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(57) ABSTRACT

A method of decoding video data comprising parsing a
sub-prediction unit motion flag from received encoded video
data, deriving a list of sub-prediction unit level motion
prediction candidates if the sub-prediction unit motion flag
is active, deriving a list of prediction unit level motion
prediction candidates if the sub-prediction unit motion flag
is not active, and decoding the encoded video data using a
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SIGNALING SUB-PREDICTION UNIT
MOTION VECTOR PREDICTOR

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/687,052, filed Jun. 19, 2018, the
entire content of which is incorporated by reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and video
decoding.

BACKGROUND
[0003] Digital video capabilities can be incorporated into

a wide range of devices, including digital televisions, digital
direct broadcast systems, wireless broadcast systems, per-
sonal digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferenc-
ing devices, video streaming devices, and the like. Digital
video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2,
MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard, ITU-T H.265/High Efficiency
Video Coding (HEVC), and extensions of such standards.
The video devices may transmit, receive, encode, decode,
and/or store digital video information more efficiently by
implementing such video coding techniques.

[0004] Video coding techniques include spatial (intra-
picture) prediction and/or temporal (inter-picture) prediction
to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g.,
a video picture or a portion of a video picture) may be
partitioned into video blocks, which may also be referred to
as coding tree units (CTUs), coding units (CUs) and/or
coding nodes. Video blocks in an intra-coded (I) slice of a
picture are encoded using spatial prediction with respect to
reference samples in neighboring blocks in the same picture.
Video blocks in an inter-coded (P or B) slice of a picture may
use spatial prediction with respect to reference samples in
neighboring blocks in the same picture or temporal predic-
tion with respect to reference samples in other reference
pictures. Pictures may be referred to as frames, and reference
pictures may be referred to as reference frames.

SUMMARY

[0005] In general, this disclosure relates to motion vector
prediction in video codecs. For example, a motion vector
predictor is selected adaptively from two lists of motion
vector prediction candidates, which are derived. The first list
includes PU level motion vector prediction candidates, the
second list includes sub-PU level motion vector prediction
candidates.

[0006] Inoneexample embodiment, a method of decoding
video data is discussed.

[0007] The method includes receiving encoded video data,
parsing a sub-prediction unit motion flag from the encoded
video data, in response to determining the sub-prediction
unit motion flag is active, deriving a list of sub-prediction
unit level motion prediction candidates, in response to
determining the sub-prediction unit motion flag is not active,
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deriving a list of prediction unit level motion prediction
candidates, selecting a motion vector predictor from either
the list of sub-prediction unit level motion prediction can-
didates or the list of prediction unit level motion prediction
candidates, and decoding the encoded video data using the
selected motion vector predictor. The encoded video data
includes a current block and wherein the list of sub-predic-
tion unit level motion prediction candidates and the list of
prediction unit level motion prediction candidates are
derived from neighboring blocks of the current block. The
neighboring blocks are spatial neighbors of the current block
in a current picture or temporal neighbors of the current
block in a previously coded picture. The list of sub-predic-
tion unit level motion prediction candidates or the list of
prediction unit level motion prediction candidates is at least
partially ordered based on motion prediction occurrences in
the neighboring blocks. Pixels in a prediction unit share first
motion vector information and pixels in a sub-prediction
unit share second motion vector information, and wherein
the first motion vector information or the second vector
information is determined from the selected motion vector
predictor. The prediction unit level motion vector candidates
list including at least one of: spatial neighboring candidates
and temporal neighboring candidates. The list of sub-pre-
diction unit level motion prediction candidates includes at
least one of: affine motion vector prediction, alternative
temporal motion vector prediction (ATMVP), spatial-tem-
poral motion vector prediction (STMVP), planar motion
vector prediction, and pattern matched motion vector deri-
vation (PMVD). The method includes deriving a merging
candidate index in response to determining the sub-predic-
tion unit motion flag is active, wherein the merging candi-
date index specifies the motion vector predictor to be
selected.

[0008] In another example embodiment, an apparatus for
decoding video data is discussed. The apparatus includes a
memory for storing a received encoded video data and a
processor. The processor configured to parse a sub-predic-
tion unit motion flag from the encoded video data, in
response to determining the sub-prediction unit motion flag
is active, derive a list of sub-prediction unit level motion
prediction candidates, in response to determining the sub-
prediction unit motion flag is not active, derive a list of
prediction unit level motion prediction candidates, select a
motion vector predictor from either the list of sub-prediction
unit level motion prediction candidates or the list of predic-
tion unit level motion prediction candidates, and decode the
encoded video data using the selected motion vector pre-
dictor. The encoded video data includes a current block and
wherein the list of sub-prediction unit level motion predic-
tion candidates and the list of prediction unit level motion
prediction candidates are derived from neighboring blocks
of the current block. The neighboring blocks are spatial
neighbors of the current block in a current picture or
temporal neighbors of the current block in a previously
coded picture. The list of sub-prediction unit level motion
prediction candidates or the list of prediction unit level
motion prediction candidates is at least partially ordered
based on motion prediction occurrences in the neighboring
blocks. Pixels in a prediction unit share first motion vector
information and pixels in a sub-prediction unit share second
motion vector information, and wherein the first motion
vector information or the second vector information is
determined from the selected motion vector predictor. The
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prediction unit level motion vector candidates list including
at least one of: spatial neighboring candidates and temporal
neighboring candidates. The list of sub-prediction unit level
motion prediction candidates includes at least one of: affine
motion vector prediction, alternative temporal motion vector
prediction (ATMVP), spatial-temporal motion vector pre-
diction (STMVP), planar motion vector prediction, and
pattern matched motion vector derivation (PMVD). The
processor further configured to derive a merging candidate
index in response to determining the sub-prediction unit
motion flag is active, wherein the merging candidate index
specifies the motion vector predictor to be selected.

[0009] In another example embodiment, an apparatus for
decoding video data is discussed. The apparatus includes a
memory means for storing a received encoded video data
and a processor means. The processor means configured to,
parse a sub-prediction unit motion flag from the encoded
video data, in response to determining the sub-prediction
unit motion flag is active, derive a list of sub-prediction unit
level motion prediction candidates, in response to determin-
ing the sub-prediction unit motion flag is not active, derive
a list of prediction unit level motion prediction candidates,
select a motion vector predictor from either the list of
sub-prediction unit level motion prediction candidates or the
list of prediction unit level motion prediction candidates,
and decode the encoded video data using the selected motion
vector predictor. The encoded video data includes a current
block and wherein the list of sub-prediction unit level
motion prediction candidates and the list of prediction unit
level motion prediction candidates are derived from neigh-
boring blocks of the current block. The neighboring blocks
are spatial neighbors of the current block in a current picture
or temporal neighbors of the current block in a previously
coded picture. The list of sub-prediction unit level motion
prediction candidates or the list of prediction unit level
motion prediction candidates is at least partially ordered
based on motion prediction occurrences in the neighboring
blocks. Pixels in a prediction unit share first motion vector
information and pixels in a sub-prediction unit share second
motion vector information, and wherein the first motion
vector information or the second vector information is
determined from the selected motion vector predictor. The
prediction unit level motion vector candidates list including
at least one of: spatial neighboring candidates and temporal
neighboring candidates. The list of sub-prediction unit level
motion prediction candidates includes at least one of: affine
motion vector prediction, alternative temporal motion vector
prediction (ATMVP), spatial-temporal motion vector pre-
diction (STMVP), planar motion vector prediction, and
pattern matched motion vector derivation (PMVD). The
processor means is further configured to derive a merging
candidate index in response to determining the sub-predic-
tion unit motion flag is active, wherein the merging candi-
date index specifies the motion vector predictor to be
selected.

[0010] In another example embodiment, a non-transitory
computer-readable storage medium having stored thereon
instructions that, when executed, cause one or more proces-
sors to perform a method. The method includes receiving
encoded video data, parsing a sub-prediction unit motion
flag from the encoded video data, in response to determining
the sub-prediction unit motion flag is active, deriving a list
of sub-prediction unit level motion prediction candidates, in
response to determining the sub-prediction unit motion flag
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is not active, deriving a list of prediction unit level motion
prediction candidates, selecting a motion vector predictor
from either the list of sub-prediction unit level motion
prediction candidates or the list of prediction unit level
motion prediction candidates, and decoding the encoded
video data using the selected motion vector predictor. The
encoded video data includes a current block and wherein the
list of sub-prediction unit level motion prediction candidates
and the list of prediction unit level motion prediction can-
didates are derived from neighboring blocks of the current
block. The neighboring blocks are spatial neighbors of the
current block in a current picture or temporal neighbors of
the current block in a previously coded picture. The list of
sub-prediction unit level motion prediction candidates or the
list of prediction unit level motion prediction candidates is
at least partially ordered based on motion prediction occur-
rences in the neighboring blocks. Pixels in a prediction unit
share first motion vector information and pixels in a sub-
prediction unit share second motion vector information, and
wherein the first motion vector information or the second
vector information is determined from the selected motion
vector predictor. The prediction unit level motion vector
candidates list including at least one of: spatial neighboring
candidates and temporal neighboring candidates. The list of
sub-prediction unit level motion prediction candidates
includes at least one of: affine motion vector prediction,
alternative temporal motion vector prediction (ATMVP),
spatial-temporal motion vector prediction (STMVP), planar
motion vector prediction, and pattern matched motion vector
derivation (PMVD). The method includes deriving a merg-
ing candidate index in response to determining the sub-
prediction unit motion flag is active, wherein the merging
candidate index specifies the motion vector predictor to be
selected.

[0011] The details of one or more examples are set forth in
the accompanying drawings and the description below.
Other features, objects, and advantages will be apparent
from the description, drawings, and claims.

BRIEF DESCRIPTION OF DRAWINGS

[0012] FIG. 1 is a block diagram illustrating an example
video encoding and decoding system that may perform the
techniques of this disclosure.

[0013] FIGS. 2A and 2B are conceptual diagrams illus-
trating an example quadtree binary tree (QTBT) structure,
and a corresponding coding tree unit (CTU).

[0014] FIG. 3 is a flow chart illustrating motion vector
predictor derivation.

[0015] FIG. 4 is a conceptual diagram illustrating spatial
neighboring motion vector candidates for a merge mode.
[0016] FIG. 5 is a conceptual diagram illustrating tempo-
ral motion vector candidates.

[0017] FIG. 6 illustrates candidate motion vector blocks
selection techniques.

[0018] FIG. 7 is a conceptual diagram illustrating of
Spatial-Temporal Motion Vector Prediction (STMVP).
[0019] FIG. 8is a conceptual diagram illustrating bilateral
matching techniques.

[0020] FIG. 9is a conceptual diagram illustrating template
matching techniques.

[0021] FIG. 10 is a conceptual diagram illustrating planar
motion vector prediction.
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[0022] FIG. 11 is a block diagram illustrating an example
video encoder that may perform the techniques of this
disclosure.
[0023] FIG. 12 is a block diagram illustrating an example
video decoder that may perform the techniques of this
disclosure.

DETAILED DESCRIPTION

[0024] This disclosure is related to decoder-side motion
vector derivation (DMVD). The decoder-side motion vector
derivation techniques described in this disclosure may be
used in conjunction with any of the existing video codecs,
such as HEVC (High Efficiency Video Coding), or may be
used as coding techniques for any future video coding
standards, such as H.266 Versatile Video Coding (VVC) and
Essential Video Coding (EVC).

[0025] FIG. 1 is a block diagram illustrating an example
video encoding and decoding system 100 that may perform
the techniques of this disclosure. The techniques of this
disclosure are generally directed to coding (encoding and/or
decoding) video data, and in particular, are related to tech-
niques discussed herein. In general, video data includes any
data for processing a video. Thus, video data may include
raw, uncoded video, encoded video, decoded (e.g., recon-
structed) video, and video metadata, such as signaling data.
[0026] As shown in FIG. 1, system 100 includes a source
device 102 that provides encoded video data to be decoded
and displayed by a destination device 116, in this example.
In particular, source device 102 provides the video data to
destination device 116 via a computer-readable medium 110.
Source device 102 and destination device 116 may comprise
any of a wide range of devices, including desktop comput-
ers, notebook (i.e., laptop) computers, tablet computers,
set-top boxes, telephone handsets such smartphones, televi-
sions, cameras, display devices, digital media players, video
gaming consoles, video streaming device, or the like. In
some cases, source device 102 and destination device 116
may be equipped for wireless communication, and thus may
be referred to as wireless communication devices.

[0027] In the example of FIG. 1, source device 102
includes video source 104, memory 106, video encoder 200,
and output interface 108. Destination device 116 includes
input interface 122, video decoder 300, memory 120, and
display device 118. In accordance with this disclosure, video
encoder 200 of source device 102 and video decoder 300 of
destination device 116 may be configured to apply the
techniques for decoder-side motion vector derivation. Thus,
source device 102 represents an example of a video encod-
ing device, while destination device 116 represents an
example of a video decoding device. In other examples, a
source device and a destination device may include other
components or arrangements. For example, source device
102 may receive video data from an external video source,
such as an external camera. Likewise, destination device 116
may interface with an external display device, rather than
including an integrated display device.

[0028] System 100 as shown in FIG. 1 is merely one
example. In general, any digital video encoding and/or
decoding device may perform techniques for decoder-side
motion vector derivation. Source device 102 and destination
device 116 are merely examples of such coding devices in
which source device 102 generates coded video data for
transmission to destination device 116. This disclosure
refers to a “coding” device as a device that performs coding
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(encoding and/or decoding) of data. Thus, video encoder
200 and video decoder 300 represent examples of coding
devices, in particular, a video encoder and a video decoder,
respectively. In some examples, devices 102, 116 may
operate in a substantially symmetrical manner such that each
of devices 102, 116 include video encoding and decoding
components. Hence, system 100 may support one-way or
two-way video transmission between video devices 102,
116, e.g., for video streaming, video playback, video broad-
casting, or video telephony.

[0029] In general, video source 104 represents a source of
video data (i.e., raw, uncoded video data) and provides a
sequential series of pictures (also referred to as “frames”) of
the video data to video encoder 200, which encodes data for
the pictures. Video source 104 of source device 102 may
include a video capture device, such as a video camera, a
video archive containing previously captured raw video,
and/or a video feed interface to receive video from a video
content provider. As a further alternative, video source 104
may generate computer graphics-based data as the source
video, or a combination of live video, archived video, and
computer-generated video. In each case, video encoder 200
encodes the captured, pre-captured, or computer-generated
video data. Video encoder 200 may rearrange the pictures
from the received order (sometimes referred to as “display
order”) into a coding order for coding. Video encoder 200
may generate a bitstream including encoded video data.
Source device 102 may then output the encoded video data
via output interface 108 onto computer-readable medium
110 for reception and/or retrieval by, e.g., input interface 122
of destination device 116.

[0030] Memory 106 of source device 102 and memory
120 of destination device 116 represent general purpose
memories. In some example, memories 106, 120 may store
raw video data, e.g., raw video from video source 104 and
raw, decoded video data from video decoder 300. Addition-
ally or alternatively, memories 106, 120 may store software
instructions executable by, e.g., video encoder 200 and video
decoder 300, respectively. Although shown separately from
video encoder 200 and video decoder 300 in this example,
it should be understood that video encoder 200 and video
decoder 300 may also include internal memories for func-
tionally similar or equivalent purposes. Furthermore, memo-
ries 106, 120 may store encoded video data, e.g., output
from video encoder 200 and input to video decoder 300. In
some examples, portions of memories 106, 120 may be
allocated as one or more video buffers, e.g., to store raw,
decoded, and/or encoded video data.

[0031] Computer-readable medium 110 may represent any
type of medium or device capable of transporting the
encoded video data from source device 102 to destination
device 116. In one example, computer-readable medium 110
represents a communication medium to enable source device
102 to transmit encoded video data directly to destination
device 116 in real-time, e.g., via a radio frequency network
or computer-based network. Output interface 108 may
modulate a transmission signal including the encoded video
data, and input interface 122 may modulate the received
transmission signal, according to a communication standard,
such as a wireless communication protocol. The communi-
cation medium may comprise any wireless or wired com-
munication medium, such as a radio frequency (RF) spec-
trum or one or more physical transmission lines. The
communication medium may form part of a packet-based
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network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication
medium may include routers, switches, base stations, or any
other equipment that may be useful to facilitate communi-
cation from source device 102 to destination device 116.

[0032] In some examples, source device 102 may output
encoded data from output interface 108 to storage device
112. Similarly, destination device 116 may access encoded
data from storage device 112 via input interface 122. Storage
device 112 may include any of a variety of distributed or
locally accessed data storage media such as a hard drive,
Blu-ray discs, DVDs, CD-ROMs, flash memory, volatile or
non-volatile memory, or any other suitable digital storage
media for storing encoded video data.

[0033] In some examples, source device 102 may output
encoded video data to file server 114 or another intermediate
storage device that may store the encoded video generated
by source device 102. Destination device 116 may access
stored video data from file server 114 via streaming or
download. File server 114 may be any type of server device
capable of storing encoded video data and transmitting that
encoded video data to the destination device 116. File server
114 may represent a web server (e.g., for a website), a File
Transfer Protocol (FTP) server, a content delivery network
device, or a network attached storage (NAS) device. Desti-
nation device 116 may access encoded video data from file
server 114 through any standard data connection, including
an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL,
cable modem, etc.), or a combination of both that is suitable
for accessing encoded video data stored on file server 114.
File server 114 and input interface 122 may be configured to
operate according to a streaming transmission protocol, a
download transmission protocol, or a combination thereof.
[0034] Output interface 108 and input interface 122 may
represent wireless transmitters/receiver, modems, wired net-
working components (e.g., Ethernet cards), wireless com-
munication components that operate according to any of a
variety of IEEE 802.11 standards, or other physical compo-
nents. In examples where output interface 108 and input
interface 122 comprise wireless components, output inter-
face 108 and input interface 122 may be configured to
transfer data, such as encoded video data, according to a
cellular communication standard, such as 4G, 4G-LTE
(Long-Term Evolution), LTE Advanced, 5G, or the like. In
some examples where output interface 108 comprises a
wireless transmitter, output interface 108 and input interface
122 may be configured to transfer data, such as encoded
video data, according to other wireless standards, such as an
IEEE 802.11 specification, an IEEE 802.15 specification
(e.g., ZigBee™), a Bluetooth™ standard, or the like. In
some examples, source device 102 and/or destination device
116 may include respective system-on-a-chip (SoC) devices.
For example, source device 102 may include an SoC device
to perform the functionality attributed to video encoder 200
and/or output interface 108, and destination device 116 may
include an SoC device to perform the functionality attributed
to video decoder 300 and/or input interface 122.

[0035] The techniques of this disclosure may be applied to
video coding in support of any of a variety of multimedia
applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmis-
sions, Internet streaming video transmissions, such as
dynamic adaptive streaming over HTTP (DASH), digital
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video that is encoded onto a data storage medium, decoding
of digital video stored on a data storage medium, or other
applications.

[0036] Input interface 122 of destination device 116
receives an encoded video bitstream from computer-read-
able medium 110 (e.g., non-transitory storage device 112,
file server 114, or the like). The encoded video bitstream
computer-readable medium 110 may include signaling infor-
mation defined by video encoder 200, which is also used by
video decoder 300, such as syntax elements having values
that describe characteristics and/or processing of video
blocks or other coded units (e.g., slices, pictures, groups of
pictures, sequences, or the like). Display device 118 displays
decoded pictures of the decoded video data to a user. Display
device 118 may represent any of a variety of display devices
such as a cathode ray tube (CRT), a liquid crystal display
(LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0037] Although not shown in FIG. 1, in some examples,
video encoder 200 and video decoder 300 may each be
integrated with an audio encoder and/or audio decoder, and
may include appropriate MUX-DEMUX units, or other
hardware and/or software, to handle multiplexed streams
including both audio and video in a common data stream. If
applicable, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).

[0038] Video encoder 200 and video decoder 300 each
may be implemented as any of a variety of suitable encoder
and/or decoder circuitry, such as one or more microproces-
sors, digital signal processors (DSPs), application specific
integrated circuits (ASICs), field programmable gate arrays
(FPGAs), discrete logic, software, hardware, firmware or
any combinations thereof. When the techniques are imple-
mented partially in software, a device may store instructions
for the software in a suitable, non-transitory computer-
readable medium and execute the instructions in hardware
using one or more processors to perform the techniques of
this disclosure. Each of video encoder 200 and video
decoder 300 may be included in one or more encoders or
decoders, either of which may be integrated as part of a
combined encoder/decoder (CODEC) in a respective device.
A device including video encoder 200 and/or video decoder
300 may comprise an integrated circuit, a microprocessor,
and/or a wireless communication device, such as a cellular
telephone.

[0039] Video coding standards include ITU-T H.261, ISO/
IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2
Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T
H.264 (also known as ISO/IEC MPEG-4 AVC), including its
Scalable Video Coding (SVC) and Multi-view Video Coding
(MVC) extensions.

[0040] A video coding standard, namely High Efficiency
Video Coding (HEVC) or ITU-T H.265, including its range
extension, multiview extension (MV-HEVC) and scalable
extension (SHVC), has been developed by the Joint Col-
laboration Team on Video Coding (JCT-VC) as well as Joint
Collaboration Team on 3D Video Coding Extension Devel-
opment (JCT-3V) of ITU-T Video Coding Experts Group
(VCEG) and ISO/IEC Motion Picture Experts Group
(MPEG).

[0041] ITU-T VCEG (Q6/16) and ISO/IEC MPEG (JTC
1/SC 29/WG 11) are now studying the potential need for
standardization of future video coding technology with a
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compression capability that exceeds that of the current
HEVC standard (including its current extensions and near-
term extensions for screen content coding and high-dy-
namic-range coding). The groups are working together on
this exploration activity in a joint collaboration effort known
as the Joint Video Exploration Team (JVET) to evaluate
compression technology designs proposed by their experts
in this area. The JVET first met during 19-21 Oct. 2015. And
the latest version of reference software, i.e., Joint Explora-
tion Model 7 (JEM 7) could be downloaded from: https://
jvet.hhi.fraunhofer.de/svn/sva_ HMJEM Software/tags/HM-
16.6-JEM-57.0/An  Algorithm  description of Joint
Exploration Test Model 7 (JEM7) could be referred to
JVET-G1001.

[0042] Video encoder 200 and video decoder 300 may
operate according to a video coding standard, such as ITU-T
H.265, also referred to as High Efficiency Video Coding
(HEVC) or extensions thereto, such as the multi-view and/or
scalable video coding extensions. Alternatively, video
encoder 200 and video decoder 300 may operate according
to other proprietary or industry standards, such as the Joint
Exploration Test Model (JEM) or ITU-T H.266, also
referred to as Versatile Video Coding (VVC). A recent draft
of the VVC standard is described in Bross, et al. “Versatile
Video Coding (Draft 3),” Joint Video Experts Team (JVET)
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,
13th Meeting: Marrakech, Mass., 9-18 January 20190,
JVET-M1001-v3 (hereinafter “VVC Draft 4). The tech-
niques of this disclosure, however, are not limited to any
particular coding standard.

[0043] As will be discussed, video decoder 300 may be
configured to perform one or more techniques of this dis-
closure. For example, video decoder 300 may parse a
sub-prediction unit motion flag from received encoded video
data, derive a list of sub-prediction unit level motion pre-
diction candidates if the sub-prediction unit motion flag is
active, derive a list of prediction unit level motion prediction
candidates if the sub-prediction unit motion flag is not
active, and decode the encoded video data using a selected
motion vector predictor.

[0044] In general, video encoder 200 and video decoder
300 may perform block-based coding of pictures. The term
“block”™ generally refers to a structure including data to be
processed (e.g., encoded, decoded, or otherwise used in the
encoding and/or decoding process). For example, a block
may include a two-dimensional matrix of samples of lumi-
nance and/or chrominance data. In general, video encoder
200 and video decoder 300 may code video data represented
inaYUV (e.g., Y, Cb, Cr) format. That is, rather than coding
red, green, and blue (RGB) data for samples of a picture,
video encoder 200 and video decoder 300 may code lumi-
nance and chrominance components, where the chromi-
nance components may include both red hue and blue hue
chrominance components. In some examples, video encoder
200 converts received RGB formatted data to a YUV
representation prior to encoding, and video decoder 300
converts the YUV representation to the RGB format. Alter-
natively, pre- and post-processing units (not shown) may
perform these conversions.

[0045] This disclosure may generally refer to coding (e.g.,
encoding and decoding) of pictures to include the process of
encoding or decoding data of the picture. Similarly, this
disclosure may refer to coding of blocks of a picture to
include the process of encoding or decoding data for the
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blocks, e.g., prediction and/or residual coding. An encoded
video bitstream generally includes a series of values for
syntax elements representative of coding decisions (e.g.,
coding modes) and partitioning of pictures into blocks.
Thus, references to coding a picture or a block should
generally be understood as coding values for syntax ele-
ments forming the picture or block.

[0046] HEVC defines various blocks, including coding
units (CUs), prediction units (PUs), and transform units
(TUs). According to HEVC, a video coder (such as video
encoder 200) partitions a coding tree unit (CTU) into CUs
according to a quadtree structure. That is, the video coder
partitions CTUs and CUs into four equal, non-overlapping
squares, and each node of the quadtree has either zero or four
child nodes. Nodes without child nodes may be referred to
as “leaf nodes,” and CUs of such leaf nodes may include one
or more PUs and/or one or more TUs. The video coder may
further partition PUs and TUs. For example, in HEVC, a
residual quadtree (RQT) represents partitioning of TUs. In
HEVC, PUs represent inter-prediction data, while TUs rep-
resent residual data. CUs that are intra-predicted include
intra-prediction information, such as an intra-mode indica-
tion.

[0047] As another example, video encoder 200 and video
decoder 300 may be configured to operate according to JEM
or VVC. According to JEM or VVC, a video coder (such as
video encoder 200) partitions a picture into a plurality of
coding tree units (CTUs). Video encoder 200 may partition
a CTU according to a tree structure, such as a quadtree-
binary tree (QTBT) structure. The QTBT structure removes
the concepts of multiple partition types, such as the sepa-
ration between CUs, PUs, and TUs of HEVC. A QTBT
structure of JEM includes two levels: a first level partitioned
according to quadtree partitioning, and a second level par-
titioned according to binary tree partitioning. A root node of
the QTBT structure corresponds to a CTU. Leaf nodes of the
binary trees correspond to coding units (CUs).

[0048] In an MTT partitioning structure, blocks may be
partitioned using a quadtree (QT) partition, a binary tree
(BT) partition, and one or more types of triple tree (IT)
partitions. A triple tree partition is a partition where a block
is split into three sub-blocks. In some examples, a triple tree
partition divides a block into three sub-blocks without
dividing the original block through the center. The parti-
tioning types in MTT (e.g., QT, BT, and TT), may be
symmetrical or asymmetrical.

[0049] In some examples, video encoder 200 and video
decoder 300 may use a single QTBT or MTT structure to
represent each of the luminance and chrominance compo-
nents, while in other examples, video encoder 200 and video
decoder 300 may use two or more QTBT or MTT structures,
such as one QTBT/MTT structure for the luminance com-
ponent and another QTBT or MTT structure for both
chrominance components (or two QTBT/MTT structures for
respective chrominance components).

[0050] Video encoder 200 and video decoder 300 may be
configured to use quadtree partitioning per HEVC, QTBT
partitioning, or MTT partitioning or other partitioning struc-
tures. For purposes of explanation, the description of the
techniques of this disclosure is presented with respect to
QTBT partitioning. However, it should be understood that
the techniques of this disclosure may also be applied to
video coders configured to use quadtree partitioning, or
other types of partitioning as well.
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[0051] This disclosure may use “NxN” and “N by N”
interchangeably to refer to the sample dimensions of a block
(such as a CU or other video block) in terms of vertical and
horizontal dimensions, e.g., 16x16 samples or 16 by 16
samples. In general, a 16x16 CU will have 16 samples in a
vertical direction (y=16) and 16 samples in a horizontal
direction (x=16) Likewise, an NxN CU generally has N
samples in a vertical direction and N samples in a horizontal
direction, where N represents a nonnegative integer value.
The samples in a CU may be arranged in rows and columns.
Moreover, CUs need not necessarily have the same number
of samples in the horizontal direction as in the vertical
direction. For example, CUs may comprise NxM samples,
where M is not necessarily equal to N.

[0052] Video encoder 200 encodes video data for CUs
representing prediction and/or residual information, and
other information. The prediction information indicates how
the CU is to be predicted in order to form a prediction block
for the CU. The residual information generally represents
sample-by-sample differences between samples of the CU
prior to encoding and the prediction block.

[0053] To predict a CU, video encoder 200 may generally
form a prediction block for the CU through inter-prediction
or intra-prediction. Inter-prediction generally refers to pre-
dicting the CU from data of a previously coded picture,
whereas intra-prediction generally refers to predicting the
CU from previously coded data of the same picture. To
perform inter-prediction, video encoder 200 may generate
the prediction block using one or more motion vectors.
Video encoder 200 may generally perform a motion search
to identify a reference block that closely matches the CU,
e.g., in terms of differences between the CU and the refer-
ence block. Video encoder 200 may calculate a difference
metric using a sum of absolute difference (SAD), sum of
squared differences (SSD), mean absolute difference
(MAD), mean squared differences (MSD), or other such
difference calculations to determine whether a reference
block closely matches the current CU. In some examples,
video encoder 200 may predict the current CU using uni-
directional prediction or bi-directional prediction.

[0054] Some examples of JEM and VVC also provide an
affine motion compensation mode, which may be considered
an inter-prediction mode. In affine motion compensation
mode, video encoder 200 may determine two or more
motion vectors that represent non-translational motion, such
as zoom in or out, rotation, perspective motion, or other
irregular motion types.

[0055] To perform intra-prediction, video encoder 200
may select an intra-prediction mode to generate the predic-
tion block. Some examples of JEM and VVC provide
sixty-seven intra-prediction modes, including various direc-
tional modes, as well as planar mode and DC mode. In
general, video encoder 200 selects an intra-prediction mode
that describes neighboring samples to a current block (e.g.,
a block of a CU) from which to predict samples of the
current block. Such samples may generally be above, above
and to the left, or to the left of the current block in the same
picture as the current block, assuming video encoder 200
codes CTUs and CUs in raster scan order (left to right, top
to bottom).

[0056] Video encoder 200 encodes data representing the
prediction mode for a current block. For example, for
inter-prediction modes, video encoder 200 may encode data
representing which of the various available inter-prediction
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modes is used, as well as motion information for the
corresponding mode. For uni-directional or bi-directional
inter-prediction, for example, video encoder 200 may
encode motion vectors using advanced motion vector pre-
diction (AMVP) or merge mode. Video encoder 200 may use
similar modes to encode motion vectors for affine motion
compensation mode.

[0057] Following prediction, such as intra-prediction or
inter-prediction of a block, video encoder 200 may calculate
residual data for the block. The residual data, such as a
residual block, represents sample by sample differences
between the block and a prediction block for the block,
formed using the corresponding prediction mode. Video
encoder 200 may apply one or more transforms to the
residual block, to produce transformed data in a transform
domain instead of the sample domain. For example, video
encoder 200 may apply a discrete cosine transform (DCT),
an integer transform, a wavelet transform, or a conceptually
similar transform to residual video data. Additionally, video
encoder 200 may apply a secondary transform following the
first transform, such as a mode-dependent non-separable
secondary transform (MDNSST), a signal dependent trans-
form, a Karhunen-Loeve transform (KLT), or the like. Video
encoder 200 produces transform coefficients following
application of the one or more transforms.

[0058] As noted above, following any transforms to pro-
duce transform coefficients, video encoder 200 may perform
quantization of the transform coefficients. Quantization gen-
erally refers to a process in which transform coefficients are
quantized to possibly reduce the amount of data used to
represent the coefficients, providing further compression. By
performing the quantization process, video encoder 200 may
reduce the bit depth associated with some or all of the
coeflicients. For example, video encoder 200 may round an
n-bit value down to an m-bit value during quantization,
where n is greater than m. In some examples, to perform
quantization, video encoder 200 may perform a bitwise
right-shift of the value to be quantized.

[0059] Following quantization, video encoder 200 may
scan the transform coefficients, producing a one-dimen-
sional vector from the two-dimensional matrix including the
quantized transform coefficients. The scan may be designed
to place higher energy (and therefore lower frequency)
coeflicients at the front of the vector and to place lower
energy (and therefore higher frequency) transform coeffi-
cients at the back of the vector. In some examples, video
encoder 200 may utilize a predefined scan order to scan the
quantized transform coefficients to produce a serialized
vector, and then entropy encode the quantized transform
coeflicients of the vector. In other examples, video encoder
200 may perform an adaptive scan. After scanning the
quantized transform coeflicients to form the one-dimen-
sional vector, video encoder 200 may entropy encode the
one-dimensional vector, e.g., according to context-adaptive
binary arithmetic coding (CABAC). Video encoder 200 may
also entropy encode values for syntax elements describing
metadata associated with the encoded video data for use by
video decoder 300 in decoding the video data.

[0060] To perform CABAC, video encoder 200 may
assign a context within a context model to a symbol to be
transmitted. The context may relate to, for example, whether
neighboring values of the symbol are zero-valued or not.
The probability determination may be based on a context
assigned to the symbol.
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[0061] Video encoder 200 may further generate syntax
data, such as block-based syntax data, picture-based syntax
data, and sequence-based syntax data, to video decoder 300,
e.g., in a picture header, a block header, a slice header, or
other syntax data, such as a sequence parameter set (SPS),
picture parameter set (PPS), or video parameter set (VPS).
Video decoder 300 may likewise decode such syntax data to
determine how to decode corresponding video data.

[0062] In this manner, video encoder 200 may generate a
bitstream including encoded video data, e.g., syntax ele-
ments describing partitioning of a picture into blocks (e.g.,
CUs) and prediction and/or residual information for the
blocks. Ultimately, video decoder 300 may receive the
bitstream and decode the encoded video data.

[0063] In general, video decoder 300 performs a recipro-
cal process to that performed by video encoder 200 to
decode the encoded video data of the bitstream. For
example, video decoder 300 may decode values for syntax
elements of the bitstream using CABAC in a manner sub-
stantially similar to, albeit reciprocal to, the CABAC encod-
ing process of video encoder 200. The syntax elements may
define partitioning information of a picture into CTUs, and
partitioning of each CTU according to a corresponding
partition structure, such as a QTBT structure, to define CUs
of the CTU. The syntax elements may further define pre-
diction and residual information for blocks (e.g., CUs) of
video data.

[0064] The residual information may be represented by,
for example, quantized transform coeflicients. Video
decoder 300 may inverse quantize and inverse transform the
quantized transform coefficients of a block to reproduce a
residual block for the block. Video decoder 300 uses a
signaled prediction mode (intra- or inter-prediction) and
related prediction information (e.g., motion information for
inter-prediction) to form a prediction block for the block.
Video decoder 300 may then combine the prediction block
and the residual block (on a sample-by-sample basis) to
reproduce the original block. Video decoder 300 may per-
form additional processing, such as performing a deblocking
process to reduce visual artifacts along boundaries of the
block.

[0065] This disclosure may generally refer to “signaling”
certain information, such as syntax elements. The term
“signaling” may generally refer to the communication of
values syntax elements and/or other data used to decode
encoded video data. That is, video encoder 200 may signal
values for syntax elements in the bitstream. In general,
signaling refers to generating a value in the bitstream. As
noted above, source device 102 may transport the bitstream
to destination device 116 substantially in real time, or not in
real time, such as might occur when storing syntax elements
to storage device 112 for later retrieval by destination device
116.

[0066] FIGS. 2A and 2B are conceptual diagram illustrat-
ing an example quadtree binary tree (QTBT) structure 130,
and a corresponding coding tree unit (CTU) 132. The solid
lines represent quadtree splitting, and dotted lines indicate
binary tree splitting. In each split (i.e., non-leaf) node of the
binary tree, one flag is signaled to indicate which splitting
type (i.e., horizontal or vertical) is used, where 0 indicates
horizontal splitting and 1 indicates vertical splitting in this
example. For the quadtree splitting, there is no need to
indicate the splitting type, since quadtree nodes split a block
horizontally and vertically into 4 sub-blocks with equal size.
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Accordingly, video encoder 200 may encode, and video
decoder 300 may decode, syntax elements (such as splitting
information) for a region tree level of QTBT structure 130
(i.e., the solid lines) and syntax elements (such as splitting
information) for a prediction tree level of QTBT structure
130 (i.e., the dashed lines). Video encoder 200 may encode,
and video decoder 300 may decode, video data, such as
prediction and transform data, for CUs represented by
terminal leaf nodes of QTBT structure 130.

[0067] Ingeneral, CTU 132 of FIG. 2B may be associated
with parameters defining sizes of blocks corresponding to
nodes of QTBT structure 130 at the first and second levels.
These parameters may include a CTU size (representing a
size of CTU 132 in samples), a minimum quadtree size
(MinQTSize, representing a minimum allowed quadtree leaf
node size), a maximum binary tree size (MaxBTSize, rep-
resenting a maximum allowed binary tree root node size), a
maximum binary tree depth (MaxBTDepth, representing a
maximum allowed binary tree depth), and a minimum
binary tree size (MinBTSize, representing the minimum
allowed binary tree leaf node size).

[0068] The root node of a QTBT structure corresponding
to a CTU may have four child nodes at the first level of the
QTBT structure, each of which may be partitioned according
to quadtree partitioning. That is, nodes of the first level are
either leaf nodes (having no child nodes) or have four child
nodes. The example of QTBT structure 130 represents such
nodes as including the parent node and child nodes having
solid lines for branches. If nodes of the first level are not
larger than the maximum allowed binary tree root node size
(MaxBTSize), they can be further partitioned by respective
binary trees. The binary tree splitting of one node can be
iterated until the nodes resulting from the split reach the
minimum allowed binary tree leaf node size (MinBTSize) or
the maximum allowed binary tree depth (MaxBTDepth).
The example of QTBT structure 130 represents such nodes
as having dashed lines for branches. The binary tree leaf
node is referred to as a coding unit (CU), which is used for
prediction (e.g., intra-picture or inter-picture prediction) and
transform, without any further partitioning. As discussed
above, CUs may also be referred to as “video blocks” or
“blocks.”

[0069] Inone example of the QTBT partitioning structure,
the CTU size is set as 128x128 (luma samples and two
corresponding 64x64 chroma samples), the MinQTSize is
set as 16x16, the MaxBTSize is set as 64x64, the MinBT-
Size (for both width and height) is set as 4, and the
MaxBTDepth is set as 4. The quadtree partitioning is applied
to the CTU first to generate quad-tree leaf nodes. The
quadtree leaf nodes may have a size from 16x16 (i.e., the
MinQTSize) to 128x128 (i.e., the CTU size). If the leaf
quadtree node is 128x128, it will not be further split by the
binary tree, since the size exceeds the MaxBTSize (i.e.,
64x64, in this example). Otherwise, the leaf quadtree node
will be further partitioned by the binary tree. Therefore, the
quadtree leaf node is also the root node for the binary tree
and has the binary tree depth as 0. When the binary tree
depth reaches MaxBTDepth (4, in this example), no further
splitting is permitted. When the binary tree node has width
equal to MinBTSize (4, in this example), it implies no
further horizontal splitting is permitted. Similarly, a binary
tree node having a height equal to MinBTSize implies no
further vertical splitting is permitted for that binary tree
node. As noted above, leaf nodes of the binary tree are
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referred to as CUs, and are further processed according to
prediction and transform without further partitioning.
[0070] In this section video coding standards, especially
motion vector prediction related techniques of previous
standards, are discussed.

[0071] Video coding standards include ITU-T H.261, ISO/
IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2
Visual, ITU-T H.263, ISO/TEC MPEG-4 Visual and ITU-T
H.264 (also known as ISO/IEC MPEG-4 AVC), including its
Scalable Video Coding (SVC) and Multiview Video Coding
(MVC) extensions. The latest joint draft of MVC is
described in “Advanced video coding for generic audiovi-
sual services,” ITU-T Recommendation H.264, March 2010.

[0072] In addition, there is a newly developed video
coding standard, namely High Efficiency Video Coding
(HEVC), developed by the Joint Collaboration Team on
Video Coding (JCT-VC) of ITU-T Video Coding Experts
Group (VCEG) and ISO/IEC Motion Picture Experts Group
(MPEG). A recent draft of HEVC is available from http://
phenix.int-evry.fr/jct/doc_end_user/documents/12_Geneva/
wgl1/JCTVC-L1003-v34.zip.

[0073]

[0074] For each block, a set of motion information can be
available. The set of motion information contains motion
information for forward and backward prediction directions.
Here forward and backward prediction directions are two
prediction directions corresponding to reference picture list
0 (RefPicList0) and reference picture list 1 (RefPicListl) of
a current picture or slice. The terms “forward” and “back-
ward” do not necessarily have a geometry meaning. Instead,
they are used to distinguish which reference picture list a
motion vector is based on. Forward prediction means the
prediction formed based on reference list 0, while backward
prediction means the prediction formed based on reference
list 1. In case both reference list 0 and reference list 1 are
used to form a prediction for a given block, it is called
bi-directional prediction.

[0075] For a given picture or slice, if only one reference
picture list is used, every block inside the picture or slice is
forward predicted. If both reference picture lists are used for
a given picture or slice, a block inside the picture or slice
may be forward predicted, or backward predicted, or bi-
directionally predicted.

[0076] For each prediction direction, the motion informa-
tion contains a reference index and a motion vector. A
reference index is used to identify a reference picture in the
corresponding reference picture list (e.g. RefPicListO or
RefPicListl). A motion vector has both a horizontal and a
vertical component, with each indicating an offset value
along horizontal and vertical direction respectively. In some
descriptions, for simplicity, the word of “motion vector”
may be used interchangeably with motion information, to
indicate both the motion vector and its associated reference
index.

[0077] POC

[0078] Picture order count (POC) is used in video coding
standards to identify a display order of a picture. Although
there are cases two pictures within one coded video
sequence may have the same POC value, it typically doesn’t
happen within a coded video sequence. When multiple
coded video sequences are present in a bitstream, pictures
with a same value of POC may be closer to each other in
terms of decoding order.

Motion Information
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[0079] POC values of pictures are typically used for
reference picture list construction, derivation of reference
picture set as in HEVC and motion vector scaling.

[0080] Prediction Unit

[0081] A prediction unit (PU) refer to a basic unit of
samples that share the same prediction information. In the
inter prediction PU, the prediction information can be the
same set of motion information or the same method to derive
the motion information for the PU. In one example, PU can
be the same as in HEVC block structure, and also can be the
basic block in other block partitioning structures, quad-tree
plus binary-tree partitioning, multi-type-tree partitioning, et
al.

[0082] A sub-PU is a sub-block in a PU, in which the
samples share the same set of motion information. In sub-PU
level motion, the samples in a PU share the same method/
model for motion information derivation, but a sub-PU can
have its own set of motion information and may be different
from other sub-PU in the same PU.

[0083] FIG. 3 illustrates an example flow chart of motion
vector predictor derivation, as discussed herein. Two lists of
motion vector predictor candidates are derived from the
information of neighboring blocks in three-dimensional
domain. The decoder adaptively chooses a list according to
a decoded syntax element is_sub_pu_motion_flag from the
bitstream.

[0084] In one example, sub_pu list may only exist if
current block is larger than a predefined value. In another
example, a block may contain only a subPU, e.g. 4x4 block,
the flag is then to indicate motion information generation is
based on subPU method or not. The two lists may include
different number of motion prediction candidates, which
may be predefined or signaled in SPS, PPS or slice header.
The neighboring blocks could be the spatial neighbors in the
current picture or the temporal neighbors in previous coded
pictures.

[0085] As illustrated in FIG. 3, the derivation process of
the two lists will be discussed. In 300, the decoder deter-
mines whether the flag is active or not. If the decoder
determines the flag is not active, the decoder proceeds to
302. If the flag is active, the decoder proceeds to 306.
[0086] In 302, a first list of PU level motion prediction
candidates are derived. In 306, a second list of sub-PU level
motion prediction candidates are derived. PU level motion
prediction candidate means all the pixels in the same PU
share the same set of motion information. Sub-PU level
motion prediction candidate means all the pixels in the same
sub-PU share the same set of motion information, but
different sub-PU in a PU may have different sets of motion
information. A set of motion information can include inter-
prediction direction, reference picture index or indices if
using multiple references, motion vector or motion vectors
if using multiple references.

[0087] An example of PU level motion vector candidates
list is the HEVC merge candidates list. Examples of sub-PU
level motion prediction include, but are not limited to, affine
motion vector prediction (Affine), Alternative Temporal
Motion Vector Prediction (ATMVP), Spatial-Temporal
Motion Vector Prediction (STMVP), planar motion vector
prediction, and Pattern Matched Motion Vector Derivation
(PMVD), et al. An exemplary syntax table is shown in Table
1 below. The syntax element sub_pu_motion_idx may be
used to indicate the selected candidate in the sub-PU level
motion prediction candidate list, and the syntax element
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pu_motion_idx is used to indicate the selected candidate in
the PU level motion prediction candidate list.

TABLE 1
Descriptor

is_sub__pu_motion_flag ae(v)
if is_sub__pu__motion_ flag {

sub__pu__motion__idx ae(v)
else {

pu_motion__idx ae(v)

¥

[0088] In another method, PU level motion vector candi-
dates may be divided into two groups. is_sub_pu_motion_
flag is signaled when decoder receives syntax indicating that
the selected candidate is not in the first group of PU level
motion information candidates. The is_sub_pu_motion_flag
may be implicitly signaled in PU level merge index as one
of the indices. Then sub-PU level merge index would be
further signaled if is_sub_pu_motion_flag is true. In one
example, the PU level motion prediction candidates list
insertion order is A»B—=S—-=C—=D—E. A, B, C, D, E
denote the PU level motion prediction candidates, and S is
an indicator of sub_pu_motion_flag. If S is selected, then
sub_pu_motion_{flag is inferred to be true. One example of
A can be the left-bottom spatial merge candidate, and one
example of B can be the top-right spatial merge candidate.
Note that other insertion order may also be applied.
[0089] Note that the sub-PU level motion prediction can-
didates are grouped in all the methods described above.

[0090] Signaling for Motion Vector Prediction Candidate
Selection
[0091] A syntax element is_sub_pu_motion_flag is firstly

used to indicate whether the motion prediction candidate is
sub-PU level. The is_sub_pu_motion_flag can be binarized
using one bin (0/1) and coded by context based binary
arithmetic coder. The context can be depending on the PU
size/area or the PU depth in the block partitioning tree. A
larger PU may tend to have more frequent in choosing
sub-PU level motion vector prediction than smaller PU. The
context can also depend on the sub_pu_motion_flag from
spatial/temporal neighboring blocks. The chance of current
PU use sub-PU motion is higher if neighboring blocks have
sub-PU motion.

[0092] If is_sub_pu_motion_flag is true (“1”), a syntax
element sub_pu_motion_idx is used to indicate the method
to derive the sub-PU motion prediction candidate. The total
number of methods, i.e. total number of sub-PU level motion
prediction candidates, num_sub_pu motion can be signaled
in high level syntax. The sub_pu_motion_idx can be bina-
rized using truncated unary code depending on the num_
sub_pu motion. However, other binarization method can
also be applied.

[0093] If is_sub_pu_motion_flag is false (“0”), a syntax
element nor_pu_motion_idx is used to indidate the method
to derive the PU level motion prediction candidate. The total
number of PU level motion vector prediction candidates,
num_nor_pu motion can be signaled in high level syntax.
The nor_pu_motion_idx can be binarized using truncated
unary code depending on the num_nor_pu motion. How-
ever, other binarization method can also be applied.

[0094] Derivation of PU Level Motion Prediction Candi-
dates
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[0095] PU level motion prediction candidate can be
derived from the spatial or temporal neighboring coded
blocks similarly in HEVC. In HEVC merge mode,

[0096] In HEVC, the MV candidate list contains up to 5
candidates for the merge mode and only two candidates for
the AMVP mode. A merge candidate may contain a set of
motion information, e.g., motion vectors corresponding to
both reference picture lists (list 0 and list 1) and the
reference indices. If a merge candidate is identified by a
merge index, the reference pictures used for the prediction of
the current blocks, as well as the associated motion vectors
are determined.

[0097] Based on the above, one or more motion vector
predictors are selected based on a decoded candidate index.

[0098] In HEVC merge mode, up to four spatial MV
candidates 402, 404, 406, and 408 of a block 400 can be
derived with the orders shown in FIG. 4. The order is the
following: left (0, Al), above (1, B1), above right (2, BO),
below left (3, AO), and above left (4, B2).

[0099] Temporal neighboring candidates in HEVC will
now be discussed. A Temporal motion vector predictor
(TMVP) candidate, if enabled and available, is added into
the MV candidate list after spatial motion vector candidates.
The primary block location for TMVP candidate derivation
is the bottom right block outside of the collocated PU as
shown in Error! Reference source not found.5 as a block “T”
500, to compensate the bias to the above and left blocks used
to generate spatial neighboring candidates. However, if that
block 502 is located outside of the current CTB row or
motion information is not available, the block is substituted
with a center block 504 of the PU. Motion vector for TMVP
candidate is derived from the co-located PU of the co-
located picture, indicated in the slice level. The motion
vector for the co-located PU is called collocated MV.

[0100] Derivation of Sub-PU Level Motion Prediction
Candidates
[0101] The sub-PU level motion prediction candidates can

include, but not limit to, affine motion prediction, Alterna-
tive Temporal Motion Vector Prediction (ATMVP), Spatial-
Temporal Motion Vector Prediction (STMVP), planar
motion vector prediction, Pattern Matched Motion Vector
Derivation (PMVD), et al. In the following, we will illustrate
examples of these sub-PU level motion prediction. How-
ever, some variations or other sub-PU level motion predic-
tion can also be added.

[0102]

[0103] In 4-parameter affine motion prediction method,
the motion vector field of a block is described by equation

(1):

Affine Motion Prediction

Vix = Vox Vly_VOyy+V0 (68)
x

Vy =

Viy = Vo Vix = Vox
o= =2

Y+ vy

[0104] where (w;h) is the size of the block, and (X,y) is the
coordinate. (vy,, V,,) is the motion vector of the top-left
corner control point, and (v, ,, v,,,) is the motion vector of the
top-right corner control point.
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[0105] In 6-parameter affine motion prediction method,
the motion field of a block is described by equation (2):

Vix = Vox Vax = Vox 2)
X + v
W P Y+ Vox

Viy — Vo, V2y — Vo,
Y Mywzoy
w

[0106] where in addition, (v,,, v,,) is the motion vector
of the bottom-left corner control point.

[0107] In sub-PU based affine motion prediction, the MV
of a sub-PU can be derived by calculating the MV at the
center of the sub-PU. Alternatively, we can scaled down
(w,h) and (x,y) according to the size of sub-PU.
[0108] In one method, (v,, v,) can be derived from a
neighboring block that is previously coded by affine motion,
considering that the current block shares the same affine
motion model with the previous coded neighboring block.
[0109] In another method, (v,,, v,,) can be derived by the
motion vector at a neighboring coded block. For example, as
shown in FIG. 6, (v,,, Vq,) can be derived from motion
vector at block A 600, B 602, or C 604, (v,,, v,,) can be
derived from motion vector at block C 606 or D 608, (v,,,
v,,) can be derived from block E 610 or F 612.
[0110] Alternative Temporal Motion Vector Prediction
[0111] Inthe alternative temporal motion vector prediction
(ATMVP) method (or sometime called advanced temporal
motion vector prediction), the temporal motion vector pre-
diction (TMVP) is modified by fetching multiple sets of
motion information (including motion vectors and reference
indices) from sub-PUs of the current PU.
[0112] Spatial-Temporal Motion Vector Prediction
[0113] In the spatial-temporal motion vector prediction
method, the motion vectors of sub-PUs are derived recur-
sively, following raster scan order. FIG. 7 illustrate the
concept of STMVP. Consider a 8x8 PU which contains four
4x4 sub-PUs A, B, C, and D. The neighbouring 4x4 blocks
in current frame are labelled as a, b, ¢, and d. The motion
derivation for sub-CU A starts by identifying its two spatial
neighbours. The first neighbour is the NxN block above
sub-CU A (block ¢). If this block c¢ is not available or is intra
coded the other NxN blocks above sub-CU A are checked
(from left to right, starting at block ¢). The second neighbour
is a block to the left of the sub-CU A (block b). If block b
is not available or is intra coded other blocks to the left of
sub-CU A are checked (from top to bottom, staring at block
b). The motion information obtained from the neighbouring
blocks for each list is scaled to the first reference frame for
a given list. Next, temporal motion vector predictor (TMVP)
of sub-block A is derived by following the same procedure
of TMVP derivation as specified in HEVC. The motion
information of the collocated block at location D is fetched
and scaled accordingly. Finally, after retrieving and scaling
the motion information, all available motion vectors (up to
3) are averaged separately for each reference list. The
averaged motion vector is assigned as the motion vector of
the current sub-CU.
[0114] Pattern Matched Motion Vector Derivation
[0115] The Pattern matched motion vector derivation
(PMMVD) method is based on frame-rate up conversion
techniques. Motion derivation process has two steps. A
PU-level motion search is first performed, then followed by
a Sub-PU level motion refinement. At PU level, an initial
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motion vector is derived for the whole PU based on bilateral
matching or template matching. First, a list of MV candi-
dates is generated and the candidate which leads to the
minimum matching cost is selected as the starting point for
further PU level refinement. Then a local search based on
bilateral matching or template matching around the starting
point is performed and the MV results in the minimum
matching cost is taken as the MV for the whole CU.
Subsequently, the motion information is further refined at
sub-PU level with the derived CU motion vectors as the
starting points.

[0116] The concept of bilateral matching is illustrated in
Error! Reference source not found.8. The bilateral matching
is used to derive motion information by finding the closest
match between two blocks along the motion trajectory of the
current block in two different reference pictures. Under the
assumption of continuous motion trajectory, the motion
vectors MV0 and MV1 pointing to the two reference blocks
shall be proportional to the temporal distances, i.e., TD0 and
TD1, between the current picture and the two reference
pictures. As a special case, when the current picture is
temporally between the two reference pictures and the
temporal distance from the current picture to the two refer-
ence pictures is the same, the bilateral matching becomes
mirror based bi-directional MV.

[0117] Template match as illustrated in Error! Reference
source not found.9 is used to derive motion information by
finding the closest match between a template (top and/or left
neighbouring blocks of the current block) in the current
picture and a block (same size to the template) in a reference

picture.
[0118] Planar Motion Vector Prediction
[0119] Planar motion vector prediction is achieved by

averaging a horizontal and vertical linear interpolation on
4x4 block basis as follows.

P(x,y)=(HxPy,(x,y)+ WP (x,3)+Hx W)/ (2x Hx W)

[0120] W and H denote the width and the height of the
block. (x,y) is the coordinates of current sub-block relative
to the above left corner sub-block. All the distances are
denoted by the pixel distances divided by 4. P(x,y) is the
motion vector of current sub-block.

[0121] The horizontal prediction p,(x,y) and the vertical
prediction p,(x,y) for location (x,y) are calculated as fol-
lows:

Py y)=(W=1-x)xL(=1,y)+(c+ 1)xR(Fy)

P (xy)=(H-1-y)xA@x,-1)+(y+1)xB(x,H)

[0122] where L(-1,y) and R(W)y) are the motion vec-
tors of the 4x4 blocks to the left and right of the current
block. A(x,~1) and B (x,H) are the motion vectors of
the 4x4 blocks to the above and bottom of the current
block, as shown in Error! Reference source not found.
9.

[0123] The reference motion information of the left col-

umn and above row neighbour blocks are derived from the

spatial neighbour blocks of current block.

[0124] The reference motion information of the right

column and bottom row neighbour blocks are derived as

follows.

[0125] 1) Derive the motion information of the bottom
right temporal neighbour 4x4 block

[0126] 2) Compute the motion vectors of the right column
neighbour 4x4 blocks, using the derived motion informa-
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tion of the bottom right neighbour 4x4 block along with

the motion information of the above right neighbour 4x4

block, as R(W,y)=((H-y-1)xAR+(y+1)xBR)/H.

[0127] 3) Compute the motion vectors of the bottom row
neighbour 4x4 blocks, using the derived motion informa-
tion of the bottom right neighbour 4x4 block along with
the motion information of the bottom left neighbour 4x4
block, as B(x,H)=((W-x-1)xBL+(x+1)xBR)/W.

[0128] where AR is the motion vector of the above right
spatial neighbour 4x4 block, BR is the motion vector of
the bottom right temporal neighbour 4x4 block, and BL.
is the motion vector of the bottom left spatial neighbour
4x4 block, as shown in Error! Reference source not
found.10.

[0129] The motion information obtained from the neigh-
bouring blocks for each list is scaled to the first reference
picture for a given list.
[0130] Candidate List Insertion
[0131] If available, the sub-PU level motion prediction
candidates are inserted in the list in the following default
order: Affine—=ATMVP—-STMVP—-PMMYVD—Planar. The
default order may be predefined or signaled based on slice
type, temporal layer, affine motion model, and/or availability
of temporal motion predictor. The default order may also
differ based on block type, block shape, or block size. The
maximum number of sub-PU level motion prediction can-
didates is determined by a predefined number and/or the
total number of available sub-PU level motion prediction
candidates as indicated by high level syntax. In one
example, if the predefined number is 3, and all of the affine,
ATMVP, STMVP, PMMVD, and Planar candidates are
available, then the maximum number is 3. But if only the
affine and ATMVP are available, then the maximum number
is 2. If the maximum number is O, then the is_sub_pu_
motion_flag is inferred to be false (‘0’) and is not signaled
in the bitstream. Other default candidate order can also be
used.

[0132] In one example, Affine—PMMVD—-ATMVP-

—STMVP—Planar.

[0133] In another example, PMMVD—Affine—ATMVP-

—STMVP—Planar.

[0134] In another example, two or more affine candidates
may be used.

Affinel —Affine
2—=PMMVD—-ATMVP—-STMVP—Planar

[0135] Or Affinel =ATMVP— Affine 2—Planar

[0136] Prioritized Candidate Reorder

[0137] The default sub-PU level motion prediction candi-

dates list can be reordered based on their occurrences in the
neighboring coded blocks. In one example the candidate that
has more occurrences in the neighboring coded blocks is put
in a lower index position in the list.

[0138] Partial Prioritized Candidate Reorder

[0139] In order to reduce the complexity of reordering of
candidates, the prioritized candidate reorder is only applied
to one or multiple sub-lists. For example, candidate 1-2, 3-4
in the default order are reordered separately based on their
appearance in the neighboring coded blocks.

[0140] Pruning

[0141] To reduce the complexity, no pruning or partial
pruning may be applied in the sub-PU candidate list. In one
example, pruning between ATMVP, STMVP, and planar
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may be applied, but no pruning is applied between affine and
the rest of sub-PU candidates.

[0142] In another example, pruning is only applied to the
number of sub-PU is smaller or equal to a predefined value.

[0143] Alternative Signaling Methods of Sub-PU Motion
Prediction Candidate

[0144] The selection of sub-PU motion prediction candi-
date can be signaled by enabling flags according to the
candidate insertion order instead of an index. In one
example, if the insertion order is Affine=PMMVD—=ATM-
VP—-=STMVP—Planar, then the signaling is as shown in
Table 2.

[0145] In another alternative method, the sub-PU motion
prediction candidates can be grouped in several sub-groups.
For example, Affine, Planar are grouped into sub-group 1,
ATMVP and STMVP are grouped into sub-group 2, and
PMMVD is yet another sub-group 3. An exemplary signal-
ing is shown in Table 3. A syntax pmmvd_flag is first
signaled to indicate whether it’s PMMVD candidate or not.
Then if it’s not PMMVD candidate, another syntax element
sub_groupl flag is signaled to indicate whether it’s sub-
group 1 candidates. If sub_group1 flag is true indicating it’s
sub-group 1 candidates, affine_flag is sginaled to indicate
whether it’s Affine candidate. If it’s not affine candidate,
then planar_mv_flag is set as true to indicate it’s Planar
candidate. If sub_groupl flag is false, then atmvp_flag is
signaled to indicate whether it’s ATMVP candidate. If it’s
not ATMVP candidate, stmvp_flag is set as true to indicate
it’s STMVP candidate.

TABLE 2
Descriptor
affine_ flag ae(v)
if(affine_ flag) {
pmmvd__flag ae(v)
if('pmmd_ flag) {
atmvp__flag ae(v)
if(tatmvp__flag) {
stmvp__flag ae(v)
if(tstmvp_flag) {
planar_mv_ flag = true
¥
¥
¥
¥
TABLE 3
Descriptor
pmmvd__flag ae(v)
if(\pmmvd_ flag) {
sub__groupl__flag ae(v)
if(sub__groupl_flag) {
affine_flag ae(v)
if(taffine_ flag) {
planar_mv_ flag = true
¥
}else {
atmvp__flag ae(v)

if(tatmvp__flag) {
stmvp__flag = true
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[0146] Note that in Table 2 and Table 3, availability check
ignored for easy exemplary. A flag is inferred to be false (‘0’)
if the corresponding candidate is not available. Also note
that other variations of grouping can also be applied.
[0147] FIG. 11 is a block diagram illustrating an example
video encoder 200 that may perform the techniques of this
disclosure. FIG. 11 is provided for purposes of explanation
and should not be considered limiting of the techniques as
broadly exemplified and described in this disclosure. For
purposes of explanation, this disclosure describes video
encoder 200 in the context of video coding standards such as
the HEVC video coding standard and the H.266 video
coding standard in development. However, the techniques of
this disclosure are not limited to these video coding stan-
dards, and are applicable generally to video encoding and
decoding.

[0148] In the example of FIG. 11, video encoder 200
includes video data memory 230, mode selection unit 202,
residual generation unit 204, transform processing unit 206,
quantization unit 208, inverse quantization unit 202, inverse
transform processing unit 212, reconstruction unit 214, filter
unit 216, decoded picture buffer (DPB) 218, and entropy
encoding unit 220.

[0149] Video data memory 230 may store video data to be
encoded by the components of video encoder 200. Video
encoder 200 may receive the video data stored in video data
memory 230 from, for example, video source 104 (FIG. 1).
DPB 218 may act as a reference picture memory that stores
reference video data for use in prediction of subsequent
video data by video encoder 200. Video data memory 230
and DPB 218 may be formed by any of a variety of memory
devices, such as dynamic random access memory (DRAM),
including synchronous DRAM (SDRAM), magnetoresistive
RAM (MRAM), resistive RAM (RRAM), or other types of
memory devices. Video data memory 230 and DPB 218 may
be provided by the same memory device or separate memory
devices. In various examples, video data memory 230 may
be on-chip with other components of video encoder 200, as
illustrated, or off-chip relative to those components.

[0150] In this disclosure, reference to video data memory
230 should not be interpreted as being limited to memory
internal to video encoder 200, unless specifically described
as such, or memory external to video encoder 200, unless
specifically described as such. Rather, reference to video
data memory 230 should be understood as reference
memory that stores video data that video encoder 200
receives for encoding (e.g., video data for a current block
that is to be encoded). Memory 106 of FIG. 1 may also
provide temporary storage of outputs from the various units
of video encoder 200.

[0151] The various units of FIG. 11 are illustrated to assist
with understanding the operations performed by video
encoder 200. The units may be implemented as fixed-
function circuits, programmable circuits, or a combination
thereof. Fixed-function circuits refer to circuits that provide
particular functionality, and are preset on the operations that
can be performed. Programmable circuits refer to circuits
that can programmed to perform various tasks, and provide
flexible functionality in the operations that can be per-
formed. For instance, programmable circuits may execute
software or firmware that cause the programmable circuits to
operate in the manner defined by instructions of the software
or firmware. Fixed-function circuits may execute software
instructions (e.g., to receive parameters or output param-
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eters), but the types of operations that the fixed-function
circuits perform are generally immutable. In some examples,
the one or more of the units may be distinct circuit blocks
(fixed-function or programmable), and in some examples,
the one or more units may be integrated circuits.

[0152] Video encoder 200 may include arithmetic logic
units (ALUs), elementary function units (EFUs), digital
circuits, analog circuits, and/or programmable cores, formed
from programmable circuits. In examples where the opera-
tions of video encoder 200 are performed using software
executed by the programmable circuits, memory 106 (FIG.
1) may store the object code of the software that video
encoder 200 receives and executes, or another memory
within video encoder 200 (not shown) may store such
instructions.

[0153] Video data memory 230 is configured to store
received video data. Video encoder 200 may retrieve a
picture of the video data from video data memory 230 and
provide the video data to residual generation unit 204 and
mode selection unit 202. Video data in video data memory
230 may be raw video data that is to be encoded.

[0154] Mode selection unit 202 includes a motion estima-
tion unit 222, motion compensation unit 224, and an intra-
prediction unit 226. Mode selection unit 202 may include
additional functional units to perform video prediction in
accordance with other prediction modes. As examples, mode
selection unit 202 may include a palette unit, an intra-block
copy unit (which may be part of motion estimation unit 222
and/or motion compensation unit 224), an affine unit, a
linear model (LLM) unit, or the like.

[0155] Mode selection unit 202 generally coordinates
multiple encoding passes to test combinations of encoding
parameters and resulting rate-distortion values for such
combinations. The encoding parameters may include parti-
tioning of CTUs into CUs, prediction modes for the CUs,
transform types for residual data of the CUs, quantization
parameters for residual data of the CUs, and so on. Mode
selection unit 202 may ultimately select the combination of
encoding parameters having rate-distortion values that are
better than the other tested combinations.

[0156] Video encoder 200 may partition a picture retrieved
from video data memory 230 into a series of CTUs, and
encapsulate one or more CTUs within a slice. Mode selec-
tion unit 210 may partition a CTU of the picture in accor-
dance with a tree structure, such as the QTBT structure or
the quad-tree structure of HEVC described above. As
described above, video encoder 200 may form one or more
CUs from partitioning a CTU according to the tree structure.
Such a CU may also be referred to generally as a “video
block” or “block.”

[0157] In general, mode selection unit 202 also controls
the components thereof (e.g., motion estimation unit 222,
motion compensation unit 224, and intra-prediction unit
226) to generate a prediction block for a current block (e.g.,
a current CU, or in HEVC, the overlapping portion of a PU
and a TU). For inter-prediction of a current block, motion
estimation unit 222 may perform a motion search to identify
one or more closely matching reference blocks in one or
more reference pictures (e.g., one or more previously coded
pictures stored in DPB 218). In particular, motion estimation
unit 222 may calculate a value representative of how similar
a potential reference block is to the current block, e.g.,
according to sum of absolute difference (SAD), sum of
squared differences (SSD), mean absolute difference
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(MAD), mean squared differences (MSD), or the like.
Motion estimation unit 222 may generally perform these
calculations using sample-by-sample differences between
the current block and the reference block being considered.
Motion estimation unit 222 may identify a reference block
having a lowest value resulting from these calculations,
indicating a reference block that most closely matches the
current block.

[0158] Motion estimation unit 222 may form one or more
motion vectors (MVs) that defines the positions of the
reference blocks in the reference pictures relative to the
position of the current block in a current picture. Motion
estimation unit 222 may then provide the motion vectors to
motion compensation unit 224. For example, for uni-direc-
tional inter-prediction, motion estimation unit 222 may
provide a single motion vector, whereas for bi-directional
inter-prediction, motion estimation unit 222 may provide
two motion vectors. Motion compensation unit 224 may
then generate a prediction block using the motion vectors.
For example, motion compensation unit 224 may retrieve
data of the reference block using the motion vector. As
another example, if the motion vector has fractional sample
precision, motion compensation unit 224 may interpolate
values for the prediction block according to one or more
interpolation filters. Moreover, for bi-directional inter-pre-
diction, motion compensation unit 224 may retrieve data for
two reference blocks identified by respective motion vectors
and combine the retrieved data, e.g., through sample-by-
sample averaging or weighted averaging.

[0159] As another example, for intra-prediction, or intra-
prediction coding, intra-prediction unit 226 may generate
the prediction block from samples neighboring the current
block. For example, for directional modes, intra-prediction
unit 226 may generally mathematically combine values of
neighboring samples and populate these calculated values in
the defined direction across the current block to produce the
prediction block. As another example, for DC mode, intra-
prediction unit 226 may calculate an average of the neigh-
boring samples to the current block and generate the pre-
diction block to include this resulting average for each
sample of the prediction block.

[0160] Mode selection unit 202 provides the prediction
block to residual generation unit 204. Residual generation
unit 204 receives a raw, uncoded version of the current block
from video data memory 230 and the prediction block from
mode selection unit 202. Residual generation unit 204
calculates sample-by-sample differences between the cur-
rent block and the prediction block. The resulting sample-
by-sample differences define a residual block for the current
block. In some examples, residual generation unit 204 may
also determine differences between sample values in the
residual block to generate a residual block using residual
differential pulse code modulation (RDPCM). In some
examples, residual generation unit 204 may be formed using
one or more subtractor circuits that perform binary subtrac-
tion.

[0161] In examples where mode selection unit 202 parti-
tions CUs into PUs, each PU may be associated with a luma
prediction unit and corresponding chroma prediction units.
Video encoder 200 and video decoder 300 may support PUs
having various sizes. As indicated above, the size of a CU
may refer to the size of the luma coding block of the CU and
the size of a PU may refer to the size of a luma prediction
unit of the PU. Assuming that the size of a particular CU is
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2Nx2N, video encoder 200 may support PU sizes of 2Nx2N
or NxN for intra prediction, and symmetric PU sizes of
2Nx2N, 2NxN, Nx2N, NxN, or similar for inter prediction.
Video encoder 200 and video decoder 300 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD,
nl.x2N, and nRx2N for inter prediction.

[0162] In examples where mode selection unit 202 does
not further partition a CU into PUs, each CU may be
associated with a luma coding block and corresponding
chroma coding blocks. As above, the size of a CU may refer
to the size of the luma coding block of the CU. The video
encoder 200 and video decoder 300 may support CU sizes
of 2Nx2N, 2NxN, or Nx2N.

[0163] For other video coding techniques such as an
intra-block copy mode coding, an affine-mode coding, and
linear model (LM) mode coding, as few examples, mode
selection unit 202, via respective units associated with the
coding techniques, generates a prediction block for the
current block being encoded. In some examples, such as
palette mode coding, mode selection unit 202 may not
generate a prediction block, and instead generate syntax
elements that indicate the manner in which to reconstruct the
block based on a selected palette. In such modes, mode
selection unit 202 may provide these syntax elements to
entropy encoding unit 220 to be encoded.

[0164] As described above, residual generation unit 204
receives the video data for the current block and the corre-
sponding prediction block. Residual generation unit 204
then generates a residual block for the current block. To
generate the residual block, residual generation unit 204
calculates sample-by-sample differences between the pre-
diction block and the current block. Thus,

[0165] Transform processing unit 206 applies one or more
transforms to the residual block to generate a block of
transform coefficients (referred to herein as a “transform
coefficient block™). Transform processing unit 206 may
apply various transforms to a residual block to form the
transform coefficient block. For example, transform process-
ing unit 206 may apply a discrete cosine transform (DCT),
a directional transform, a Karhunen-Loeve transform (KLT),
or a conceptually similar transform to a residual block. In
some examples, transform processing unit 206 may perform
multiple transforms to a residual block, e.g., a primary
transform and a secondary transform, such as a rotational
transform. In some examples, transform processing unit 206
does not apply transforms to a residual block.

[0166] Quantization unit 208 may quantize the transform
coeflicients in a transform coefficient block, to produce a
quantized transform coefficient block. Quantization unit 208
may quantize transform coefficients of a transform coeffi-
cient block according to a quantization parameter (QP) value
associated with the current block. Video encoder 200 (e.g.,
via mode selection unit 202) may adjust the degree of
quantization applied to the coefficient blocks associated with
the current block by adjusting the QP value associated with
the CU. Quantization may introduce loss of information, and
thus, quantized transform coeflicients may have lower pre-
cision than the original transform coefficients produced by
transform processing unit 206.

[0167] Inverse quantization unit 210 and inverse trans-
form processing unit 212 may apply inverse quantization
and inverse transforms to a quantized transform coeflicient
block, respectively, to reconstruct a residual block from the
transform coefficient block. Reconstruction unit 214 may
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produce a reconstructed block corresponding to the current
block (albeit potentially with some degree of distortion)
based on the reconstructed residual block and a prediction
block generated by mode selection unit 202. For example,
reconstruction unit 214 may add samples of the recon-
structed residual block to corresponding samples from the
prediction block generated by mode selection unit 202 to
produce the reconstructed block.

[0168] Filter unit 216 may perform one or more filter
operations on reconstructed blocks. For example, filter unit
216 may perform deblocking operations to reduce blocki-
ness artifacts along edges of CUs. Operations of filter unit
216 may be skipped, in some examples.

[0169] Video encoder 200 stores reconstructed blocks in
DPB 218. For instance, in examples where operations of
filter unit 216 are not needed, reconstruction unit 216 may
store reconstructed blocks to DPB 218. In examples where
operations of filter unit 224 are needed, filter unit 216 may
store the filtered reconstructed blocks to DPB 218. Motion
estimation unit 222 and motion compensation unit 224 may
retrieve a reference picture from DPB 218, formed from the
reconstructed (and potentially filtered) blocks, to inter-pre-
dict blocks of subsequently encoded pictures. In addition,
intra-prediction unit 226 may use reconstructed blocks in
DPB 218 of a current picture to intra-predict other blocks in
the current picture.

[0170] In general, entropy encoding unit 220 may entropy
encode syntax elements received from other functional
components of video encoder 200. For example, entropy
encoding unit 220 may entropy encode quantized transform
coeflicient blocks from quantization unit 208. As another
example, entropy encoding unit 220 may entropy encode
prediction syntax elements (e.g., motion information for
inter-prediction or intra-mode information for intra-predic-
tion) from mode selection unit 202. Entropy encoding unit
220 may perform one or more entropy encoding operations
on the syntax elements, which are another example of video
data, to generate entropy-encoded data. For example,
entropy encoding unit 220 may perform a context-adaptive
variable length coding (CAVLC) operation, a CABAC
operation, a variable-to-variable (V2V) length coding opera-
tion, a syntax-based context-adaptive binary arithmetic cod-
ing (SBAC) operation, a Probability Interval Partitioning
Entropy (PIPE) coding operation, an Exponential-Golomb
encoding operation, or another type of entropy encoding
operation on the data. In some examples, entropy encoding
unit 220 may operate in bypass mode where syntax elements
are not entropy encoded.

[0171] Video encoder 200 may output a bitstream that
includes the entropy encoded syntax elements needed to
reconstruct blocks of a slice or picture. In particular, entropy
encoding unit 220 may output the bitstream

[0172] The operations described above are described with
respect to a block. Such description should be understood as
being operations for a luma coding block and/or chroma
coding blocks. As described above, in some examples, the
luma coding block and chroma coding blocks are luma and
chroma components of a CU. In some examples, the luma
coding block and the chroma coding blocks are luma and
chroma components of a PU.

[0173] In some examples, operations performed with
respect to a luma coding block need not be repeated for the
chroma coding blocks. As one example, operations to iden-
tify a motion vector (MV) and reference picture for a luma
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coding block need not be repeated for identifying a MV and
reference picture for the chroma blocks. Rather, the MV for
the luma coding block may be scaled to determine the MV
for the chroma blocks, and the reference picture may be the
same. As another example, the intra-prediction process may
be the same for the luma coding blocks and the chroma
coding blocks.

[0174] Video encoder 200 represents an example of a
device configured to encode video data including a memory
configured to store video data, and one or more processing
units implemented in circuitry and configured to derive a
frame rate up conversion (FRUC) template using prediction
pixel value and perform a decoder-side motion vector deri-
vation technique using the derived template. In another
example, video decoder 300 may be configured to determine
respective motion vectors from one or more neighboring
blocks of video data and derive a motion vector for a current
block of video data using the respective motion vectors from
the one or more neighboring blocks of video data. In another
example, video decoder 300 may be configured to determine
respective motion vectors from one or more collocated
blocks of video data, and derive a motion vector for a current
block of video data using the respective motion vectors from
the one or more collocated blocks of video data.

[0175] FIG. 12 is a block diagram illustrating an example
video decoder 300 that may perform the techniques of this
disclosure. FIG. 12 is provided for purposes of explanation
and is not limiting on the techniques as broadly exemplified
and described in this disclosure. For purposes of explana-
tion, this disclosure describes video decoder 300 is
described according to the techniques of JEM,H.266/VVC,
and HEVC. However, the techniques of this disclosure may
be performed by video coding devices that are configured to
other video coding standards.

[0176] In the example of FIG. 12, video decoder 300
includes coded picture buffer (CPB) memory 320, entropy
decoding unit 302, prediction processing unit 304, inverse
quantization unit 306, inverse transform processing unit 308,
reconstruction unit 310, filter unit 312, and decoded picture
buffer (DPB) 314. Prediction processing unit 304 includes
motion compensation unit 316 and intra-prediction unit 318.
Prediction processing unit 304 may include addition units to
perform prediction in accordance with other prediction
modes. As examples, prediction processing unit 304 may
include a palette unit, an intra-block copy unit (which may
form part of motion compensation unit 316), an affine unit,
a linear model (LM) unit, or the like. In other examples,
video decoder 300 may include more, fewer, or different
functional components.

[0177] CPB memory 320 may store video data, such as an
encoded video bitstream, to be decoded by the components
of'video decoder 300. The video data stored in CPB memory
320 may be obtained, for example, from computer-readable
medium 110 (FIG. 1). CPB memory 320 may include a CPB
that stores encoded video data (e.g., syntax elements) from
an encoded video bitstream. Also, CPB memory 320 may
store video data other than syntax elements of a coded
picture, such as temporary data representing outputs from
the various units of video decoder 300. DPB 314 generally
stores decoded pictures, which video decoder 300 may
output and/or use as reference video data when decoding
subsequent data or pictures of the encoded video bitstream.
CPB memory 320 and DPB 314 may be formed by any of
a variety of memory devices, such as dynamic random
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access memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive
RAM (RRAM), or other types of memory devices. CPB
memory 320 and DPB 314 may be provided by the same
memory device or separate memory devices. In various
examples, CPB memory 320 may be on-chip with other
components of video decoder 300, or off-chip relative to
those components.

[0178] Additionally or alternatively, in some examples,
video decoder 300 may retrieve coded video data from
memory 120 (FIG. 1). That is, memory 120 may store data
as discussed above with CPB memory 320. Likewise,
memory 120 may store instructions to be executed by video
decoder 300, when some or all of the functionality of video
decoder 300 is implemented in software to executed by
processing circuitry of video decoder 300.

[0179] The various units shown in FIG. 12 are illustrated
to assist with understanding the operations performed by
video decoder 300. The units may be implemented as
fixed-function circuits, programmable circuits, or a combi-
nation thereof. Similar to FIG. 11, fixed-function circuits
refer to circuits that provide particular functionality, and are
preset on the operations that can be performed. Program-
mable circuits refer to circuits that can programmed to
perform various tasks, and provide flexible functionality in
the operations that can be performed. For instance, program-
mable circuits may execute software or firmware that cause
the programmable circuits to operate in the manner defined
by instructions of the software or firmware. Fixed-function
circuits may execute software instructions (e.g., to receive
parameters or output parameters), but the types of operations
that the fixed-function circuits perform are generally immu-
table. In some examples, the one or more of the units may
be distinct circuit blocks (fixed-function or programmable),
and in some examples, the one or more units may be
integrated circuits.

[0180] Video decoder 300 may include ALUs, EFUs,
digital circuits, analog circuits, and/or programmable cores
formed from programmable circuits. In examples where the
operations of video decoder 300 are performed by software
executing on the programmable circuits, on-chip or off-chip
memory may store instructions (e.g., object code) of the
software that video decoder 300 receives and executes.
[0181] Entropy decoding unit 302 may receive encoded
video data from the CPB and entropy decode the video data
to reproduce syntax elements. Prediction processing unit
304, inverse quantization unit 306, inverse transform pro-
cessing unit 308, reconstruction unit 310, and filter unit 312
may generate decoded video data based on the syntax
elements extracted from the bitstream.

[0182] In general, video decoder 300 reconstructs a pic-
ture on a block-by-block basis. Video decoder 300 may
perform a reconstruction operation on each block individu-
ally (where the block currently being reconstructed, i.e.,
decoded, may be referred to as a “current block™).

[0183] Entropy decoding unit 302 may entropy decode
syntax elements defining quantized transform coefficients of
a quantized transform coefficient block, as well as transform
information, such as a quantization parameter (QP) and/or
transform mode indication(s). Inverse quantization unit 306
may use the QP associated with the quantized transform
coeflicient block to determine a degree of quantization and,
likewise, a degree of inverse quantization for inverse quan-
tization unit 306 to apply. Inverse quantization unit 306 may,
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for example, perform a bitwise left-shift operation to inverse
quantize the quantized transform coefficients. Inverse quan-
tization unit 306 may thereby form a transform coefficient
block including transform coefficients.

[0184] After inverse quantization unit 306 forms the trans-
form coefficient block, inverse transform processing unit
308 may apply one or more inverse transforms to the
transform coefficient block to generate a residual block
associated with the current block. For example, inverse
transform processing unit 308 may apply an inverse DCT, an
inverse integer transform, an inverse Karhunen-Loeve trans-
form (KLT), an inverse rotational transform, an inverse
directional transform, or another inverse transform to the
coeflicient block.

[0185] Furthermore, prediction processing unit 304 gen-
erates a prediction block according to prediction information
syntax elements that were entropy decoded by entropy
decoding unit 302. For example, if the prediction informa-
tion syntax elements indicate that the current block is
inter-predicted, motion compensation unit 316 may generate
the prediction block. In this case, the prediction information
syntax elements may indicate a reference picture in DPB
314 from which to retrieve a reference block, as well as a
motion vector identifying a location of the reference block
in the reference picture relative to the location of the current
block in the current picture. Motion compensation unit 316
may generally perform the inter-prediction process in a
manner that is substantially similar to that described with
respect to motion compensation unit 224 (FIG. 11).

[0186] As another example, if the prediction information
syntax elements indicate that the current block is intra-
predicted, intra-prediction unit 318 may generate the pre-
diction block according to an intra-prediction mode indi-
cated by the prediction information syntax elements. Again,
intra-prediction unit 318 may generally perform the intra-
prediction process in a manner that is substantially similar to
that described with respect to intra-prediction unit 226 (FIG.
11). Intra-prediction unit 318 may retrieve data of neigh-
boring samples to the current block from DPB 314.

[0187] Reconstruction unit 310 may reconstruct the cur-
rent block using the prediction block and the residual block.
For example, reconstruction unit 310 may add samples of
the residual block to corresponding samples of the predic-
tion block to reconstruct the current block.

[0188] Filter unit 312 may perform one or more filter
operations on reconstructed blocks. For example, filter unit
312 may perform deblocking operations to reduce blocki-
ness artifacts along edges of the reconstructed blocks.
Operations of filter unit 312 are not necessarily performed in
all examples.

[0189] Video decoder 300 may store the reconstructed
blocks in DPB 314. As discussed above, DPB 314 may
provide reference information, such as samples of a current
picture for intra-prediction and previously decoded pictures
for subsequent motion compensation, to prediction process-
ing unit 304. Moreover, video decoder 300 may output
decoded pictures from DPB for subsequent presentation on
a display device, such as display device 118 of FIG. 1.

[0190] In this manner, video decoder 300 represents an
example of a video decoding device including a memory
configured to store video data, and one or more processing
units implemented in circuitry and configured to implement
the methods and processes discussed herein.
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[0191] For example, the encoded video data may include
the following syntax:

TABLE 4

16
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with xSbldx=0 . . . numSbX-1, ySbldx=0 . . . numSbY-1,
and the bi-prediction weight index gbildx as outputs.

Merge Data Syntax

merge_ data( x0, y0, cbWidth, cbHeight ) { Descriptor
mmvd_ flag[ x0 ][ y0O ] ae(v)
if{ mmvd_flag] x0 ][ v =1){
mmvd__merge_ flag[ XO ][ y0 ] ae(v)
mmvd__distance__idx[ x0 ][ y0 1 ae(v)
mmvd__direction__idx[ x0 ][ y0 ] ae(v)
}else {
if( MaxNumSubblockMergeCand > 0 && cbWidth >= 8 && cbHeight >= 8 )
merge_ subblock_ flag[ x0 ][ y0 ] ae(v)
if( merge__subblock_flag[ x0 J[y0 ] ==1) {
if( MaxNumSubblockMergeCand > 1)
merge__subblock_ idx[ x0 ][ y0 ] ae(v)
}else {
if( sps__ciip__enabled_ flag && cu_skip_ flag] x0 ][ y0 ] == 0 &&
( cbWidth * cbHeight) >= 64 && cbWidth < 128 && cbHeight < 128 ) {
ciip__flag[ x0 ][ y0 ] ae(v)
if{ ciip__flag[ x0 ] BRI
if ( cbWidth <= 2 * chelght Il cbHeight <= 2 * cbWidth )
ciip_ luma_mpm_ flag[ x0 ][ y0 1 ae(v)
if{ ciip__luma__mpm_ flag[ x0 ][ y0 ])
ciip_ luma_mpm__idx[ x0 ][ y0 ] ae(v)
¥
if( sps__triangle_ enabled_ flag && tile__group_ type == B &&
cbWidth * cbHeight >= 64)
merge_ triangle_ flag[ x0 ][ y0 ] ae(v)
if( merge_ triangle_ flag[ x0 ][ y0 1)
merge_ triangle_ idx[ x0 ][ y0 ] ae(v)
else if{ MaxNumMergeCand > 1)
merge_idx[ X0 ][ yO ] ae(v)
¥
¥
¥
[0192] merge_subblock flag[x0][y0] specifies whether [0196] It is to be recognized that depending on the

the subblock-based inter prediction parameters for the cur-
rent coding unit are inferred from neighbouring blocks. The
array indices x0, y0 specify the location (x0, y0) of the
top-left luma sample of the considered coding block relative
to the top-left luma sample of the plcture When merge_
subblock_flag[x0][y0] is not present, it is inferred to be
equal to 0.

[0193] merge_subblock_idx[x0][y0] specifies the merging
candidate index of the subblock-based merging candidate
list where x0, y0 specify the location (x0, y0) of the top-left
luma sample of the considered coding block relative to the
top-left luma sample of the picture.

[0194] When merge_subblock_idx[x0][y0] is not present,
it is inferred to be equal to 0.

[0195] If merge_subblock_flag[xCb][yCb] is equal to 1,
the derivation process for motion vectors and reference
indices in subblock merge mode as specified in Error!
Reference source not found. is invoked with the luma coding
block location (xCb, yCb), the luma coding block width
cbWidth and the luma coding block height cbHeight as
inputs, the number of luma coding subblocks in horizontal
direction numSbX and in vertical direction numSbY, the
reference indices refldx[L0, refldx[.1, the prediction list
utilization flag arrays predFlagl.O[xSbldx][ySbldx] and
predFlagl.1[xSbldx][ySbldx], the luma subblock motion
vector arrays mvLO[xSbldx][ySbldx] and mvLO[xSbldx]
[ySbldx], and the chroma subblock motion vector arrays
mvCLO[xSbldx][ySbldx] and mvCL1[xSbldx]|[ySbldx],

example, certain acts or events of any of the techniques
described herein can be performed in a different sequence,
may be added, merged, or left out altogether (e.g., not all
described acts or events are necessary for the practice of the
techniques). Moreover, in certain examples, acts or events
may be performed concurrently, e.g., through multi-threaded
processing, interrupt processing, or multiple processors,
rather than sequentially.

[0197] In one or more examples, the functions described
may be implemented in hardware, software, firmware, or
any combination thereof. If implemented in software, the
functions may be stored on or transmitted over as one or
more instructions or code on a computer-readable medium
and executed by a hardware-based processing unit. Com-
puter-readable media may include computer-readable stor-
age media, which corresponds to a tangible medium such as
data storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techniques described in this disclosure. A computer
program product may include a computer-readable medium.
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[0198] By way of example, and not limitation, such com-
puter-readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transitory media, but
are instead directed to non-transitory, tangible storage
media. Disk and disc, as used herein, includes compact disc
(CD), laser disc, optical disc, digital versatile disc (DVD),
floppy disk and Blu-ray disc, where disks usually reproduce
data magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

[0199] Instructions may be executed by one or more
processors, such as one or more digital signal processors
(DSPs), general purpose microprocessors, application spe-
cific integrated circuits (ASICs), field programmable gate
arrays (FPGAs), or other equivalent integrated or discrete
logic circuitry. Accordingly, the term “processor,” as used
herein may refer to any of the foregoing structure or any
other structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

[0200] The techniques of this disclosure may be imple-
mented in a wide variety of devices or apparatuses, includ-
ing a wireless handset, an integrated circuit (IC) or a set of
1Cs (e.g., a chip set). Various components, modules, or units
are described in this disclosure to emphasize functional
aspects of devices configured to perform the disclosed
techniques, but do not necessarily require realization by
different hardware units. Rather, as described above, various
units may be combined in a codec hardware unit or provided
by a collection of interoperative hardware units, including
one or more processors as described above, in conjunction
with suitable software and/or firmware.

[0201] Various examples have been described. These and
other examples are within the scope of the following claims.

What is claimed is:

1. A method of decoding video data, the method com-
prising:

receiving encoded video data;

parsing a sub-prediction unit motion flag from the
encoded video data;

in response to determining the sub-prediction unit motion
flag is active, deriving a list of sub-prediction unit level
motion prediction candidates;
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in response to determining the sub-prediction unit motion
flag is not active, deriving a list of prediction unit level
motion prediction candidates;

selecting a motion vector predictor from either the list of

sub-prediction unit level motion prediction candidates
or the list of prediction unit level motion prediction
candidates; and

decoding the encoded video data using the selected

motion vector predictor.

2. The method of claim 1, wherein the encoded video data
includes a current block and wherein the list of sub-predic-
tion unit level motion prediction candidates and the list of
prediction unit level motion prediction candidates are
derived from neighboring blocks of the current block.

3. The method of claim 2, wherein the neighboring blocks
are spatial neighbors of the current block in a current picture
or temporal neighbors of the current block in a previously
coded picture.

4. The method of claim 2, wherein the list of sub-
prediction unit level motion prediction candidates or the list
of prediction unit level motion prediction candidates is at
least partially ordered based on motion prediction occur-
rences in the neighboring blocks.

5. The method of claim 1, wherein pixels in a prediction
unit share first motion vector information and pixels in a
sub-prediction unit share second motion vector information,
and wherein the first motion vector information or the
second vector information is determined from the selected
motion vector predictor.

6. The method of claim 1, wherein the prediction unit
level motion vector candidates list including at least one of:
spatial neighboring candidates and temporal neighboring
candidates.

7. The method of claim 1, wherein the list of sub-
prediction unit level motion prediction candidates includes
at least one of: affine motion vector prediction, alternative
temporal motion vector prediction (ATMVP), spatial-tem-
poral motion vector prediction (STMVP), planar motion
vector prediction, and pattern matched motion vector deri-
vation (PMVD).

8. The method of claim 1, further comprising:

deriving a merging candidate index in response to deter-

mining the sub-prediction unit motion flag is active,
wherein the merging candidate index specifies the
motion vector predictor to be selected.

9. An apparatus for decoding video data, the apparatus
comprising:

a memory for storing a received encoded video data; and

a processor, the processor configured to,

parse a sub-prediction unit motion flag from the
encoded video data,

in response to determining the sub-prediction unit
motion flag is active, derive a list of sub-prediction
unit level motion prediction candidates,

in response to determining the sub-prediction unit
motion flag is not active, derive a list of prediction
unit level motion prediction candidates,

select a motion vector predictor from either the list of
sub-prediction unit level motion prediction candi-
dates or the list of prediction unit level motion
prediction candidates, and

decode the encoded video data using the selected
motion vector predictor.
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10. The apparatus of claim 9, wherein the encoded video
data includes a current block and wherein the list of sub-
prediction unit level motion prediction candidates and the
list of prediction unit level motion prediction candidates are
derived from neighboring blocks of the current block.

11. The apparatus of claim 10, wherein the neighboring
blocks are spatial neighbors of the current block in a current
picture or temporal neighbors of the current block in a
previously coded picture.

12. The apparatus of claim 10, wherein the list of sub-
prediction unit level motion prediction candidates or the list
of prediction unit level motion prediction candidates is at
least partially ordered based on motion prediction occur-
rences in the neighboring blocks.

13. The apparatus of claim 9, wherein pixels in a predic-
tion unit share first motion vector information and pixels in
a sub-prediction unit share second motion vector informa-
tion, and wherein the first motion vector information or the
second vector information is determined from the selected
motion vector predictor.

14. The apparatus of claim 9, wherein the prediction unit
level motion vector candidates list including at least one of:
spatial neighboring candidates and temporal neighboring
candidates.

15. The apparatus of claim 9, wherein the list of sub-
prediction unit level motion prediction candidates includes
at least one of: affine motion vector prediction, alternative
temporal motion vector prediction (ATMVP), spatial-tem-
poral motion vector prediction (STMVP), planar motion
vector prediction, and pattern matched motion vector deri-
vation (PMVD).

16. The apparatus of claim 9, the processor further con-
figured to,

derive a merging candidate index in response to deter-

mining the sub-prediction unit motion flag is active,
wherein the merging candidate index specifies the
motion vector predictor to be selected.

17. An apparatus for decoding video data, the apparatus
comprising:

a memory means for storing a received encoded video

data; and

a processor means, the processor means configured to,

parse a sub-prediction unit motion flag from the
encoded video data,

in response to determining the sub-prediction unit
motion flag is active, derive a list of sub-prediction
unit level motion prediction candidates,

in response to determining the sub-prediction unit
motion flag is not active, derive a list of prediction
unit level motion prediction candidates,

select a motion vector predictor from either the list of
sub-prediction unit level motion prediction candi-
dates or the list of prediction unit level motion
prediction candidates, and

decode the encoded video data using the selected
motion vector predictor.

18. The apparatus of claim 17, wherein the encoded video
data includes a current block and wherein the list of sub-
prediction unit level motion prediction candidates and the
list of prediction unit level motion prediction candidates are
derived from neighboring blocks of the current block.
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19. The apparatus of claim 18, wherein the neighboring
blocks are spatial neighbors of the current block in a current
picture or temporal neighbors of the current block in a
previously coded picture.

20. The apparatus of claim 18, wherein the list of sub-
prediction unit level motion prediction candidates or the list
of prediction unit level motion prediction candidates is at
least partially ordered based on motion prediction occur-
rences in the neighboring blocks.

21. The apparatus of claim 17, wherein pixels in a
prediction unit share first motion vector information and
pixels in a sub-prediction unit share second motion vector
information, and wherein the first motion vector information
or the second vector information is determined from the
selected motion vector predictor.

22. The apparatus of claim 17, wherein the prediction unit
level motion vector candidates list including at least one of:
spatial neighboring candidates and temporal neighboring
candidates.

23. The apparatus of claim 17, wherein the list of sub-
prediction unit level motion prediction candidates includes
at least one of: affine motion vector prediction, alternative
temporal motion vector prediction (ATMVP), spatial-tem-
poral motion vector prediction (STMVP), planar motion
vector prediction, and pattern matched motion vector deri-
vation (PMVD).

24. The apparatus of claim 17, the processor means
further configured to,

derive a merging candidate index in response to deter-

mining the sub-prediction unit motion flag is active,
wherein the merging candidate index specifies the
motion vector predictor to be selected.

25. A non-transitory computer-readable storage medium
having stored thereon instructions that, when executed,
cause one or more processors to perform a method com-
prising:

receiving encoded video data;

parsing a sub-prediction unit motion flag from the

encoded video data;

in response to determining the sub-prediction unit motion

flag is active, deriving a list of sub-prediction unit level
motion prediction candidates;

in response to determining the sub-prediction unit motion

flag is not active, deriving a list of prediction unit level
motion prediction candidates;

selecting a motion vector predictor from either the list of

sub-prediction unit level motion prediction candidates
or the list of prediction unit level motion prediction
candidates; and

decoding the encoded video data using the selected

motion vector predictor.

26. The medium of claim 25, wherein the encoded video
data includes a current block and wherein the list of sub-
prediction unit level motion prediction candidates and the
list of prediction unit level motion prediction candidates are
derived from neighboring blocks of the current block.

27. The medium of claim 26, wherein the neighboring
blocks are spatial neighbors of the current block in a current
picture or temporal neighbors of the current block in a
previously coded picture.

28. The medium of claim 26, wherein the list of sub-
prediction unit level motion prediction candidates or the list
of prediction unit level motion prediction candidates is at
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least partially ordered based on motion prediction occur-
rences in the neighboring blocks.
29. The medium of claim 25, wherein
pixels in a prediction unit share first motion vector
information and pixels in a sub-prediction unit share
second motion vector information, and wherein the first
motion vector information or the second vector infor-
mation is determined from the selected motion vector
predictor,
wherein the prediction unit level motion vector candidates
list including at least one of: spatial neighboring can-
didates and temporal neighboring candidates, and
wherein the list of sub-prediction unit level motion pre-
diction candidates includes at least one of: affine
motion vector prediction, alternative temporal motion
vector prediction (ATMVP), spatial-temporal motion
vector prediction (STMVP), planar motion vector pre-
diction, and pattern matched motion vector derivation
(PMVD).
30. The medium of claim 25, the method further com-
prising:
deriving a merging candidate index in response to deter-
mining the sub-prediction unit motion flag is active,
wherein the merging candidate index specifies the
motion vector predictor to be selected.
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