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57 ABSTRACT

After inputting input data to a floating pre-trained convolu-
tion neural network to generate floating feature maps for
each layer of the floating pre-trained CNN model, a statis-
tical analysis on the floating feature maps is performed to
generate a dynamic quantization range for each layer of the
floating pre-trained CNN model. Based on the obtained
quantization range for each layer, the proposed quantization
methodologies quantize the floating pre-trained CNN model
to generate the scalar factor of each layer and the fractional
bit-width of a quantized CNN model. It enables the infer-
ence engine performs low-precision fixed-point arithmetic
operations to generate a fixed-point inferred CNN model.

6 Claims, 1 Drawing Sheet
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LOW PRECISION AND COARSE-TO-FINE
DYNAMIC FIXED-POINT QUANTIZATION
DESIGN IN CONVOLUTION NEURAL
NETWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/778,299, filed Dec. 12, 2018 which is
incorporated herein by reference.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The invention is related to image processing, and more
particularly, to a power efficient convolution neural network
implementation.

2. Description of the Prior Art

Since the remarkable success of ImageNet competition,
Convolution Neural Network (CNN) has become a popular
structure for computer vision tasks. A typical pre-trained
CNN model requires billions of accumulate operations, a
huge amount of memory space, and several watts for a single
inference. Limited computing resources and storage
becomes an obstacle to run CNN on Internet of things (IoT)
or portable devices.

There are three major challenges to develop a new CNN
accelerator:

Spatially data transfer with limited memory storage: Due
to limited memory storage (<320 KB SRAM) in I[oT
devices, the latency of a large amount of data transfer
between an off-chip memory such as a dynamic random
access memory (DRAM) and an on-chip memory such as a
synchronous random access memory (SRAM) is not accept-
able for real-time artificial intelligent (Al) applications.

Massive multiplications of CNN with high power con-
sumption: To a real-time inference CNN model, massive
multiplications require very high power consumption for
arithmetic calculations, thus it is difficult to design a CNN
to satisfy IoT devices’ power requirement.

Re-training a CNN model requires a tremendous training
dataset: The re-training CNN model process takes hours in
the quantization approximation. This takes lots of arithmetic
operations, thus cannot be implemented in a low power
consumption device.

SUMMARY OF THE INVENTION

An embodiment provides a method of processing a con-
volution neural network. The method comprises inputting
input data to a floating pre-trained convolution neural net-
work (CNN) to generate floating feature maps for each layer
of' the floating pre-trained CNN model, inputting the floating
feature maps to a statistical analysis simulator to generate a
dynamic quantization range for each layer of the floating
pre-trained CNN model. The method further comprises
quantizing the floating pre-trained CNN model according to
the dynamic quantization range for each layer of the floating
pre-trained CNN model d results in a quantized CNN model,
a scalar factor of each layer of the quantized CNN model,
and a fractional bit-width of the quantized CNN model. The
method further comprises inputting the quantized CNN
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2

model to an inference engine to generate a fixed-point
inferred CNN model using fixed-point arithmetic operations
with low-precision.

These and other objectives of the present invention will
no doubt become obvious to those of ordinary skill in the art
after reading the following detailed description of the pre-
ferred embodiment that is illustrated in the various figures
and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart of a method for processing a
convolution neural network according to an embodiment.

FIG. 2 shows quantization methodologies for weight and
activation in FIG. 1.

DETAILED DESCRIPTION

FIG. 1 is a flowchart of a method 100 for processing a
convolution neural network (CNN) according to an embodi-
ment. The method 100 includes the following steps:

S102: inputting input data to a floating pre-trained con-
volution neural network (CNN) to generate floating
feature maps for each layer of the floating pre-trained
CNN model;

S104: inputting the floating feature maps to a statistical
analysis simulator to generate a dynamic quantization
range for each layer of the floating pre-trained CNN
model,;

S106: quantizing the floating pre-trained CNN model
according to the dynamic quantization range for each
layer of the floating pre-trained CNN model to generate
a quantized CNN model, a scalar factor of each layer of
the quantized CNN model, and a fractional bit-width of
the quantized CNN model; and

S108: inputting the quantized CNN model to an inference
engine to generate a fixed-point CNN model using
fixed-point arithmetic operations with low-precision.

Step S102 refers to the given input data to the pre-trained
CNN model to generate floating feature maps for each layer
of the floating pre-trained CNN model. The input data is
multimedia data. Step S104 is performed by an automatic
statistical analysis simulator. Step S106 refers to a quanti-
zation methodology for weights, biases and activations. Step
S108 is performed by an inference engine to generate a
fixed-point inferred CNN model using fixed-point arithmetic
operations with low-precision. The fixed-point inferred
CNN model can be inputted to the pre-trained convolution
neural network.

In CNN operations, the entire computational overhead is
dominated by convolutional (CONV) and fully connected
operations (FC). By the general multiplication matrix
(GEMM), the formulation of the CONV and FC is in
equation 1. In the forward-passing process of the CNN
model, the output features in i-th channel at the 1-th layer can
be expressed as:

xi(l)zxj:lk-k-Nmij(l)xi(l—l)+bl_(l) equation 1

where k represents the convolutional kernel size; N repre-
sents the total number of input channels; The output channel
iequals {1, 2, ..., M} where M is the total number of output
channels. b, represents the bias value of i-th output channel
at 1-th layer. For an FC operation, the kernel size k always
equals 1. To reduce the computational overhead of a large-
scale CNN, this embodiment implements a quantization
scheme, called dynamic fixed-point arithmetic operators, in
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equation 1. Thus, the quantization problem can be expressed
as an optimization equation in equation 2.

Min{|[Z MQE-EDNIPY equation 2

where Q( ) is the quantization function using a round-to-
nearest method, which can produce the lowest magnitude of
rounding error.

In order to minimize the quantization errors in equation 2,
equation 1 is reconsidered. Equation 1 has two major
components. One is the weighting vectors (w and b) and the
other is the activation vector(x). To minimize the quantiza-
tion errors in the weighting vectors (w and b), coarse-to-fine
dynamic fixed-point approximation is performed on the
weighting vectors. To minimize the quantization errors in
the activation vector(x), efficient fixed-precision represen-
tation on activations is applied. FIG. 2 shows quantization
methodologies for weight and activations in FIG. 1.

An embodiment discloses a quantization methodology, a
fixed-precision Representation on activation vector is
described as below.

To fully represent the 32-bit floating-point value when
using dynamic fixed-point format in the activation vector
(x), a scalar factor s is defined as shown in equation 3.

ol equation 3

max,

where p represents the quantization bit-width. In equation 3,
the dynamic quantization range is [[-max,,max, |]. From the
perspective of activation vectors (x) in CONV and FC
operations, the max,, is the statistical maximum value of a
large set of typical input features. It can be analyzed by the
statistical maximum value analysis in FIG. 1.

Based on equation 3, s is the scalar factor which bridges
the gap between the floating point value and fixed-point
value. The scalar factor s is the mathematical real number in
32-bit floating point format. Applying the scalar factor s on
the activation vector x’ at I-th layer, equation 1 can be
re-written as:

kk-N
$O .40 Z Z S0 D01 4 0 p0
=

After doing the multiplying operation in equation 1, the
quantization problem expressed as equation 2 can be re-
written as follows:

2}

Min{

For each layer in CNN model, it has its own scalar factor
s at 1-th layer. Multiplying the scalar factor s on the
activation vector can efficiently cover the entire quantization
range [[-2771,27"-1]]. The quantization error is thus mini-
mized.

An embodiment discloses a quantization methodology, a
coarse quantization and a fine quantization by the dynamic
quantization range on weight vector is described as below.

In equation 3, the dynamic quantization range is [[-max,,
max,|] in weight vectors. From the perspective of weighting
vector (w and b) in CONV and FC operations, the max,
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equals max(Imin(w)l,Imax(w)l) where Imax(w)l and Imin
(w)! are the absolute maximum value of weights and the
absolute minimum value of weights, respectively. “Ix|”
represents the absolute value of x. According to equation 1,
once the scalar factor s is multiplied on the activation vector
for each layer, it can impact on the weight vectors when
doing the dynamic fixed-point approximation. To handle this
issue, a coarse quantization and a fine quantization to
fixed-point technique on weight vectors is proposed.

Firstly, for each layer, the scalar factor s mentioned in
equation 3 is expressed as:

P Lty
S ®

where q equals

N

2n°

n is the number of fractional bits, which represent the
fractional word length defined as:

Pl
"= {IOgZ max, (x)J

Note that the 2” is the integer value and q is the 32-bit
floating value q&.

In the weight vectors, it has a convolutional vector or
batch-normalization scaling vector (w) and a bias vector (b).
From the perspective of a bias vector (b’) at 1-th layer, the
updated bias vector can be updated as q*b due to the scaled
activation vector. From the perspective of a convolutional or
batch-normalization scaling weight vector (w'”) at I-th layer,
considering the activation vector is iteratively updated by
the scalar factors at each layer, the convolutional weight
vector at I-th layer (w®) should be updated as

——— when/>=1.
q(lfl)

When 1=0, the updated weight vector is ¢“”-w . For layers
without weight vectors, such as activation and pooling
layers, the floating scalar factor from its input layer is passed
on to its following layers.

According to the statistical analysis on the convolutional
weight vector (W, awanx1), the values for each output
channel (the total number of output channels is M) vary
differently. The quantization accuracy will thus be signifi-
cantly impacted when the dynamic quantization range
([-max, (w),—max,(w)]) is used to cover the entire output
channels. To solve this problem, the fine quantization tech-
nique is used on channel-wised quantization. In the convo-
Iutional weight vector, the maximum value for i-th output
channel is defined as max,(w,)(i€1, 2, . . . , M). The updated
dynamic range per output channel is [-max, (w,),max, (w,)].
Applying the coarse quantization and the fine quantization
by quantization range to generate fixed-point inferred data,
it can provide the very low quantization error and provide a
quantization result close to 32-bit floating point accuracy for
all CNNS.
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The invention provides a method of processing a convo-
Iution neural network. The method comprises inputting
input data to a pre-trained convolution neural network
(CNN) to generate floating feature maps for each layer of the
floating pre-trained CNN model, inputting the floating fea-
ture maps to a statistical analysis simulator to generate a
dynamic quantization range for each layer of the floating
pre-trained CNN model, quantizing the floating pre-trained
CNN model according to the dynamic quantization range for
each layer of the floating pre-trained CNN model to generate
a quantized CNN model, a scalar factor of each layer of the
quantized CNN model, and a fractional bit-width of the
quantized CNN model, and inputting the quantized CNN
model to an inference engine to generate a fixed-point
inferred CNN model using fixed-point arithmetic operations
with low-precision. Applying the proposed techniques, the
fixed-point inferred CNN model is built to be used on
limited memory size and low arithmetic capability devices
such as mobile phone or portable IoT devices without
performance loss.

Those skilled in the art will readily observe that numerous
modifications and alterations of the device and method may
be made while retaining the teachings of the invention.
Accordingly, the above disclosure should be construed as
limited only by the metes and bounds of the appended
claims.

What is claimed is:
1. A method of quantizing a floating pre-trained convo-
Iution neural network (CNN) model comprising:
inputting input data to the floating pre-trained CNN model
to generate floating feature maps for each layer of the
floating pre-trained CNN model;
inputting the floating feature maps to a statistical analysis
simulator to generate a dynamic quantization range for
each layer of the floating pre-trained CNN model; and
quantizing the floating pre-trained CNN model according
to the dynamic quantization range for each layer of the
floating pre-trained CNN model to generate a quantized
CNN model, a scalar factor of each layer of the floating
pre-trained CNN model, and a fractional bit-width of
the quantized CNN model, wherein quantizing the
floating pre-trained CNN model comprises:
acquiring a plurality of weights of each layer of the
floating pre-trained CNN model;
setting the scalar factor of each layer of the floating
pre-trained CNN model according to a maximum
weight of the plurality of weights and a minimum
weight of the plurality of weights;
applying the scalar factor of each layer of the floating
pre-trained CNN model to an activation vector at
each layer of the floating pre-trained CNN model;
and
minimizing a quantization error of each layer of the
quantized CNN model according to the scalar factor
by using a minimum mean square error approach as
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wherein s is the scalar factor at an I-th layer, x,
represents output features in an i-th channel at the
I-th layer, Q( ) is a quantization function, and M is
a total number of channels;

wherein the scalar factor of each layer of the floating

pre-trained CNN model is associated with a quantiza-
tion bit-width and the dynamic quantization range
when quantizing the floating pre-trained CNN model.
2. The method of claim 1, wherein the quantizing the
floating pre-trained CNN model further comprises:
performing a first quantization over the floating pre-
trained CNN model according to the dynamic quanti-
zation range for each layer of the floating pre-trained
CNN model to generate a first CNN model; and

performing a second quantization on all channels of
convolution (CONV) layers and/or fully-connected
(FC) layers of the first CNN model to generate the
quantized CNN model.

3. The method of claim 2, wherein performing the first
quantization over the floating pre-trained CNN model
according to the dynamic quantization range for each layer
of the floating pre-trained CNN model to generate the first
CNN model comprises:

performing an activation quantization process, a bias

quantization process, and a weight quantization process
to generate the first CNN model.

4. The method of claim 3, wherein performing the acti-
vation quantization process, the bias quantization process
and the weight quantization process to generate the first
CNN model comprises:

performing the activation quantization process over the

floating pre-trained CNN model to generate quantized
activations;

performing the bias quantization process over bias data of

the floating pre-trained CNN model to generate a
quantized bias; and

performing the weight quantization process over the

weight data of the floating pre-trained CNN model to
generate quantized weights.

5. The method of claim 2, wherein performing the second
quantization on all channels of convolution (CONV) layers
and/or fully-connected (FC) layers of the first CNN model to
generate the quantized CNN model comprises:

performing a weight per channel quantization process

over all channels of convolution (CONV) layers and/or
fully-connected (FC) layers of the first CNN model to
generate the quantized CNN model which comprises a
quantized weight per channel.

6. The method of claim 1, wherein the input data is
multimedia data.
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