US 20200401916A1

a2y Patent Application Publication o) Pub. No.: US 2020/0401916 A1

a9y United States

Rolfe et al.

43) Pub. Date: Dec. 24, 2020

(54) SYSTEMS AND METHODS FOR TRAINING
GENERATIVE MACHINE LEARNING
MODELS

(71) Applicant: D-WAVE SYSTEMS INC., Burnaby
(CA)

(72) Inventors: Jason T. Rolfe, Vancouver (CA); Amir
H. Khoshaman, Vancouver (CA);
Arash Vahdat, Coquitlam (CA);
Mohammad H. Amin, Coquitlam
(CA); Evgeny A. Andriyash,
Vancouver (CA); William G.
Macready, West Vancouver (CA)

(21) Appl. No.: 16/968,465

(22) PCT Filed: Feb. 7, 2019

(86) PCT No.: PCT/US2019/017124
§ 371 (e)(D),
(2) Date: Aug. 7, 2020

Related U.S. Application Data

(60) Provisional application No. 62/628,384, filed on Feb.
9, 2018, provisional application No. 62/637,268, filed
on Mar. 1, 2018, provisional application No. 62/648,
237, filed on Mar. 26, 2018, provisional application
No. 62/667,350, filed on May 4, 2018, provisional
application No. 62/673,013, filed on May 17, 2018.

100" N\

Publication Classification

(51) Int. CL
GOG6N 5/04 (2006.01)
GOG6N 20/00 (2006.01)
(52) US.CL
CPC oo GOG6N 5/04 (2013.01); GO6N 20/00
(2019.01)
(57) ABSTRACT

Generative and inference machine learning models with
discrete-variable latent spaces are provided. Discrete vari-
ables may be transformed by a smoothing transformation
with overlapping conditional distributions or made natively
reparametrizable by definition over a GUMBEL distribu-
tion. Models may be trained by sampling from different
models in the positive and negative phase and/or sample
with different frequency in the positive and negative phase.
Machine learning models may be defined over high-dimen-
sional quantum statistical systems near a phase transition to
take advantage of long-range correlations. Machine learning
models may be defined over graph-representable input
spaces and use multiple spanning trees to form latent rep-
resentations. Machine learning models may be relaxed via
continuous proxies to support a greater range of training
techniques, such as importance weighting. Example archi-
tectures for (discrete) variational autoencoders using such
techniques are also provided. Techniques for improving
training efficacy and sparsity of variational autoencoders are
also provided.

108 103

o o g e e e e e e e

§

N pigial 110

PR et R g

; Processor(s) |/ P ;

g Memary §
Machine f,zi"“”’i 12

tearming P g

mstruntions E

i : modide !
{ User interface e} O

& i

“ i

Controller i

N

| p—
24t Dk |

Ciuantum
Processors)

MY WY N YN Y00 AN YD O O DY

Patent Application Publication Dec. 24, 2020 Sheet 1 of 17 US 2020/0401916 A1

100~ N\,

106 102
o I I S T e e e v e v o o R
§
! L
Q:gifﬁi 1-" 114 e 18 108 }
§ <
g Memary g
s 492
f\i‘?ai«f’%mﬁ) f,f?“”
aming ;
insfructions]
modide i
1126
7 i
Controlier g
e e K
S N ’]{f‘*““’im
Qusntum
Peocessor(s)

FIGURE 1

Patent Application Publication Dec. 24, 2020 Sheet 2 of 17 US 2020/0401916 A1

FIGURE 2C€ FIGURE 20D

2000\,

200"

220" o

FIGURE 2E FIGURE 2F

Patent Application Publication Dec. 24, 2020 Sheet 3 of 17 US 2020/0401916 A1

FIGURE 26 FIGURE 2H
300"\,
f;‘
Aww“f *
302 30 “‘;;f
'
N S/
N e
{, N /
31 \ ™~ f«‘/
N -~
SN
W’w
#f,w—"‘"’ S —
...... mmﬂ"-‘f‘ ‘/ —— TIIIz.
MO~ 7’

FIGURE 8

Patent Application Publication Dec. 24, 2020 Sheet 4 of 17 US 2020/0401916 A1

400\, e

410" “\“;;i 2 2 a2

§

~ MW A SR MY W R A AN W W e L) A e -«
"‘.."-\\ < T
420 g2

S

o

&

& ‘F"‘R‘R‘F : .i;
*>‘<\<\$
N
Sl 7
&0 o,.x“f ’f“
3] f

FIGURE 4A

AN

o g4

é g 20

LN

B a0

FIGURE 48

Patent Application Publication Dec. 24, 2020 Sheet S of 17 US 2020/0401916 A1

s anple e {5 S e

’ ’?:{‘}‘7“3 I\{; }3‘3 \ "

S40~ | G261 fogan
™ CIGURE B4 512

FIGURE 58

504~

§ \&‘t \\g f‘(“
%
from Fig. SB ~»{oiex e e gk § Tt e

‘\\\\\\\\\\i\\\\\\\\ X
. X
Vi w33
N N
3 By

R \\

FEF SN

3
upanpde 2 MC}”’* Rpsarpie 3

R
§\\\\\\\\\\i\\\\\\\\\\: §\\\\\\\\\\\\\\\\\\\\\\\N
3 O b Ner . serd
N o AR S¥gppreas Y6t e IS
ymput & = 8y Jlag M 38

RN

rrsv.

3
AR

4

N 52’3““‘\\\
;2'
R L e NP

FIGURE 50

Patent Application Publication

Dec. 24,2020 Sheet 6 of 17

US 2020/0401916 A1

sag—" \\

Form latent space

Y

806~ ™\

Form ransfonming
diatribution

!

UG

Form encading
distribution

‘

BI0—"

Form wior
distribution

$

Form decoding
distribution

$

B14—" ™

Train

FIGURE 8

Patent Application Publication

Dec. 24,2020 Sheet 7 of 17

US 2020/0401916 A1

Form positive phase
mcdel

Y

Form negative
phase moded

!

706"]

Sample from
positive phase
mcdel

‘

708" N

Sample from
negative phase
maocsl

;

740" N,

Update model
parameters

FIGURE 7

Patent Application Publication Dec. 24, 2020 Sheet 8 of 17 US 2020/0401916 A1

instantiale
Hamilionian

. !

— -
804 i Tune nesr quantum
phase ransition

!

Train

00— N\, 882--f\

808

FIGURE 8

k

SN m"w’\ L

Sample in positive
phase

!

Combing & resuits

:

gog—"\] Sample in negative
phass

'

QR Update model
' parameters

FIGURE S

Patent Application Publication Dec. 24, 2020 Sheet 9 of 17

1000a~"
m';::w’“\ P

1012\ ¥

Y
10"

FIGURE 104

HitE Vo

instantiste andom

Markoy field

'

wzzwf\\
Relax Markov field

1030~ \W —

¥
Train generative
model

;

Train inferance
mocied

FIGURE 100

US 2020/0401916 A1

FIGURE 108

1
|
|
|
|
|
|

Patent Application Publication Dec. 24, 2020 Sheet 10 of 17

US 2020/0401916 A1

J Recsive linear
representation

Y

frees

Qeterming spanning

.

11 GSW*"-\\ Encade sparming

trees

v

1108—") Coumbine hidden

vaciors

;

11 ‘%f(}--f\\ Form latent

representation

v

1114 N Train

FIGURE 11

Patent Application Publication Dec. 24, 2020 Sheet 11 of 17 US 2020/0401916 A1

1200-" N\, 1200~ \\

Form latent space

Y

Activate gif variahles

!

1206~ W] Update mads! 1

parameters

‘

1206—"] Selectively
deactivals variables

1210~ N\ Update model
parameters

FIGURE 12

Patent Application Publication

13007\,

Dec. 24,2020 Sheet 12 of 17

US 2020/0401916 A1

Form latent space

Y

Detorming gradient

Perform
REINFORCE
mitigation

:

130 @wf'\\

Lipdate modad
parametars

FIGURE 13

Patent Application Publication

1400—" N\

Dec. 24,2020 Sheet 13 of 17

1402\

Form alend space

:

1404—" ™,

Form ancoding
distnbution

;

1406 N\

Form quantum pror
distribution

'

1408~ ™.} Form ONN decoding
dhstribution
1410~ Train

FIGURE 14

US 2020/0401916 A1

Patent Application Publication

1500~ N

Dec. 24,2020 Sheet 14 of 17

Form alend space

:

Form model
diatributions

;

Cbtain samples

'

4 Delermine sample-

bazed lerms

'

1510

Uelerming analvticat
fenms

é

1592—"

Synthesize ohietlive

i

1814

LUpdate moded
parameters

FIGURE 15

US 2020/0401916 A1

Patent Application Publication

B
1600~ ™

Dec. 24, 2020

Sheet 15 of 17 US 2020/0401916 A1l

160 :}-—f\

Form desp natwork

Y

1804 "%,

&

Train desp network

:

Pre-train model

;

Train modesl

FIGURE 18

Patent Application Publication

Foon latent apace

'

Determing
interactionramoving
transformation

!

170 5-f\

Align modes

;

1706—" ™\

Form encoding
distribution

é

1708~ N\

Form prioy
chstribution

i

1710 N,

Form decoding
distribastion

l

17114\

Marginalize
iteractions

|

¥

1712 N

Train

FIGURE 17

Dec. 24,2020 Sheet 16 of 17

1800~

1 8@2—/\

Form laterd spacs

Y

1804~ |

Dstermins factonsl
smothing
fransfermadion

¥

1805 N\,

Form encoding
gistribution

!

1808~

Form prior
distribution

'

1810

Form decoding
distribution

L

181 1-~«f”\

Deatermine
augmented modst

1812]

Train pver
approdmation of
gugmanted model

FIGURE 18

US 2020/0401916 A1

Patent Application Publication Dec. 24, 2020 Sheet 17 of 17 US 2020/0401916 A1

N

N e et s
Form latent space
s X)

1004 \\ Usterming sparsity

mask

:

1906—" W} Form encoding
distribution

!

1910—" "N\ Form decoding
distribution
1912 ™ Train

FIGURE 18

US 2020/0401916 Al

SYSTEMS AND METHODS FOR TRAINING
GENERATIVE MACHINE LEARNING
MODELS

FIELD

[0001] This disclosure generally relates to machine learn-
ing, and particularly to training generative machine learning
models.

BACKGROUND

[0002] Machine learning relates to methods and circuitry
that can learn from data and make predictions based on data.
In contrast to methods or circuitry that follow static program
instructions, machine learning methods and circuitry can
include deriving a model from example inputs (such as a
training set) and then making data-driven predictions.

[0003] Machine learning is related to optimization. Some
problems can be expressed in terms of minimizing a loss
function on a training set, where the loss function describes
the disparity between the predictions of the model being
trained and observable data.

[0004] Machine learning methods are generally divided
into two phases: training and inference. One common way
of training certain machine learning models involves
attempting to minimize a loss function over a training set of
data. The loss function describes the disparity between the
predictions of the model being trained and observable data.
There is tremendous variety in the possible selection of loss
functions, as they need not be exact—they may, for example,
provide a lower bound on the disparity between prediction
and observed data, which may be characterized in an infinite
number of ways.

[0005] The loss function is, in most cases, intractable by
definition. Accordingly, training is often the most computa-
tionally-demanding aspect of most machine learning meth-
ods, sometimes requiring days, weeks, or longer to complete
even for only moderately-complex models. There is thus a
desire to identify loss functions for a particular machine
learning model which are less resource-intensive to com-
pute. However, loss functions which impose looser con-
straints on the trained model’s predictions tend to result in
less-accurate models. The skilled practitioner therefore has
a difficult problem to solve: identifying a low-cost, high-
accuracy loss function for a particular machine learning
model.

[0006] A wvariety of training techniques are known for
certain machine learning models using continuous latent
variables, but these are not easily extended to problems that
require training latent models with discrete variables, such
as embodiments of semi-supervised learning, binary latent
attribute models, topic modeling, variational memory
addressing, clustering, and/or discrete variational autoen-
coders. To date, techniques for training discrete latent vari-
able models have generally been computationally expensive
relative to known techniques for training continuous latent
variable models (e.g., as is the case for training discrete
variational autoencoders, as described in PCT application
no. US2016/047627) and/or have been limited to specific
architectures (e.g. by requiring categorical distributions, as
in the case of FEric Jang, Shixiang Gu, and Ben Poole,
Categorical reparameterization with gumbel-softmax, arXiv
preprint arXiv:1611.01144, 2016).

Dec. 24, 2020

[0007] There is thus a general desire for systems and
methods for training latent machine learning models with
discrete variables having general applicability, high effi-
ciency, and/or high accuracy.

[0008] The foregoing examples of the related art and
limitations related thereto are intended to be illustrative and
not exclusive. Other limitations of the related art will
become apparent to those of skill in the art upon a reading
of the specification and a study of the drawings.

BRIEF SUMMARY

[0009] Aspects of the present disclosure provide systems
and methods for unsupervised learning over an input space
comprising discrete or continuous variables. Unsupervised
learning occurs over at least a subset of a training dataset of
samples of the respective variables to attempt to identify the
value of at least one parameter that increases the log-
likelihood of the at least a subset of a training dataset with
respect to a model. The model is expressible as a function of
the at least one parameter. The disclosed systems comprise
at least one processor and at least one nontransitory proces-
sor-readable storage medium that stores at least one of
processor-executable instructions or data which, when
executed by the at least one processor cause the at least one
processor to execute any the disclosed methods.

[0010] Implementations of the methods involve forming a
latent space comprising a plurality of random variables. The
plurality of random variables comprise one or more discrete
random variables and a set of supplementary continuous
random variables corresponding to at least a subset of the
plurality of random variables. Some implementations
involve forming a first transforming distribution comprising
a conditional distribution over the set of supplementary
continuous random variables, conditioned on the one or
more discrete random variables of the latent space. The first
transforming distribution comprises a first smoothing distri-
bution conditional on a first discrete value of the one or more
discrete random variables and a second smoothing distribu-
tion conditional on a second discrete value of the one or
more discrete random variables. The first and second
smoothing distributions having the same support.

[0011] Some implementations involve forming an encod-
ing distribution comprising an approximating posterior dis-
tribution over the latent space, conditioned on the input
space, forming a prior distribution over the latent space,
forming a decoding distribution comprising a conditional
distribution over the input space conditioned on the set of
supplementary continuous random variables, and training
the model based on the first transforming distribution.
[0012] Insome implementations, training the model based
on the first transforming distribution comprises determining
an ordered set of conditional cumulative distribution func-
tions of the supplementary continuous random variables.
Each cumulative distribution function comprises functions
of a full distribution of at least one of the one or more
discrete random variables of the latent space. Training the
model further comprises determining an inversion of the
ordered set of conditional cumulative distribution functions
of the supplementary continuous random variables, con-
structing a first stochastic approximation to a lower bound
on the log-likelihood of the at least a subset of a training
dataset, constructing a second stochastic approximation to a
gradient of the lower bound on the log-likelihood of the at
least a subset of a training dataset, and increasing the lower

US 2020/0401916 Al

bound on the log-likelihood of the at least a subset of a
training dataset based at least in part on the gradient of the
lower bound on the log-likelihood of the at least a subset of
a training dataset.

[0013] In some implementations, the first and second
smoothing distributions are continuous. In some implemen-
tations, the first and second smoothing distributions are
symmetric. In some implementations, each of the first and
second smoothing transformations is selected from the
group consisting of an exponential distribution, a normal
distribution, and a logistic distribution.

[0014] In some implementations, forming a first trans-
forming distribution comprises forming a first transforming
distribution based on three or more smoothing distributions.
Each smoothing distribution converges to a mode of a
distribution of the discrete random variables.

[0015] In some implementations, training the model com-
prises optimizing an objective function based on importance
sampling to determine terms associated with the first trans-
forming distribution.

[0016] In some implementations, forming a latent space
comprises representing at least a portion of the latent space
as a Boltzmann machine. In some implementations, training
the model comprises instructing a quantum processor to
physically encode a quantum distribution approximating a
Boltzmann distribution, instructing the quantum processor
to sample from the quantum distribution, and receiving from
the quantum processor one or more samples from the
quantum distribution.

[0017] In some implementations, training the model com-
prises optimizing an objective function having a plurality of
terms and scaling each term of a subset of the plurality of
terms by a corresponding scaling factor. Each scaling factor
is proportional to the magnitude of its corresponding term of
the objective function. In some implementations, the mag-
nitude of the scaling factor’s corresponding term was deter-
mined in a previous iteration of a parameter-update opera-
tion.

[0018] In some implementations, training the model com-
prises scaling each term of the subset by a common anneal-
ing factor and annealing the common annealing factor from
an initial value to 1 over the course of training. In some
implementations, the method further comprises removing
the effect of the scaling factors when the common annealing
factor reaches 1.

[0019] Aspects of the present disclosure provide a method
for training a machine learning model based on an objective
function having positive and negative phases, the machine
learning model targeting a target model and expressible as a
function at least one parameter, the method executed by
circuitry including at least one processor. The method com-
prises forming a positive phase model based on the target
model. The positive phase model comprises a first distribu-
tion. The method further comprises forming a negative
phase model based on the target model. The negative phase
model comprises a second distribution and the second
distribution comprises a quantum distribution different than
the first distribution. The method further comprises deter-
mining a positive phase term by sampling from the positive
phase model, determining a negative phase term by sam-
pling from the negative phase model, and updating the at
least one parameter by evaluating the objective function
based on the positive phase term and the negative phase
term.

Dec. 24, 2020

[0020] In some implementations, the first distribution is a
classical approximation of the second distribution. In some
implementations, the second distribution is a quantum
approximation of the first distribution. In some implemen-
tations, the positive phase model comprises a classical
Boltzmann machine and the negative phase model com-
prises a quantum Boltzmann machine corresponding to the
classical Boltzmann machine. In some implementations, at
least one of the positive phase term and the negative phase
term comprises a gradient of a term of the objective func-
tion. In some implementations, determining a negative phase
term for sampling from the negative phase model comprises
causing a quantum processor to form a representation of the
second distribution and sample from the representation of
the second distribution.

[0021] In some implementations, each of the first distri-
bution and the second distribution comprise quantum dis-
tributions, and the positive phase model comprises the
negative phase model modified to have a higher-dimensional
latent space than the negative phase model. In some imple-
mentations, sampling from the positive phase model com-
prises sampling from the second distribution of the negative
phase model using discrete-time quantum Monte Carlo with
a number of Trotter slices corresponding to the difference in
dimensionality between the positive and negative phase
models. In some implementations, tuning an error term
between the positive and negative phase models by at least
one of increasing the dimensionality of the positive phase
model to reduce the error term and decreasing the dimen-
sionality of the positive phase model to increase the error
term.

[0022] Aspects of the present disclosure provide a method
for training a generative machine learning model. The
machine learning model comprises a quantum model and is
expressible as a function at least one parameter. The method
is performed by a processor and comprises instantiating a
Hamiltonian of the quantum model. The Hamiltonian com-
prises a three- or higher-dimensional statistical system hav-
ing a quantum phase transition. The method comprises
tuning the Hamiltonian to occupy a state within a threshold
distance of the quantum phase transition, evolving the
Hamiltonian to generate a sample, and updating the at least
one parameter by evaluating the objective function based on
the sample.

[0023] In some implementations, the quantum phase tran-
sition comprises a finite temperature spin glass phase tran-
sition. In some implementations, the statistical system com-
prises a cubic lattice. In some implementations, the machine
learning model comprises a quantum RBM.

[0024] In some implementations, instantiating the Hamil-
tonian comprises instructing a quantum processor to physi-
cally represent the Hamiltonian and evolving the Hamilto-
nian comprises instructing the quantum processor to evolve
a state of the Hamiltonian.

[0025] Aspects of the present disclosure provide a method
for training a machine learning model based on an objective
function having positive and negative phases. The machine
learning model is expressible as a function at least one
parameter. The method is executed by circuitry including at
least one processor and comprises determining a negative
phase term by sampling in the negative phase. The method
comprises, for each determination of a negative phase term,
determining a synthesized positive phase term based on k
samples in the positive phase. The method comprises updat-

US 2020/0401916 Al

ing the at least one parameter by evaluating the objective
function based on the synthesized positive phase term and
the negative phase term.

[0026] In some implementations, determining a synthe-
sized positive phase term comprises determining an average
of the k samples and determining the synthesized positive
phase term based on the average of the k samples.

[0027] In some implementations, determining a synthe-
sized positive phase term comprises determining k expec-
tation terms based on the k samples and determining an
average of the k expectation terms.

[0028] In some implementations, at least one of the syn-
thesized positive phase term and the negative phase term
comprises a gradient of a term of the objective function. In
some implementations, determining the negative phase term
comprises sampling from a quantum distribution.

[0029] In some implementations, sampling from a quan-
tum distnbution comprises causing a quantum processor to
form a representation of the quantum distribution and
instructing the quantum processor to evolve to generate a
sample from the representation of the quantum distribution.
[0030] In some implementations, the machine learning
model comprises a quantum variational autoencoder and
sampling in the negative phase comprises sampling from a
prior distribution of the machine learning model.

[0031] Aspects of the present disclosure provide a method
for training a generative machine learning model with
discrete variables. The machine learning model is express-
ible as a function at least one parameter. The method is
executed by circuitry including at least one processor. The
method comprises forming a latent space comprising a
plurality of discrete random variables defined over a GUM-
BEL distribution. The latent space comprises a GUMBEL-
distributed Boltzmann machine defined over the discrete
random variables. The method comprises forming one or
more generative distributions defined over the GUMBEL-
distnbuted Boltzmann machine and training the generative
machine learning model.

[0032] In some implementations, the generative machine
learning model comprises a discrete variational autoencoder
and forming one or more generative distributions comprises
forming at least a prior distribution and an approximating
posterior distribution, each conditioned on the GUMBEL-
distributed Boltzmann machine. In some implementations,
the latent space comprises one or more additional discrete
random variables hierarchically conditioned over the plu-
rality of discrete random variables defined over the GUM-
BEL distribution. In some implementations, at least one of
the one or more additional discrete random variables is
defined over a Bernoulli distribution.

[0033] Aspects of the present disclosure provide a method
for unsupervised learning over an input space comprising
discrete or continuous variables, and at least a subset of a
training dataset of samples of the respective variables, to
attempt to identify the value of at least one parameter that
increases the log-likelihood of the at least a subset of a
training dataset with respect to a model. The model is
expressible as a function of the at least one parameter. The
method is executed by circuitry including at least one
processor and comprises forming a latent space comprising
a plurality of random variables. The plurality of random
variables comprising one or more selectively-activatable
continuous random variables and one or more binary ran-
dom variables. Each binary random variable corresponds to

Dec. 24, 2020

a subset of the one or more selectable continuous random
variables. Each binary random variable has on and off states.
The method comprises training the model by: setting each of
the one or more binary random variables to a respective ON
state, determining a first updated set of the one or more
parameters of the model based on each of the one or more
selectively-activatable continuous random variables being
active, updating the one or more parameters of the model
based on the first updated set of the one or more parameters
(said updating comprising setting at least one of the one or
more binary random variables to a respective OFF state
based on the first updated set of the one or more parameters),
determining a second updated set of the one or more
parameters of the model based on one or more selectively-
activatable continuous random variables which correspond
to binary random variables in respective ON states (said
determining comprising deactivating one or more continu-
ous random variables which correspond to binary random
variables in respective OFF states), and updating the one or
more parameters of the model based on the second updated
set of the one or more parameters.

[0034] In some implementations, forming the latent space
comprises forming a Boltzmann machine, the Boltzmann
machine comprising the one or more binary random vari-
ables, and wherein training the model comprises training the
Boltzmann machine.

[0035] In some implementations, training the model com-
prises transforming at least one of the one or more binary
random variables according to a smoothing transformation
and determining at least one of the first and second updated
sets of the one or more parameters based on the smoothing
transformation.

[0036] Insome implementations, transforming at least one
of the one or more binary random variables comprises
transforming the at least one of the one or more binary
random variables according to a spike-and-exponential
transformation comprising a spike distribution and an expo-
nential distribution.

[0037] In some implementations, the training the model
comprises determining an objective function comprising a
penalty based on a difference between a mean of the spike
distribution and a mean of the exponential distribution.
[0038] In some implementations, determining the first
updated set of parameters comprises determining the first
updated set of parameters based on an approximating pos-
terior distribution where the spike distribution is given no
effect.

[0039] In some implementations, determining the first
updated set of parameters comprises determining the first
updated set of parameters based on a prior distribution
where the spike distribution and exponential distribution
have the same mean.

[0040] In some implementations, the latent space com-
prises one or more smoothing continuous random variables
defined over the binary random variables and training the
model comprises predicting each binary random variable
from a corresponding one of the smoothing continuous
random variables.

[0041] In some implementations, training the model com-
prises training at least one of an approximating posterior
distribution and prior distribution based on a spectrum of
exponential distributions, the spectrum of exponential dis-
tributions being a function of at least one of the smoothing
continuous random variables and converging to a spike

US 2020/0401916 Al

distribution for a first state of the at least one of the
smoothing continuous random variables. In some implemen-
tations, training the model comprises training an L1 prior
distribution. In some implementations, training an .1 prior
comprises training a Laplace distribution.

[0042] Aspects of the present disclosure provide a method
for unsupervised learning over an input space comprising
discrete or continuous variables, and at least a subset of a
training dataset of samples of the respective variables, to
attempt to identify the value of at least one parameter that
increases the log-likelihood of the at least a subset of a
training dataset with respect to a model. The model is
expressible as a function of the at least one parameter. The
method is executed by circuitry including at least one
processor and comprises forming a first latent space com-
prising a plurality of random variables. The plurality of
random variables comprises one or more discrete random
variables and a set of supplementary continuous random
variables. The method comprises constructing a stochastic
approximation to a gradient of a lower bound on the log-
likelihood of at least a subset of a training dataset. The
gradient is based on the one or more discrete random
variables and the set of supplementary continuous random
variables (said constructing comprising performing a REIN-
FORCE variance-mitigation technique). The method com-
prises updating the at least one parameter based on the
stochastic approximation to the gradient of the lower bound.
[0043] In some implementations, performing a REIN-
FORCE variance-mitigation technique comprises perform-
ing a REINFORCE variance-mitigation technique selected
from the group consisting of: RELAX and control variates.
[0044] Aspects of the present disclosure provide a method
for training a generative machine learning model with
discrete variables. The machine learning model is express-
ible as a function at least one parameter. The method is
executed by circuitry including at least one processor and
comprises forming a latent space comprising a plurality of
random variables, forming an encoding distribution com-
prising an approximating posterior distribution over the
latent space (conditioned on the input space), forming a prior
distribution over the first latent space (the prior distribution
comprising a quantum distribution), forming a decoding
distribution comprising a conditional distribution over the
input space conditioned on one or more of the plurality of
random variables (the decoding distribution comprising a
convolutional neural network), and training the generative
machine learning model.

[0045] In some implementations, the convolutional neural
network comprises a PixelCNN.

[0046] In some implementations, training the generative
machine learning model comprises causing a quantum pro-
cessor to sample from the quantum distribution and receiv-
ing one or more samples from the quantum processor.
[0047] Aspects of the present disclosure provide a method
for training a machine learning model having a latent space
comprising discrete variables. The machine learning model
is expressible as a function at least one parameter. The
method is executed by circuitry including at least one
processor and comprises forming a latent space comprising
a plurality of discrete random variables. The latent space
comprises a random Markov field defined over the discrete
random variables. The method comprises forming a genera-
tive model and an inference model over the random Markov
field, determining at least one continuous relaxation for the

Dec. 24, 2020

plurality of discrete random variables, training the genera-
tive machine learning model based on the random Markov
field, and training the inference model based on the at least
one continuous relaxation.

[0048] In some implementations, the machine learning
model comprises a discrete variational autoencoder. In some
implementations, forming a latent space comprises instan-
tiating a Boltzmann machine to represent a prior distribution
of the discrete variational autoencoder.

[0049] In some implementations, determining the at least
one continuous relaxation comprises determining at least
one continuous proxy for the plurality of discrete variables,
the at least one continuous proxy yielding a corresponding
plurality of continuous variables. In some implementations,
determining the at least one continuous proxy comprises
determining the at least one continuous proxy based on a
reparametrization of the plurality of discrete variables.
[0050] In some implementations, determining the at least
one continuous proxy based on a reparametrization of the
plurality of discrete variables comprises determining the
reparametrization of the plurality of discrete variables based
on the Gumbel trick.

[0051] In some implementations, determining the at least
one continuous proxy comprises determining a first continu-
ous proxy for a first one of the plurality of discrete variables
and a second continuous proxy for a second one of the
plurality of discrete variables, the first continuous proxy
based on a first transformation of the first discrete variable’s
logits and the second continuous proxy based on a second
transformation of the first discrete variable’s logits. In some
implementations, the method comprises learning the first
transformation by a neural network.

[0052] In some implementations, determining the at least
one continuous proxy comprises determining the at least one
continuous proxy based on a partition function defined over
the plurality of discrete variables.

[0053] In some implementations, determining the at least
one continuous proxy comprises determining the at least one
continuous proxy based on a sum of energy values for the
plurality of discrete variables.

[0054] In some implementations, at least one of training
the generative model and training the inference model
comprises sampling from an oracle to determine a gradient
of one or more objective functions over model parameters.
In some implementations, sampling from an oracle com-
prises sampling from a quantum processor based on the
random Markov field. In some implementations, sampling
from a quantum processor comprises importance-weighted
sampling.

[0055] In some implementations, forming the generative
model and the inference model comprises forming a non-
hierarchical approximating posterior distribution based on a
neural network and sampling from an oracle comprises
importance sampling.

[0056] In some implementations, forming a latent space
comprises forming a latent space based on an RBM-struc-
tured prior distribution with sparse connectivity. In some
implementations, forming a latent space with sparse con-
nectivity comprises forming a latent space over a Chimera
architecture.

[0057] Aspects of the present disclosure provide a method
for training a machine learning model having a latent space
comprising discrete variables. The machine learning model
is expressible as a function at least one parameter. The

US 2020/0401916 Al

method is executed by circuitry including at least one
processor and comprises forming a latent space comprising
a plurality of discrete random variables, forming at least one
model distribution based on the latent space, receiving one
or more samples from an oracle based on the at least one
model distribution, determining a first value of a first term
of an importance-weighted objective function of the
machine learning model based on a plurality of samples and
the at least one parameter, determining a second value of a
second term of the importance-weighted objective function
of the machine learning model analytically based on the at
least one parameter, synthesizing an objective value for the
objective function based on the first and second values, and
updating the at least one parameter based on the objective
value.

[0058] In some implementations, the machine learning
model comprises a discrete variational autoencoder and
forming at least one model distribution comprises forming a
prior distribution and decoding distribution.

[0059] In some implementations, the first term comprises
a partition term describing a partition function of the prior
distribution and determining the first value comprises deter-
mining an expectation of the partition term based on the one
or more samples.

[0060] In some implementations, the second term com-
prises an energy term describing an energy of the prior
distribution and determining the second value comprises
determining a weighted expectation of the energy term
analytically.

[0061] In some implementations, synthesizing an objec-
tive value for the objective function comprises synthesizing
a first gradient of the objective function relative to a first
subset of the at least one model parameter based on the first
and second values and determining a second gradient of the
objective function relative to a second subset of the at least
one model parameter analytically.

[0062] In some implementations, the method comprises
reparametrizing the plurality of discrete variables based on
the Heaviside function, wherein determining a second value
of a second term of the importance-weighted objective
function comprises determining a gradient of the objective
function with respect to one or more parameters of the at
least one parameter based on a derivative of the Heaviside
function, the one or more parameters relating to the decod-
ing distribution.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

[0063] In the drawings, identical reference numbers iden-
tify similar elements or acts. The sizes and relative positions
of elements in the drawings are not necessarily drawn to
scale. For example, the shapes of various elements and
angles are not necessarily drawn to scale, and some of these
elements may be arbitrarily enlarged and positioned to
improve drawing legibility. Further, the particular shapes of
the elements as drawn, are not necessarily intended to
convey any information regarding the actual shape of the
particular elements, and may have been solely selected for
ease of recognition in the drawings.

[0064] FIG. 1 is a schematic diagram of an exemplary
hybrid computer including a digital computer and an analog
computer in accordance with the present systems, devices,
methods, and articles.

Dec. 24, 2020

[0065] FIG. 2A is a schematic diagram illustrating an
example implementation of a generative machine learning
model with a discrete-variable latent space.

[0066] FIG. 2B is a schematic diagram illustrating an
example implementation of an inference machine learning
model corresponding to the model of FIG. 2A.

[0067] FIG. 2C is a schematic diagram illustrating an
example implementation of the generative machine learning
model of FIG. 2A adapted by hiding the discrete variables
with continuous variables.

[0068] FIG. 2D is a schematic diagram illustrating an
example implementation of an inference machine learning
model corresponding to the model of FIG. 2C.

[0069] FIG. 2E is a schematic diagram illustrating an
example implementation of the generative machine learning
model of FIG. 2A adapted by relaxing the discrete variables
into continuous variables.

[0070] FIG. 2F is a schematic diagram illustrating an
example implementation of an inference machine learning
model corresponding to the model of FIG. 2E.

[0071] FIG. 2G is a schematic diagram illustrating an
example implementation of the generative machine learning
model of FIG. 2C adapted by implementing the latent space
as a Boltzmann machine.

[0072] FIG. 2H is a schematic diagram illustrating an
example implementation of an inference machine learning
model corresponding to the model of FIG. 2G.

[0073] FIG. 3 is a graph of an example smoothing distri-
bution produced by overlapping smoothing transformations.
[0074] FIG. 4A is a schematic illustration of an example
implementation of a generative machine learning model
with a convolutional hidden layer of variables.

[0075] FIG. 4B is a schematic diagram illustrating an
example implementation of an inference machine learning
model corresponding to the model of FIG. 4A.

[0076] FIG. 5A is a schematic diagram of an example
implementation of an approximating posterior distribution
of an example discrete variational autoencoder.

[0077] FIG. 5B is a schematic diagram of an example
implementation of a prior distribution of the example dis-
crete variational autoencoder of FIG. SA.

[0078] FIG. 5C is a schematic diagram of an example
implementation of a decoding distribution of the example
discrete variational autoencoder of FIG. SA.

[0079] FIG. 6 is a flowchart of an example method for
unsupervised learning using smoothing transformations as
described herein.

[0080] FIG. 7 is a flowchart of an example method for
training an example machine learning model with mixed
models.

[0081] FIG. 8 is a flowchart of an example method for
training an example machine learning model using quantum
phase transitions.

[0082] FIG. 9 is a flowchart of an example method for
expedited training of an example quantum machine learning
model.

[0083] FIG. 10A is a schematic diagram illustrating an
example implementation of a generative machine learning
model with a discrete-variable latent space according to a
continuous relaxation described herein.

[0084] FIG. 10B is a schematic diagram illustrating an
example implementation of an inference machine learning
model corresponding to the model of FIG. 10A according to
a continuous relaxation described herein.

US 2020/0401916 Al

[0085] FIG. 10C is a flowchart of an example method for
training an example continuously-relaxed discrete varia-
tional autoencoder.

[0086] FIG. 11 is a flowchart of an example method for
training an example generative machine learning model
based on graph-representable inputs.

[0087] FIG. 12 is a flowchart of an example method for
training an example VAE to induce sparsity with binary
variables.

[0088] FIG. 13 is a flowchart of an example method for
training a VAE based on REINFORCE variance-mitigation
techniques.

[0089] FIG. 14 is a flowchart of an example method for
training a VAE with a quantum prior and a convolutional
neural network decoder.

[0090] FIG. 15 is a flowchart of an example method for
training a machine learning model having a latent space
comprising discrete variables using importance-weighted
sampling.

[0091] FIG. 16 is a flowchart of an example method for
training a machine learning model which integrates plurality
of layered distributions.

[0092] FIG. 17 is a flowchart of an example method for
relaxing an example Boltzmann machine-based DVAE.
[0093] FIG. 18 is a flowchart of an example method for
training a machine learning model based on mean-field
estimation.

[0094] FIG. 19 is a flowchart of an example method for
adapting a machine learning model to a sparse underlying
connectivity graph (e.g. the topology of an analog proces-
sor).

DETAILED DESCRIPTION

[0095] The present disclosure provides novel architectures
for machine learning models having latent variables, and
particularly to systems instantiating such architectures and
methods for training and inference therewith. We provide a
new approach to converting binary latent variables to con-
tinuous latent variables via a new class of smoothing trans-
formations. In the case of binary variables, this class of
transformation comprises two distributions with an overlap-
ping support that in the limit converge to two Dirac delta
distributions centered at 0 and 1 (e.g., similar to a Bemoulli
distribution). Examples of such smoothing transformations
include a mixture of exponential distributions and a mixture
of logistic distributions. The overlapping transformation
described herein can be used for training a broad range of
machine learning models, including directed latent models
with binary variables and latent models with undirected
graphical models in their prior. These transformations are
associated with novel approaches to training, including a
new importance-sampling-based implementation of a varia-
tional lower bound that can be efficiently trained without
necessarily requiring special treatment of gradients.

Introductory Generalities

[0096] In the following description, certain specific details
are set forth in order to provide a thorough understanding of
various disclosed implementations. However, one skilled in
the relevant art will recognize that implementations may be
practiced without one or more of these specific details, or
with other methods, components, materials, etc. In other
instances, well-known structures associated with computer

Dec. 24, 2020

systems, server computers, and/or communications net-
works have not been shown or described in detail to avoid
unnecessarily obscuring descriptions of the implementa-
tions.

[0097] Unless the context requires otherwise, throughout
the specification and claims that follow, the word “compris-
ing” is synonymous with “including,” and is inclusive or
open-ended (i.e., does not exclude additional, unrecited
elements or method acts).

[0098] Reference throughout this specification to “one
implementation” or “an implementation” means that a par-
ticular feature, structure or characteristic described in con-
nection with the implementation is included in at least one
implementation. Thus, the appearances of the phrases “in
one implementation” or “in an implementation™ in various
places throughout this specification are not necessarily all
referring to the same implementation. Furthermore, the
particular features, structures, or characteristics may be
combined in any suitable manner in one or more implemen-

tations.

[0099] As used in this specification and the appended
claims, the singular forms “a,” “an,” and “the” include plural
referents unless the context clearly dictates otherwise. It
should also be noted that the term “or” is generally
employed in its sense including “and/or” unless the context
clearly dictates otherwise.

[0100] The headings and Abstract of the Disclosure pro-
vided herein are for convenience only and do not interpret

the scope or meaning of the implementations.

Computing Systems

[0101] FIG. 1 illustrates a computing system 100 com-
prising a digital computer 102. The example digital com-
puter 102 includes one or more digital processors 106 that
may be used to perform classical digital processing tasks.
Digital computer 102 may further include at least one
system memory 108, and at least one system bus 110 that
couples various system components, including system
memory 108 to digital processor(s) 106. System memory
108 may store a VAE instructions module 112.

[0102] The digital processor(s) 106 may be any logic
processing unit or circuitry (e.g., integrated circuits), such as
one or more central processing units (“CPUs”), graphics
processing units (“GPUs”), digital signal processors
(“DSPs™), application-specific ~ integrated circuits
(“ASICs”), programmable gate arrays (“FPGAs”), program-
mable logic controllers (“PLCs”), etc., and/or combinations
of the same.

[0103] In some implementations, computing system 100
comprises an analog computer 104, which may include one
or more quantum processors 114. Digital computer 102 may
communicate with analog computer 104 via, for instance, a
controller 126. Certain computations may be performed by
analog computer 104 at the instruction of digital computer
102, as described in greater detail herein.

[0104] Digital computer 102 may include a user input/
output subsystem 116. In some implementations, the user
input/output subsystem includes one or more user input/
output components such as a display 118, mouse 120, and/or
keyboard 122.

[0105] System bus 110 can employ any known bus struc-
tures or architectures, including a memory bus with a
memory controller, a peripheral bus, and a local bus. System
memory 108 may include non-volatile memory, such as

US 2020/0401916 Al

read-only memory (“ROM”), static random access memory
(“SRAM”). Flash NAND; and volatile memory such as
random access memory (“RAM”) (not shown).

[0106] Digital computer 102 may also include other non-
transitory computer- or processor-readable storage media or
non-volatile memory 124. Non-volatile memory 124 may
take a variety of forms, including: a hard disk drive for
reading from and writing to a hard disk (e.g., magnetic disk),
an optical disk drive for reading from and writing to remov-
able optical disks, and/or a solid state drive (SSD) for
reading from and writing to solid state media (e.g., NAND-
based Flash memory). The optical disk can be a CD-ROM
or DVD, while the magnetic disk can be a rigid spinning
magnetic disk or a magnetic floppy disk or diskette. Non-
volatile memory 124 may communicate with digital proces-
sor(s) via system bus 110 and may include appropriate
interfaces or controllers 126 coupled to system bus 110.
Non-volatile memory 124 may serve as long-term storage
for processor- or computer-readable instructions, data struc-
tures, or other data (sometimes called program modules) for
digital computer 102.

[0107] Although digital computer 102 has been described
as employing hard disks, optical disks and/or solid state
storage media, those skilled in the relevant art will appre-
ciate that other types of nontransitory and non-volatile
computer-readable media may be employed, such magnetic
cassettes, flash memory cards, Flash, ROMs, smart cards,
etc. Those skilled in the relevant art will appreciate that
some computer architectures employ nontransitory volatile
memory and nontransitory non-volatile memory. For
example, data in volatile memory can be cached to non-
volatile memory. Or a solid-state disk that employs inte-
grated circuits to provide non-volatile memory.

[0108] Various processor- or computer-readable instruc-
tions, data structures, or other data can be stored in system
memory 108. For example, system memory 108 may store
instruction for communicating with remote clients and
scheduling use of resources including resources on the
digital computer 102 and analog computer 104. Also for
example, system memory 108 may store at least one of
processor executable instructions or data that, when
executed by at least one processor, causes the at least one
processor to execute the various algorithms described else-
where herein, including machine learning related algo-
rithms. For instance, system memory 108 may store a
machine learning instructions module 112 that includes
processor- or computer-readable instructions to provide a
machine learning model, such as a variational autoencoder.
Such provision may comprise training and/or performing
inference with the machine learning model, e.g., as
described in greater detail herein.

[0109] Insome implementations system memory 108 may
store processor- or computer-readable calculation instruc-
tions and/or data to perform pre-processing, co-processing,
and post-processing to analog computer 104. System
memory 108 may store a set of analog computer interface
instructions to interact with analog computer 104. When
executed, the stored instructions and/or data cause the sys-
tem to operate as a special purpose machine.

[0110] Analog computer 104 may include at least one
analog processor such as quantum processor 114. Analog
computer 104 can be provided in an isolated environment,
for example, in an isolated environment that shields the
internal elements of the quantum computer from heat, mag-

Dec. 24, 2020

netic field, and other external noise (not shown). The iso-
lated environment may include a refrigerator, for instance a
dilution refrigerator, operable to cryogenically cool the
analog processor, for example to temperature below
approximately 1 Kelvin.

Variational Autoencoders

[0111] The present disclosure has applications in a variety
of machine learning models. As an example, we will refer
frequently to variational autoencoders (“VAEs™), and par-
ticularly to discrete variational autoencoders (“DVAEs”). A
brief review of DVAESs is provided below; a more extensive
description can be found in PCT application no. US2016/
047627.

[0112] A VAE is a generative model that defines a joint
distribution over a set of observed random variables x and a
set of latent variables z. The generative model may be
defined by p(x, z)=p(z)-p(x|z) where p(z) is a prior distri-
bution and p(xIz) is a probabilistic decoder. Given a dataset
X={x®, . .., x}, the parameters of the model may be
trained by maximizing the log-likelihood:

N
logp(X) = Z logp(x(i)).
i=1

[0113] Typically, computing log p(X) requires an intrac-
table marginalization over the latent variables z. To address
this problem, a VAE introduces an inference model or
probabilistic encoder q(zlx) that infers latent variables for
each observed instance. Typically, instead of maximizing the
marginal log-likelihood, a VAE will maximize a variational
lower bound (also called an evidence lower bound, or
ELBO), usually in the following general form:

log p)=E . [log p(x12)|-KLIg(1%)p(z)].

[0114] The gradient of this objective may be computed for
the parameters of both the encoder and decoder using a
technique referred to as “reparameterization” (and some-
times as the “reparametrization trick™). With reparametriza-
tion, the expectation with respect to q(zlx) in the ELBO is
replaced with an expectation with respect to a known
optimization-parameter-independent base distribution and a
differentiable transformation from the base distribution to
q(zlx). For instance, in the case of a Gaussian base distri-
bution, the transformation may be a scale-shift transforma-
tion. As another example, the transformation may rely on the
inverse cumulative distribution function (CDF). During
training, the gradient of the ELBO is estimated using
samples from the base distribution.

[0115] Unfortunately, the reparameterization trick cannot
be applied directly to discrete latent variables because there
is no known differentiable transformation that maps a base
distribution to a suitable discrete distribution. This may be
addressed by, for example, continuously relaxing the dis-
crete latent variables and/or hiding the discrete variables
behind continuous variables. An example of continuous
relaxation in the case of a discrete variable with a categorical
distribution is adding additive Gumbel noise and a softmax
transformation with a defined temperature to the discrete
variable, yielding a continuous random variable with a
distribution which converges to the original categorical
distribution as temperature approaches zero. An example of

US 2020/0401916 Al

hiding discrete variables is pairing each discrete variable
with an auxiliary continuous random variable and then
marginalizing out the discrete variable to yield a marginal
distribution over the continuous auxiliary variables. The
reparameterization trick may be applied to the distribution of
the resulting continuous variable.

[0116] For instance, PCT application no. US2016/047627
describes a hiding approach where a binary random variable
z with probability mass function q(zIx) is transformed using
a spike-and-exponential transformation r(Clz) where
r(€1z=0)=3(T) is a Dirac delta distribution (i.e. the “spike™)
and r(€lz=1)cexp(PC) is an exponential distribution defined
for CE[0,1] with inverse temperature P controlling the
sharpness of the distribution. The marginal distribution
q(CIx) is a mixture of two continuous distributions. By
factoring the inference model of the DVAE so that x depends
on rather than z, the discrete variables can be eliminated
from the ELBO (effectively “hidden” behind continuous
variables) and reparametrization can be applied.

[0117] A challenge that arises here is that the Dirac delta
distribution can be challenging to train with certain gradient-
based approaches, but alternative transformations require
their own reparametrizations and implementations of the
ELBO and/or (D)VAE architecture which are non-trivial
(and indeed often very challenging) to design.

Overlapping Transformations

[0118] Some implementations of the present disclosure
provide a broader range of available smoothing transforma-
tions of binary variables (e.g., which do not require the use
of'the Dirac delta function). A smoothing transformation can
be defined using one or more smoothing distributions. For
instance, an example smoothing transformation r can be
defined using two exponential (e.g., Laplace) distributions
as follows:

o ZBED)
r¢lz=0)= —— and r({|z=1)=
Zg

for CE[0,1] where P is an inverse temperature parameter and
ZB:(l—e‘B)/ [is the normalizing constant.

[0119] Graph 300 of FIG. 3 shows the smoothing distri-
butions r(Clz=0) and r(Clz=1) produced by the smoothing
transformation r conditional on the corresponding value of z.
Curve 302 corresponds to r(Clz=0) and curve 304 corre-
sponds to r(Clz=1). Axis 310 describes the continuous vari-
able (and axis 312 describes the value of the smoothing
transform z as a function of T, i.e. r(Clz) for a given value of
zZ

[0120] Smoothing transformation r may be used to define
a mixture distribution q(CIx)==_q(zIx)r(Clz) which margin-
alizes out the discrete distribution q(zIx) (which may be, for
example, a Bernoulli distribution). For the example smooth-
ing transformation given above, q(Clz) approaches q(z=0Ix)
d(@)+q(z=11x)d(C-1) as p—>co.

[0121] Applying the reparameterization trick for mixture
distribution q(CIx) requires the inverse CDF of mixture
distribution q(CIx). One of the challenges of defining
smoothing transformations r based on multiple continuous
distributions and defining the mixture distribution q(Clx)
thereon is that the inverse CDF can be difficult to derive and

Dec. 24, 2020

may not be suitable for efficient training. For the example
smoothing transformation given above, the inverse CDF is
described by:

—b+\/b2—4c

1
-1
FoonP) = _Elog 3

where b=[p+e P(q-¢]/(1-q)-1 and c=—[q e P]/(1-q). This is
a differentiable function that converts a sample p from the
uniform distribution %(0,1) to a sample from q(Clx). It
approaches a step function as f—oo, although to benefit from
gradient information during training it can be beneficial to
set [to a finite value.

[0122] The present disclosure is not limited to mixtures of
exponential distributions. Indeed, if the distributions being
mixed have the same support (i.e. if they are completely
overlapping) then arbitrary smoothing transformations can
be used. This is because in such circumstances the cross
entropy term of the ELBO (sometimes expressed E
[W,z,z]) can be expressed as:

q(zlx)

r(ilzi = Da(zi = 11 4i<in ©)
LG 1 z0)g(zi | Gy X)

Eyzx)[Wiziz;] = WiEp<; gz = 1 &iejr)

[0123] This expression applies reparametrization in a gen-
eral way without depending on the specific form of r(Clz,=0)
or r(C,1z=1), except that they must have the same support.
This produces a resulting mapping from random variable p,
to ¢, given by Ci:Fq@i‘x)"l(pi). Significantly, this function
lacks discontinuous variables and is trainable analytically by
common gradient descent techniques.

[0124] Inthe case of binary discrete random variables, any
pair of overlapping smoothing distributions converging to
d(C) and d(C-1) can be used. A larger number of overlapping
smoothing distributions may be used in the case of non-
binary discrete variables such that the mixture of distribu-
tions converges to point-probability-mass modes of the
discrete distribution from which the discrete variables are
drawn.

[0125] Suitability of a smoothing distribution will vary
according to the inverse CDF of their mixture distribution.
For example, normal or logistic distributions may be used.
In some implementations, the smoothing distributions are
continuous. In some implementations, they are symmetric
(e.g. as in the above example of a mixture of exponentials).
Various example implementations of smoothing and mixture
distributions are described below.

[0126] A smoothing transformation can be defined by
modelling r(€lz) using normal distributions with means
shifted relative to the z value. For instance, the following
smoothing transformation may be used:

r(Clz=0)= N (2;0,02)
rClz=1)= N (©1,6%)

[0127] Inthis case, the resulting mixture q(2)=2,r(Clz)q(z)
will converge to a Bernoulli distribution as 0—0. However,
a challenge with this approach is that the CDF resulting from
q(€) cannot be inverted analytically. This may be addressed,
for example, by approximating the normal distributions (e.g.
with logistic distributions) to obtain an analytically-invert-

US 2020/0401916 Al

ible CDF and/or by determining the gradient of the samples
with respect to the probability of a binary state under the
mixture distribution; both approaches are described in
greater detail below.

[0128] In some embodiments, the smoothing transforma-
tion may be an approximation of a desired smoothing
transformation; for example, where normally-distributed
smoothing transformations are desired (e.g. as shown above)
the smoothing transformations may be defined by logistic
distributions. A potential advantage of this approach is that
the distribution approximates what would be obtained by the
use of normal distributions, but allows for an analytically-
invertible CDF. The smoothing transformation may, for
example, be defined as follows:

(¢ 1z=0)= L& po,)
¢ lz=1= L& p1,)

where
e§;l£
L u,5)= —
s[1+e” T)
[0129] The mixture distribution may then be defined by:

1@=(1-9L Cpo9+a LG9

and the inverse CDF can be determined by solving:

[0130] If we define

¢ L
m=es,dy=es,

and

di=es

then we can derive a solution m* for m, namely:

*

_ =b+ ¥V —dac

2a

where a=pd,d,, b=p(dy+d,)-d,q-d,(1-q), and c=p-1.

[0131] This yields the inverse CDF Fq@"l(cp:—s log m*.
When s is very small and p,>p, d, is susceptible to
overflow; a numerically stable solution can be obtained by,
for example, applying the change of variable m'=/d,d,m.

Dec. 24, 2020

[0132] Although it may be convenient, in some circum-
stances, to define a smoothing transformation which yields
a mixture distribution with an analytically-determinable and
explicitly-identified inverse CDF, it is possible to reparam-
etrize overlapping transformations without explicitly deter-
mining the inverse CDF analytically. This allows for an even
broader range of smoothing transformations to be used.

[0133] Given an overlapping smoothing transformation
r(Clz) with a known probability density function (PDF) and
CDF, we can define the corresponding mixture distribution
q(CIx) based on the values of the smoothing distribution
given each binary value and the probability under the
mixture distribution that the binary state is 1 (or, without loss
of generality, 0) for a given input, expressible as q=q(z=11x).
For instance, the mixture distribution for a smoothing trans-
formation defined for one-dimensional z and T may be based
on:

qCIx)=(1-¢)r(Clz=0)+qr(Tlz=1)

which is a special case of the more general form q(TIx)=2,
q(zIx)r(Clz).

[0134] We can sample from q(CIx) by ancestral sampling
(i-e. by first sampling from the binary distribution q(zIx) and
then from the conditional distribution r(Clz)), but the result
is not differentiable with respect to q.

[0135] We can determine the gradient of the samples from
q(CIx) with respect to q based on the PDF and CDF for the
smoothing distribution. For example, for the example mix-
ture distribution q(CIx) given above, we can note that its
inverse CDF F q@‘x)"l is obtainable based on:

Faaro DO=(1-9REIz=01+gREIz=1)=p
where pE€[0,1] and R(C|z) is the CDF for r(Clz). The gradient

of'the samples with respect to q may be determined based on
the gradient of the inverse CDF of q(CIx), e.g. as follows:

9% _ _Rélz=0-RC¢lz=1)
dg (1-@rllz=0)+grllz=1)

which can be determined based on the PDF and CDF for
r(Clz), without explicitly determining the values of the CDF
(or inverse CDF) for q(TIx).

[0136] This construction allows for the definition of a
range of overlapping transformations without requiring that
the corresponding mixture distribution have an explicitly
defined (or even analytically-determinable) CDF.

[0137] Note that if the smoothing transformation r is
defined over another domain (e.g., over z and a temperature
parameter }) then it may be necessary to determine the
gradient of T with respect to additional parameters, which
may involve determining the gradient of the smoothing
transformation’s CDF with respect to the additional param-
eters. For example, if r is defined over z and P then the
gradient of T with respect to 3 may be determined on:

1 REIE=0) 0RUIs= D
o Y =55
B~ (U-q@rllz=0)+grlz=1)

US 2020/0401916 Al

[0138] The above-described smoothing transformations
can be applied to training of machine learning models with
discrete latent variables, such as discrete variational auto-
encoders.

Adapting Graphical Models to Use Smoothing
Transformations
[0139] Generative models are commonly designed as

graphical models, such a directed or undirected graphical
models. PCT application no. US2016/047627 discloses
methods for adapting undirected graphical models to accom-
modate continuous transformations of discrete variables
which are also applicable here. However, it is also possible
to adapt directed graphical models to accommodate the
present continuous transformations.
[0140] FIG. 2A shows an example generative model 200a
with binary latent variables 210 (z,) and 212 (z,). FIG. 2B
shows a corresponding inference model 20056. Data 202 (x)
is either an input (as in inference model 2005) or an output
(as in generative model 200q). In the example model, latent
variable 212 depends on latent variable 210.
[0141] To train models 200a and 2005 using smoothing
transformations, the models may be adapted to introduce
continuous variables 220 (C,;) and 222 (C,), as shown in
FIGS. 2C-2H. FIGS. 2C and 2D show an example of
“hiding” discrete variables 210, 212 behind continuous
variables 220, 222 to produce a joint model. The dependen-
cies of discrete variables 210, 212 are transferred to the
corresponding continuous variables 220, 222 and continuous
variables 220, 222 are made dependent on their correspond-
ing discrete variables.
[0142] Thus, in adapted generative model 200¢ of FIG.
2C, data 202 becomes dependent on continuous variables
210 and 222 and discrete variable 212 becomes dependent
on continuous variable 220 in place of discrete variable 210.
Antecedents are not necessarily changed, however, as shown
(for example) in adapted inference model 2004 of FIG. 2D,
where discrete variables 210, 212 remain dependent on data
202.
[0143] Whether or not a relation is adjusted in the directed
graphical model depends on the direction of the relation—
dependencies of discrete variables are adjusted to be depen-
dencies of continuous variables, but those discrete variables
continue to be dependencies of other variables (except to the
extent that those other variables are themselves hidden
behind continuous variables). In this way, binary latent
variables influence other variables only through their con-
tinuous counterparts.
[0144] Ifthe model distribution p, approximating posterior
q, and mixing distribution r are for models 200c, 2004 are
factorial then the ELBO for models 200¢ and 2004 can be
given by:

E q@l\x)[[E q@zwxg)[log PEITLEN-KL(q(z, 1x)lp

L o mlKL@ @R EDIpEIE)]

[0145] The KL terms of the above ELBO corresponding to
the divergence between factorial Bernoulli distributions
have a closed form. The expectation over ; and T, may be
reparametrized as described above, allowing for the ELBO
to be used by (for example) gradient descent training tech-
niques.

[0146] FIGS. 2E and 2F shows an example of “relaxing”
discrete variables 210, 212 into continuous variables 220,
222 to produce a marginal model. In this case, discrete

Dec. 24, 2020

variables 210, 212 are substituted with continuous variables
220, 222, which have the same relations with other variables
as the discrete variables 210, 212 did (modulo any substi-
tutions). Such models 220e, 200f can be produced by, for
example, generating models 200¢, 2004 via hiding and then
marginalizing out the discrete variables. The ELBO for
models 200e, 200/ can be given by:

E q@l\x)[[E q@zwx,gl)[log PEITLT)N-KL(g (T, %)l
ErF B e ml KL Gln)G IE)]

where p(Cl):Hir(Cl,ilzi)p(Zi) and p(C2|C1):Hir(C2,i|C1,i) with
p(C2,i|C1,i):ZZZir(C2,i|Z2,i)p(Z2,i|C1,i)' The KL terms of this
ELBO do not have a closed form but can be estimated, e.g.
by Monte Carlo techniques. However, the ELBO of this
marginal graphical model provides a tighter bound than the
ELBO of the above-described joint model, so in suitable
circumstances it may be advantageous to use a marginal
graphical model as described above.

Adapting Boltzmann Machine-Based Models

[0147] In some implementations, the prior distribution of
the machine learning model is defined using a Boltzmann
machine (which includes, for example, restricted Boltzmann
machines, or “RBMs”). PCT application no. US2016/
047627 discloses certain exemplary approaches to using
Boltzmann machines. The smoothing transformations
described above can be applied in this context to, for
example, enable the development of machine learning mod-
els which are trainable with low-variance gradient estimates
even when defined over an RBM.

[0148] FIGS. 2G and 2F show a generative model 200g
and an inference model 200f; respectively, where the gen-
erative model 200g comprises a Boltzmann machine 230. A
Boltzmann machine defines a probability distribution over
binary random variables arranged on a graph. In a restricted
Boltzmann machine, the graph is bipartite. In some imple-
mentations, such as an example RBM implementation, the
probability distribution takes the form p(z,, z,)=e £€<2/7
where E(z,, z,)=-a,z,-a,7z,-z, "Wz, is an energy function
with linear biases a, and a,, pairwise interactions W capture
statistical dependencies between z, and z,, and Z is the
partition function.

[0149] As described above with reference to FIGS. 2C and
2D, in some implementations discrete variables 210, 212 are
hidden behind continuous variables 220, 222 and condition-
als are formed on the continuous variables (instead of the
binary variables z. The corresponding inference model can
be constructed in any suitable way; the example inference
model of FIG. 2H is constructed in the same way as
inference model 2004 of FIG. 2D, namely in a hierarchical
structure that infers both z and C.

[0150] The ELBO for the machine learning model com-
prising models 200g and 200/ may will be similar to the
ELBO of the joint model comprising models 200¢ and 2004
(due to the similar structure), although the first term will be
different due to the use of a Boltzmann machine in the prior.

[0151] Computing a KL. term with a Boltzmann machine
prior is likely to be more challenging the computing the
corresponding term of the model 200¢ ELBO. The following
disclosure presents a novel training approach to ameliorate
at least some of this challenge in certain circumstances.
Significantly, it can enable the use of commonly-applied

US 2020/0401916 Al

gradient-based processing techniques in the training of dis-
crete variational autoencoders with Boltzmann machine
priors.

[0152] The KL contribution to the ELBO for a discrete
variational autoencoder structured according to models 200g
and 200/ can be approximated using importance sampling.
This yields the following estimation of the K. contribution
to the ELBO:

KLg(z1. 2. 21, &2 10| pas, 22, 41, &) =
—H(q(z1 | %)) = Egqgy o [H(g(z2 | %, 1)) — af 1 (x) —

Eqizy lad 2, £0)] = Egggy 1olo(g1(x) + (1) Wi (x, £1)] + log Z.

[0153] In this expression H(q) is the entropy of the dis-
tribution q. This has a closed form for certain distributions
g, including the Bernoulli distribution. The notation y, and
11, is introduced for convenience; 1, (x)={q(z, ~11x)Vi} and
1w, (x,8,)={q(z, ~1Ix, {,)Vi}. Further, o(x)=1/(1+¢™) is the
logistic function, and g, (x)=log[,(X)/(1-p,(x))] is the logit
function applied to p, (x). Applying an importance-weighted
approximation to the log likelihood ratio yields an estima-
tion of w(Q)=log[r(CIz=1)r(Clz=0)], which can be expressed
analytically as m(Z)=(2C-1) when a mixture of exponential
smoothing transformations is used.

[0154] Conveniently, all terms contributing to the K. term
other than log Z can be computed analytically given samples
from a hierarchical encoder. Expectations with respect to
q(C,1x) can be reparameterized using the inverse CDF
function. It is then convenient to back-propagate the gradi-
ents through the network using common gradient-based
techniques, with only the log 7 term requiring special
treatment. This pleasing property is a result of r(Clz) having
the same support for both z=0 and z=1.

[0155] It is further possible to include log Z in the objec-
tive function to enable that term to be determined conve-
niently without undue burden to the implementer. For train-
ing a DVAE model with an RBM prior, the gradient of log
Z can be computed in each parameter update based on the
prior parameters 8={a,, a,, W}. Its gradient may be deter-
mined with respect to 6 without necessarily requiring any
other inputs. For example, in some implementations its
gradient can be determined based on the following:

Z Eole1) 9Ey(z1, 22)
2.2

dlogZ 0 _ a6
= _10g2 e Eoa) = _ =
a0 a0 —Eg(4],%)
i Zzi,z’z e Eo(q:5
OEy(z1, 22) E 0E5(z1, 22)
—Z Poler, 22)——3 57— = "By | —55
21,22
[0156] That is, the gradient of the log partition function is

equal to the expected gradient of the energy with respect to
the model parameters (known as negative phase). This
expectation is can be estimated using Monte Carlo samples
from the model. In some implementations, determining this
expectation comprises performing persistent contrastive
divergence, e.g., maintaining persistence chains and running
Gibbs sampling updates for a fixed number of iterations to
update the samples after each parameter update.

Dec. 24, 2020

[0157] In some implementations, the implementer can
avoid manually computing the gradient of the negative
energy function for each sample and modifying the gradient
of whole objective function by computing the negative
average energy on the samples generated from PCD chains

1
(e.g. _ZZlEG(ZY), e

where z,?, z,%~py(z,, z,) and L is the total number of
samples). This results in a scalar tensor with a gradient equal
to the gradient of the log partition function. The Monte Carlo
estimate of the gradient of the log 7Z term may thus be
incorporated into training simply by adding this tensor to the
objective function and performing backpropagation in the
usual way.

Adapted Discrete Variational Autoencoders

[0158] The foregoing description provides generalized
examples of smoothing transformations being applied in the
architecture and training of discrete latent variable machine
learning models. It is possible to build much more sophis-
ticated models using the present techniques. One such
example model is provided herein—an improved discrete
variational autoencoder.

[0159] An example DVAE is shown in FIGS. 4A and 4B,
which illustrate a generative model 400a and an inference
model 4005, respectively, having discrete (or “global™)
variables 410, 412, continuous variables 420, 422, and
hidden (or “local”) variables 440. Hidden variables 440 may
also be continuous; to disambiguate, continuous variables
420 may be referred to as “auxiliary” variables. Hidden
variables 440 may be multi-layered (e.g., convolutional) and
thus are shown as three-dimensional volumes. In some
implementations, discrete variables 410, 412 have an RBM
conditional distribution and other variables 420, 422, 440
have factorial conditional distributions. Each depicted vari-
able 410, 412, 420, 422, 440 may comprise a set of one or
more variables, with each set sharing a conditional distri-
bution.

[0160] The factorial distributions impose an independence
assumption within each set of continuous latent variables
420, 422, 440, which limits the ability of the model to
capture correlations in input data 402. While the autoregres-
sive structure mitigates this defect, the discrete global latent
variables further serve to capture such correlations. The
discrete nature of the RBM prior for the global variables
410, 412 can allow the model comprising models 400a and
4005 to capture richly correlated discontinuous hidden fac-
tors that influence data generation.

[0161] The generative model 400a of FIG. 4A can be
defined according to:

Pz, & h,x) = P(Z)]_[(il 21)r@a,i 1 224) % 1_[plhjl hej, Opx |,)
. j

where p(z) is a RBM, T=[C;,], and r is a smoothing
transformation that is applied componentwise to z. p(h;lh_,
©) is the conditional distribution defined over the j* local
variable set 440 using a factorial normal distribution.

US 2020/0401916 Al

Optionally, the conditional on the data variable p(xIT, h) may
be decomposed further into several factors defined on dif-
ferent scales of x, for instance as follows:

pGs1E) = plro 14 W] | P 14, b x<i)

[0162] Here, x, is some (small) initial scale, such as 2x2
or 4x4 pixels in an image-analysis context, which represents
x downsampled to a very small scale. Conditioned on x,, one
may generate x, in the next scale, e.g., 8x8. This process
may be continued until a suitable-scale image (e.g., the
full-scale image) is generated. In at least the foregoing
example, each conditional may be represented using a
factorial distribution. In an image-analysis context, a facto-
rial Bemoulli distribution may be used for binary images: a
factorial mixture of discretized logistic distribution may be
used for colored images

[0163] The example inference model 4005 of FIG. 4B
conditions over latent variables in a similar order as the
generative model, and may thus be expressed as follows:

9z & hlx) =

q(z1 |x)]_I (8l 2L X g(z2 | x, §1)H (&2 |Zz,k)1_[plhj| g, hej)
; ! i

[0164] In at least some implementations, q(z,|x) and
q(z,x, C,) are each modeled with factorial Bemoulli distri-
butions, and p(h,IC, h.) represents the conditional distribu-
tion on the j* group of local variables 440.

[0165] Discrete variables 410, 412 may take exponentially
many joint configurations. Each joint configuration corre-
sponds to a mixture component. These components may be
mixed with p(z,, z,) in the generative model. During train-
ing the inference model may map each data point to a small
subset of all the possible mixture components. The discrete
prior may thus learn to suppress the probability of configu-
rations that are not used by the inference model, resulting in
a trained model where p(z,, z,) is likely to be multimodal
and to assigns similar data elements 402 (e.g. images) to a
common discrete mode.

[0166] Graphical models implementing inference model
400a and generative model 4005 described above may be
provided by a novel neural network architecture which
combines residual networks with squeeze and excitation
(SE) blocks (such as SE-ResNet blocks) to introduce a
channel-wise attention mechanism. Such networks may be
implemented by combining residual blocks, fully-connected
layers, and/or convolutional layers.

[0167] FIGS. 5A-5C (collectively and individually “FIG.
5”") show an example encoder 500a, prior 5005, and decoder
500c. In encoder 500a, a series of one or more downsam-
pling residual blocks 520 (e.g., 520a and 5205) are used to
extract convolutional features from an input 502. This
residual network progressively reduces the dimensionality
of features until it reaches a dimensionality of some minimal
size (e.g., a feature map of size 1x1). This network outputs
the low-dimensionality data as well as a higher-dimensional
variant (e.g., an 8x8 feature map). For example, low-
dimensional data may be generated by passing input 502

Dec. 24, 2020

through residual blocks 520a and 5205, whereas higher-
dimensional data may be passed through a small number of
blocks (e.g., by avoiding 5205). The low-dimensional data is
fed to one or more networks, such as fully-connected
networks 540 and/or 542, which define q(z1x,C.,) for the
global latent variables. The higher-dimensional data is then
fed to another set of one or more residual networks, such as
residual networks 524 and/or 526, that define q(h,Ix,C, h_)
for the local latent variables. (Combination nodes 504 may
comprise, for example, concatenation operations.)

[0168] In prior 5005, an upsampling network 522 may be
used to scale-up the global latent variables 514 (via variables
510) to an intermediate scale. The intermediate-scale output
may be provided to a set of residual networks 528 and/or 530
that define p(h,IC, h.) in the same scale. The scaled-up result
may be provided to decoder 500¢ where another set of
residual networks 522, 529 scale up the intermediate-scale
samples from the latent variables to the dimensionality of
the data space. In particular, in the example decoder 500c¢, a
context network 529 maps the local latent variables to a
feature space. A distribution on the smallest scale x, is then
formed in the feature space using a residual network 522.
Given samples from this scale, the distribution on the next
scale is formed using another upsampling residual network
522. This process is repeated until a data space scale is
reached.

[0169] If the discrete variational autoencoder is provided
with many layers of latent variables, its objective function
can “turn off” the majority of the latent variables in the
model by matching their distribution in the inference model
to the prior implemented by prior 5005. The latent units tend
to be removed variably, but it is possible to modify the
objective function for a VAE to balance the KL term across
different sets of variables, thereby removing latent units
roughly uniformly. For instance, the objective function may
be modified so that the KL term for each set i is scaled by
a scaling factor o, proportionate to the KI. term’s value from
the previous parameter update. Thus, large KL term values
are scaled by large o, effectively penalizing them, and small
KL term values are scaled by small a,, effectively allowing
them to grow with a reduced penalty and reducing the
likelihood that they will be “turned off™.

[0170] For example, a VAE’s objective function may be
modified to take the following form:

Eqzmllog p(x|2)] - v | aiKLig(z | 1| @)

where y is annealed gradually from zero to one during
training and o, is the scaling term for the i set of latent
variables. For example, during each parameter update o,
may be defined by:

&;

Zj@j

o; where &; = Ex.m[KL(g(z; | X) || p(z)] + €

where N is the number of sets of latent variables, M is the
current mini-batch and e is a small value that softens the
coeflicients for very small values of KL (e.g. € may be in the
range (0, 0.1]).

US 2020/0401916 Al

[0171] The «, coefficients are applied to the objective
function while the y term is being annealed. Optionally, after
vy reaches one, all of the a, scaling terms may be set to one
(or otherwise have their effect removed) in order to let the
model optimize the variational lower bound exactly.

[0172] FIG. 6 shows a method 600 for unsupervised
learning using smoothing transformations as described
above in the context of a DVAE or other machine learning
model with discrete variables in its latent space. The
machine learning model performing the learning is defined
over an input space which may comprise discrete and/or
continuous variables. The model is trained on a set of
training data and attempts to identify the value of at least one
parameter that increases the log-likelihood of the training
data (e.g., by minimizing the ELBO). In the course of
training, the parameters of the model will be updated via a
parameter-update operation and the log-likelihood of the
data is a function of these parameters; for this reason, the
model is sometimes said to be a function of its parameters.
The model is executed by one or more processors, which
may include one or more quantum processors. (For conve-
nience, “processor” is used in the singular in the following
description.)

[0173] At act 602, the processor forms a latent space with
a number of random variables, including one or more
discrete random variables. The latent space also includes
continuous random variables that correspond to one or more
of the discrete random variables of the latent space (and
optionally to other variables). For example, discrete random
variables may be hidden behind continuous random vari-
ables or relaxed into continuous random variables as
described above. The continuous random variables in this set
may be referred to as “auxiliary” or “supplementary” ran-
dom variables.

[0174] At act 606, the processor forms a transforming
distribution over the supplementary continuous random
variables. The transforming distribution comprises a condi-
tional distribution conditioned on the one or more discrete
random variables of the latent space. In particular, the first
transforming distribution comprising at least two smoothing
distributions, a first one conditional on a first discrete value
of the discrete random variables and a second one condi-
tional on a second discrete value of the one or more discrete
random variables. For example, the first smoothing distri-
bution might be conditional on z=0 and the second might be
conditional on z=1, as described above. The first and second
smoothing distributions have the same support, so the form
of the smoothing distributions can be arbitrary.

[0175] At act 608, the processor forms an encoder (i.e. an
encoding distribution). This includes an approximating pos-
terior distribution q over the latent space. The approximating
posterior distribution is conditioned on the input space and
maps inputs into the latent space. Encoder 500a of FIG. 5A
is a non-limiting example of such an encoder.

[0176] Atacts 610 and 612, the processor forms a decoder.
This includes forming a prior distribution over the latent
space (at act 610) and a decoding distribution over the input
space (at act 612). Prior distribution 5005 is a non-limiting
example of such a prior distribution. The decoding distri-
bution may be a conditional distribution over the input space
conditioned on the set of supplementary continuous random
variables. Decoding distribution 500c¢ is a non-limiting
example of such a decoding distribution.

Dec. 24, 2020

[0177] Atact 614, the processor trains the model based on
the transforming distribution. This can involve optimizing
an objective function (e.g., minimizing an EL.BO) based on
the transforming distribution, and in particular in some
implementations it involves optimizing an ELBO based on
importance sampling to determine terms associated with the
transforming distribution.

[0178] Training can involve a number of steps. In at least
one implementation, in the course of training the processor
determines an ordered set of conditional CDFs for the
supplementary continuous random variables. Each CDF
may be a functions of a full distribution of at least one of the
one or more discrete random variables. The processor may
invert the ordered set of conditional CDFs of the supple-
mentary continuous random variables, e.g., as described
above. The processor may construct a stochastic approxi-
mation to a lower bound on the log-likelihood of the training
data and/or a stochastic approximation to a gradient of the
lower bound on the log-likelihood, e.g., as in gradient
descent. And, during the course of optimization of the
objective function, the processor may increase the lower
bound on the log-likelihood based at least in part on that
gradient.

[0179] In some implementations, training at 614 com-
prises obtaining samples from the approximating posterior
(e.g., based on a QPU and/or ancestral sampling) and
determining a gradient of those samples with respect to a
probability of a binary state according to the approximating
posterior given an input. Determining the gradient may be
based on a CDF and/or PDF of the smoothing transforma-
tion, such as described above. In some implementations, the
smoothing transformation is defined over a plurality of
dimensions, including a latent dimension (comprising latent
variables z) and one or more additional dimensions (such as
temperature parameter f). Determining a gradient may
involve determining the gradient of the smoothing transfor-
mation’s CDF with respect to the one or more additional
parameters.

Quantum Processing

[0180] The above-described techniques may be assisted
by a quantum processor, such as quantum processor 114.
Training typically involves sampling over both the given
data distribution (which is straightforward) the predicted
model distribution (which is generally intractable). It is
possible to attack this problem with certain classical
approaches, such as Markov Chain Monte Carlo (MCMC),
Contrastive Divergence-k (CD-k), and/or Persistent Con-
trastive Divergence (PCD). MCMC is slow in general, and
CD-k and PCD methods tend to perform poorly when the
distribution is multi-modal and the modes are separated by
regions of low probability.

[0181] Even approximate sampling is NP-hard. The cost
of' sampling grows exponentially with problem size. In some
implementations, the sampling operation is assisted by sam-
pling from a quantum processor. It is possible to draw
samples from a quantum processor which are close to a
Boltzmann distribution, and it is possible to quantify the rate
of convergence to a true Boltzmann distribution by evalu-
ating the K[.-divergence between the empirical distribution
and the true distribution as a function of the number of
samples.

[0182] Noise limits the precision with which the param-
eters of the model can be set in the quantum hardware. In

US 2020/0401916 Al

practice, this means that the QPU is sampling from a slightly
different energy function. The effects can be mitigated by
sampling from the QPU and using the samples as starting
points for non-quantum post-processing e.g., to initialize
MCMC, CD-k, and/or PCD. The QPU is performing the
hard part of the sampling process. The QPU finds a diverse
set of valleys, and the post-processing operation samples
within the valleys. Post-processing can be implemented in a
GPU and can be at least partially overlapped with sampling
in the quantum processor to reduce the impact of post-
processing on the overall timing.

Mixed-Model Training

[0183] Machine learning models may be based on classi-
cal or quantum distributions. These include Boltzmann
machines and VAEs (on the classical side) and quantum
Boltzmann machines (including quantum RBMs, or
“qRBMs”) and quantum VAEs (or “qVAEs”) on the quan-
tum side. A potential advantage of quantum distributions is
that training may be assisted by sampling via a QPU and/or
via classically-implemented and quantum-adapted tech-
niques such as quantum Monte Carlo. However, using a
quantum distribution for a machine learning model can
introduce challenges in training, in part because sampling
from quantum distributions in certain circumstances can be
intractable.

[0184] As noted above, training a machine learning model
such as a variational autoencoder may involve optimizing an
objective function. Optimizing the objective function typi-
cally involves optimizing multiple terms, such as (for
example) a reconstruction loss term and a difference term
(such as the KL divergence) between the approximating
posterior and prior, as shown above. For instance, consider
the marginal log-likelihood of a VAE for a given data-point
x expressed based on Jensen’s inequality as follows:

polz)ps(x| z)}

lo x)=E,.. 0llo
g po(x) zq(p(z\)[&l

where z represents the latent variables, q,, is the approxi-
mating posterior distribution parametrized by ¢ and pg is the
generative model distribution parametrized by 6. The term
E . ec»[10g Pe(2)] is intractable and can be estimated based
on a quantum distribution (e.g. via sampling). However, this
term can be reduced to:

[E(z:6)]-log Z(6)

z—qg(zlx)

where Z is the partition function and E is the energy of the
Hamiltonian describing the quantum distribution. This is
sometimes expressed in the more general terms—FE(z;
0)-log Z(0). The first (energy) term corresponds to the
“positive phase” of Boltzmann training, which may e.g.
involve estimating a gradient of the first term. The second
term corresponds to the “negative phase” of Boltzmann
training. Training may involve calculating derivatives (e.g.,
multidimensional gradients over model parameters) of terms
in each phase, and those derivatives may be calculated
independently for each of the phases. There are many ways
to represent these phases; the foregoing equations are exem-
plary.

[0185] The negative phase is generally intractable, but can
be approximated by sampling from the model’s quantum
distributions (e.g., via QPU sampling, quantum Monte

Dec. 24, 2020

Carlo). The positive phase is also intractable for quantum
distributions and imposes certain constraints which can be
resistant to sampling techniques. For example, certain
approaches may require calculation of the probability of a
given set of hidden and visible units (e.g. in the case of a
qRBM) and/or marginalize a large number of variables,
which may impose challenges to QPU sampling or quantum
Monte Carlo sampling.

[0186] Insome implementations, the positive and negative
phase are calculated based on different models. For example,
the negative phase can be calculated based on a quantum
distribution using any suitable technique (e.g., by QPU
sampling or quantum Monte Carlo sampling), whereas the
positive phase can be calculated based on a classical distri-
bution that approximates the quantum distribution. (Equiva-
lently, the quantum distribution may approximate the clas-
sical distribution, depending on whether the target
distribution of the model is quantum or classical.) This
approximation introduces error into the training process, and
particularly contributes looseness to the objective function,
but it makes the use of quantum distributions more practical.

[0187] In some implementations, the positive phase is
computed based on a classical distribution and the negative
phase is computed based on a quantum distribution which
corresponds to the classical distribution—for instance, if the
model is based on a classical RBM, the positive phase may
involve optimizing over the RBM classically (e.g., via
MCMC) and the negative phase may involve optimizing
over samples drawn from a quantum distribution corre-
sponding to the RBM, such as a quantum RBM. Conversely,
if the model is based on a quantum RBM, the positive phase
may involve optimizing over a classical RBM corresponding
to a quantum RBM and the negative phase may involve
optimizing over samples drawn from the quantum RBM
itself.

[0188] As an example, referring back to the earlier
example definitions of positive and negative phase, calcu-
lating the positive phase —E(z; 6) may involve calculating
gradients of the expectation value of the log-unnormalized
probability of the samples produced by the approximating
posterior based on a classical model, such as a fully-visible
Boltzmann machine following a classical energy function.
Calculating the negative phase may involve evaluating the
derivative of the partition function Z(6) based on samples
from the corresponding quantum distribution, e.g., via the
QPU, quantum Monte Carlo, or other suitable techniques.

[0189] As a further example, consider a machine learning
model based on a quantum RBM. The log-probability of a
given state v in the training set may be expressed as:

log po(v) =log | pa(v,) =logy " py(v, 7) — log Z(0)

where pg(V, V) is the unnormalized probability, ¥ represents
the state of the variables in the imaginary time (with
dimensionality equal to that of ¥ plus the number of Trotter
slices, K), and 0 are the parameters of the generative model
being trained. This is an expression of the positive phase
(corresponding to the derivatives of the left-hand side) and
negative phase (corresponding to the derivatives of the
right-hand side). Optimizing this objective function may

US 2020/0401916 Al

involve calculating the gradients of the log-probability func-
tion with respect to 6. Following the foregoing, we can
express pg(v, ¥) as follows:

efﬁ(v,v)

pa(v, V) = 7o

where E(v, ¥) is the “effective” classical scalar Hamiltonian
with added dimensionality corresponding to the Trotter
expansion of the quantum Hamiltonian. That term can be
expanded as follows:

E(v, 7= —Z N Iy
ik

where k iterates over the K Trotter slices (e.g. v¥ denotes the
variables at the k” Trotter slice and v,* is the i element of
v5). When k=1 or k=K, v* is equal to the observed visible
units of the qRBM; for other indices, it is equal to the
intermediate Trotter slices. The value of J, is fixed and
depends on the transverse field and the number of Trotter
slices.

[0190] The derivatives of the negative phase can be cal-
culated via QPU sampling, quantum Monte Carlo sampling,
or by other means. But the derivatives of the positive phase
can be challenging to calculate: for example, some
approaches may require new Markov chains for each train-
ing example in the training set, which can quickly become
infeasible.

[0191] It is possible to tackle this problem by assuming
v=v, but this can introduce considerable error. In some
implementations of the present disclosure, the calculation of
the positive phase is addressed by adopting a variational
approach to evaluating the posterior Pg(¥Iv). This may
involve, for example, introducing variational parameters ¢
and generating a proposal posterior distribution q4(¥Iv) (e.g.
via inference networks). A variational lower bound on the
log-likelihood can be defined via Jensen’s inequality as
follows:

ps(¥, V)}

logpg(V) = L= [EVN%(T/ | v)[log%w ™

[0192] Such a qRBM may be trained by, for a given set of
parameters 0, performing one or more steps of a gradient-
based optimization method to obtain new values for ¢ and
then updating 6 based on ¢. For example, new values of ¢
may be determined by optimizing:

I = [EM(D(T/ | v)[—Z; J;,jvf-‘v’;- F Ik —IEVN%(T/ | v)loggy(¥ | v).
iJji

[0193] £ has the same derivatives as .L with respect to ¢,
and that derivative may be calculated analytically, depend-
ing on the form of qu(¥Iv). Thus, V,£ can be calculated
iteratively to find new values of ¢, and those values of ¢ may
be used by the positive phase model.

Dec. 24, 2020

[0194] Updating 0 based on ¢ may involve, for example,
an operation of the following general form:

Buen=0-¢[-E o o1 Ve 9+ E o VeE(:9)]

where € is the learning rate.

[0195] FIG. 7 is a flowchart of an example method 700 for
training an example machine learning model with mixed
models. The method is performed by a processor (e.g. of a
digital computer), optionally in communication with a quan-
tum processor (for implementations which use QPU sam-
pling). The machine learning model targets a target model,
such as a quantum model (i.e. a model comprising a quan-
tum distribution) or a classical model (i.e., a model com-
prising a classical distribution).

[0196] At act 702 the processor forms a positive phase
model and at act 704 the processor forms a negative phase
model. The positive and negative phase models are different
models, each of which corresponds generally (but not nec-
essarily exactly) to the target model. For example, the
positive phase model may be a classical model which
approximates a quantum target model (and, e.g., the nega-
tive phase model may simply be the quantum target model).
The reverse is also possible, where the negative phase model
may be a quantum model which approximates a classical
target model (and, e.g., the positive phase model may simply
be the classical target model). Alternative (or additional)
mixed-model arrangements which can be implemented by
method 700 are described below, such as tunable-error
mixed models where both the positive and negative phase
target quantum models.

[0197] At act 706 the processor samples from the positive
phase model during the positive phase of training and at act
708 the processor samples from the negative phase model
during the negative phase of training. Act 708 may comprise
sampling from a QPU and/or performing quantum Monte
Carlo or another classically-implemented quantum-simula-
tion technique.

[0198] At act 710 the processor updates the model param-
eters based on the samples from the positive and negative
phase models. For example, the objective function may be
optimized based on both first and second gradients. The first
gradient relates to the positive phase and is calculated based
on the samples from the positive phase model in act 706. The
second gradient relates to the negative phase and is calcu-
lated based on the samples from the negative phase model in
act 708. This method may be repeated over the course of
training.

[0199] As alluded to above, mixed-model training is not
limited to mixed classical and quantum models. FIG. 7 also
describes example implementations of the following meth-
ods for tunable-error mixed model training.

Tunable-Error Mixed Models

[0200] Although it is possible in appropriate circum-
stances to sample from a quantum distribution represented
by a quantum processor to approximate a classical distribu-
tion (such as a classical RBM approximating a quantum
RBM) or vice versa, as described above, for at least some
quantum processor architectures it is not feasible to natively
draw samples from a quantum distribution that exactly
implements a classical distribution. This simplifies training,
but since different models are being used at different stages
of training some error is likely to be introduced (as the
simplifying assumption that the classical and quantum dis-

US 2020/0401916 Al

tributions are equivalent is generally not correct). As a
result, additional looseness is likely to be introduced to the
objective function. That looseness cannot be arbitrarily
made smaller at a fixed transverse field according to any
known methods (at least in general), which hinders attempts
at accurate training.

[0201] The looseness introduced by the mismatch between
the model for the positive and negative phases can be made
arbitrarily tunable. However, this is not as simple as using an
identical model for both phases. Although it is possible to
sample exactly from the prior distribution in the negative
phase (e.g., via a QPU, various quantum Monte Carlo
techniques, and/or via other methods), it is not generally
tractable to calculate the positive phase exactly in finite time
and with finite resources due to its association with the
approximating posterior.

[0202] In some implementations, the models for the posi-
tive and negative phases target the same quantum model
(referred to as the target model), but the model used in the
positive phase is modified to have a higher-dimensional
latent space than the model used in the negative phase. These
additional dimensions are used to approximate the target
model in the positive phase to an arbitrarily tunable degree.
The positive phase is exact in its limit—that is, as the
number of dimensions trends towards infinity, the positive
phase model approaches the target model. This technique
takes advantage of the particular structure that the Hamil-
tonian of the quantum distribution assumes in the presence
of a transverse field.

[0203] In some such implementations, the state of the
positive phase model (comprising both the prior and
approximating posterior distributions) is modeled with one
or more extra variables associated with the latent variables,
thereby adding one or more auxiliary dimensions relative to
the target distribution. (The extra variables can be referred to
as “auxiliary variables”). In some implementations, the
positive phase is calculated using a discrete-time quantum
Monte Carlo algorithm; in that case, the auxiliary dimension
ma be referred to as the Trotter dimension and corresponds
to the Trotter slices of the algorithm. Note that it is not
necessarily required that the distribution of the auxiliary
variables given the distribution of observed variables be
evaluated. This is convenient since (at least in the case of
Trotter variables) this distribution is intractable.

[0204] In some implementations, the positive phase model
modified (relative to the target distribution) by sampling
from the target distribution using a discrete-time quantum
Monte Carlo algorithm. This has the effect of expanding the
dimensionality of the positive phase model’s latent space
according to the algorithm’s Trotter dimensionality.

[0205] The negative phase model, by contrast, depends
only on the prior distribution and thus can represent the
quantum distribution exactly without necessarily adding
additional dimensionality beyond the dimensionality of the
target model. The prior distribution can be sampled from in
substantially the same way as described elsewhere herein.

[0206] This formulation is precise, at least in the sense that
use of the Golden-Thompson inequality is not necessary and
the looseness of the objective function arising from the
approximation in the positive phase can be made arbitrarily
small. This precision is made possible even when the latent
spaces of the positive and negative phases do not correspond
by the fact that a D-dimensional quantum system can be
mapped onto a D+1-dimensional classical system.

Dec. 24, 2020

[0207] For example, consider a qVAE with a qRBM-
structured latent space. The probability of a total set of latent
variables (including their states in the Trotter dimension) can
be expressed as:

o Eer @)

pe(z) = W

where B, is the effective energy of the quantum Hamilto-
nian, given by:

K
—E(z0) :Z(Z(k))TJZ(k) + (@ ha J, (8T D
k=1

where J | has a fixed value determined by the transverse field
and K is the number of Trotter slices, z* represents the
states of the vector z along Trotter slice k. (Due to periodic
boundary conditions, z%*V=z") Variables h and J are the
biases and couplings, respectively. Accordingly, the deriva-
tives of pg(z) can be calculated with respect to 6 as follows:
Vg [gy 0l08 Pelz)== E z—q¢(zbc)[VBEeﬁ(Z;e)]+ E z—pg
Ve es(z:0)]

where the second term on the right-hand side can be calcu-
lated based on samples (e.g., from a QPU or quantum Monte
Carlo) as described above and the first term can be calcu-
lated using a discrete-time quantum Monte Carlo technique
or other suitable technique using finite additional dimen-
sions to simulate a true quantum distribution with arbitrary
precision.

[0208] Thus, one may train a qVAE based on its quantum
model without assuming an equivalence between a particu-
lar classical model and a corresponding quantum model, the
latter of which introduces untunable error via Jensen’s
inequality. Rather, its quantum model can be tunably
approximated in the positive phase such that, at least in the
limit, the positive phase and negative phase models con-
verge. This effectively allows for a fully-quantum qVAE
model, subject to a tunable approximation error.

Quantum Generative Machine Learning Models

[0209] It is common in machine learning applications to
use an all-to-all bipartite graph (e.g., a classical RBM) as the
source of a classical Boltzmann distribution for generative
machine learning models. It can be challenging to provide
such a graph natively on at least some quantum processors
(e.g., processors with limited inter-qubit connectivity), as
certain approaches may require “chaining” series of qubits
together into fragile systems (sometimes called “logical
qubits™). This can be impractical to do effectively in large
graphs with long chains. Moreover, as discussed above,
quantum systems may not provide exact classical Boltzmann
distributions and may instead approximate them with quan-
tum distributions.

[0210] A motivation to use all-to-all connected bipartite
graphs is that such graphs provide correlations between all
units. To provide this feature in a topology with only local
connectivity (or otherwise with a topology that does not
correspond directly to topology of the units being modelled),
long range correlations are needed.

US 2020/0401916 Al

[0211] Long range correlations in a quantum machine
learning model may be induced by operating a quantum
processor (such as a quantum annealing processor) to
occupy a state near to a quantum phase transition point.
Since a quantum processor is a physical, statistical system,
it can generate long-range correlations near to this point.

[0212] In some implementations, a quantum machine
learning model is trained by instantiating a Hamiltonian of
the model near to a quantum phase transition point—e.g.,
within a threshold distance of the quantum phase transition
point (where distance is measured according to a suitable
metric of the Hamiltonian’s space). Preferably, the quantum
phase transition has multiple modes. Since the Hamiltonian
is quantum mechanical, it can be treated as a quantum
Boltzmann machine and trained in the same way—see, for
example, Amin et al., Quantum Boltzmann machine, 2016,
arXiv:1601.02036 [quant-ph] for suitable non-limiting train-
ing techniques.

[0213] Not even statistical system has a suitable quantum
phase transition. For instance, two-dimensional statistical
systems generally lack spin glass phase transitions at finite
temperatures. However, higher-dimensional statistical sys-
tems can possess finite temperature spin glass phase transi-
tions. One such system is a three-dimensional cubic lattice
(e.g., with random couplings), which may be physically
represented on certain quantum processors (e.g., as
described in U.S. patent application Ser. No. 15/881,260).
Other topologies with suitable quantum phase transitions
may also, or alternatively, be used.

[0214] Accordingly, a quantum machine learning model
may be structured as a quantum statistical system with three
or more dimensions and having a finite-temperature quan-
tum phase transition (such as a spin glass phase transition).
During training, the Hamiltonian of the system may be tuned
to so that its state is close to (e.g., within a threshold distance
of) a quantum phase transition, such as a quantum phase
transition with multiple modes. This can naturally induce
long-range correlations between variables without necessar-
ily requiring chains to be instantiated between those vari-
ables. Over the course of training, the system is likely to
trend towards states with desirable long-range correlations
by virtue of the training process seeking out configurations
which optimize the objective function.

[0215] The present technique may be provided, for
example, by a VAE (e.g. a DVAE). The VAE may use a
quantum distribution (e.g., a qRBM) for its prior distribution
and the qRBM may be provided with a phase transition-
possessing structure as described above. The structure of the
qRBM prior to training does not necessarily encode any
knowledge of the particular problem, as problem-specific
structure is developed over the course of training.

[0216] FIG. 8 is a flowchart of an example method for
training an example machine learning model using quantum
phase transitions. At act 802 a processor instantiates a
Hamiltonian of a quantum machine learning model, such as
a Hamiltonian describing a three- or higher-dimensional
statistical system having a quantum phase transition (such as
a finite temperature spin glass phase transition) as described
above. At act 804, the Hamiltonian is tuned to be near to
(e.g., within a threshold distance of) that phase transition as
described above. At act 806, the quantum machine learning
model is trained, e.g., by iteratively sampling from the

Dec. 24, 2020

Hamiltonian and updating the parameters of the quantum
machine learning model to optimize an objective function as
described above.

Pre-Training Complex DVAEs

[0217] Training a DVAE (e.g., a DVAE with a quantum
prior distribution) via a conventional approach does not
necessarily lead to a sufficiently rich prior distribution for
the power of sampling (e.g., by a quantum processor) to be
fully exploited. In some implementations, we can promote
the formation of rich prior distributions by pretraining the
prior and approximating posterior distributions using a plu-
rality of layered distributions (e.g., Boltzmann distributions
represented by Boltzmann machines, such as RBMs), e.g.,
structured as a deep belief network (DBN).

[0218] FIG. 16 shows an example method 1600 for train-
ing a machine learning model which integrates plurality of
layered distributions. At 1602, a neural network (such as a
deep belief network) is formed. The network comprises the
aforementioned plurality of layered distributions (e.g.,
Boltzmann machines). At 1604, the deep neural network is
trained. Act 1604 may comprise, for example, training each
layer in sequence, starting from a first layer (connected to
the input), with each subsequent layer receiving the output
of'the previous layer as input. One all layers are trained, they
form a generative model which generates samples from the
topmost (i.e., last) layer machine and propagates informa-
tion deterministically through the other layers. Given such a
structure, what remains is to integrate it with a DVAE.
[0219] In some implementations, the prior distribution
comprises the topmost layer and the decoder (i.e., the
structure which produces the approximating posterior dis-
tribution) comprises the remaining layers. A prior distribu-
tion trained in this way will tend to be multimodal and
complex, making it likely that it will consistently provide a
rich representation. This provides a pre-trainable structure to
the DVAE.

[0220] At 1606, after the network has been trained at
1604, the encoder is pre-trained to determine an initial state
that is likely to correspond to a multimodal prior distribu-
tion. This may comprise minimizing an objective function
for the machine learning model while the parameters of the
prior distribution and the decoder are fixed (so as to retain
the structure from the previous act).

[0221] At 1608, after pre-training completes, the param-
eters of the machine learning model (e.g., a DVAE) may be
trained by any suitable means—including minimizing an
objective function (this time without fixing the parameters of
the prior distribution and decoder). Due to the pre-training,
this training act begins from a carefully-selected initial state
rather than a random state. In certain circumstances, this can
help to increase the log-likelihood of the model, while also
retaining the multimodal character of the prior distribution.
[0222] Insome implementations, the prior distribution has
sparse connectivity (e.g., because the topmost layer is a
Boltzmann machine having sparse connectivity). This sparse
connectivity may correspond to the connectivity of an
analog processor, such as a quantum processor, e.g., as
described elsewhere herein. In some implementations, the
layers of the decoder may be structured non-identically so
that, for example, two adjacent layers have different con-
nectivity. For example, a first Boltzmann machine in a layer
that is “further” from the prior distribution (i.e., lower-down
in the hierarchy) may have greater connectivity than a

US 2020/0401916 Al

second Boltzmann machine that is “closer” to the prior
distribution (i.e., higher-up in the hierarchy). In some imple-
mentations, the second Boltzmann machine’s graphical rep-
resentation is a subgraph of the first Boltzmann machine’s
graphical representation—that is, the first Boltzmann
machine has all of the connections of the second Boltzmann
machine, and more.

[0223] In some implementations where layers comprise
Boltzmann machines, each Boltzmann machine in the
decoder expands on the connectivity of at least one prior
Boltzmann machine (excluding, optionally, the topmost
Boltzmann machine of the decoder). The connectivity of
Boltzmann machines may increase with depth until, option-
ally, the bottommost Boltzmann machine is (or some set of
bottommost Boltzmann machines are) fully-connected.
Expedited Training for qVAEs

[0224] A limiting factor in training a quantum variational
autoencoder is the high training time (relative to classical
VAEs), both when sampling from QPUs and via quantum
Monte Carlo or similar techniques. For instance, for a qVAE
with a prior implemented as a relatively-simple 16x16
bipartite quantum Boltzmann machine, the training of the
qVAE could take a week or more, whereas the training of a
classical VAE of similar size might be achieved in a matter
of hours.

[0225] In some implementations, training is expedited by
collecting more samples in the positive phase and fewer
samples in the negative phase. For instance, k samples may
be acquired for each input when calculating the expectations
of the ELBO using a Monte Carlo approach (e.g., quantum
Monte Carlo) and averaged to determine an expectation
value. This reduces the variance of the ELBO, allowing the
number of calls to a QPU or to quantum Monte Carlo when
calculating the prior to be reduced by a factor of k, poten-
tially expediting training considerably in circumstances
where sampling from the prior is computationally expen-
sive.

[0226] As another example, the ELBO of a variational
autoencoder (e.g., a qVAE) may be modified to comprise a
Renyi divergence with parameter a=1 and k important
weights (e.g., in the place of a KL divergence term). This
construction provides a bound that is just as tight as the KL
divergence term in the ELBO of a typical VAE, but with
lower variance. In particular, this modification tends to cause
the standard deviation of the derivatives of the Renyi
divergence with respect to the model parameters to scale
proportionately to 1/Vk. (Note that it is not necessary to
calculate the actual importance weights due to the properties
of the KL divergence; this is a consequence of setting a=1).
[0227] Although the form of a Renyi divergence with a=1
is similar to that of a KL. divergence, the method of training
is different (and in particular is dictated by the k importance
weights). Renyi divergences may be applied to a VAE as
described, for example, by Li et al., Rényi Divergence
Variational Inference, 29th Conference on Neural Informa-
tion Processing Systems (NIPS 2016), Barcelona, Spain,
arXiv:1602.02311 v3 [stat. ML] 28 Oct. 2016, incorporated
herein by reference. By making such a modification in the
context of a qVAE, the computational burden of training can
be rebalanced to reduce the load on costly QPU or quantum
Monte Carlo operations.

[0228] FIG. 9 is a flowchart of an example method for
expedited training of an example quantum machine learning
model. The method is performed by a computing system

Dec. 24, 2020

having a processor (which is optionally in communication
with a quantum processor) and which has formed distribu-
tions for sampling from in both positive and negative phases.
The distributions may be based on the same or different
models in the different phases—that is, the method can be
applied in conventional models and/or in mixed models as
described above.

[0229] At act 902, a processor samples in the positive
phase (e.g., by sampling from the approximating posterior
and/or prior distributions), such as described above or as
otherwise practiced in the art. However, the processor
repeats this process k times (for k>1) and combines the
results at act 906. For example, act 906 may comprise
averaging the samples and determining an expectation (or
other positive phase term) based on the averaged samples.
As another example, act 906 may comprise determining one
or more of the positive phase terms k times based on the k
samples and averaging those terms. In some implementa-
tions one or more of the samples or terms are dropped out,
biased, or otherwise modified so as to modify (e.g., reduce)
the variance of the positive phase terms. Act 906 provides a
synthesized positive phase term (which may be, for
example, a gradient of a term in an objective function
associated with the positive phase). Synthesized positive
phase terms generated as described herein will typically
have lower variance than a positive phase term generated
based on one iteration of sampling.

[0230] At act 906, the processor samples in the negative
phase (e.g., by sampling from the prior distribution), such as
described above or as otherwise practiced in the art. Act 906
provides a negative phase term.

[0231] Atact 908, the processor updates model parameters
of the machine learning model based on the synthesized
positive phase term and the negative phase term. Act 908
may comprise optimizing an objective function by using the
synthesized positive phase term in place of the conventional
positive phase term.

Logistic Relaxation of Discrete VAEs

[0232] Boltzmann machines (and, more generally, discrete
random Markov fields) can represent intractable and multi-
modal distributions, which makes them good candidates for
providing powerful prior distributions in VAEs, particularly
for VAEs having discrete latent variables. However, such
constructions are resistant to the application of the so-called
“reparametrization trick”, which is directed toward continu-
ous variables. The reparametrization trick is the basis for a
variety of applications of VAEs and so some constructions
of DVAES, such as those based on discrete random Markov
fields (e.g. Boltzmann machines, such as some presented in
PCT Publication WO 2017031356) involve marginalizing
out discrete variables to enable the use of the reparametri-
zation trick. However, such constructions can suffer from
high variance, can be limited in the particular forms of
smoothing distributions which are useful, and/or can have
limitations in the available training techniques.

[0233] The present disclosure provides continuous proxies
C for discrete variables of Boltzmann machines and discrete
random Markov fields more generally. The proxies may be
defined over the logits of the discrete variables, for example
based on the following:

US 2020/0401916 Al

T

‘= O_[f(l) +f(0’1(p))}

where f is a continuous function defined over the logits of
the discrete variables, 1 is the logit of the binary unit z, o is
the sigmoid function

1

o= 1 +exp(=1)’

T is a temperature parameter, and p is a random variable
drawn from a proxy distribution. The function o~* is some-
times called the logit function. The temperature parameter T
is optional and may be set by a user; it allows the degree of
relaxation to be tunable. In some implementations, p is
drawn from the uniform distribution %[0,1]. This construc-
tion allows for a continuous reparametrization of the discrete
variables z of a random Markov field in terms of p.
[0234] The function f defined over the logits may be
learned for each discrete variable, for example by a neural
network, thereby allowing a“bespoke” per-variable relax-
ation. However, a notable implementation of continuous
proxies is the case where f(1)=1 for all discrete variables. In
effect, this implements a Gumbel-Softmax relaxation of the
discrete variables, thereby extending the so-called “Gumbel
trick”, a family of techniques for providing a continuous
proxy for discrete variables via the use of Gumbel-Softmax
(see, e.g., Jang, E., Gu, S., and Poole, B., Categorical
Reparametrization with Gumbel-Softmax (2016), arXiv pre-
print arXiv:1611.01144). Past constructions of the Gumbel
trick (as understood) are incompatible with at least some
Boltzmann machines, e.g. because the probability of a state
in a Boltzmann machine is a function of the partition
function (which is intractable) and/or because certain con-
structions require continuous probability densities in the
latent space but Boltzmann machines generally provide
discrete probability densities. (Indeed, the proposed tech-
niques are incompatible with discrete random Markov fields
generally for similar reasons.) The present disclosure thus,
in part, provides an alternative (or additional) construction
of the Gumbel trick with applicability to discrete random
Markov fields.

[0235] The continuous € is differentiable and is equal to
the discrete z in the limit T—0. However, training stops at
this limit, since discrete variables are non-differentiable. To
obtain the reparametrized variable C, one needs the logits (or
probabilities). An oracle can provide discretely-distributed
samples from a Boltzmann machine or random Markov
field, but as noted above this introduces challenges with
applying the Gumbel trick.

[0236] For example, consider a DVAE with a prior distri-
bution represented by a Boltzmann machine characterized
by:

e Es@

Zy

pe(z) =

[0237] where Eg(2) is the energy function, Zg=2 {Z}Z‘EB(Z) is
the partition function, and z is a vector of binary variables

Dec. 24, 2020

representing the state of the Boltzmann machine. (One
might optionally facilitate Gibbs-block sampling by imple-
menting the Boltzmann machine over a bipartite graph,
thereby yielding an RBM.) Such a VAE might (for example)
have generative and inference models structured as shown in
FIGS. 2A and 2B, respectively. If discrete latent variables
210, 212 are relaxed to continuous reparametrized variables
C as proposed by the Gumbel trick as described above, then
the generative model is likely to become intractable to train
due to the general unavailability of continuous logits 1.
[0238] This challenge may, in suitable circumstances, be
mitigated and/or avoided by defining a continuous probabil-
ity proxy pe, training a portion of the machine learning
model over the proxy P, and training the remainder of the
machine learning model over the discrete variables. In
particular, in the context of a DVAE having a generative
model (e.g. an encoder) and an inference model (e.g. a
decoder), the generative model can be trained over discrete
variables z and the inference model can be trained over the
Proxy Pe.

[0239] This may be achieved, for example, by adapting the
VAE’s structure to correspond to the generative model
10004 of FIG. 10A (which corresponds to model 200q: it has
an input variable 1002 and discrete latent variables 1010,
1012) and inference model 10005 of FIG. 10B (which
corresponds to model 200f; it has an input variable 1002 and
continuous latent variables 1020, 1022) and by adopting a
suitable probability proxy pe, such as:

E

Zy

ﬁg@) =

where Eg(C) is the energy of a relaxed Gumbel state. (Note
that this proxy differs from an exact probability over C,
which would use Zesﬁg exp-E-, (€) in place of Zj).

[0240] Although both 7, and Z, are intractable, the
derivatives of Z, with respect to 0 can be calculated if
samples from z~pg(z) are available. For instance, the param-
eters 0 of the generative model may be determined based on:

Volog Zo=E o\ [VoEo(2)]

thereby allowing, in training, for potential factors to be
calculated from the reparametrized Gumbel variables C
whereas the parameters 6 of the generative model may be
determined based on samples from an oracle sampler over
discrete z. Note that the probability proxy pe(C) is a lower
bound on the (usually unattainable) true continuous prob-
ability pg(T). Moreover, note that pg—pg as T—=0; thus, when
evaluating the model, it can be convenient to set T=0 and
C=z.

[0241] One can generate an objective function for training
such a VAE using the aforementioned probability proxy (or
proxies) by, for example, defining the objective function
based on the following:

<)
.) 1 -Eg(st) i
L(x; 0, 9) =Eq (& Ix)\logzz SR L 00 ;-9'(;' £)] —logZ,

i=1

where the i superscripts refer to samples in an importance-
weighted objective function with k samples. This objective

US 2020/0401916 Al

function is a lower bound on an objective function defined
over log 7, (e.g. based on an exact probability over T),
which is itself a lower bound on log pg(x) (i.e. the usual
discrete objective).

[0242] Objective functions are not necessarily impor-
tance-weighted (as the above example objective function is).
However, the ability to (at least in some cases) natively
importance-weight the relaxed variables is a potential
advantage of the presently-described relaxation technique,
since the discrete variables are resistant to importance-
weighting. Importance weighting can, for example, assist in
reducing the effect of bias in an oracle. When quantum
processors are used to generate samples, such a technique
can limit bias in the gradient introduced by physical biases
present in the hardware of the processor.

[0243] The foregoing lower bound defined using the prob-
ability proxy is differentiable, but introduces challenges
because it mixes discrete and continuous probability densi-
ties between the generative and inference models. This can
be mitigated by replacing qq,(CiIx) with a probability proxy
44(€'1x), which may be defined by replacing the partition
function 7 in qq with Zy. Put more generally, p, and p,, may
each by generated by substituting the relaxed variables C in
place of discrete variables z in pg and g, respectively, but
otherwise retaining the z-based features of py and q,. This
may be implemented by, for example, providing continuous-
valued inputs to pg and q,. Such an approach may introduce
a degree of inexactness, but not necessarily a fatal one, as
noted above.

[0244] An example objective function which may be con-
venient for training and/or evaluation using q,, may be based
on the following:

e Fol)py(x | 5")] B

£
. 1
Tl 0. 9) =y, (€| ’”\“’gzz e
¢

i=1

stop_gradient(logZs — Epy» [Ea(2)]) + Epy(»[Ea(2)]

where the stop_gradient() function maintains the value of its
argument but decimates its derivatives. Setting the tempera-
ture T to zero in evaluation allows for unbiased evaluation of
the objective function, whereas during generation discrete
samples (from an oracle) can be provided to the decoder to
obtain probabilities for each input dimension.

[0245] Alternatively, or in addition, one may determine
the gradients of the foregoing objective function using a
“straight-through™ approach, where discrete z' is passed
when determining the E4(T') term. It is also not generally
necessary to evaluate log Z in training, although it may be
evaluated for all or a subset of iterations. Its value can, for
example, be estimated using parallel tempering during
evaluation.

[0246] In some implementations, a DVAE’s generative
model (including prior and posterior distributions) is defined
over one or more continuous relaxations of the discrete
variables (e.g. according to a GUMBEL distribution). The
model may be defined over an RBM or other discrete
random Markov field, and the continuous relaxations may
thus, together, represent a continuous relaxation of the RBM
or other discrete random Markov field. (We have taken to
calling a Gumbel-relaxed distribution representing a Boltz-
mann machine a GumBolt machine). Such an embodiment

Dec. 24, 2020

does not necessarily require smoothing distributions or the
noisy reparametrizations of the REINFORCE or analogous
techniques. The result is a potentially-lower-noise DVAE
with natively-reparametrizable variables.

[0247] Insome implementations, a fully-discrete DVAE is
provided by forming the prior distribution hierarchically as
a (restricted) GumBolt machine and conditioning one or
more discrete variables (e.g. Bernoulli-distributed variables)
over the GumBolt machine. Since the GumBolt machine
provides reparametrizable GUMBEL variables, the discrete
variables can be conditioned directly on those GUMBEL
variables without requiring conditioning on intervening con-
tinuous variables (e.g. based on a smoothing transforma-
tion). This avoidance of continuous (e.g., Gaussian) inter-
vening variables can considerably improve the performance
of the model.

[0248] FIG. 10C is a flowchart of an example method for
training an example natively-reparametrizable DVAE. At act
1020 a processor instantiates a random Markov field (e.g., a
Boltzmann machine and/or an RBM). At act 1022 the
processor defines continuous relaxations for the discrete
variables of the random Markov field and applies them to an
inference model of the DVAE, yielding a relaxed inference
model (such as inference model 100056). The relaxation may
comprise a continuous proxy of a probability distribution,
such as a relaxation defined according to the Gumbel trick
as described above and/or a per-variable relaxation of dis-
crete variables’ logits which may vary between variables.
The proxy may be adapted to use a discrete partition
function in place of a continuous partition function.

[0249] At 1030 the processor trains the DVAE, in particu-
lar by training a generative model 1032 over the discrete
variables of the random Markov field and by training the
relaxed inference model over the continuous relaxations of
the discrete variables. Training may involve sampling from
an oracle to determine a gradient of one or more objective
functions over model parameters. Samples may, for
example, be drawn from a quantum processor. The objective
function(s) may optionally be importance-weighted (e.g., as
described above) to address bias in the quantum processor.

Gaussian Integral Relaxation of Discrete VAEs

[0250] Boltzmann machine-based DVAEs may be relaxed
using a variation of the Gaussian integral trick, a technique
previously used for sampling. In particular, we can relax a
Boltzmann machine to a continuous distribution such that
the marginalization over z in p(Q)=2, p(z)r(Clz) is made
tractable for arbitrary p(z) (e.g., hierarchical, factorial, and
other distributions, including non-factorial distributions). An
example method 1700 for relaxing an example Boltzmann
machine-based DVAE is shown in FIG. 17. At 1702 a
processor forms a latent space, e.g. based on a Boltzmann
distribution.

[0251] A Boltzmann distribution may be described by
p(z)=e~5¥@/Z, where Ey(z) is the energy term and Z, is the
partition function. The energy function may be described by
By(z)=—a’z-1/27"Wz, where a is a linear bias term and W is
a matrix of pairwise interactions. At 1704 the processor
determines a smoothing transformation r(€lz) which
removes pairwise interactions (e.g. as represented by z7 Wz)
from the joint distribution p(C, z). In some implementations,
the smoothing transformation is defined based on the Gauss-
ian integral trick to remove the pairwise interactions z"Wz

US 2020/0401916 Al

from the joint p(z, C). For example, a smoothing transfor-
mation r(Clz) may be based on:

#Tlz)= N QAP A(F+BDAT

where A is an invertible matrix and 1 is an optional diagonal
matrix introduced to ensure that the covariance matrix
A(W+BDAT is positive definite (we can set f>0 for this
purpose). We can refer to W'=W+f1 as the modified inter-
action matrix.

[0252] A can be any invertible matrix. For instance, we
might select A=I or A=A"?V” where VAV” is the eigende-
composition of W'. However, neither of these options is
expected to align the modes in p(C) with the vertices of a
hypercube defined in R”. In some implementations (and
optionally at 1705, which may form part of 1704), the modes
of p(€) are aligned with the vertices of a D-dimensional
hypercube by defining A based on the modified interaction
matrix, e.g. by inverting it (i.e. so that A=W'"). This yields
the smoothing transformation r(¢lz)=» (Clz, (W+pD)™).
[0253] Acts 1706, 1708, and 1710 correspond generally to
acts 606, 608, and 610, respectively, of method 600 (see
FIG. 6). Optionally, at act 1711, a probability distribution
over the continuous variables, i.e. p(0), is determined based
on the smoothing transformation determined at 1704 and
particularly based on the removal of pairwise interactions.
For instance, the foregoing example smoothing distribution
has a joint distribution described by:

(&0 xexp[- 12 Wzt Wi+ (a-1/2pu) ')

where u is a D-dimensional identity vector (e.g., a vector
having D ones). Since there are no pairwise terms over the
discrete variables (by design), they can be marginalized out
to arrive at p(C), e.g. as follows:

1
20 =7 WP esel 37w e [T [1+ el +ei -5

i

Ly
2

where c, is the i element of the vector W'C.

[0254] Once such a probability distribution over C has
been determined based on the pairwise-interaction-remov-
ing smoothing transformation, that distribution (and/or asso-
ciated terms, such as its CDF, PDF, and/or gradients thereof)
may be used in the objective function to train the model (at
1712) over a relaxation of the Boltzman machine-structured
prior distribution. For instance, p(C) may be used in place of
p(z) in the objective function.

[0255] This approach can be regarded as providing a
mixture of Gaussian distributions with 2 mixture compo-
nents, each centered at a vertex of the hypercube in R © with
mixing coefficients equal to the probability of the corre-
sponding discrete state z. Each component has a covariance
matrix W'™'. As B gets larger, the covariance matrix shifts
toward a matrix with dominant entries along the diagonal, so
that as p—c0 each mixture component converges to a delta
distribution centered at the discrete states (e.g. z=0, z=1) and
(%) approaches 2, p(2)4(C-2).

[0256] The P parameter can be set to any suitable value. In
some implementations, {3 is set to have a magnitude greater
than the highest-magnitude negative eigenvalue of W to
ensure that W' is positive definite. Larger values of will
tend to shift the mixture distribution towards isotropic
Gaussian distributions (which is often desirable), but at the

Dec. 24, 2020

cost of causing the resulting continuous distributions to be
sharper and thus have noisier gradients.

[0257] As with the logit-based relaxations described
above, the resulting continuous distributions are amenable to
a variety of existing techniques and methods which are
challenging (or even impossible) to apply directly to dis-
crete-valued, Boltzmann machine-based DVAEs.

[0258] In some implementations, smoothing distributions
of the foregoing form are used in association with the prior
distribution (e.g., in the encoder) and a smoothing distribu-
tion of a different form is used in association with the
approximating posterior (e.g. in the decoder) during training
at 1712 and/or during inference. Since the approximating
posterior distribution may not be (and in fact usually is not)
structured as a Boltzmann machine, and since the W' term of
the Gaussian integral trick replicates pairwise interactions
arising from the Boltzmann machine, it may be advanta-
geous to use smoothing transformations of different forms in
association with the prior and approximating distributions.
For example, any of the smoothing transformations
described elsewhere herein may be used in association with
the approximating posterior.

[0259] In some implementations, the smoothing transfor-
mation used in association with the approximating posterior
is based on a Gaussian distribution, such as

1= (212 %)

which is an unbounded transformation (as opposed to, e.g.,
a transformation over £€[0,1]).

[0260] In some implementations, the smoothing transfor-
mation used in association with the approximating posterior
is based on a distribution with shifted modes. An example of
such a transformation is a shifted Gaussian distribution
defined based on

el =N 212+ b %]

where Ap is an additional parameter that shifts the location
of the modes around the states of the discrete variables z
(e.g., 0 and 1). In some implementations, Ap is a function of
previous Cs in the model (e.g., by way of a hierarchical
structure), which may assist with representing off-diagonal
correlations.

[0261] A potential advantage of using a shifted transfor-
mation is that it may provide more flexibility, in suitable
circumstances, in capturing correlations from the prior dis-
tribution. This is because each mixture component in the
relaxed prior distribution p(C) produced by the Gaussian
integral trick may contain off-diagonal correlations which
are not necessarily captured by Gaussian distributions cen-
tered on the states of the discrete variables z (such as

el =N (¢l %])

US 2020/0401916 Al

Mean Field Relaxation of Discrete VAEs

[0262] As noted above, we can train a machine learning
model over a relaxation of its prior distribution by deter-
mining a continuous marginal distribution p(Q)=2, p(z)r
(€lz), where r(Clz) is an overlapping smoothing transforma-
tion. Some specific smoothing transformations which are
useful for broad ranges of models (and particularly for
Boltzmann-machine-based DVAEs) are given above. But it
is also possible to train over a relaxation of Boltzmann
machine (or other prior distributions) with any of a broad
range of smoothing transformations given a suitable prior
distribution.

[0263] To train a DVAE using the relaxation p(T) in
association with the prior distribution, we can compute log
p(©) and its gradient with respect to the parameters of the
model and €. This involves marginalization over z, which is
generally intractable. However, if r(Clz) is factorial (i.e., if
r(Clz)=I1, r(T,1z,)) then mean field estimation can be used to
efficiently approximate the marginalization.

[0264] FIG. 18 shows an example method 1800 for train-
ing a machine learning model based on mean-field estima-
tion. Act 1802 corresponds generally to act 602 of method
600 (see FIG. 6). At 1804, a processor determines a factorial
smoothing transformation (e.g., by receiving it from a user,
selecting it from a repository of suitable transformations, or
by other suitable approaches). The smoothing transforma-
tion may have arbitrary form, provided that it be factorially-
distributed.

[0265] Acts 1806, 1808, and 1810 correspond generally to
acts 606, 608, and 610, respectively, of method 600 (see
FIG. 6).

[0266] Training the model (at 1811 and 1812, which may
be combined) takes advantage of the factorial structure of
the smoothing transformation. 1811 involves determining an
augmented model which is amenable to mean-field approxi-
mation based on the factorial smoothing transformation and
the model distribution.

[0267] For example, given such an arbitrary factorial
smoothing distribution r(Clz), the log marginal distribution
of € may be determined based on:

logp(¢) = 1og[2 ond z)] = 1og[2 exp = Eo(2) + hQT 2+ bQ) | - logZs

where h(€)=log r(Clz=1)-log r(€Iz=0) and b(T)=log 1(C|z=0)
are computed element-wise. If the smoothing transformation
is defined over a temperature term (e.g. inverse temperature
[, as described elsewhere herein) then h and b may also be
functions of the temperature term. For example, if r(Clz) is
a mixture of exponentials with an inverse temperature
parameter f§ as described elsewhere herein then h and b may
be defined based on: h(T)=(2E-1) and b(L)=—pC-log Z,.

[0268] The above expression of log p(C) has two terms, the
first of which (the logarithm over a sum) is equivalent to
determining the log partition function for a Boltzmann
machine with an augmented energy function Eg (2):=Eq(2)-
h(€)"z-b(C). (For consistency, we can call this Boltzmann
machine an “augmented Boltzmann machine” and describe
it with the distribution p(z).) As with most log partition
functions, computing the partition function directly is gen-
erally intractable. This is made even more challenging when

Dec. 24, 2020

it is needed to calculate each T, as may be the case in
implementations of the present disclosure.

[0269] However, when training at 1812, the processor can
approximate p(z) with a mean-field distribution m(z). To do
this, we take advantage of the fact that each elementwise
component of T is generated from a bimodal distribution
with modes at the discrete states of z (e.g., 0 and 1). This
tends to cause the bias introduced by h(C) to have a large
magnitude for most components of T, which we have
determined empirically tends to enable mean-field approxi-
mation methods to produce reasonably accurate approxima-
tions of p(z).

[0270] In some implementation, log p(C) (and/or a gradi-
ent over that term) can be approximated by fitting (at 1812)
a mean-field distribution m(z) to the augmented Boltzmann
machine corresponding to the machine learning model (de-
termined at 1811). Fitting the mean-field distribution may
involve, for example, iteratively minimizing KI(m(z)|[p(z))
for each . This iterative minimization (and/or other fitting
methods) may involve iteratively determining the mean-
field equation mzo(—a]AEeL(Z)), where o is the sigmoid
function.

[0271] Based on the foregoing, the gradient of log p(C)
with respect to the model parameters (such as {3 or 6) and the
continuous variables { may be determined based on:

Vlegp({) = —E,_ 5, [V Ee,;(Z)] +E, [V Es(2)]
~ ~Epona|V Eo g (@] + Eonpa[V E(2)]

=V Egy(m) + Eopin [V Eo(2)]

where m is the vector representation of the mean-field
solution m(z=1), determined element-wise, and the gradient
operation does not act on m. The first term of this solution
relates to a mean-field approximation of the energy term of
a factorial distribution and the second corresponds to the
negative phase of training a Boltzmann machine (which may
be approximated by, for example, Monte Carlo sampling
from p(z)).

[0272] A DVAE relaxed in this way may be trained at 1812
by a variety of techniques available to continuous VAEs,
such as importance-weighted sampling. In some implemen-
tations using an importance-weighted objective function, the
importance weights for the training bound are determined
based on the mean-field energy term VE,.(m). Since the
mean-field distribution m(z) is optimized to approximate
p(z), determining VE, .(m) corresponds approximately to
computing the value of V log p(C) up to the normalization
constant. (That is, determining the negative phase term is not
necessarily required for determining the importance
weights.)

[0273] As noted above, this mean-field-approximation-
based technique may accommodate a variety of smoothing
transformations. In some implementations, the smoothing
transformation is defined over a parameter § and approaches
the binary variables’ distribution as [} increases. However,
this can introduce a cost, namely having relatively noisier
gradients which can impair the learning process.

[0274] In some implementations, the smoothing transfor-
mation comprises a base transformation (e.g. a mixture of
exponential distributions, as described elsewhere herein)
mixed with a uniform distribution. This can help the gradient

US 2020/0401916 Al

stay finite as f—c. For example, given a base transforma-
tion r(Clz), the smoothing transformation may be defined
based on: r'(Clz)=(1-€)r(Clz)+e where CE[0,1]. In effect, this
adjusts the base distribution to be more heavy-tailed.
[0275] In some implementations, the smoothing transfor-
mation is defined based on a heavy-tailed distribution, such
as a power function distribution. For example, the smooth-
ing transformation may be based on:

1
%gﬁ’l if 2=0
nela =, i
E(l —5)371 otherwise

where £E[0,1] and >1. These conditionals correspond to
the Beta distributions B(1/p, 1) and B(1,1/p), respectively.
[0276] Note that the gradient of samples from the mixture
q(CIx)=Z, q(zIx)r(CIx) with respect to the parameters of the
model can be determined without deriving an analytical
formulation of the inverse CDF of the mixture q(CIx), as
described elsewhere herein.

Generative Learning with Graph-Based Models

[0277] Generative learning models, such as VAEs, may be
defined over input and/or output spaces comprising graphs
(and/or objects representable as graphs, which will be
referred to generically as “graphs™ herein). For example, the
generative learning model may receive representations of
graph-representable objects (such as molecules) which may
be encoded, at least in part, based on a recurrent neural
network (RNN), such as a long short-term memory (LSTM).
For example, a VAE may provide an encoder and/or decoder
based on an LSTM model and/or a GRU. Such models can
be very powerful in their own right, but there may be
challenges to combining them with generative models such
as VAEs. For example, since VAEs tend to be frugal in their
use of the latent representation, and since RNNs can model
certain complicated spaces fairly well on their own, it can be
difficult to ensure that information is encoded in the latent
space (as opposed to, say, relying on an RNN to make
inferences based on series of decoded data points). This
paucity of latent representational richness can make it dif-
ficult to apply various techniques which use such latent
space-encoded information to achieve results (such as
QSAR).

[0278] In some implementations, a generative machine
learning model is trained based on multiple spanning trees.
The generative machine learning model may receive linear
representations of non-linear graph-representable objects;
for example, it may receive string representations (e.g., in
SMILES or InChl formats) of molecules (which may com-
prise non-linearities such as loops, e.g. in the form of
aromatic rings). The VAE may encode each object based on
multiple equivalent (or corresponding) linear representa-
tions, with each linear representation representing a span-
ning tree. Such encoding may be performed, at least par-
tially, by an RNN. The VAE may then produce a latent
representation for each node of the graph-representable
input objects by combining the hidden state vectors of the
multiple spanning trees (e.g., by addition, concatenation,
averages, maximums).

[0279] For example, a VAE for generating molecules with
desirable characteristics (e.g., potential new drugs) may

Dec. 24, 2020

receive SMILES string representations of molecules.
SMILES strings can be translated into multiple spanning
trees by reconstructing a molecular graph and attempting
various tree traversals. The VAE may encode each of the
multiple spanning trees by passing them through a recurrent
neural network (e.g., an LSTM) to produce a hidden vector,
and may combine the hidden vectors to produce a latent
representation for each atom.

[0280] As another example, the VAE’s encoder (and/or a
pre-encoder preprocessor) may generate multiple equivalent
linear representations for each input linear representation.
For instance, an input string may be permuted to find one or
more associated representations which validly represent
alternative spanning trees and also ensure that certain ele-
ments of the strings correspond (e.g., elements correspond-
ing to nodes in the graph should correspond, as the strings
represent trees with corresponding nodes). Each permuted
string may then be used as one of the several linear repre-
sentations described above.

[0281] Since linear representations of non-linear input
data “flatten” the represented objects, they are likely to
introduce discontinuities into representation of informa-
tion—e.g., atoms which binding relationship in a molecule
may not be adjacently represented in a particular SMILES
string representation of the molecule. This can frustrate the
ability of a single LSTM to encode that information. These
discontinuities are likely to be dependent on the order in
which tree branches are traversed in encoding or recon-
structing linear representations of the objects. However,
linear processing of a flattened tree will tend to be efficient
than a convolutional approach to traversal of the un-flattened
graph, albeit with some loss of continuity. Constructing
multiple linear representations with multiple spanning trees
allows the generative machine learning model to represent
information continuously in at least some representations,
thereby increasing the richness of the latent representation.
[0282] In some implementations, the decoder of a VAE or
similar generative learning model is trained to generate
multiple different linear representations of flattened span-
ning trees. For example, the decoder may target a SMILES
string of a molecule as output. If the encoder’s early layers
comprise a multi-tree structure, e.g., as described above
(such as in a multi-tree LSTM-based VAE), the later layers
of the encoder may use a linear representation of a flattened
spanning tree corresponding (as closely as possible) to the
reverse of the decoder’s flattened spanning tree. This cor-
respondence can help to allow the latent representation to
encode the particular spanning tree used as the decoder
target. In some implementations, the original tree is rooted
at the end of a branch (rather than the center of a graph) in
order to make it easier to generate such a reversed flattened
spanning tree.

[0283] In some implementations, the generative model’s
latent representation for a given input is derived solely from
the tree state at a single node, e.g., the root of the decoder
spanning tree. For instance, the latent representation may be
derived from the LSTM state at a single atom at the root of
the original representation of the molecule. The number of
latent variables in such a representative framework does not
scale with the nodes in a tree, since the latent variables are
distinct from the output of the multi-tree model. Rather, the
latent representation is inferred from the multi-tree model.
This inference may be done, for example, in a hierarchical
manner, with all acts conditioned on the multi-tree output.

US 2020/0401916 Al

[0284] It will be appreciated that linear processing of
non-linear objects as described above may involve perform-
ing loop closures during encoding and/or decoding. In some
implementations, latent information is passed through loop
closures by using a combination of latent representations on
both sides of the loop closure. For instance, after reaching
the end of a tree branch and before moving on to the next
branch from a common node, the encoder and/or decoder
may be provided with the latent representation from the
source node in addition to (or instead of) the end of the
branch. In some implementations, the combination of latent
representations is commutative, since (in at least some
implementations) the prediction should be the same regard-
less of the order of input traversal. Addition is an example
of'a commutative combination operation. This allows infor-
mation to flow through loops being closed even in a single
training pass through a flattened spanning tree.

[0285] In some implementations, a representation of a
region of a spanning tree (rather than, or in addition to, a
representation of a particular node) is used by the encoder
and/or decoder as input at each point in the tree. For
example, a tree of size one or two rooted at the current input
node and/or the output of one or more graph convolutions at
the input node may be used. This enables the learning of
distinct embeddings for sub-trees, rather than (or in addition
to) learning them through an LSTM-like encoder, and may
be combined with a multi-tree encoder and/or decoder as
described above. (Note that use of this approach in the
decoder may induce additional consistency constraints on
the output.)

[0286] In some implementations with cyclic outputs (for
which multiple equivalent spanning trees may exist), loops
are implicitly closed using labels. Labels may be high-
dimensional (relative to the dimensionality of the decoder)
and continuous, thereby limiting the potential for label
collisions and enabling the definition of a continuous simi-
larity measure.

[0287] For instance, in some or all iterations of recon-
struction (e.g., for each node, edge, and/or other element in
the output) the decoder may output a label associated with
the reconstructed term. Once a full linear representation has
been determined by the decoder (including at least loop
closure labels, which may comprise, for example, loop
closure characters in a string-based representation), the
decoder determines a connection probability for each pair of
loop closures based on the similarity between their labels. In
some implementations, the label for a loop closure is based
on (at least a portion of) the latent representation for the
node (or region, etc.) at the loop closure. In some imple-
mentations, the label is defined separately from the latent
representation, e.g., as a separately-defined vector.

[0288] In some implementations, a weight is associated
with non-closure (i.e., the creation of a new node). The
weight may, for example, be fixed. The cost of connecting to
an existing node or creating a new node is then proportional
to weight where weight may be based on the label similarity
between nodes and/or the fixed weight associated with
non-closure, depending on the circumstances. In such imple-
mentations, it is not necessary to preserve loop-closure
markers in the linear representation produced by the
decoder.

[0289] In some implementations, training involves com-
puting a loss function based at least partially on a symmetric
function d which measures the distance between a loop

Dec. 24, 2020

closure (and/or node label) and the label of a connection that
closes the loop. By penalizing more distant closures, such a
function effectively “pulls together” both sides of a loop
closure. In some implementations, the loss function is based
on one or more additional terms which penalize other
(non-loop-closure) labels for being near to the loop-closure
label. This can increase the probability that loops close
correctly.

[0290] Linear representations can sometimes be undesir-
able as a decoder target. For instance, if they specify a
particular, arbitrary spanning tree then it may be undesirable
to encode that particular spanning tree in the latent repre-
sentation. In some implementations the decoder is trained to
reconstruct the latent state of all adjacent nodes (e.g., in
addition to outputting the correct node at the current point),
starting from the latent state associated with each node. This
enforces consistency of the latent representation throughout
the input objects by allowing the tree structure of input/
reconstructed objects to be traversed in any order, since the
latent representation of each node is a valid starting point for
traversal.

[0291] Unlike a decoder over linear representations, the
decoder as described above need not have implicit knowl-
edge about the direction of tree traversal or the portion
already traversed. In some implementations, the decoder
specifies multiple distinct outputs, corresponding to all
adjacent nodes, by defining a suitable prior. For example,
such starting-point-independent reconstruction may be
enabled by defining the prior based on one or more directed
acyclic graphs over the latent representation of each node.
[0292] In some implementations, a prior is defined over
the latent representation of all nodes. The prior for the model
may be constructed from a family of priors, each member of
which comprises a marginal prior over one selected node
and a spanning tree comprising the conditional distribution
over all the remaining adjacent nodes given the current
selected node. The prior for a latent configuration may
consist of the product of the marginal distribution over the
selected node and the conditional distributions along a
spanning tree rooted at the selected node. The conditional
prior over the observed variables given the latent variables
factorizes by node, so one may consider each node inde-
pendently given its latent representation.

[0293] In some implementations, regressors of the
machine learning model are trained based on the maximum
over the prediction based on the latent representation cen-
tered at each node (rather than, or in addition to, the
expectation). This renders the representation permutation-
invariant. For example, in a biological context (e.g., when
considering molecules for pharmacological effect and/or
toxicity) where any given node could be considered the
center of the biological activity of interest, each node might
represent an atom of a molecule and predictions of biologi-
cal activity may be made based on the latent representation
centered at each node.

[0294] In some implementations, regressors are trained
based on a difference (or sum, depending on the arguments’
signs) between two maximums. One maximum is the maxi-
mum prediction of fit and the other maximum is the maxi-
mum prediction of anti-fit. Examples of anti-fit include (e.g.,
in the context of molecular pharmacology) identitying struc-
tures that target the molecule for elimination in the kidneys
or which structurally block mating with the intended recep-
tor or which increase toxicity. In some implementations, one

US 2020/0401916 Al

or both of the fit and anti-fit maximums may comprise a sum
over a regressor applied to the latent representation at each
node, e.g. where anti-fit features are additive. For instance,
in the case of toxicity, toxic functional groups are likely to
be additive, so a sum may be used for that term.

[0295] In some implementations, side-information is
available for one or more nodes and is included in the
decoder target (and, optionally, in the encoder). Side-infor-
mation can be learned for the whole tree as a function of the
generative machine learning model’s latent representation,
thereby effectively training the generative model over the
side-information in addition to the tree structure. For
example, in the context of a VAE trained on molecular
structures, per-node (e.g. per-atom) side-information might
include charge, bond length, dihedral angle, or other atomic
properties within the molecule. The properties of the whole
molecule are thus learned as a function of the VAE’s latent
representation. This enables a massively multitask approach
to training, since each class of side-information can be
trained as a task. Such implementations can be advanta-
geous, for example, when applying QSAR or similar tech-
niques which tend to benefit from training on many tasks.

[0296] FIG. 11 is a flowchart of an example method for
training an example generative machine learning model
based on graph-representable inputs. At act 1102 a processor
receives linear representations of a graph-representable
input object, as described above. At act 1104 the processor
determines a plurality of spanning trees based on a plurality
of tree traversals of the input object, as described above. At
act 1106 the processor encodes the plurality of spanning
trees to obtain a plurality of hidden vectors corresponding to
the spanning trees, as described above. Such encoding may
comprise, for example, processing each of the spanning trees
with an RNN (such as an LSTM). At act 1108 the hidden
vectors are combined, e.g., by addition, concatenation,
maximization, or another suitable technique. In some imple-
mentations, the combination technique is commutative.

[0297] At act 1110 the processor forms a latent represen-
tation based on the combination of the hidden vectors. At act
1114 the processor trains the model based on the latent
representations of one or more input values, e.g. as described
above. In VAE or related models, training may involve
generating linear representations of graph-representable
objects with a decoder based at least in part on latent
representations of one or more input objects, optimizing an
objective function based on the generated linear represen-
tations, and updating model parameters based on that opti-
mization.

Variance-Sparsifying VAEs

[0298] VAEs have a tendency to generate dense latent
representations. Even if a VAE has hundreds of latent
variables available to it, in many instances only a handful
(e.g. concentrated largely in the first layer of the VAE’s
encoder) are actively used by the approximating posterior.
For example, in at least one experiment involving a VAE
trained to perform collaborative filtering (e.g. as described in
PCT application no. US2018/065286, incorporated herein
by reference) on a database of millions of user ratings (with
tens of thousands of both users and items), the VAE tended
to use fewer than 40 continuous latent variables regardless
of the number of latent variables available to it or the size of
the training set.

Dec. 24, 2020

[0299] There are competing objectives in the design of a
VAE. For instance, providing more active latent variables
tends to increase the representational power of the model,
while at the same time making representations less dense so
that representational information is spread across a larger
number of variables will tend to induce a significant cost in
training. For instance, where the VAE’s objective function is
formulated as a difference between a KL term and a log-
likelihood, the magnitude of the KL, term tends to grow
quickly as additional active variables are introduced.

[0300] In some implementations, a VAE is provided with
one or more selectively-activatable latent variables. The
activation of selectively-activatable latent variables can
itself be trained, thereby allowing latent variables which are
unused for certain inputs to be deactivated (or “turned off”)
when appropriate and re-activated when appropriate. This is
expected, in suitable circumstances, to tend to reduce the
cost of temporarily-deactivated latent variables during train-
ing, thereby reducing the incentive to make the latent
representation more dense (and thus leading, in at least some
cases, to greater sparsity).

[0301] For example, the VAE may comprise a DVAE with
a plurality of binary latent variables. Each binary latent
variable (call it z) may be associated with one or more
continuous latent variables (call it/them C), each of which is
selectively-activatable. (There may, optionally, be further
binary and/or continuous latent variables in the DVAE
which are not necessarily related in this way.) The binary
latent variables induce activation or deactivation of their
associated continuous latent variables based on their state
(e.g. an on state and an off state). Where the binary latent
variables are elements of a trainable structure, such as a
Boltzmann machine (classical and/or quantum, e.g. an RBM
and/or QBM), this activation or deactivation can itself be
trained.

[0302] A challenge that can arise is that the transition
induced by the binary latent variables (from active to
inactive) can be discontinuous, in which case the binary
latent variables will not be easily trainable by gradient
descent. This can be mitigated by transforming the binary
latent variable to limit and/or avoid discontinuities during
training (and, optionally, during inference). Some non-lim-
iting examples of such transformations follow.

[0303] For instance, in at least some implementations
where the latent binary variables are transformed according
to a spike-and-exponential transformation (e.g. as described
above) where the spike corresponds to the inactive state,
large discontinuities may be at least partially avoided by
locating the spike portion of the transformation (i.e. the
Dirac delta distribution) at a point other than z=0. For
example, the spike portion of the transformation can be
located at the mean of the prior distribution for that variable
(e.g. determined based on the earlier layers of the VAE—the
location of the spike may be predetermined for the first layer,
e.g. at 0).

[0304] A potential advantage of such an approach is that
discretely flipping to the mean of the prior distribution will
tend not to strongly disrupt reconstruction where the
approximating posterior and prior are similar. It also reduces
the variance of the binary latent variable to 0 when in the off
state, meaning that the contribution of the associated con-
tinuous latent variable(s) to the reconstruction term can be

US 2020/0401916 Al

limited when the binary latent variable is in the off state
without explicitly disconnecting the continuous latent vari-
able(s) from the decoder.

[0305] In some implementations, such a spike-and-expo-
nential-based DVAE is trained according to a warm-up
procedure wherein, during one or more initial phases of
warmup, all binary latent variables are active. As training
progresses to later phases, one or more (and perhaps even
most) of the binary latent variables are inactive when
training on each element of the dataset—the set of active
binary latent variables may vary from element to element.
The continuous latent variables associated with the inactive
binary latent variables are removed either implicitly (e.g. by
setting them to a default value, such as 0 or the mean of the
continuous latent variable’s prior distribution) or explicitly
(e.g. by not processing the deactivated continuous latent
variables in the decoder based on a logical switch).

[0306] The set of active (continuous) latent variables for a
given input element may, in suitable circumstances, tend to
specify a category. For example, each latent variable may
correspond to a feature or component in the input space. For
instance, a set of active latent variables which includes a
latent variable that corresponds to cat ears, another latent
variable that corresponds to furry legs, and yet another latent
variable that corresponds to whiskers might suggest that the
category “cat” is applicable to the given input element.
[0307] This does not mean that the value of each latent
variable is irrelevant. In effect, each set of variables defines
a region of the latent space within which inference may
occur. For instance, in an example the latent variables are
distributed based on a multivariate Gaussian over d dimen-
sions, one can expect the probability mass of the distribution
to be largely concentrated in a shell distance o+/d with
thickness O(0). One can therefore expect selecting a subset
of active latent variables to define a latent subspace with
probability mass largely bounded away from the origin and
disjoint from subspaces associated with other disjoint sub-
sets of active latent variables. The values of the active
continuous latent variables identify a point or region in the
relevant latent subspace. Alternatively presented, the set of
active latent variables can be thought of as identifying a set
of filters to apply to the input, and the operation of each filter
is dependent on the value of the corresponding active latent
variable(s). This effectively separates the modes of the prior
and/or approximating posterior distributions, thereby pro-
moting sparsity.

[0308] In some implementations, the modes of the prior
distribution are rebalanced (i.e. probability mass is shifted
between them) even after being separated. Although this is
generally not practicable with a VAE, a VAE with a discrete-
valued prior as described here allows rebalancing through
shifting probability between discrete points without having
to “jump” across low-probability regions of the latent space.
[0309] In some implementations, the approximating pos-
terior is defined (at least in part) as an offset on the prior
distribution. This binds the two distributions together. The
spike (in a spike-and-exponential embodiment) may be held
close to the mean of the exponential distribution by applying
a penalty based on a distance between the spike and the
mean of the exponential distribution. The penalty may
comprise, for example, an L2 loss and/or a measure of the
probability of the spike location according to the exponential
distribution (which, at least for a Gaussian distribution, is
equivalent to an L2 loss with length scaled proportionately

Dec. 24, 2020

to the variance of the Gaussian distribution.) Alternatively,
or additionally, the location of the exponential distribution
may be parametrized so that the Gaussian is moved relative
to the spike during training.

[0310] Insome such implementations, during early phases
of training the spikes are not used by the approximating
posterior and, in the prior, the spikes are held at the mean of
the exponential distribution. Later in training (i.e. after one
or more iterations of the early phase), the spikes are used by
the approximating posterior and can be pulled away from the
mean of the exponential distribution.

[0311] In some implementations, the VAE is a convolu-
tional VAE, where each latent variable is expandable into a
feature map with a plurality (e.g. hundreds) of variables. By
actively selecting a subset of latent variables for each
element of the dataset (e.g. by selecting the variables with
best fit for the element—e.g. those with highest probability)
and turning off the rest, the number of variables which may
be used by the model to store representational information
may, in suitable circumstances, be increased relative to a
conventional convolutional VAE.

[0312] The foregoing examples wherein continuous latent
variables are activated based on the state of a binary latent
variable are not exhaustive. In some implementations, the
activatable continuous latent variables are activated (or
deactivated) based on the state of one or more continuous
latent variables. This has the potential to better represent
multimodality in the approximating posterior (which is
typically highly multimodal).

[0313] For example, in some implementations continuous
smoothing latent variables s are defined over the set of
binary latent variables such that each smoothing latent
variable is associated with a corresponding binary latent
variable. Smoothing latent variables may be defined over the
interval [0,1], R, or any other suitable domain. Rather than
(or in addition to) predicting the smoothed latent variables T
from the binary latent variables z, the computing system
predicts the binary latent variables z from the smoothed
latent variables s. This allows the latent representation to
change continuously, subject to the regularization of the
binary latent variables z. The smoothed latent variables s
may thus exhibit (for example) RBM-structured bimodality
over the entire dataset.

[0314] Insuch an implementation, the approximating pos-
terior and model distributions may be defined as:

q(z,5,Clx)=q(s|x)-q(zls,x)-q(Tls,x)

p(5,5,2,0)=p(2)plsIz)p(Els)p(xIT)

where q(s|x)=0y,,, i.e. the Dirac delta function centered at
f(x), where f(x) is some deterministic function of x.
Although this formulation of the smoothing variables s does
not does not capture the uncertainty of the approximating
posterior (or, indeed, much information at all), it can help to
ensure that the autoencoding loop is not subject to excessive
noise and allows for convenient analytical calculation. The
q(slx) term (a form of the approximating posterior) may be
distributed to concentrate most of its probability near to the
extremes of its domain, uniformly over its domain, and/or as
otherwise selected by a user. Distributions which largely
concentrate probability near to the values corresponding to
the binary modes of the underlying binary latent variables z
(as opposed to the intervening range) are likely to be the
most broadly useful forms.

US 2020/0401916 Al

[0315] In some implementations, the approximating pos-
terior and prior distributions are spectrums of Gaussian
distributions, dependent on the smoothing latent variables s.
When s=1, the approximating posterior may be a Gaussian
dependent on the input, and the prior should be a Gaussian
independent of the input. When s=0, both the approximating
posterior and the prior may converge to a common Dirac
delta spike independent of the input. In such an implemen-
tation, decreasing s will tend to decrease the uncertainty (e.g.
the variance) and the dependence on the input of the
approximating posterior, whereas for the prior only the
uncertainty is decreased.
[0316] Forexample, the approximating posterior and prior
distributions can be defined over C as follows:

4:8ls 0= N (st (1-5 1500, I~ N Gy,

50,%)

[0317] where p, and o, are functions of x (and optionally,
hierarchically previous) and p,, and o, are not necessarily
functions of x (and, optionally, are also functions of hierar-
chically previous T). These are Gaussian distributions, and
so the KL term between them can be expressed as a sum of
two terms, as follows:

KL(gsllps) = s~

Wg—pp) (oG oy
203 2103 go’% ’

[0318] The second term will be minimized when szzoqz
and the first term will be minimized when s=0 or p,=p,,. In
this formulation, both q, and p, converge to a delta spike at
1, as s—0. As a result, s governs the trade-off between the
original input-dependent Gaussian approximating posterior
and an input-independent noise-free distribution.

[0319] As another example, we can define the approxi-

mating posterior and prior distributions over ¢ as follows:

g:(Sls 0= N (s, 4(1-9)1,570,7+(1-5)s°0,7)p,

@9~ (50,9

then the optimum remains at o,—0, as s—0, and the
a-dependent component of the KL, term decays as s—0. So
long as the standard deviation of q, decays faster than its
mean, the accuracy of the approximating posterior will
generally stay roughly constant or even tend to increase as
s decreases.
[0320] Further alternative (or additional) forms of q, and
ps are possible: for example, one can define the mean of q,
to be sz~uq+(l—sz)~pp.
[0321] The binary latent variables z may be used to govern
the prior distribution over s, which can assist with the
representation of multimodal distributions. For example, the
prior can over s can be defined as:

pls]z=0)=2-(1-5)
plslz=1)=2-s
or as:

B9
=0)=p——r0
plslz=0=p—5—

P
plslz= 1)=ﬁm-

Dec. 24, 2020

[0322] In either case, the prior can be defined as an a
Boltzmann machine (such as an RBM) and/or a quantum
Boltzmann machine (such as a QBM) over z. In the limit as
[p—=00, s will tend to converge to binary values corresponding
to those of the underlying binary latent variables z and the
distributions tend to converge to distributions similar to
those of the unsmoothed variance-sparsifying VAE imple-
mentations described above.

[0323] The KL-divergence of such an implementation can
be given by:

KL{g(z, s, £ 0l plz, 5, 0] =

qls|x)-gzls, x)-q({|s, X)]

E gslx1q(alsxrals 0| 10
asratdsaradisn| 108 o TS

The values of binary latent variables do not necessarily
unambiguously determine the values of the continuous latent
variables in this formulation. If the spikes in the approxi-
mating posterior and prior distributions for a given smooth-
ing continuous latent variable s, do not align, then they do
not interact. That is, if q(s,/x)=8,(s,) and p(s,z,=0)=0,(s;)
then

0 (silzi=0)=0
g5 Pl =0=

if o=v.

[0324] This can pose obstacles to applying the training
approach based on the cross-entropy term E [W -z,7]
presented in the aforementioned paper. However, the pres-
ently-described method enables a simpler and (in at least
some circumstances) lower-variance approach. In imple-
mentations where q(zIx, s, DI, q(z,1x, T), the cross-entropy
term can be reformulated as:

E w220y B g1 Gy a1 g m)].

[0325] In some implementations, the foregoing sparsifi-
cation techniques are complemented by providing an Li
prior, which induces sparsity (including in the hidden layers
of the VAE). In some implementations this involves deter-
mining the KL term via sampling-based estimates rather
than (or in addition to) analytic processes. The hidden layers
of the approximating posterior and the prior distributions
over binary latent variables (i.e. q(zIx, z,.,) and p(z]z,.,),
respectively) may comprise deterministic hidden layers to
assist in inducing sparsity. In at least some implementations,
the means of the approximating posterior and prior distri-
butions over the binary latent variables contract to a delta
spike at the mean of the prior.

[0326] Insome implementations, the VAE is a hierarchical
VAE where each layer is a linear function of a plurality (e.g.
all) previous layers. Each layer induces a nonlinearity, e.g.
implicitly as a consequence of a sparse structure (such as by
imposing the L1 prior), or by using a ReLU or other
structure to provide nonlinearity. In some implementations,
the output of the nonlinearity is linearly transformed to
provide the parameters of a distribution describing an L1
prior for the next layer(s).

[0327] For example, the L1 prior can be provided by a
Laplace distribution, with the mean and spread of the
Laplace distribution being the outputs of the linear trans-

US 2020/0401916 Al

formation of the nonlinearity’s output. There are a number
of forms that a Laplace distribution can take, one form that
is parametrized to use a form similar to a Gaussian (but with
an L1 norm) may be provided by:

1 ks
PLuer)(¥) = 5 o
[0328] The prior and approximating posterior distributions

over { corresponding to such a distribution can respectively
be provided by:

pGi=L (50,2
7@l 0=L (s (1-5)1,50,7)

which may correspond to a KL term based on the following
form:

g — el
KLigillpo =s- ===+

[0329] Other forms of L1 prior may alternatively, or
additionally, be used. These include, for example, a conven-
tional Laplace distribution, defined by

® JO
= — T
P g\ X 20_3 s

or any other suitable distribution providing an L.1 norm.

[0330] FIG. 12 is a flowchart of an example method 1200
for training a VAE with selectively-activatable continuous
latent variables based on a set of binary latent variables as
described above. At 1202, a computing system forms a latent
space. At 1204, during at least the early phases of training,
all of the selectively-activatable continuous latent variables
are activated (e.g., by setting all of their corresponding
binary latent variables to their “on” states). At 1206, the
model parameters are updated, e.g., by computing the objec-
tive function over a training dataset, based on all of the
selectively-activatable continuous latent variables being
activated. This operation may occur any number of times. At
1208, one or more selectively-activatable continuous latent
variables are deactivated, e.g., by setting their corresponding
binary latent variables to their “off” states. This deactivating
may be repeated for individual input elements of the training
dataset so that different input elements correspond to dif-
ferent sets of active/deactivated variables. At 1210, the
model parameters are updated, e.g., by computing the objec-
tive function over a training dataset, based on the subset of
the selectively-activatable continuous latent variables which
are activated (i.e., the deactivated selectively-activatable
continuous latent variables do not contribute to the objective
function, at least in respect of a particular input data ele-
ment). Acts 1208 and 1210 may be performed any number
of times.

[0331] Further variance-sparsifying approaches and
implementations for VAEs are described in U.S. provisional
patent application No. 62/731,694, incorporated herein by
reference.

Dec. 24, 2020

Variance Reduction for DVAEs

[0332] As noted above, the KL term of at least some
implementations of DVAEs can be optimized based on
reparametrization techniques. However, in certain circum-
stances, this technique can result in the KL term having a
large gradient, which can hinder effective training.

[0333] Surprisingly, the inventors have discovered that at
least some implementations of DVAE deal with derivatives
of the KL. term in a way which is analogous to REIN-
FORCE. This includes the spike-and-exponential-based
implementations described by Rolfe, Discrete Variational
Autoencoder, arXiv preprint arXiv:1609.02200 (2016),
which is incorporated herein by reference.

[0334] By way of background, assuming that one wishes
to calculate J=3E , [f(z)] for some function f(z), then
REINFORCE Works by noting that 3q,=q,3 log q,, to obtain:

F-E__)3 log).

[0335] In at least some implementations of DVAEs, f(z)
can be expressed as f(z)=kz; k can be assumed to be 1
without loss of generality. Applying REINFORCE, one
obtains:
J-E

[0336] which further simplifies to:
F=E_ 23 log q]

[0337] where q is the mean of the discrete variables’
distribution (e.g. the Bernoulli distribution). In the afore-
mentioned paper, the term J is calculated as follows:

2470 108 4]

s

71—

[0338] where ¥ is the uniform distribution.

[0339] That formulation is based on a spike-and-exponen-
tial smoothing transformation with the spike located at z=0,
but the DVAE may be equivalently defined such that the
spike is defined at z=1. In that case, the 7 term may be
reduced to:

T =Epuy [Z(P)]

[0340] which can be further reduced (based on the law of
the unconscious statistician) to:

J=E_,Iz5 log q]

[0341] which is equivalent to the formulation produced by
REINFORCE.
[0342] REINFORCE also tends to suffer from issues of

high variance, but a number of mitigating techniques have
been developed. Although it would not be expected simply
by observing the structure of DVAEs, this result demon-
strates that at least some implementations of DVAEs suffer
from the same or similar disadvantages as REINFORCE and
these effects may be mitigated using the methods applied for
REINFORCE-based models.

[0343] Thus, in some implementations, the gradient of the
KL term is determined (either exactly or approximately)
based on REINFORCE in combination with related mitiga-
tion methods, such as control variates and/or RELAX.

US 2020/0401916 Al

[0344] FIG. 13 is a flowchart of an example method 1300
for training a DVAE based on REINFORCE variance-
mitigation techniques. At 1302 a computing system forms a
latent space with discrete and continuous variables (e.g., as
described elsewhere herein and in referenced works). At
1304, as part of training, the computing system constructs a
stochastic approximation to a gradient of a lower bound on
the log-likelihood based on training data. This operation
further involves the computing system performing a REIN-
FORCE variance-mitigation technique 1306, such as control
variates and/or RELAX. At 1308 the computing system
updates the model’s parameters based on the gradient.

Enhancing Local and Global Reconstruction

[0345] VAEs tend to excel at capturing high-level corre-
lations based on their latent representations, but can lack
detail at a fine-grained level. Certain other machine learning
models, such as convolutional neural networks (e.g. Pix-
eCNNs), provide powerful generative models which are
well-suited to capturing fine-grained details but tend to have
difficulties capturing high-level correlations. Some work has
explored combining the two, such as Gulrajani et al., Pix-
elVAE: A Latent Variable Model for Natural Images, arXiv:
1611.05013 [cs.LG].

[0346] We have determined, through experiment, that in at
least some circumstances the known techniques for provid-
ing a VAE with a powerful convolutional neural network as
a decoder (such as a Pixel CNN) can tend to lead to the latent
variables of the VAE being largely unused. This can be
ameliorated by scaling the size (e.g., the number of layers)
of the convolutional neural network, but this can be imprac-
tical for large elements of a dataset (e.g., high-resolution
images).

[0347] In some implementations, these challenges may be
at least partially addressed in suitable circumstances by
providing a quantum distribution, such as a quantum Boltz-
mann machine (e.g., a QBM) as the prior of a (D)VAE. A
convolutional neural network (e.g. a PixelCNN) may be
provided as the decoder. The quantum distribution can
provide a powerful prior capable (in suitable circumstances)
of representing complex high-level correlations and reduces
the dependence of the VAE on the representational power of
the convolutional neural network, at least for certain high-
level correlations. This, in turn, advantageously reduces the
number of layers required by the convolutional neural
network.

[0348] In some implementations, the prior comprises a
correlational (i.e., non-factorial) classical distribution, such
as an RBM. Such implementations may, optionally, be
trained based on mixed positive/negative phase models (e.g.,
as describe above) and/or may involve sampling from a
quantum analog to the classical prior distribution via a QPU
and/or via quantum Monte Carlo or other techniques.
[0349] In addition (or as an alternative) to potentially
improving the performance of a computing system imple-
menting a conventional VAE or convolutional neural net-
work, where such approaches leverage a QPU they may also
potentially improve the performance of a quantum processor
(and/or a hybrid computing system comprising the quantum
processor). For instance, quantum processors are often lim-
ited by the number of qubits they have available. A quantum
processor of a given size may not be able to represent all of
the information available in large elements of a dataset (such
as high-resolution images). However, providing a QBM

Dec. 24, 2020

enables the QPU to provide samples and assist with identi-
fying high-level correlations (e.g., as described above with
respect to Quantum Generative Machine Learning Models)
while allowing the convolutional neural network to “fill in”
finer-grained details which may not be as easily captured by
the limited-capacity QPU.

[0350] FIG. 14 is a flowchart of an example method for
training a VAE with a quantum prior and a convolutional
neural network decoder. At 1402 a computing system forms
a latent space with at least continuous latent variables (it
may also, optionally, include binary latent variables). At
1404 the computing system forms an encoding distribu-
tion—i.e., the approximating posterior distribution. At 1406
the computing system forms a prior distribution. The prior
distribution is quantum distribution, such as a QBM or any
other distribution representable by a QPU or quantum-
simulating classical techniques (e.g. quantum Monte Carlo).
At 1408 the computing system forms a decoding distribu-
tion. The decoding distribution is implemented by a convo-
lutional neural network, such as a PixelCNN. At 1410 the
computing system trains the machine learning model based
on the aforementioned distributions and a set of training
data.

Importance-Weighted DVAEs

[0351] Importance sampling can be used, in suitable cir-
cumstances, to improve the training of DVAFEs by providing
a richer approximating posterior distribution. Importance
weighting has been used with continuous VAEs, but the
introduction of discrete units impedes the propagation of
derivatives of the objective function through discrete units.
Moreover, existing formulations of DVAEs provide for
analytical objective functions, which are not readily adapted
to sample-based importance-weighting approaches.

[0352] The present disclosure enables the importance-
sampling of DVAEs by combining sample-based and ana-
Iytical approaches to address the issue of propagating
derivatives through discrete units in training.

[0353] The k-sample importance weighted estimate of the
evidence lower bound (ELBO) on the log-likelihood of a
VAE can be written as:

palx, z;,é;)}

=E I! LS _
Li(x) = ‘Z‘.J‘.,{LIN%(Z‘, &ilx) og;; PENALS

where x is an element of a training set, z and C are vectors
of discrete and continuous latent variables, respectively, q,,
is the approximating posterior distribution parametrized by
¢ and pg is the probability distribution of the generative
model parametrized 6. The terms inside the sum are unnor-
malized importance weights,

_ Pelx %, &)
" gz G 1x)

[0354] During training, the derivatives of £ ,(x) with
respect to the prior and approximating posterior parameters
(0 and ¢, respectively; their union can be expressed as W)
need to be calculated. This can be expressed as a function of
random variables p,, for example as follows:

US 2020/0401916 Al

polx, zi(ps), &i(pi))

1 k
v x)=VylE log— A M
v L0 =B o, 9E 2 0. S0

where ¥ (0,1) is a uniform distribution with the dimension-
ality of the latent space.

[0355] The discrete variables z may be reparametrized
based on the Heaviside function # , e.g. as follows:

z;(piy)= H (0:;~(1-q4(z; /(p;)=1 ‘t;i,j<j(pi,j<j)’x)))
which allows for the use of the derivative of the Heaviside
function,

ag;
a—aj =8, - (1 —g;),

which (as shown below) can be useful in determining the
gradient of the objective function with respect to the
approximating posterior parameters ¢. We can define q, ;=q,,
(2P,)7UE, 1P, 1<,)-%) for convenience.

[0356] In the case of a hierarchical DVAE, we have
determined that:

w; (¥, %, 25, §;) = pa(z:) (Xlév)ﬁ;
A K 80 = o 1 0 isix)

where n is the number of hierarchies (which can be assumed
to be the dimensionality of the latent space without loss of
generality). We can apply this formulation to express the
derivative of £ as follows:

k

wi(¥, x, z:(pi), &i(pi)

e — Shoywp (¥, %, 2o), & (or))

loi~UO,

Vylog wi(¥, x, z(0:), Si(pi) |-

[0357] We can decompose the differential term of the
above equation into three terms, namely a first term over
discrete latent variables, a second term over input elements,
and a third term over discrete latent variables conditioned on
continuous latent variables and input elements:

Velog wil¥, x, zi(pi), £i(p:)) = Ve |log pa(zi(0:)) +

log pe(x| &i(pi) — Z log g4(zi j(0i,)| §ii< i (01 1<)) |-

J=1

[0358] Differentiating the first and third terms introduce
challenges in the context of a DVAE because they involve
discontinuous functions of p, ,, particularly where the dis-
crete variables are reparametrized based on the Heaviside
function.

Dec. 24, 2020
30

[0359] The third term can be reformulated as:

log q4(z; {(psy) ‘t.:i,l<j(pi,l<j) X)=z;,(p; plog g; +(1-zp)log
(1 _qij)

or, more concisely, we can leave out implicit the subscript i
and the functional dependence (p, ;) to simplify the nota-
tion to:

log g4(z;/%<;%)=2; log g+(1-z,)log(1-g;).

Each of the following equations will similarly use simplified
notation.

[0360] This reformulation of the third term enables an
analytical determination of its derivative. Here, “analytical
determination” (and other references to “analytically” or
similar) means that the value of the term can be determined
without necessarily sampling from the model distribution,
although it may involve sampling over a reparametrization,
such as p (which tends to be much easier). For instance, the
derivative may be determined based on:

q; z; l-z;19q;
8o~ (=g + =L e
—g; " R TI rH ET

Vylog g4z | {icjr) = 10g1

where

ag;
a—q;:é(pj—(l—qj»

is the derivative of the Heaviside function. This analytically-
determinable formulation is made possible by the above-
mentioned reparametrization of z based on the Heaviside
function.

[0361] The second term can be differentiated using the
reparametrization trick over continuous variables C, which
can be done analytically (and which is described in other
works cited herein).

[0362] The first term can accommodate a sampling-based
approach. For instance, consider a Boltzmann machine with

(-E(2)
Z0

Ppelz) = exp

where Z(0) is the partition function as described elsewhere
herein and E(Z).:—Zj1 s W, 7,-3, "7, a, is the energy of
state z. The derivative of the first term may be determined as
follows:

—Vy log pg(z)=VE(z)+VeE(2)+Vellog Z(6)].

This term is itself decomposed into energy terms (param-
etrized by 0 and ¢) and a partition term (defined over the
partition function Z(8)). The energy terms may be deter-
mined analytically (or by any other suitable method), and the
partition term may be determined via a sampling-based
approach. We can combine the first of these terms with the
terms of L, to synthesize an expectation over the first
energy term as follows:

US 2020/0401916 Al

L xV4E@)|=
wyr

k
W,
T
i=1
k

n
D DS P
Zhywr £ PinJF i1 ‘ B¢ Wivinth

=l |j1.02

[E«p‘-wwo,l);{-‘: 1

Pit=1-q;
n
7 Wi s aqu + qul
. WiZjy Wili 3¢ . Wi ——— 13¢ .
Piniti Clegs 0t
nI72 ojp=laj, L TR 0j1 =)

[0363] Note that, in implementations which use a smooth-
ing distribution of the form:

() if =0
r(¢lz) ={ Bexp(Bl) .
—— ifz=1

exp(f) -1

the requirement p, ~1-q, , translates to T, (p, g,)=0, which
occurs wherever z, (p,)=0. This allows us to sumplify to:

w; @
xVgE()| =
— 2{-(/,1(4)‘-/

k n
1 dqj, 1-z
P E. |w: Ay, g — Ly
Zf-‘/zlw;/Z & Z ap Ty
=

J1-i2

w24 lma N 04, 172,
i Witia 3¢ 1-q;, ap 1-g,

J1

[E«p;~w0,1n{-‘: !

[0364] The second energy term. VgE(z) may, at least for
the above-mentioned example Boltzmann machine, be
determined analytically with respect to the prior parameters
0 as follows:

S Wi S 9a;,
-VoElz) = E Y=g Gt E TR

J1-72 J1

[0365] The partition function term can be determined
based on the behavior of the model distribution p, and
sample energy:

9E(@)

Vegllog Z(®)] = —PQ(Z)—-

This last term may be determined via a sampling-based
approach, for example by obtaining one or more samples
from an oracle, such as a quantum processor.

[0366] We can combine the above (with some additional
derivation) to define derivatives of £, with respect to the
model parameters 6 and ¢. In particular, a processor may
determine the derivative of £, with respect to the prior

Dec. 24, 2020

parameters 0 by using a sampling approach (for the partition
terms) mixed with sampling-based and/or analytical
approaches for the remaining terms, e.g. as shown below:

Vo Lyi(x) =

=1 W

k n n
E Wi daj dlog ps(x|£)
s S Tae et)t Tae YT 6g

i=1 J1-i2 J1

n

Z aw; Z” da;
1.2 J1
|Ez~pg(z) 21 30 Zjp * Zit 30

J1d2 J1

which may be determined by sampling from the model
distribution to solve the second expectation term (which
relates to the partition term) and by solving the remaining
portion analytically. The derivative with respect to the
approximating posterior parameters ¢ may be determined
using an analytical approach. e.g. as shown below:

Vo Li(x) =

k

1 C [5 % 1-z]8g;
_ E,. |w; log + = - -+
Zf/zlw;/Z & ZJ: 1—%1—% q; 1-g;]10¢

i=

qul l—z- qu2 1—zj2
E Er3 Wit % T2 +ZJI Wirp 36 1-qj, +

J1-i2
945, 1=%n , dlog pox1®)
EN “1— 95 LX)

i1

which avoids the need to sample from the model distribution
over q,, by relying on the (analytically-solvable) Heaviside-
based reparametrization described above.

[0367] Thus, by combining sampling-based and analytical
approaches we can enable the propagation of derivatives
through the discrete units. Moreover, in at least some
implementations, the estimator that is obtained is unbiased.
In some implementations, samples are obtained by repre-
senting a Boltzmann machine on a quantum processor,
obtaining samples by evolving the quantum processor, pro-
cessing the samples with a classical processor, and combin-
ing the results with the results of an analytical determination
(over the remaining portion(s) of the objective function(s))
performed by a classical computer.

[0368] FIG. 15 shows an example method 1500 for train-
ing a machine learning model having a latent space com-
prising discrete variables (e.g. a DVAE) using importance-
weighted sampling. At 1502 a processor forms a latent space
for the model (e.g. based on a Boltzmann machine, as
described above). At 1504 the processor forms one or more
model distributions, such as a prior distribution and a
decoding distribution (such as an approximating posterior
distribution). The distributions may each be parametrized by
model parameters, such as 0 and ¢ mentioned above. At
1506 the processor receives one or more samples from an

US 2020/0401916 Al

oracle, such as a quantum processor. Training proceeds
partially based on those samples.

[0369] In particular, training is performed based on an
objective function (which may be decomposed into different
objective functions for each of the sets of model parameters,
if desired, e.g. as described above). The objective function
may be decomposed into a variety of components (called
terms), such as one or more energy terms (which character-
ize an energy of the model) and a partition term (which
describes the partition function of a model distribution).
Some terms are determined based on a sampling-based
approach, whereas others are determined analytically (or by
other suitable approaches). At 1508, the processor deter-
mines values for the sample-based terms. For example, the
processor may determine an expected value of the partition
term based on the samples.

[0370] At 1510, the processor determines values for the
remaining terms (e.g. the energy terms) by any suitable
approach. In some implementations, 1510 involves deter-
mining values analytically (or by any other suitable
approach), without necessarily requiring the use of samples
from the model distribution from an oracle. Determining the
values at 1510 may involve, for example, determining a
gradient with respect to approximating posterior parameters
¢ of the model based on a reparametrization of the discrete
variables over a proxy distribution(such as % [0,1]).
[0371] At 1512 the processor synthesizes a value for the
objective function based on the terms determined at 1508
and 1510 (e.g. by determining a sum, such as shown in the
above formulae). The objective function may be impor-
tance-weighted, e.g. as shown above. At 1514 the processor
updates the model parameters based on the value synthe-
sized at 1512. This method may be performed iteratively
(e.g. by returning from 1514 to 1504 and/or 1506).
DVAEs with Sparse Prior Distributions

[0372] As described elsewhere herein, a discrete varia-
tional autoencoder may have a prior distribution defined
over a Boltzmann machine. In some implementations, the
structure of the Boltzmann machine corresponds to a topol-
ogy of an analog processor (such as a quantum processor) to
facilitate sampling from the Boltzmann machine’s distribu-
tion by drawing samples from a representation of the Boltz-
mann machine encoded and executed on the analog proces-
sor.

[0373] However, often analog processors have sparse
topologies (such as the so-called Chimera topology, an
example of which is described in PCT patent application no.
US2016/047627, which is hereby incorporated herein by
reference). In some implementations, this processor-level
sparsity can impose sparsity constraints on the correspond-
ing Boltzmann machine (e.g., where the Boltzmann machine
is defined over a subgraph of the processor’s topology).
Such sparsity constraints can limit the representational
power of the Boltzmann machine. For example, some
empirical tests have shown that a Chimera-structured Boltz-
mann machine (which is itself a form of RBM) has been
found to perform similarly to a Bemoulli-distributed prior
with no couplings between variables.

[0374] In some implementations, training over a prior
distribution with sparse connectivity (such as over a Chi-
mera architecture) is assisted by using a non-hierarchical
approximating posterior distribution, using importance sam-
pling in training, and using a powerful neural network in the
decoder (such as a convolutional neural network). This

Dec. 24, 2020

confluence of features tends to avoid pathological regions of
the latent space by tending to limit the entreating of non-
existent connections, compensate for the loss of represen-
tational richness caused by the shift to a non-hierarchical
approximating posterior distribution, and induce some slight
overfitting. The last of these is usually undesirable, but in
combination with the other features has the side-effect of
promoting a relatively sharper distribution in the RBM.
[0375] FIG. 19 shows an example method 1900 for adapt-
ing a machine learning model to a sparse underlying con-
nectivity graph (e.g., the topology of an analog processor).
Act 1902 corresponds generally to act 602 of method 600
(see FIG. 6). The machine learning model comprises a prior
distribution which may be hierarchical. The prior distribu-
tion may be based on a base prior distribution which is not
necessarily sparse (and/or sparse with different connectivity
than the underlying connectivity graph, although this case is
generally more likely to impact performance). At 1904 a
processor determines a sparsity mask corresponding to the
underlying connectivity graph (e.g., a Chimera graph on
which the base prior distribution is based).

[0376] At 1906, the sparsity mask is applied to the base
prior distribution to induce sparsity in it, thereby yielding a
sparsified prior distribution. For example, the sparsity mask
may be applied to the kernels of a feedforward neural
network in the encoder of a DVAE. The sparsity mask
removes functional dependencies between variables which
do not share connections in the sparse connectivity graph.
For example, a kernel matrix may be multiplied by the
sparsity mask such that the element at row i and column j
may be set to O if the stochastic units i and j do not share a
connection in the sparse connectivity graph (e.g. ifi and j lie
on the same side of a Chimera unit cell).

[0377] For example, in case of two hierarchical layers, the
approximating posterior may be based on:

q¢(21122 ‘x):qq)(zl \x)q¢(zz 1z,%)

where qy(z,1z,, X)=nl(WW,, ., x+b), nl is a non-linearity
(e.g. one or more relu units), W and b are learnable param-
eters of the feedforward neural network, and W, is the
sparsity mask wherein no two variables in the sparse con-
nectivity graph which do not share a connection are depen-
dent on each other in W,,,;.

[0378] This causes the kernel of the neural network to
reflect the sparsity of the underlying connectivity graph
(e.g., the topology of an analog processor). The resulting
distribution may then be more conveniently sampled from
by an analog processor with a corresponding topology.
[0379] Acts 1910 and 1912 correspond generally to acts
610 and 612 of method 600 (see FIG. 6).

Concluding Generalities

[0380] The above described method(s), process(es), or
technique(s) could be implemented by a series of processor
readable instructions stored on one or more nontransitory
processor-readable media. Some examples of the above
described method(s), process(es), or technique(s) method
are performed in part by a specialized device such as an
adiabatic quantum computer or a quantum annealer or a
system to program or otherwise control operation of an
adiabatic quantum computer or a quantum annealer, for
instance a computer that includes at least one digital pro-
cessor. The above described method(s), process(es), or tech-
nique(s) may include various acts, though those of skill in

US 2020/0401916 Al

the art will appreciate that in alternative examples certain
acts may be omitted and/or additional acts may be added.
Those of skill in the art will appreciate that the illustrated
order of the acts is shown for exemplary purposes only and
may change in alternative examples. Some of the exemplary
acts or operations of the above described method(s), process
(es), or technique(s) are performed iteratively. Some acts of
the above described method(s), process(es), or technique(s)
can be performed during each iteration, after a plurality of
iterations, or at the end of all the iterations.

[0381] The above description of illustrated implementa-
tions, including what is described in the Abstract, is not
intended to be exhaustive or to limit the implementations to
the precise forms disclosed. Although specific implementa-
tions of and examples are described herein for illustrative
purposes, various equivalent modifications can be made
without departing from the spirit and scope of the disclosure,
as will be recognized by those skilled in the relevant art. The
teachings provided herein of the various implementations
can be applied to other methods of quantum computation,
not necessarily the exemplary methods for quantum com-
putation generally described above.

[0382] The various implementations described above can
be combined to provide further implementations. All of the
commonly assigned US patent application publications, US
patent applications, foreign patents, and foreign patent appli-
cations referred to in this specification and/or listed in the
Application Data Sheet are incorporated herein by reference,
in their entirety, including but not limited to:

[0383] PCT application no. US2016/047627,;

[0384] PCT application no. US2018/065286;

[0385] U.S. patent application Ser. No. 15/725,600;
[0386] U.S. provisional patent application No. 62/731,
694,

[0387] U.S. provisional patent application No. 62/598,
880;

[0388] U.S. provisional patent application No. 62/637,
268;

[0389] U.S. provisional patent application No. 62/628,
384

[0390] U.S. provisional patent application No. 62/648,
237,

[0391] U.S. provisional patent application No. 62/667,
350; and

[0392] U.S. provisional patent application No. 62/673,
013.

[0393] These and other changes can be made to the

implementations in light of the above-detailed description.
In general, in the following claims, the terms used should not
be construed to limit the claims to the specific implemen-
tations disclosed in the specification and the claims, but
should be construed to include all possible implementations
along with the full scope of equivalents to which such claims
are entitled. Accordingly, the claims are not limited by the
disclosure.

1. Amethod for unsupervised learning over an input space
comprising discrete or continuous variables, and at least a
subset of a training dataset of samples of the discrete or
continuous variables, to attempt to identify a value of at least
one parameter that increases a log-likelihood of the at least
a subset of a training dataset with respect to a model, the
model expressible as a function of the at least one parameter,
the method executed by circuitry including at least one
processor and comprising;

Dec. 24, 2020

forming a latent space comprising a plurality of random
variables, the plurality of random variables comprising
one or more discrete random variables and a set of
supplementary continuous random variables corre-
sponding to at least a subset of the plurality of random
variables;

forming a first transforming distribution comprising a

conditional distribution over the set of supplementary
continuous random variables, conditioned on the one or
more discrete random variables of the latent space, the
first transforming distribution comprising a first
smoothing distribution conditional on a first discrete
value of the one or more discrete random variables and
a second smoothing distribution conditional on a sec-
ond discrete value of the one or more discrete random
variables, the first and second smoothing distributions
having the same support;

forming an encoding distribution comprising an approxi-

mating posterior distribution over the latent space,
conditioned on the input space;
forming a prior distribution over the latent space;
forming a decoding distribution comprising a conditional
distribution over the input space conditioned on the set
of supplementary continuous random variables; and

training the model based on the first transforming distri-
bution.

2. The method according to claim 1 wherein training the
model based on the first transforming distribution com-
prises:

determining an ordered set of conditional cumulative

distribution functions of the supplementary continuous
random variables, each cumulative distribution func-
tion comprising functions of a full distribution of at
least one of the one or more discrete random variables
of the latent space;

determining an inversion of the ordered set of conditional

cumulative distribution functions of the supplementary
continuous random variables;
constructing a first stochastic approximation to a lower
bound on the log-likelihood of the at least a subset of
a training dataset;

constructing a second stochastic approximation to a gra-
dient of the lower bound on the log-likelihood of the at
least a subset of a training dataset; and

increasing the lower bound on the log-likelihood of the at

least a subset of a training dataset based at least in part
on the gradient of the lower bound on the log-likeli-
hood of the at least a subset of a training dataset.

3. The method according to claim 1 wherein the first and
second smoothing distributions are one of continuous and
symmetric.

4. (canceled)

5. The method according to claim 1 wherein each of the
first and second smoothing distributions is selected from the
group consisting of an exponential distribution, a normal
distribution, and a logistic distribution.

6. The method according to claim 1 wherein forming a
first transforming distribution comprises forming a first
transforming distribution based on three or more smoothing
distributions, each smoothing distribution converging to a
mode of a distribution of the discrete random variables.

7. The method according to claim 1 wherein training the
model comprises optimizing an objective function based on

US 2020/0401916 Al

importance sampling to determine terms associated with the
first transforming distribution.

8. The method according to claim 1 wherein forming a
latent space comprises representing at least a portion of the
latent space as a Boltzmann machine and wherein training
the model comprises instructing a quantum processor to
physically encode a quantum distribution approximating a
Boltzmann distribution, instructing the quantum processor
to sample from the quantum distribution, and receiving,
from the quantum processor, one or more samples from the
quantum distribution.

9. The method according to claim 1 wherein training the
model comprises:

optimizing an objective function having a plurality of

terms; and

scaling each term of a subset of the plurality of terms of

the objective function by a corresponding scaling fac-
tor, each scaling factor proportional to a magnitude of
a corresponding term of the objective function.

10. The method according to claim 9 wherein each
magnitude of each corresponding term of the objective
function was determined in a previous iteration of a param-
eter-update operation.

11. The method according to claim 9 wherein training the
model comprises:

scaling each term of the subset by a common annealing

factor, the common annealing factor annealing from an
initial value to 1 during training, and

removing the scaling by the common annealing factor

when the common annealing factor reaches 1.

12.-83. (canceled)

84. The method according to claim 1 wherein:

forming the encoding distribution comprising the

approximating posterior distribution comprises form-
ing the approximating posterior distribution over the set
of supplementary continuous random variables condi-
tioned on the input space; and

training the model comprises determining a gradient over

one or more samples from the set of supplementary
continuous random variables based on a cumulative
density function of the first transforming distribution.

85. The method according to claim 84 wherein determin-
ing the gradient comprises one or more of determining the
gradient with respect to a first probability yielded by the
approximating posterior distribution for a first binary state of
the one or more discrete random variables and determining
a first value of the cumulative density function conditioned
on the first binary state of the one or more discrete random
variables and a second value of the cumulative density
function conditioned on a second binary state of the one or
more discrete random variables.

86.-89. (canceled)

90. The method according to claim 1 wherein forming the
first transforming distribution comprises determining the
first smoothing distribution so as to remove one or more
pairwise interactions between the one or more discrete
random variables.

91. The method according to claim 90 wherein determin-
ing the first smoothing distribution comprises determining
the first smoothing distribution based on a Gaussian distri-
bution with variance based on the one or more pairwise
interactions between the one or more discrete random vari-
ables.

Dec. 24, 2020

92. The method according to claim 91 wherein determin-
ing the Gaussian distribution comprises determining a modi-
fied interaction matrix based on the one or more pairwise
interactions and a modifying term.

93.-99. (canceled)

100. The method according to claim 1 wherein:

forming the first transforming distribution comprises

forming the first smoothing distribution and the second
smoothing distribution factorially; and

training the model comprises:

determining a modified model based on the first trans-
forming distribution and

approximating at least a portion of an objective func-
tion over the set of supplementary continuous ran-
dom variables based on a mean-field approximation
of the modified model.

101. The method according to claim 100 wherein the
modified model comprises a distribution over the set of
supplementary continuous random variables and the
approximating at least a portion of the objective function
comprises fitting the mean-field approximation of the modi-
fied model by minimizing a difference metric between the
mean-field approximation and the modified model.

102. The method according to claim 101 wherein mini-
mizing the difference metric comprises minimizing a Kull-
back-Leibler divergence.

103. The method according to claim 100 wherein:

the model comprises a Boltzmann machine;

determining the modified model comprises determining a

modified Boltzmann machine based on the first trans-
forming distribution; and

training the model comprises:

determining a first gradient over a first energy term
corresponding to the modified Boltzmann machine;
and

determining an expectation of a second gradient over a
second energy term corresponding to the Boltzmann
machine.

104.-111. (canceled)

112. A computational system, comprising:

at least one processor; and

at least one nontransitory processor-readable storage

medium that stores at least one of processor-executable

instructions or data which, when executed by the at

least one processor, cause the at least one processor to:

form a latent space comprising a plurality of random
variables, the plurality of random variables compris-
ing one or more discrete random variables and a set
of supplementary continuous random variables cor-
responding to at least a subset of the plurality of
random variables;

form a first transforming distribution comprising a
conditional distribution over the set of supplemen-
tary continuous random variables, conditioned on the
one or more discrete random variables of the latent
space, the first transforming distribution comprising
a first smoothing distribution conditional on a first
discrete value of the one or more discrete random
variables and a second smoothing distribution con-
ditional on a second discrete value of the one or more
discrete random variables, the first and second
smoothing distributions having the same support;

US 2020/0401916 Al Dec. 24, 2020
35

form an encoding distribution comprising an approxi-
mating posterior distribution over the latent space,
conditioned on an input space comprising discrete or
continuous variables;

form a prior distribution over the latent space;

form a decoding distribution comprising a conditional
distribution over the input space conditioned on the
set of supplementary continuous random variables;
and

train a model based on the first transforming distribu-
tion.

