-
learned algorithms/predictors.

[0113] Other conventional electrode sets, and electro-
graphic acquisition methodologies may be used to which the
method and system disclosed herein can be applied.
[0114] Referring still to FIG. 2, the method 118 further
includes determining (step 204), by a processor, at least one
template-signal vector data set (also referred to as a “rep-
resentative vector data set”) characteristic of a representative
heart-beat pattern of the subject from a plurality of detected
heart-beat cycles detected in the received cardiac signal data
set (e.g., set 108).

[0115] Referring still to FIG. 2, the method 118 further
includes applying, by a processor, the determined template-
signal vector data set to one or more denoising vector data
sets. In some embodiments, the template-signal vector data
set is applied for each of the detected cycles determined to
be present in the portion of received biophysical-signal data
set (e.g., data set 108) to be filtered. In some embodiments,
the template-signal vector data set is varied in length to
match the vector length of a corresponding detected cycle of
the portion of the received biophysical-signal data set (e.g.,
data set 108) to be filtered. The denoising vector data sets
collectively have a vector length corresponding to a vector
length of a portion of the received biophysical-signal data
set (e.g., data set 108) to be filtered.

[0116] Referring still to FIG. 2, the method 118 further
includes generating (step 208), by a processor, a filtered
biophysical-signal data set (also referred to as a denoised
signal data set) of the acquired biophysical signal, or a
portion thereof, by merging the portion of the received
biophysical-signal data set (e.g., data set 108) corresponding
to the portion to the signal to be filtered and the one or more
generated denoising vector data sets. In some embodiments,
the merging operation is performed using a window-based
operation that applies, in the frequency domain, weighted
averages of the received biophysical-signal data set (e.g.,
data set 108) and the one or more generated denoising vector
data sets.

[0117] In other embodiments, the merging operation is
performed in the time domain.

[0118] FIG. 3 is a diagram showing an example imple-
mentation method 118 of the process of FIG. 2 in accordance
with an illustrative embodiment. Method 118 includes cre-
ating (step 302), by a processor, one or more representative
cycle data set(s) each characteristic of a representative
quasi-periodic signal pattern of the subject from a plurality
of detected quasi-periodic signal cycles detected in the
received biophysical signal(s) (or dataset associated there-
with). For cardiac signals, the representative quasi-periodic
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signal pattern can be characterized as a representative heart-
beat pattern. The term quasi-periodic, as used herein, gen-
erally refers to a characteristic of a signal system that cycles
with, at a minimum, two frequency components, of which
the ratio is not a rational number. The representative cycle
data set is also referred to herein as the template-signal
vector data set. FIG. 4 is a flow diagram of an example
method of representative cycle data set in accordance with
an illustrative embodiment. FIG. 6 is a diagram of a repre-
sentative cycle data set 602 (shown as 602a, 6025) charac-
teristic of a representative quasi-periodic pattern (e.g., rep-
resentative heart-beat pattern in an acquired cardiac signal).
Discussion of FIG. 4 and FIG. 6 is provided in subsequent
sections.

[0119] Referring still to FIG. 3, step 304 to step 312
describe an example to apply, by a processor, the template-
signal vector data set (e.g., representative cycle data set) to
the one or more denoising vector data sets (e.g., a template-
signal vector data set) to generate a denoised signal data set.
As shown in FIG. 3, step 304 includes initializing a “tem-
plate vector” data set that has a length corresponding to that
of input raw signal data set. That is, the length of the
initialized template vector data set is the same as the length
of the input raw signal data set. For example, a raw signal
data set acquired over a 210-second period at 8 KHz yields
via step 304 a template vector data set having a length of
1,680,000 samples for each acquired data channel.

[0120] Step 306 includes populating, by a processor, the
template vector data set with the representative vector data
set(s). That is, in some embodiments, for each detected cycle
in the raw signal data set, method 118 includes placing or
duplicating the representative vector data set 602 in the
template vector data set. Each of the representative vector
data set 602 is placed such that a determined peak (e.g.,
R-peak) of the representative vector data set 602 is aligned
to a same, or similar, time-index as a corresponding peak
(e.g., R-peak) of each detected cycle.

[0121] FIG. 7 shows a diagram 700 of a method to
generate, by a processor, the template-vector data set in
accordance with an illustrative embodiment. In FIG. 7,
diagram 700 includes 1) a plot of the template vector data set
702 populated with the representative vector data set 602
(shown as 704a, 7045, 704c, 704d, 704e, and 704f) and ii)
a plot of the received biophysical-signal data set (e.g., data
set 108), for a given measurement channel, with detected
cycles identified therein. As shown in FIG. 7, the represen-
tative vector data sets (e.g., 704a-704f) are placed/repro-
duced in the template vector data set 702 such that peaks
(e.g., maximum peaks corresponding to R-peaks in an
acquired cardiac signal with each peak shown as 706a-706f)
of the representative vector data sets (e.g., 704a-704f) are
aligned to peaks of the biophysical-signal data set 108.
[0122] It is possible that more than one representative
vector data sets may exist with each corresponding to an
assessed quasi-periodic signal pattern (e.g., heat-beat pattern
for cardiac signals). When there are more than one repre-
sentative cycle data sets, then method 118, in some embodi-
ments, further includes placing a representative cycle data
set selected to correspond (i.e., more closely matches) to a
given current cycle in the raw signal data set.

[0123] Referring still to FIG. 7, when placing or repro-
ducing the representative cycle data set 602 in the template
vector data set 702, if the representative cycle data set being
placed conflicts with existing data in the template vector
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data set, then the overlapping portion (shown as 708a, 7085
in FIG. 7) of the existing data samples and the overlapping
portion of the new data samples are averaged. If there are
gaps (e.g., shown as 710a, 7105) in the template vector data
set 702, then the gaps (e.g., 710qa, 7105) may be filled by a
processor in the template vector data set with data values
determined; e.g., an optional interpolation operation (e.g.,
between the last filled value and the next filled value around
the empty region), shown in FIG. 3 as step 308.

[0124] Once the template vector data set 702 has been
created, method 118 includes initiating (step 310 in FIG. 3),
by a processor, a denoising process. Step 310, in some
embodiments, includes selecting a window size of windows
over which the denoising operation is performed and a value
for an interpolation coefficient to control the influence of the
template vector data set against the raw signal data set.
[0125] In some embodiments, each window has a window
size of about 0.25 seconds. In other embodiments, a window
size less than about 0.25 seconds is used. In yet other
embodiments, a window size greater than about 0.25 sec-
onds is used.

[0126] In some embodiments, a static value for the inter-
polation coefficient is about 0.75 (that is, the influence
attributed to the template vector data set is about three times
that of the raw signal data set). In other embodiments, the
interpolation coefficient has a value less than about 0.75. In
yet other embodiments, the interpolation coefficient has a
value greater than about 0.75. The values of the interpolation
coeflicient and the window size can be assessed based on the
need to eliminate the noise versus that to maintain signal
variability. In some embodiments, the window size or the
interpolation coefficients are allowed to vary dynamically,
e.g., based on an assessment of the signal, e.g., change with
respect to an automatically quantified level of contamination
(e.g., skeletal-muscle related contamination) in the signal.
[0127] Referring still to FIG. 3, step 310 includes initial-
izing a blank/null vector data set that will eventually become
the denoised signal data set 114. The initialized denoised
signal vector data set, in some embodiments, has the same
number of samples as the raw signal data set 114 of interest,
that is, a same number of samples of the raw signal 114 to
be used in the subsequent machine learning analysis.
[0128] Referring still to FIG. 3, step 312 includes creating,
by a processor, a window function for each of the windows
over which to perform the denoising operation. In some
embodiments, for each window, step 312 includes creating
a Hamming window data set centered at a middle portion of
the window. When the Hamming window data set is not
placed at the exact middle sample of the signal data set, then
the Hamming window data set is placed in asymmetric
relation to the full signal data set so that samples that are
equal distances away from the middle of the windows have
an equal value in the Hamming window data set. The
window function enhances, in some embodiments, the abil-
ity of the FFT operation to extract spectral data from signals
by reducing the effects of leakage that may occur during an
FFT operation of the data. Put any way, the window function
can attenuate or remove high frequency components that
result from discontinuities in the discretization of the data
and the analysis using window. Other types of window
function may be applied, including, e.g., Hann window,
Blackman window, Harris window, sine window, Nuttall
window, triangular window, and combinations thereof,
among others. Step 312 further includes multiplying each of
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the raw signal data set 108 and the populated template vector
data set 702 against the window function to generate a
modified raw signal data set and a modified template vector
data set.

[0129] Referring still to FIG. 3, method 118 includes
calculating (step 314), by a processor, an envelope of the
modified template vector data set by performing a low-pass
filtering operation on the data set. In some embodiments, a
Butterworth filter is used. In some embodiments, the But-
terworth filter is a 5th order filter with a normalized cut-off
frequency of 0.025. In some embodiments, a Chebyshev
filter is used.

[0130] Step 316 includes performing, by a processor, a
Fast Fourier Transform (e.g., discrete FFT) of each of the
modified template vector envelope data set and the modified
raw signal data set to transform each of them into the
frequency domain.

[0131] Step 318 includes merging, by a processor, the
modified template vector envelope data set and the modified
raw signal data set in the frequency domain. In some
embodiments, a weighted average operation of the modified
template vector envelope data set and the modified raw
signal data set in the frequency domain is performed. In
some embodiments, the weights used in the interpolation are
the interpolation coefficients that was initially set to control
the influence of the template vector against the raw signal.
[0132] Step 320 includes performing, by a processor, an
inverse Fourier Transform operation to transform the resul-
tant data back to the time domain. The resultant data is
assigned as a current window of the denoised signal data set.
The process is repeated for all the windows, or a portion
thereof, to populate the remaining portion of the denoised
signal data set.

[0133] FIG. 8 is an example plot of the raw biophysical-
signal data set 108 (e.g., shown as “Raw Signal” 108), a
generated template-vector data set 702 (e.g., shown as
“Template Vector” 702), and a resulting denoised signal data
set 802 (e.g., shown as “Denoised Signal”).

[0134] As shown in FIG. 8, the raw signal data set 108 is
heavily contaminated with noise (e.g., skeletal-muscle-re-
lated noise). Application of the template vector data set 702
completely removes, in some embodiments, that noise while
maintaining some of the high-frequency information in the
QRS waveform (e.g., shown at the notching 808 that occurs
at around time index 57.8 seconds), but template vector data
set 702 does not contain most of the variability (i.e., cardiac
signal variability) present in the raw signal data set. The
denoised signal data set 802 includes such variability (i.e.,
cardiac signal variability) information as in the raw signal
data set 108.

[0135] Indeed, methods described herein involve generat-
ing a filtered cardiac signal (namely, the denoised signal) of
the cardiac signal, or a portion thereof, by merging the
portion of the received biophysical signal to be filtered (e.g.,
as the modified raw signal) and the one or more generated
denoising vectors (e.g., as the modified template vector
envelope).

Determination of a Representative Cycle of a
Quasi-Periodic Signal Pattern

[0136] As noted above, FIG. 4 is a diagram of a method
400 to determine a template-signal vector data set of a
representative cycle of a quasi-periodic signal pattern (e.g.,
a representative cycle of a heart beat pattern). Method 400
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may be part of an assessment or quantification of skeletal-
muscle-related artifact and noise contamination in a bio-
physical signal (e.g., cardiac signal, brain signal, etc.).

[0137] As shown in FIG. 4, the method 400 includes, first,
detecting (step 402), by a processor, peaks (e.g., R-peaks
corresponding to maximum depolarization for a cardiac
signal) across the biophysical-signal data set (e.g., data set
108), or a portion thereof. In some embodiments, the peaks
are detected using a Pan-Tompkins algorithm, e.g., as
described in Pan & Tompkins, A Real Time QRS Detection
Algorithm, IEEE Transactions on Biomedical Engineering,
Volume 32-3, 230-236, 1985, which is incorporated by
reference herein in its entirety. In other embodiments, other
algorithms to detect peaks in the cardiac signal data set can
be used. Examples include those described in Makwana et
al. “Hilbert transform based adaptive ECG R-peak detection
technique,” International Journal of Electrical and Computer
Engineering, 2(5), 639 (2012); Lee et al., “Smart ECG
Monitoring Patch with Built-in R-Peak Detection for Long-
Term HRV Analysis,” Annals of Biomedical Engineering.
44(7), 2292-3201 (2016); and Kim et al., “Detection of
R-Peaks in ECG Signal by Adaptive Linear Neuron (ADA-
LINE),” Artificial Neural Network, presented at MATEC
Web of Conferences, 54, 10001 (2016), each of which is
incorporated by reference herein in its entirety.

[0138] In some embodiments, the system is configured to
assess the number of cycles and boundaries of the cycles in
the biophysical-signal data set (e.g., data set 108) to which
subsets of the cycles in determined groups of neighboring
cycles are subsequently used to determine template-signal
vector data sets of representative cycles. In some embodi-
ments, the system is configured to assess the boundaries of
the cycles in the entire biophysical-signal data set, or the
portion desired to be analyzed. In other embodiments, the
system is configured to assess the boundaries of the cycles
for a pre-defined number of neighboring cycles in the
portion of the biophysical-signal data set (e.g., data set 108)
of interest.

[0139] Neighborhood/neighboring cycles may be defined
as, in some embodiments, as 1, 2, . . . 10 cycles around a
middle cycle of a set of determined cycles. In other embodi-
ments, the neighborhood/neighboring cycles may be defined
as, +1, 2, . .. 20 cycles with respect to a beginning cycle of
a set of determined cycles. In other embodiments, the
neighborhood/neighboring cycles may be defined as -1, 2, .
.. 20 cycles with respect to a last cycle of a set of determined
cycles.

[0140] To this end, multiple template-signal vector data
sets may be generated to which each template-signal vector
data set is respectively applied to the cycles used to generate
it. For example, where neighborhood group 1 is composed
of cycles 1. .. 10 and derives template vector #1, analysis
of cycles 1-10 (e.g., as discussed herein) are evaluated
against only template vector #1; where neighborhood group
2 is composed of cycles 5 . . . 15 (e.g., having some and
derives template vector #2), analysis of cycles 5-10 (e.g., as
discussed herein) are evaluated against template vector #1
and template vector #2 (e.g., by an average of vector #1 and
#2); where neighborhood group 3 is composed of cycles 10
... 20 (e.g., having some and derives template vector #2),
analysis of cycles 10-15 (e.g., as discussed herein) are
evaluated against template vector #2 and template vector #3
(e.g., by an average of vector #2 and #3).
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[0141] Indeed, in some embodiments, the analysis is per-
formed until all cardiac cycles (e.g., 3.5-minute PSR record-
ingx60 BPM=210), or portions of the biophysical-signal
data set of interest, have been evaluated.

[0142] This neighborhood approach may reduce sensitiv-
ity to long-term variation by only incorporating local cycles
into the template though may also reduce robustness to noise
because fewer component cycles are used or analyzed.
Indeed, using the full recording may capture natural cardiac
variation in the entire data set but may also create non-noise-
based deviations between the template and the test cardiac
cycles. By using all of the signals in neighborhoods, but in
neighboring groups, all of the signals (and inherent variation
in the acquired signal) are still assessed and sensitivity is
locally improved.

[0143] The number of neighborhood size may be 10, e.g.,
as discussed above, or it may be user-defined parameter. In
some embodiments, the neighborhood size is determined
based on some assessed variation in the signals. Indeed, the
number of neighborhood size may be 2, 3, 4, 5, 6,7, 8,9, 10.
In some embodiments, the number of number of neighbor-
hood size may be greater than 10, e.g., between 10 or 15. In
some embodiments, the number of number of neighborhood
size may be greater 15, e.g., between 15-25. In some
embodiments, the number of number of neighborhood size
may be greater 25, e.g., between 25-50.

[0144] In some embodiments, the neighborhood or group-
ings of cycles are defined by an offset size. In some
embodiments, the offset size is the distance in the index
count from a reference point in one cycle to the next cycle.
The reference point may be a middle point, a beginning
point, or an ending point in the cycle. In the example above,
where cycles are defined from 1...10,5...15,10...20,
etc., the offset size is 5 (per the reference point being at the
beginning, middle, or end).

[0145] Insome embodiments, depending on the offset size
and neighborhood size, each given cycle may have one or
more template-signal vector data sets compared to it to
determine a metric (e.g., mean, median, mode, among others
as discussed herein) for that template-signal vector data set.
Then the metric can be combined to provide a revised score
for that template-signal vector data set.

[0146] For example, a template-signal vector data set may
be defined as preceding and tailing neighboring points of a
reference point defined in the middle of a given defined
cycle. The template-signal vector data set can be generated
(e.g., based on mean, mode, median, etc.) based only on the
preceding and tailing neighboring points (and not on the
reference point defined in the middle of the cycle). Once the
template-signal vector data set is generated, the template-
signal vector data set is compared to the middle of a given
defined cycle to determine a score for that score.

[0147] In some embodiments, the analysis can be iterative
where the score for subsequent cycles are combined. For
example, in cycle #1, a score #1 is determined for cycle #2.
Then, for cycle #2, a score #2 is determined based on a local
score determined from only cycle #2 and then having that
local score combined with the score from cycle #1. Then, for
cycle #3, a score #3 is determined based on a local score
determined from only cycle #3 and then having that local
score combined with the score from cycles #1 and #2. This
iterative analysis can be applied for all or portion of the input
data set of interest.
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[0148] Indeed, the system may choose to only apply the
template to the single cycle at, e.g., the exact center of the
neighborhood. As discussed, every single cycle is then
assessed against a single template, and that single template
is unique across all the possible templates. This type of
analysis provides different vantages of viewing local effects
of the cycles.

[0149] Method 400 includes using (step 404), by a pro-
cessor, the detected peak locations to determine a median
peak-to-peak interval (e.g., median R-R peak for a cardiac
signal) and to set a cycle region around each peak (e.g.,
R-peak for a cardiac signal). For cardiac signals, the cycle
region is set around the R-peak and includes both the P wave
and completion of the T wave. FIG. 9 shows a diagram of
a process for a processor to segment biophysical-signal
cycles from the biophysical-signal data set to quantify
skeletal-muscle-related noise contamination in the biophysi-
cal-signal data set. As shown in FIG. 9, the detected peak
locations (e.g., shown as 9024-902g) is used to determine a
median peak-to-peak interval (e.g., median R-R peaks for
cardiac signals as shown with 904a-904g) and to set a cycle
region (e.g., shown as 9064-906f) around each peak (e.g.,
R-peaks for cardiac signals as shown with 908a-908g). FIG.
9 further shows that the cycle region is set around the R-peak
and includes both the P wave (e.g., shown as 9104-910g) and
completion of the T wave (e.g., shown as 9124-912g) for a
cardiac signal. In some embodiments, the ranges are from
about -20% to about +20% of the median interval (e.g.,
shown as 912q, 91256). Each of the cycle regions (e.g.,
906a-906f) can be stored by a processor in a matrix (also
referred to a “cycle matrix). The cycle matrix may be MxN
in which M is the number of detected cycles, and N is 40%
of the median peak-to-peak interval (e.g., median R-R
intervals for cardiac signals) in which the 40% of the
peak-to-peak interval represents the full temporal “width” of
the cycle. Specifically, once the median peak-to-peak inter-
val (e.g., median R-R interval for cardiac signals) is known
across the dataset, the signal can be divided in half| e.g., to
get the “20%” that reaches both forward and backward in
time from the peak (e.g., R-peak) to capture the other waves
(e.g., T wave and P wave for a cardiac signal). Of course,
other cycle region lengths can be used for cardiac signals
and for the various distinct waves in brain signals, etc.

[0150] Referring to FIG. 4, method 400 includes normal-
izing (step 406), by a processor, each cycle to remove any
offset. FIG. 10A shows a plot of results of the normalization
process of FIG. 4 in accordance with an illustrative embodi-
ment. In FIG. 10A, each cycle region (e.g., 906a-906f) of the
biophysical-signal data set (e.g., data set 108) is normalized
by a processor to remove any offsets such that the average
value of each cycle region is zero. The normalized cardiac
signal data set, as shown, can have a range of “1” and “-1”,
though that range can vary depending on the distribution of
the data.

[0151] In some embodiments, the centering operation
includes the operation of time-aligning the same feature
(e.g., peaks) among the waveforms. Examples of these
features include, for cardiac signals, an initiation of the Q
wave, a peak of the R wave, or a delay estimate determined
by a cross correlation operation, among others. In some
embodiments, the amplitude normalization operation uses
features of the QRS waveform as a basis to determine gain
term (e.g., a short average may be taken just prior to the

QRS).
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[0152] In other embodiments, each cycle is normalized
according to z-scores. Z-score value for a given data point
in the template signal vector data set can be calculated as a
difference between the value of the given data point and a
mean of a set of cycles in which the difference is then
normalized by the standard deviation of that given data point
to the same indexed data value of the set of cycles. In some
embodiments, the z-score may be outputted as a cycle
variability score. Cycle variability may refer to the degree of
variability between cycles in an acquired biophysical data
set that may be attributed to asynchronous noise, among
others.

[0153] Referring still to FIG. 4, method 400 further
includes performing, by a processor, a principal component
analysis (PCA) on the generated cycle matrix to extract the
first two principal components. FIG. 11 shows an example
output of a principal component analysis operation per-
formed on the generated cycle matrix.

[0154] Referring still to FIG. 4, method 400 further
includes performing (step 410), by a processor, a clustering
operation on the output of the principal component analysis.
An example of a clustering operation that can be used
includes the DBSCAN algorithm as described in Ester,
Kriegel, Sander, Xu, “A density-based algorithm for discov-
ering clustering in large spatial databases with noise,” Pro-
ceedings of the Second International Conference on Knowl-
edge Discover and Data Mining. Pages 226-231, which is
incorporated by reference herein in its entirety. In some
embodiments, the clustering operation is configured to be
performed on the first two PCA components, which, in some
embodiments, represent the cycles in a two-dimensional
space. If the algorithm detects a second dominant cluster
representing more than 10% of the total number of cycles,
then that signifies the presence of a second dominant cycle
morphology, such as premature ventricular contractions. It is
noted that FIG. 11 does not contain multiple distinct cycle
morphologies, per it’s identification by DBSCAN. The data
set visually appears to have two levels due to the level of
EMG in the signal.

[0155] Referring still to FIG. 4, method 400 includes
extracting (step 412), by a processor, a representative cycle
based on all, or some of, the cycles that correspond to the
dominant PCA cluster; e.g., as detected by DB SCAN. The
representative cycle may be extracted in one or several
ways, each with different characteristics. In some embodi-
ments, each of the data points in the representative cycle will
embody an underlying distribution, where that distribution is
composed that time-point in all the M cycles. For example,
taking the mean (across all M points, for each N) has a
low-pass filtering effect (removing both high-frequency
information and noise), while taking the median preserves
high-frequency information in a non-linear fashion. The
differing impact of the compression technique, mean vs.
median, is accounted for by varying underling distributions.
If the M points are normally distributed, then the mean and
median have the same result, but start to differ with more
complex distributions, such as those with non-zero skew-
ness, and especially combination with negative kurtosis, or
in the presence of multimodality.

[0156] As noted above, FIG. 6 shows example mean
representative cycle (e.g., 602a) and median representative
cycle (e.g., 602b) for the same underlying cycles. It is
observed that the fragmentation (e.g., a high-frequency
content that is preserved in the median cycle, but removed
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in the mean cycle, e.g., as shown at arrow 604) is preserved
in the median cycle between 3000-3500 samples, while the
mean cycle has removed that feature (604). Additionally,
some high-frequency noise is visible in the median beat, but
not the mean beat, throughout the representative cycle.
Using the median operation preserves high frequency fea-
tures that may not be present in the mean representation due
to changes in QRS morphology over time or because of time
smearing associated with beat detection alignment. In addi-
tion, functions to describe distributions may be used; such
functions would create spectral masks that can remove or
enhance characteristics that are desired for removal or
preservation (such as, for example, the mode of the kernel
density estimate of the underlying distribution).

[0157] Put another way, the mean beat can be used to
generate a “cleaner” representation of the cycle (i.e., less
high-frequency content, where that high-frequency content
includes both signal and noise characteristics), whereas the
median beat contains that high-frequency content. Either
one of these approaches may be more desired depending on
the situation. For example, the median beat may be used
when 1) it is desired to ensure that the high-frequency
component of the biophysical signal characteristics is cap-
tured and maintained for analysis even if there are some
high-frequency noise present that could cloud the analysis or
ii) there is little or low high-frequency noise in the signal.
[0158] The process of FIG. 4 of determining a represen-
tative cycle of a quasi-periodic signal cycle can be a part of
a large study to quantify skeletal-muscle-related noise and
other asynchronous noise contamination in an acquired
biophysical signal.

[0159] In some embodiments, portions of the resulting
windows that are neighbors within a set of windows are
combined and assessed (e.g., to generate the template signal
or to reject a signal). FIG. 10B shows a template-signal
vector data set superimposed on top of a set of stacked
cycles for a high-noise signal. FIG. 10C shows a template-
signal vector data set superimposed on top of a set of stacked
cycles for a low-noise signal. FIG. 10A is based on a single
PSR recording, and FIG. 10B is based on a second single
PSR recording.

[0160] Once is cycle is identified (e.g., in each of these
cases), the identified cycles can be stacked (i.e., plotted or
arranged on top of each other). For example, cycle 1 data
point 1 is placed at x=1 and cycle 1 data point 6000 is placed
at x=6000; then cycle 150 (for example) data point 1 is also
placed at x=1 and cycle 150 data point 6000 is also placed
at x=6000.

[0161] In FIGS. 10B and 10C, once the data are stacked,
a template-signal vector data set 702 corresponding to a
template for a given cycle can be generated.

[0162] Notably, FIGS. 10B and 10C demonstrate interme-
diate outputs of an embodiment. FIG. 10B shows that that
this technique is capable of extracting a meaningful template
vector in the presence of very high noise (where the typical
cycle isn’t otherwise visually obvious), while FIG. 10C
shows that the technique is able to extract the typical cycle
under ideal conditions.

Quantification of Skeletal-muscle Artifact Noise
Contamination in a Biophysical Signal

[0163] FIG. 5 is a diagram of an example method 500 to
quantify, by a processor, skeletal-muscle-related artifact
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noise contamination in an acquired biophysical signal in
accordance with an illustrative embodiment.

[0164] Method 500 includes steps 402-412 as discussed in
relation to FIG. 4 and further includes the step of quantify-
ing, by a processor, the distribution of differences between
the determined representative cycle data set and the raw
signal data set(s).

[0165] Method 500 further includes comparing each
detected cycle in the raw signal data set cycle to the
representative cycle data set. The comparison is performed
by, first, phase-aligning (step 502) the representative cycle
with each of the cycles under examination. In some embodi-
ments, a method such as finding the maximum of the
cross-correlation is used.

[0166] The comparison further includes determining (step
504) a difference between the representative cycle data set
and the phase-aligned cycle under examination. In some
embodiments, a method such as correlation between the two
signals is used. In other embodiments, a median absolute
error is used. In yet other embodiments, a mean absolute
error is used. If there is more than one representative cycle
data set (as, e.g., detected through clustering on the two-
dimensional PCA output), then corresponding representative
cycle data set that most match a given cycle is used.
[0167] The comparison further includes differentiating
(step 506) outlying cycles and inlying cycles based on a
difference score determined, e.g., using a distribution-based
filter. In some embodiments, the distribution-based filter is
configured to identify cycles having a standard-deviation
greater than one from the mean. FIG. 12 is a plot of a
distribution of difference scores determined based on a
comparison of the representative cycle data set and each of
the evaluated cycles as a function of cycle index. As shown
in FIG. 12, the inlying cycles are identified (e.g., in the
region denoted by 1202) to be within one standard deviation
of the mean of the distribution (shown as line 1204), and the
outlying cycles are identified (e.g., in the regions denoted by
1206) to be outside the one standard deviation region from
the mean. A final assessment of the contamination of the
biophysical signal by the skeletal-muscle-related noise can
be performed by taking a representative value of the inlying
difference scores, such as the mean or the median.

[0168] Without wishing to be bound to a particular theory,
the presence of outlying cycles can be attributed to several
factors, including noise introduced by physiological vari-
ability of the biophysical signals and underlying physiologi-
cal system under study. For cardiac signals, the outlying
cycles may be due to variability in the length and/or energy
of depolarization or repolarization cycles, among others.

Discussion

[0169] As noted above, quantification of asynchronous
noise contamination such as skeletal-muscle-related artifact
and noise contamination in a biophysical signal (such as a
cardiac signal) can be complex. Skeletal-muscle-related
artifact and noise, for example, can appear as in-band noise
with respect to the biophysical signal—that is, it can occur
in the same frequency range as the dominant components of
the biophysical signal, typically around 0.5 Hz-80 Hz for
cardiac signals and around 0.1-50 Hz for brain signals.
Further, EMG can also have a similar amplitude as typical
cardiac or brain waveform.

[0170] Similarity of skeletal-muscle-related artifact and
noise contamination to the biophysical signal can cause
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issues for automated diagnostic analysis of such signals, and
therefore, quantifying the level of skeletal-muscle-related
artifact and noise contamination in a signal can facilitate the
automated rejection of signals that are likely to be unsuc-
cessful in subsequent analyses and/or the compensation for
such contamination in subsequent analyses.

[0171] When quantifying the level of skeletal-muscle-
related artifact and noise in a biophysical signal, particularly
for cardiac signals, it is observed that skeletal-muscle-
related artifact and noise is not in synchrony with the
biophysical signal. Because the sources of the two are
different (i.e., whereby the cardiac signal is derived from the
summation of the action potentials of the cardiac myocytes,
while the EMG is derived from the summation of the action
potentials of the originating muscle (such as the pectoral
muscles, biceps, triceps, etc.)), the sources are unlikely to
share a deeper common source that could create synchron-
icity. Indeed, skeletal-muscle-related artifact and noise can
be quantified by comparing each cardiac cycle to the ideal-
ized cardiac cycle for that patient in which the gross differ-
ences can be accounted by the presence of skeletal-muscle-
related artifact and noise contamination in the biophysical
signal.

[0172] In the same way that skeletal-muscle-related arti-
fact and noise quantification is a problem (e.g., skeletal-
muscle-related artifact and noise being in-band with the
physical signal), so is the challenge of skeletal-muscle-
related artifact and noise denoising.

[0173] By leveraging the same insight from skeletal-
muscle-related artifact and noise quantification, a time-
series data set of the representative cycles can be generated
to which a frequency-based analysis or time-based analysis
can be performed to remove, or reduce, the skeletal-muscle-
related artifact and noise and other asynchronous contami-
nation.

[0174] Indeed, in some embodiments, a sample-by-sample
comparison of the original signal in the frequency domain
can be performed followed by a frequency domain denoising
operation between the signals to derive the denoised signals
based on a spectral mask determined from the representative
cycle vector and using that to mask noise features in the
original signal in frequency domain. The exemplified
denoising approach leverages the robust information con-
tained in the representative cycle along with the information
on the variation of the biophysical signal contained in the
raw data.

[0175] The exemplified methods and systems is demon-
strated above in relation to cardiac signals. It is noted that
exemplified methods and systems can be applied to brain
signals and other biophysical signals. FIGS. 13A, 13B, and
13C show an example wide-band cerebral phase gradient
signal data set acquired from the measurement system 102
of FIG. 1A. FIG. 14 illustrates the wide-band cerebral phase
gradient signals of FIGS. 13A-13C presented in phase space.
Indeed, the wide-band cerebral phase gradient signal is a
quasi-periodic system and is similar to a cardiac wide-band
cardiac phase gradient signal in that regard, to which the
exemplified methods and systems can be applied.

Device Normalization Process

[0176] In another aspect, the asynchronous contamination
removal operation as described herein can be used to nor-
malize cardiac signals acquired from multiple and different
acquisition platforms; e.g., prior to subjecting data acquired
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from such platform for machine-learning-based disease
association. The normalization is driven, at least in part, by
knowledge of theoretical topological differences and
insights from deep learning. The device normalization pro-
cess can be applied to data acquired from multiple acquisi-
tion devices, e.g., that are from two or more different
generations to increase similarity (as guided by both
machine learning and electrical engineering theory) between
the groups of signals that can improve the machine learning
training process.

[0177] FIG. 15 is a diagram of a method to normalize a
first set of data sets acquired with a first set of biophysical-
signal measurement equipment and a second set of data sets
acquired with a second set of biophysical-signal measure-
ment equipment such that the first set of data sets may be
analyzed with the second set of data sets in a machine
learning operation. As shown in FIG. 15, a first set of cardiac
signal data sets (e.g., shown as 1502) of a first set of subjects
(e.g., shown as 1504) is acquired with a first set of biophysi-
cal-signal measurement equipment (e.g., shown as 1506),
and a second set of cardiac signal data sets (e.g., shown as
1508) of a second set of subjects (e.g., shown as 1510) is
acquired with a second set of biophysical-signal measure-
ment equipment (e.g., shown as 1512).

[0178] Insome embodiments, the first set of cardiac signal
data sets (e.g., 1502) is processed with a processor to remove
asynchronous noise contamination as described in relation to
FIG. 1 so as to improve the similarity between the first set
of cardiac signal data sets and the second set of cardiac
signal data sets and to facilitate the use of the first set of
cardiac signal data sets and the second set of cardiac signal
data sets in a same training data set for a machine learning
operation.

[0179] In some embodiments, the second set of cardiac
signal data sets (e.g., 1508) is processed with a processor to
remove asynchronous noise contamination as described in
relation to FIG. 1A so as to improve the similarity between
the first set of cardiac signal data sets and the second set of
cardiac signal data sets.

Experimental Results

[0180] A Coronary Artery Disease—Learning Algorithm
Development (CADLAD) study was undertaken involving
two distinct stages to support development and testing of
machine-learned algorithms. In stage 1, paired clinical data
were used to guide the design and development of the
pre-processing, feature extraction and machine learning
steps. That is, the collected clinical study data is split into
three cohorts: Training (50%), validation (25%), and veri-
fication (25%). Similar to the steps described above for
processing signals from a patient for analysis, each signal is
first pre-processed, to clean and normalize the data. Follow-
ing these processes, a set of features are extracted from the
signals in which each set of features is paired with a
representation of the true condition—for example, the
binary classification of the presence or absence of significant
CAD. The final output of this stage is a fixed algorithm
embodied within a measurement system. In Stage 2 of the
CADLAD study, the machine-learned algorithms will be
used to provide a determination of significant CAD against
a pool of previously untested clinical data. The criteria for
disease is established as that defined in the American Col-
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lege of Cardiology (ACC) clinical guidelines, specifically as
greater than 70% stenosis by angiography or less than 0.80
fraction-flow by flow wire.

[0181] For part of the study, a first set of cardiac signal
data sets associated with an earlier acquisition hardware
(e.g., “Gen 1”) (e.g., measurement system 104) is processed
to remove the asynchronous noise contamination as
described in relation to FIG. 1A to facilitate of use of the first
set of cardiac signal data sets and a second set of the cardiac
signal data sets (acquired with a later acquisition hardware,
e.g., “Gen 27) (e.g., measurement system 104) as training
data set for the machine learning operation in the CADLAD
study. Further description of an example earlier acquisition
hardware (e.g., comprising a unipolar sensing front end) can
be found in U.S. Publication No. 2017/0119272, which is
incorporated by reference herein in its entirety, and further
description of a later acquisition hardware (e.g., comprising
a bipolar sensing front end) can be found in U.S. application
Ser. No. 15/911,047, which is also incorporated by reference
herein in its entirety.

[0182] The assessment system 110, in some embodiments,
automatically and iteratively explores combinations of fea-
tures in various functional permutations with the aim of
finding those combinations which can successfully match a
prediction based on the features. To avoid overfitting of the
solutions to the training data, the validation set is used as a
comparator. Once candidate predictors have been devel-
oped, they are then manually applied to a verification data
set to assess the predictor performance against data that has
not been used at all to generate the predictor. Provided that
the data sets are sufficiently large, the performance of a
selected predictor against the verification set will be close to
the performance of that predictor against new data.

[0183] FIG. 16 is an example method 1600 of generating
and analyzing a phase space volumetric object 122 by the
non-invasive cardiac assessment system 110 in accordance
with an implementation of the present disclosure. Other
implementations may become evident to one of ordinary
skill in the art based on this disclosure. The method 1600
includes, in some embodiments, removing (operation 1602)
a baseline wander from the raw differential channel signal of
phase-gradient biophysical-signal data set 108. In some
implementations, the raw differential channel signal is
derived from six signals simultaneously sampled by the
measurement system 102.

[0184] In some implementations, six simultaneously
sampled signals are captured from a resting subject as the
raw differential channel signal data set in which the signals
embed the inter-lead timing and phase information of the
acquired signals, specific to the subject. Geometrical con-
trast arising from the interference in the phase plane of the
depolarization wave with the other orthogonal leads can be
used which can facilitate superimposition of phase space
information on a three-dimensional representation of the
heart. Noiseless subspaces further facilitate the observation
of the phase of these waves. That is, the phase of the
orthogonal leads carries the information about the structure
and generates geometrical contrast in the image. Phase-
contrast takes advantage of the fact that different bioelectric
structures have different impedances, and so spectral and
non-spectral conduction delays and bends the trajectory of
phase space orbit through the heart by different amounts.
These small changes in trajectory can be normalized and
quantified beat to beat and corrected for abnormal or poor



US 2019/0384757 Al

lead placement, and the normalized phase space integrals
can be mapped to a geometric mesh for visualization.
[0185] In some implementations, the raw differential
channel signal data set is normalized, and baseline wander
are removed using a modified moving average filter. For
example, in some implementations, the baseline wander is
extracted from each of the raw differential channel signals
using a median filter with an order of 1500 milliseconds,
smoothed with a 1-Hz low-pass filter, and subtracted from
the signals. The bias is then removed from the resulting
signals by subtracting estimations of the signals using maxi-
mums of probability densities calculated with a kernel
smoothing function. All of the signals, or a portion thereof,
may be divided by their respective interquartile ranges to
complete the normalization process.

[0186] The method 1600 then includes, in some embodi-
ments, reconstructing (operation 1604) a noiseless model
signal by decomposing and selecting sets of candidate basis
functions to create a sparse mathematical model. In some
implementations, a Modified Matching Pursuit (MMP) algo-
rithm is used to find a noiseless model of the raw differential
channel signals. Other sparse approximation algorithms can
be used, including, and not limited to, evolvable mathemati-
cal models, symbolic regression, orthogonal matching pur-
suit, LASSO, linear models optimized using cyclical coor-
dinate descent, orthogonal search, fast orthogonal search,
and cyclical coordinate descent. In some implementations,
the reconstructing operation 504 generates a model as a
function with a weighted sum of basis functions in which
basis function terms are sequentially appends to an initially
empty basis to approximate a target function while reducing
the approximation error.

[0187] The method 1600 then includes, in some embodi-
ments, selecting (operation 506) subspace components (e.g.,
low energy frequency subspace components) from the
selected basis functions and coefficients. The low-energy
subspace components comprise a model reconstructed by
using only the X % low magnitude subset coefficients
(frequency content) contributing least to the modelling error.
Low-energy subspace components, in some implementa-
tions, includes higher order candidate terms that are later
selected, in the phase space coordinates, as part of the sparse
representation of a signal. That is, the last 5 percent, 10
percent, 15 percent, 20 percent, 25 percent, 30 percent of the
candidate terms (as the higher order candidate terms) last
selected via the sparse approximation is used. Other per-
centage values can be used.

[0188] The method 1600 then includes, in some embodi-
ments, reconstructing (operation 1608) a pre-defined set of
n” order fractional-calculus result set (e.g., via a numeric
fractional-calculus operation) to generate a three-dimen-
sional point cloud defining, in part, the phase space volu-
metric object 122. In some implementations, the fractional-
calculus operation is based on Griinwald-Letnikov
fractional-derivative method. In some implementations, the
fractional derivative operation is based on the Lubich’s
fractional linear multi-step method. In some implementa-
tions, the fractional-calculus operation is based on the frac-
tional Adams-Moulton method. In some implementations,
the fractional-calculus operation is based on the Riemann-
Liouville fractional derivative method. In some implemen-
tations, the fractional derivative operation is based on Riesz
fractional derivative method. Other methods of performing
a fractional calculus may be used.
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[0189] The method 1600 then includes, in some imple-
mentations, performing (1610) triangulation operation to
generate surface features (i.e., face) of the point cloud. In
some implementations, Alpha Hull triangulation with a
pre-predetermined radius (a) is performed on the recon-
structed noiseless model signals. In other implementations,
Delaunay triangulation, alpha shapes, ball pivoting, Mesh
generation, Convex Hull triangulation, and the like, is used.
[0190] The method 1600 then includes, in some imple-
mentations, computing (1612) one or more values for each
of'the vertices in the point cloud. The vertex values, in some
implementations, are scaled over a presentable color range.
The vertex values, in some implementations, is a variance
between a modeled channel data set (e.g., X-axis data set,
Y-axis data set, or Z-axis data set) a base-line raw channel
data set (e.g., corresponding X-axis data set, Y-axis data set,
or Z-axis data set). In some implementations, the variance is
determined by subtracting data points of the base-line raw
channel data set with the corresponding data points of the
modeled channel data set. The modeled channel data set, in
some implementations, is based on a sparse approximation
of the base-line raw channel data set to generate a recon-
structed noiseless signal of the base-line raw channel data.
In some implementations, each face of the phase space
volumetric object 122 is assigned a face color value trian-
gularly interpolated among neighboring bounding vertex
color values (e.g., 3 bounding vertex colors).

[0191] In some implementations, various views of the
phase space volumetric object 122 are captured for presen-
tation as computed phase space tomographic images, e.g.,
via a web portal, to a physician to assist the physician in the
assessment of presence or non-presence of pulmonary arte-
rial hypertension. In some implementations, the phase space
volumetric object or the computed phase space tomographic
images are assessed by a trained neural network classifier
configured to assess for presence or non-presence of pul-
monary arterial hypertension. In some implementations, the
computed tomographic images are presented (e.g., a set of
two-dimensional views) alongside the results of a machine-
generated predictions to assist in the physician in making a
diagnosis.

[0192] In other implementations, the phase space volu-
metric object 122 is analyzed in subsequent machine learn-
ing operations (e.g., image-based machine learning opera-
tions or feature-based machine learning operations) to
determine the one or more coronary physiological param-
eters. In some implementations, the assessment system 110
is configured to determine a volume metric (e.g., alpha hull
volume) of the phase space volumetric object 122. In some
implementations, the assessment system 110 is configured to
determine a number of distinct bodies (e.g., distinct vol-
umes) of the generated phase space volumetric object 122.
In some implementations, the assessment system 110 is
configured to assess a maximal color variation (e.g., color
gradient) of the generated phase space volumetric object
122. In some implementations, all these features are
assessed from phase space volumetric object 122 as a
mathematical feature.

[0193] In some implementations, the mathematical fea-
tures of the phase space volumetric object 122 are extracted
along with hundreds of other distinct mathematical features
that represent specific aspects of the biophysical signals
collected. A feature extraction engine of the assessment
system 110 may extract each feature as a specific formula/
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algorithm. In some implementations, when the feature
extraction process is applied to an incoming biophysical
signal, the output is a matrix of all calculated features which
includes a list, for example, of over hundreds of real
numbers; one number per feature in which each feature
represents one or more aspects of the signal’s dynamical,
geometrical, fractional calculus, chaotic, and/or topological
properties.

[0194] A machine learning algorithm (e.g., meta-genetic
algorithm), in some implementations, is used to generate
predictors linking aspects of the phase space model (e.g.,
pool of features) across a population of patients representing
both positive (i.e., have disease) and negative (i.e., do not
have disease) cases to detect the presence of myocardial
tissue associated with pulmonary arterial hypertension. In
some implementations, the performances of the candidate
predictors are evaluated through a verification process
against a previously unseen pool of patients. In some imple-
mentations, the machine learning algorithm invokes a meta-
genetic algorithm to automatically select a subset of features
drawn from a large pool. This feature subset is then used by
an Adaptive Boosting (AdaBoost) algorithm to generate
predictors to diagnose pulmonary arterial hypertension
across a population of patients representing both positive
and negative cases. The performances of the candidate
predictors are determined through verification against a
previously unseen pool of patients. A further description of
the AdaBoost algorithm is provided in Freund, Yoav, and
Robert E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” European
conference on computational learning theory. Springer, Ber-
lin, Heidelberg (1995), which is incorporated by reference
herein in its entirety.

[0195] In some implementations, the assessment system
110 generates one or more images of a representation of the
phase space volumetric object 122 in which the vertices,
face triangulations, and vertex colors are presented. In some
implementations, multiple views of the representation are
generated and included in a report. In some implementa-
tions, the one or more images are presented as a three-
dimensional object that can be rotated, scaled, and/or panned
based on user’s inputs. Indeed, such presentation can be
used to be assessed visually by a skilled operator to deter-
mine whether a subject has presence of non-presence of
pulmonary arterial hypertension.

Neural Network Classification

[0196] The three-dimensional phase-space volumetric
object or the computed phase-space tomographic images can
be directly evaluated by a trained neural network classifier
to determine presence or non-presence of pulmonary arterial
hypertension. In some implementations, the neural network
classifier may be a neural network trained on a set of
grayscale tomographic images which are paired with coro-
nary angiography results assessed for presence and non-
presence of pulmonary arterial hypertension. In some imple-
mentations, a neural network-based nonlinear classifier is
used. In some implementations, the neural network-based
non-linear classifier is configured to map individual pixels
from the generated tomographic images to a binary disease-
state prediction (i.e., the condition exists or does not exist)
or an estimated physiological characteristic. In some imple-
mentations, the neural network’s weights, which govern this
mapping, is optimized using gradient descent techniques.
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[0197] Examples of a disease state prediction can include,
but not limited to, presence/non-presence of significant
coronary arterial disease, presence/non-presence of pulmo-
nary hypertension, presence/non-presence of pulmonary
arterial hypertension, presence/non-presence of pulmonary
hypertension due to left heart disease, presence/non-pres-
ence of pulmonary hypertension due to lung disease, pres-
ence/non-presence of pulmonary hypertension due to
chronic blood clots, etc.

[0198] Examples of an estimated physiological character-
istic can include, but not limited to, fractional flow reserve,
degree of stenosis, degree of ischemia, blood glucose levels,
cardiac chamber size and mechanical function, etc.

[0199] Further examples of processing that may be used
with the exemplified method and system are described in:
U.S. Pat. No. 9,289,150, entitled “Non-invasive Method and
System for Characterizing Cardiovascular Systems™; U.S.
Pat. No. 9,655,536, entitled “Non-invasive Method and
System for Characterizing Cardiovascular Systems™; U.S.
Pat. No. 9,968,275, entitled “Non-invasive Method and
System for Characterizing Cardiovascular Systems™; U.S.
Pat. No. 8,923,958, entitled “System and Method for Evalu-
ating an Electrophysiological Signal”; U.S. Pat. No. 9,408,
543, entitled “Non-invasive Method and System for Char-
acterizing Cardiovascular Systems and All-Cause Mortality
and Sudden Cardiac Death Risk™; U.S. Pat. No. 9,955,883,
entitled “Non-invasive Method and System for Character-
izing Cardiovascular Systems and All-Cause Mortality and
Sudden Cardiac Death Risk™; U.S. Pat. No. 9,737,229,
entitled “Noninvasive Electrocardiographic Method for
Estimating Mammalian Cardiac Chamber Size and
Mechanical Function”; U.S. Pat. No. 10,039,468, entitled
“Noninvasive Electrocardiographic Method for Estimating
Mammalian Cardiac Chamber Size and Mechanical Func-
tion”; U.S. Pat. No. 9,597,021, entitled “Noninvasive
Method for Estimating Glucose, Glycosylated Hemoglobin
and Other Blood Constituents™; U.S. Pat. No. 9,968,265,
entitled “Method and System for Characterizing Cardiovas-
cular Systems From Single Channel Data™; U.S. Pat. No.
9,910,964, entitled “Methods and Systems Using Math-
ematical Analysis and Machine Learning to Diagnose Dis-
ease”; U.S. Patent Publication No. 2017/0119272, entitled
“Method and Apparatus for Wide-Band Phase Gradient
Signal Acquisition”; PCT Publication No. W02017/033164,
entitled “Method and Apparatus for Wide-Band Phase Gra-
dient Signal Acquisition™; U.S. Patent Publication No. 2018/
0000371, entitled “Non-invasive Method and System for
Measuring Myocardial Ischemia, Stenosis Identification,
Localization and Fractional Flow Reserve Estimation”; PCT
Publication No. W02017/221221, entitled “Non-invasive
Method and System for Measuring Myocardial Ischemia,
Stenosis Identification, Localization and Fractional Flow
Reserve Estimation”; U.S. Pat. No. 10,292,596, entitled
“Method and System for Visualization of Heart Tissue at
Risk™; U.S. patent application Ser. No. 16/402,616, entitled
“Method and System for Visualization of Heart Tissue at
Risk™; U.S. Patent Publication No. 2018/0249960, entitled
“Method and System for Wide-band Phase Gradient Signal
Acquisition”; U.S. patent application Ser. No. 16/232,801,
entitled “Method and System to Assess Disease Using Phase
Space Volumetric Objects”; PCT Application No. 1B/2018/
060708, entitled “Method and System to Assess Disease
Using Phase Space Volumetric Objects™; U.S. Patent Pub-
lication No. US2019/0117164, entitled “Methods and Sys-
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tems of De-Noising Magnetic-Field Based Sensor Data of
Electrophysiological Signals”; U.S. patent application Ser.
No. 16/232,586, entitled “Method and System to Assess
Disease Using Phase Space Tomography and Machine
Learning”; PCT Application No. PCT/M2018/060709,
entitled “Method and System to Assess Disease Using Phase
Space Tomography and Machine Learning”; U.S. patent
application Ser. No. , entitled “Method and System
to Assess Disease Using Phase Space Tomography and
Machine Learning” (having attorney docket no. 10321-
034pvl and claiming priority to U.S. Patent Provisional
Application No. 62/784,984); U.S. patent application Ser.
No. 16/429,593, entitled “Method and System to Assess
Pulmonary Hypertension Using Phase Space Tomography
and Machine Learning”; U.S. patent application Ser. No.

, entitled “Method and System for Automated Quan-
tification of Signal Quality” (having attorney docket no.
10321-036pv1 and claiming priority to U.S. Patent Provi-
sional Application No. 62/784,962); U.S. patent application
Ser. No. , entitled “Method and System to Configure
and Use Neural Network To Assess Medical Disease” (hav-
ing attorney docket no. 10321-037pv1 and claiming priority
to U.S. Patent Provisional Application No. 62/784,925);
U.S. patent application Ser. No. , entitled “Method
and System to Assess Disease Using Phase Space Volumet-
ric Object and Machine Learning” (having attorney docket
no. 10321-038pvl and claiming priority to U.S. Patent
Provisional Application No. 62/785,158); U.S. patent appli-
cation Ser. No. 15/653,433, entitled “Discovering Novel
Features to Use in Machine Learning Techniques, such as
Machine Learning Techniques for Diagnosing Medical Con-
ditions”; U.S. patent application Ser. No. 15/653,431,
entitled “Discovering Genomes to Use in Machine Learning
Techniques™; U.S. Provisional Application No. , filed
concurrently herewith (having attorney docket no. 10321-
041pvl), entitled “Method and System to Assess Disease
Using Dynamical Analysis of Cardiac and Photoplethysmo-
graphic Signals”, each of which is incorporated by reference
herein in its entirety.

[0200] Unless otherwise expressly stated, it is in no way
intended that any method set forth herein be construed as
requiring that its steps be performed in a specific order.
Accordingly, where a method claim does not actually recite
an order to be followed by its steps or it is not otherwise
specifically stated in the claims or descriptions that the steps
are to be limited to a specific order, it is no way intended that
an order be inferred, in any respect. This holds for any
possible non-express basis for interpretation, including: mat-
ters of logic with respect to arrangement of steps or opera-
tional flow; plain meaning derived from grammatical orga-
nization or punctuation; the number or type of embodiments
described in the specification.

[0201] While the methods and systems have been
described in connection with certain embodiments and spe-
cific examples, it is not intended that the scope be limited to
the particular embodiments set forth, as the embodiments
herein are intended in all respects to be illustrative rather
than restrictive.

[0202] The methods, systems and processes described
herein may be used generate stenosis and FFR outputs for
use in connection with procedures such as the placement of
vascular stents within a vessel such as an artery of a
mammalian (e.g., human) subject, and other interventional
and surgical system or processes. In one embodiment, the
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methods, systems and processes described herein can be
configured to use the FFR/stenosis outputs to determine
and/or modify, intra operation, a number of stents to be
placed in a mammalian (e.g., human), including their opti-
mal location of deployment within a given vessel, among
others.
[0203] Examples of other biophysical signals that may be
analyzed in whole, or in part, using the exemplary methods
and systems include, but are not limited to, an electrocar-
diogram (ECG) data set, an electroencephalogram (EEG)
data set, a gamma synchrony signal data set; a respiratory
function signal data set; a pulse oximetry signal data set; a
perfusion data signal data set; a quasi-periodic biological
signal data set; a fetal ECG data set; a blood pressure signal;
a cardiac magnetic field data set, and a heart rate signal data
set.
[0204] The exemplary analysis can be used to identify
various pathologies and condition including, but are not
limited to heart disease, cardiac arrhythmia, diabetic auto-
nomic neuropathy, Parkinson’s disease, forms of epilepsy,
brain injury, altered state of cognition, stability of a heart at
different heart rates, effectiveness of medication, ischemic,
silent ischemia, atrial fibrillation, ventricular fibrillation,
ventricular tachycardia, blood vessel block, pulmonary
hypertension, attention deficit disorder, etc.
What is claimed is:
1. A method to filter asynchronous noise from an acquired
biophysical-signal data set, the method comprising:
receiving, by a processor, a biophysical-signal data set of
a subject;
determining, by the processor, at least one template-signal
vector data set characteristic of a representative quasi-
periodic signal pattern of the subject from a plurality of
detected quasi-periodic cycles detected in the received
biophysical-signal data set;
applying, by the processor, the at least one determined
template-signal vector data set to one or more denois-
ing vector data sets, wherein the one or more denoising
vector data sets collectively have a vector length cor-
responding to a vector length of a portion of the
received biophysical-signal data set to be filtered, and
wherein the at least one determined template-signal
vector data set is 1) applied for each of the detected
cycles determined to be present in the portion of
received cardiac signal data set to be filtered and ii)
varied in length to match the vector length of a corre-
sponding detected cycle of the portion of the received
biophysical-signal data set to be filtered; and
generating a filtered biophysical-signal data set of the
biophysical-signal data set, or a portion thereof, by
merging the portion of the received biophysical-signal
data set to be filtered and the one or more generated
denoising vector data sets.
2. The method of claim 1 further comprising:
receiving, by the processor, one or more additional bio-
physical signal data sets each contemporaneously
acquired from the subject with the biophysical signal
data set;
determining, by the processor, at least one template-signal
vector data set characteristic of a representative quasi-
periodic signal pattern of the subject from a plurality of
detected heart-beat cycles detected in each of the
received one or more additional biophysical signal data
sets;
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applying, by the processor, for each of the received one or
more additional biophysical signal data sets, a plurality
of determined template-signal vector data sets to one or
more denoising vector data sets in a repeating manner,
wherein the one or more denoising vector data sets
collectively have a vector length corresponding to a
vector length of a portion of the received additional
biophysical signal data sets to be filtered, and wherein
each of the plurality of determined template-signal
vector data sets is i) applied for each of the detected
cycles determined to be present in the portion of
received additional biophysical signal data sets to be
filtered and ii) varied in length to match the vector
length of a corresponding detected cycle of the portion
of' the received additional biophysical signal data sets to
be filtered; and
generating a filtered biophysical signal data set of the
biophysical signal data set, or a portion thereof, by
merging the portion of the received biophysical signal
data set to be filtered and the one or more generated
denoising vector data sets.
3. The method of claim 1, wherein the step of determining
the at least one template-signal vector data set characteristic
of the representative quasi-periodic signal pattern com-
prises:
determining, by the processor, a plurality of signal fea-
tures characteristically distinct in the received bio-
physical signal data set or a portion thereof;

determining, by the processor, a plurality of cycle regions
between each of the plurality of determined signal
features;

aligning, by the processor, each of the plurality of cycle

regions to each other to a same aspect of the plurality
of signal features or another set of signal features
located in each of the cycle regions; and

determining, by the processor, each point of the at least

one template-signal vector data set using a mean opera-
tion or a median operation performed for each set of
points among the plurality of cycle regions.

4. The method of claim 1, wherein the received biophysi-
cal-signal data set comprises a cardiac signal data set, and
wherein the plurality of signal features are selected from the
group consisting of: R-peaks in the received cardiac signal
data set or a portion thereof, S-peaks in the received cardiac
signal data set or a portion thereof, T-peaks in the received
cardiac signal data set or a portion thereof, Q-peaks in the
received cardiac signal data set or a portion thereof, and
P-peaks in the received cardiac signal data set or a portion
thereof.

5. The method of claim 1, wherein the received biophysi-
cal-signal data set comprises a cardiac signal data set, and
wherein the plurality of signal features correspond to
R-peaks in the received cardiac signal data set or a portion
thereof.

6. The method of claim 1, wherein the step of determining
the at least one template-signal vector data set characteristic
of the representative quasi-periodic pattern further com-
prises:

determining, by the processor, a normalizing parameter

derived from each the plurality of cycle regions.

7. The method of claim 1, wherein the step of determining
the at least one template-signal vector data set characteristic
of the representative quasi-periodic signal pattern further
comprises:
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normalizing, by the processor, values, or a parameter
derived therefrom, of each of the plurality of cycle
regions to a pre-defined scale.

8. The method of claim 1, wherein the step of determining
the at least one template-signal vector data set characteristic
of the representative quasi-periodic signal pattern further
comprises:

performing, by the processor, clustering-based analysis of

the plurality of cycle regions to determine presence of
more than one dominant cycle morphologies, wherein
a template-signal vector is determined for each deter-
mined dominant cycle morphology.

9. The method of claim 1, wherein the plurality of cycle
regions comprises cycles that are neighboring one another.

10. The method of claim 9, wherein the cycles that are
neighboring one another overlaps in part to one another.

11. The method of claim 9, wherein the cycles that are
neighboring one another do not overlap to one another.

12. The method of claim 9, wherein the filtered biophysi-
cal signal data set is generated by using two or more
template-signal vector data sets from two or more group of
cycles of the plurality of cycle regions, wherein the two or
more groups of cycles of the plurality of cycle regions are
neighboring one another.

13. The method of claim 1, wherein the filtered biophysi-
cal signal data set is generated in near real-time as the
biophysical signal is acquired.

14. The method of claim 1, wherein the filtered biophysi-
cal-signal data set is generated following completed acqui-
sition of the biophysical signal.

15. The method of claim 1, wherein the one or more
denoising vector data sets are arranged as a 1-dimensional
vector.

16. The method of claim 1, wherein the one or more
denoising vector data sets are arranged as an N-dimensional
vector, wherein N corresponds to a number of detected
cycles determined to be present in the portion of received
biophysical signal data set to be filtered.

17. The method of claim 1, wherein the step of applying
the plurality of the determined template-signal vector data
sets to one or more denoising vector data sets comprises:

initializing, by the processor, the one or more denoising

vector data set as a 1-dimensional vector having a
length corresponding to that of the portion of received
biophysical signal to be filtered; and

duplicating, by the processor, the determined template-

signal vectors in the 1-dimensional vector so as to align
at least a data point associated with a peak of the
determined template-signal vectors to each peak deter-
mined in the received biophysical signal to be filtered.

18. The method of claim 17, wherein, during the dupli-
cation step, conflict portions of a currently duplicating
template-signal vector data set are assigned average values
with respect to corresponding portions of a previously
duplicated template-signal vector data set to which the
currently duplicating template-signal vector data set has a
conflict.

19. The method of claim 17, wherein, during the dupli-
cation step, empty regions in the 1-dimensional vector
between a currently duplicating template-signal vector data
set and a previously duplicated template-signal vector data
set are stored with values interpolated between a last filled
value and a next filled value around the empty region.
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20. The method of claim 1, wherein the window-based
operation comprises:

scaling, by the processor, the portion of the received
biophysical signal data set to be filtered with a plurality
of window functions having a pre-defined window
length to generate a modified biophysical signal data
set;

scaling, by the processor, the one or more generated
denoising vector data sets with the plurality of window
functions to generate a modified denoising vector data
sets;

determining, by the processor, an envelope of the modi-
fied denoising vector data sets;

converting, by the processor, via a FFT operation, the
envelope of the modified denoising vector data sets and
of'the portion of the received biophysical signal data set
to be filtered to the frequency domain;

performing, by the processor, a weighted average opera-
tion of the FFT envelope of the modified denoising
vector data sets and of the modified biophysical signal
data set using a static, or a set of dynamic, interpolation
coeflicients to generate a resulting data set; and

converting, by the processor, via an inverse FFT opera-
tion, the resulting data set to a time series data set as the
filtered biophysical signal data set of the biophysical
signal.

21. A method of normalizing a first set of data sets
acquired with a set of first measurement equipment and a
second set of data sets acquired with a second set of
measurement equipment such that the first set of data sets is
analyzable with the second set of data sets in a machine
learning operation, the method comprising:

receiving, by a processor, a set of biophysical-signal data
sets of a subject acquired with a set of first measure-
ment equipment;

determining, by the processor, at least one template-signal
vector data set characteristic of a representative quasi-
periodic signal pattern of the subject from a plurality of
detected quasi-periodic signal cycles detected in the
received biophysical-signal data set;

applying, by the processor, a plurality of the determined
template-signal vector data sets, or a vector selected
from the group thereof, to one or more denoising vector
data sets, wherein the one or more denoising vector
data sets collectively have a vector length correspond-
ing to a vector length of a portion of the received
biophysical signal data set to be filtered, wherein each
applied template-signal vector data set is 1) applied for
each of the detected cycles determined to be present in
the portion of received biophysical signal data set to be
filtered and ii) varied in length to match the vector
length of a corresponding detected cycle of the portion
of' the received biophysical signal data set to be filtered;
and

generating a filtered biophysical signal data set associated
with the biophysical signal data set, or a portion
thereof, as a normalized data set of the biophysical
signal, wherein the filtered biophysical signal is gen-
erated by merging the portion of the received biophysi-
cal signal to be filtered and the one or more generated
denoising vectors,
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wherein the normalized data set associated with the
biophysical signal acquired with the first measurement
equipment is analyzable as a machine-learning training
data set along with a second data set acquired with a
second measured equipment.

22. The method of claim 21, wherein a data set of the
received biophysical signal comprises data captured from
sensors selected from the group consisting of a 12-lead
surface potential sensing electrode system, an intracardiac
electrocardiogram, a Holter electrocardiogram, a 6-lead dif-
ferential surface potential sensing electrode system, a 3-lead
orthogonal surface potential sensing electrode system, and a
single lead potential sensing electrode system.

23. The method of claim 22, wherein a data set of the
received biophysical signal comprises wide-band cardiac
phase gradient cardiac signal data derived from biopotential
signals simultaneously captured from a plurality of surface
electrode placed on surfaces of a body in proximity to a
heart.

24. A method of rejecting an acquired biophysical signal,
the method comprising:

receiving, by a processor, a biophysical-signal data set of
a subject;

comparing, by the processor, the received biophysical-
signal data set to at least one template-signal vector
data set characteristic of a representative quasi-periodic
pattern within the biophysical-signal data set; and

rejecting, by the processor, the received biophysical-
signal data set based on the comparison.

25. The method of claim 24, wherein the step of deter-
mining the at least one template-signal vector data set
characteristic of the representative quasi-periodic pattern
comprises:

determining, by the processor, a plurality of signal fea-
tures characteristically distinct in the received bio-
physical-signal data set or a portion thereof;

determining, by the processor, a plurality of cycle regions
between each of the plurality of determined signal
features;

aligning, by the processor, each of the plurality of cycle
regions to each other to a same aspect of the plurality
of signal features or another set of signal features
located in each of the cycle regions; and

determining, by the processor, each point of the at least
one template-signal vector data set using a mean opera-
tion or a median operation performed for each set of
points among the plurality of cycle regions.

26. The method of claim 24, wherein the step of deter-
mining the at least one template-signal vector data set
characteristic of the representative quasi-periodic pattern
further comprises:

performing, by the processor, clustering-based analysis of
the plurality of cycle regions to determine presence of
more than one dominant cycle morphologies, wherein
a template-signal vector is determined for each deter-
mined dominant cycle morphology.

27. The method of claim 24 further comprising:

generating, by the processor, a notification of a failed
acquisition of biophysical-signal data set, wherein the
notification prompts a subsequent acquisition of the
biophysical-signal data set to be performed.
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28. The method of claim 24 further comprising:
causing, by the processor, transmission of the received
biophysical-signal data set over a network to an exter-
nal analysis system, wherein the analysis system is
configured to analyze the received biophysical-signal
data for presence, or degree, of a pathology or clinical
condition.
29. The method of claim 24, wherein the comparison
comprises:
determining presence of asynchronous noise present in
the acquired biophysical-signal data set having a value
or energy over a pre-defined threshold.
30. A method of quantifying asynchronous noise in an
acquired biophysical signal, the method comprising:
receiving, by a processor, a biophysical-signal data set of
a subject;
determining, by the processor, a plurality of signal fea-
tures characteristically distinct in the received bio-
physical-signal data set or a portion thereof;
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determining, by the processor, a plurality of cycle regions
between each of the plurality of determined signal
features;

aligning, by the processor, each of the plurality of cycle
regions to each other to a same aspect of the plurality
of signal features or another set of signal features
located in each of the cycle regions;

determining, by the processor, each point of the at least
one template-signal vector data set using a mean opera-
tion or a median operation performed for each set of
points among the plurality of cycle regions; and

performing, by the processor, clustering-based analysis of
the plurality of cycle regions to determine presence of
more than one dominant cycle morphologies, wherein
a template-signal vector is determined for each deter-
mined dominant cycle morphology.
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