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SPECTRUM DATA ACQUISITION METHOD,
CELL SORTING METHOD, AND RAMAN
SPECTROSCOPY SYSTEM

TECHNICAL FIELD

[0001] The present invention relates to a spectrum data
obtaining method, a cell classification method, and a Raman
spectroscopy system.

BACKGROUND ART

[0002] There are microscope systems which perform
evaluation of cells by using Raman scattered light. Raman
scattered light obtainable from a cell indicates distribution,
quantities, and so on of molecules, such as those of protein,
lipid, and so on, in a cell. Thus, it is possible to discriminate,
in a noninvasive and/or unstaining manner, the state of the
cell based on a Raman spectrum obtainable from Raman
scattered light.

[0003] For example, Non-patent Literature 1 discloses a
technique for obtaining Raman scattered light, by designat-
ing a square region in a cell based on an image obtained by
using a quantitative phase microscope (QPM: quantitative
phase microscopy) and irradiating it with laser light by using
a random scan system. Further, Non-patent Literature 2
discloses a technique for selecting a cell, by measuring the
whole region of the cell by performing line scanning to
thereby create a Raman image, and using a spectrum of a cell
region extracted from the Raman image.

CITATION LIST

Non Patent Literature

[0004] NPL 1: Nicolas Pavillon, Nicholas I. Smith,
“Maximizing throughput in label-free microspectros-
copy with hybrid Raman imaging,” Journal of Bio-
medical Optics, 2015, 20, 016007, DOL 10.1117/1.
JB0O.20.1.016007.

[0005] NPL 2: Taro Ichimura and six other authors,
“Non-label immune cell state prediction using Raman
spectroscopy,” Scientific Reports 2016, 6, 37562; DOI:
10.1038/srep37562.

SUMMARY OF INVENTION

Technical Problem

[0006] On the other hand, in the case of a line irradiation
method such as that disclosed in Non-patent Literature 2,
selecting of a cell using a Raman image requires time for
measurement and/or analysis, and also increases damage to
the cell. Raman scattered light originated in a cell is very
weak to be sensed sufficiently, so that it may become easier
to be sensed if expose time to the cell is extended; however,
in such a case, there are problems that damage to the cell
becomes larger and the noise becomes higher. Also, in a
random scan method such as that disclosed in Non-patent
Literature 1, it is difficult to perform laser irradiation uni-
formly in a specific region in a cell.

[0007] The present invention has been achieved in view of
the above matters.
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Solution to Problem

[0008] For solving the above problems, a mode of the
present invention comprises a spectrum data obtaining
method comprising steps for: receiving Raman scattered
light that is outputted from a cell as a result that laser light
is emitted in a turning manner to a region where the cell
exists; and detecting a Raman spectrum corresponding to the
received Raman scattered light.

[0009] Further, the other mode of the present invention
comprises a cell classification method comprising a step of
classifying a cell based on spectrum data obtained by
performing the above method.

[0010] Further, a different mode of the present invention
comprises a Raman spectroscopy system comprising: a laser
source for outputting laser light; a biaxial Galvano mirror for
reflecting the laser light in such a manner that a region where
a cell exists is to be irradiated by the laser light in a turning
manner; a spectrometer for receiving Raman scattered light,
that is outputted from the cell; and a CCD (charge-coupled
device) detector for detecting a Raman spectrum corre-
sponding to the received Raman scattered light.

Advantageous Effects of Invention

[0011] It becomes possible to emit, in a turning manner or
in accordance with an arbitrarily determined pattern, laser
light to an arbitrarily selected region in a single cell, and,
accordingly, it becomes possible to obtain Raman scattered
light from the whole irradiated region. Thus, when obtaining
Raman scattered light, the Raman scattered light can be
obtained from an arbitrarily selected region in a single cell
in a short period of time, while suppressing damage to the
cell.

[0012] Further, by expanding a region for measurement,
Raman scattered light from plural cells can be obtained at
the same time.

[0013] Further, in the case that the obtained Raman scat-
tered light is treated as that in the form of spectrum data, and
multivariate analysis and/or machine learning is to be per-
formed, it becomes possible to classify the kinds and/or
activated states of cells. Thus, discrimination of cells can be
performed in a noninvasive and/or unstaining manner, and in
a short period of time.

BRIEF DESCRIPTION OF DRAWINGS

[0014] FIG. 1 is a figure which explains examples of
optical paths in a Raman spectroscopy system according to
an embodiment of the present invention.

[0015] FIG. 2 is a figure showing an example of a con-
struction of a Raman spectroscopy system according to an
embodiment of the present invention.

[0016] FIG. 3 is a figure showing examples of scenes
wherein approximately circular specific regions in cells are
irradiated by laser light.

[0017] FIG. 4 is a figure showing examples of spectra of
solid palmitic acid.

[0018] FIG. 5 is a figure showing examples of obtained
Raman spectra.
[0019] FIG. 6 is a figure which explains examples of

Raman measurement performed by using a point irradiation
method and an irradiation method according to an embodi-
ment of the present invention.

[0020] FIG. 7 is a figure showing an example of a graph
showing obtained Raman spectra.
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[0021] FIG. 8 is a figure which explains an example of
comparison between an obtained Raman spectrum and a
spectrum of palmitic acid.

[0022] FIG. 9 is a figure which explains an example of
comparison between an obtained Raman spectrum and a
spectrum of palmitic acid.

[0023] FIG. 10 is a figure which explains an example of
comparison between an obtained Raman spectrum and a
spectrum of palmitic acid.

[0024] FIG. 11 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in floating states by using an irradiation method
according to an embodiment of the present invention.
[0025] FIG. 12 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in floating states by using an irradiation method
according to an embodiment of the present invention.
[0026] FIG. 13 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in floating states by using an irradiation method
according to an embodiment of the present invention.
[0027] FIG. 14 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in floating states by using an irradiation method
according to an embodiment of the present invention.
[0028] FIG. 15 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in floating states by using an irradiation method
according to an embodiment of the present invention.
[0029] FIG. 16 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in floating states by using an irradiation method
according to an embodiment of the present invention.
[0030] FIG. 17 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in adhered states by using an irradiation method
according to an embodiment of the present invention.
[0031] FIG. 18 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in adhered states by using an irradiation method
according to an embodiment of the present invention.
[0032] FIG. 19 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in adhered states by using an irradiation method
according to an embodiment of the present invention.
[0033] FIG. 20 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in adhered states by using an irradiation method
according to an embodiment of the present invention.
[0034] FIG. 21 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in adhered states by using an irradiation method
according to an embodiment of the present invention.
[0035] FIG. 22 is a figure which explains an example of
classification of cell types that was performed with respect
to cells in adhered states by using an irradiation method
according to an embodiment of the present invention.
[0036] FIG. 23 is a figure which explains an example of
classification that was performed with respect same cells in
different states by using an irradiation method according to
an embodiment of the present invention.

[0037] FIG. 24 is a figure which explains an example of
classification that was performed with respect same cells in
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different states by using an irradiation method according to
an embodiment of the present invention.

[0038] FIG. 25 is a figure which explains an example of
classification that was performed with respect same cells in
different states by using an irradiation method according to
an embodiment of the present invention.

[0039] FIG. 26 is a figure which explains an example of
classification that was performed with respect same cells in
different states by using an irradiation method according to
an embodiment of the present invention.

[0040] FIG. 27 is a figure which explains an example of
classification that was performed with respect same cells in
different states by using an irradiation method according to
an embodiment of the present invention.

[0041] FIG. 28 is a figure which explains an example of
classification that was performed with respect same cells in
different states by using an irradiation method according to
an embodiment of the present invention.

[0042] FIG. 29 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PMA and A23187) by using
an irradiation method according to an embodiment of the
present invention.

[0043] FIG. 30 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PMA and A23187) by using
an irradiation method according to an embodiment of the
present invention.

[0044] FIG. 31 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PMA and A23187) by using
an irradiation method according to an embodiment of the
present invention.

[0045] FIG. 32 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PMA) by using an irradia-
tion method according to an embodiment of the present
invention.

[0046] FIG. 33 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PMA) by using an irradia-
tion method according to an embodiment of the present
invention.

[0047] FIG. 34 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PMA) by using an irradia-
tion method according to an embodiment of the present
invention.

[0048] FIG. 35 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PHA) by using an irradia-
tion method according to an embodiment of the present
invention.

[0049] FIG. 36 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PHA) by using an irradia-
tion method according to an embodiment of the present
invention.

[0050] FIG. 37 is a figure which explains an example of
classification that was performed with respect same cells in
different states (stimulated with PHA) by using an irradia-
tion method according to an embodiment of the present
invention.
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[0051] FIG. 38 is a figure which explains an example of
inference of states of Jurkat cells using machine learning and
an irradiation method according to an embodiment of the
present invention.

[0052] FIG. 39 is a figure which explains an example of
inference of states of Jurkat cells using machine learning and
an irradiation method according to an embodiment of the
present invention.

[0053] FIG. 40 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0054] FIG. 41 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0055] FIG. 42 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0056] FIG. 43 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0057] FIG. 44 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0058] FIG. 45 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0059] FIG. 46 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0060] FIG. 47 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0061] FIG. 48 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0062] FIG. 49 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0063] FIG. 50 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0064] FIG. 51 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.

[0065] FIG. 52 is a figure which explains an example of
measurement that was performed with respect to plural cells
by using an irradiation method according to an embodiment
of the present invention.
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DESCRIPTION OF EMBODIMENTS

[0066] In the following description, embodiments of the
present invention will be explained with reference to the
figures.

(Optical Paths in Raman Spectroscopy System)

[0067] FIG. 1 is a figure which explains examples of
optical paths in a Raman spectroscopy system according to
a present embodiment. A Raman spectroscopy system 1
according to the present embodiment is a system which can
obtain a spectrum from a wide region in a cell at high speed
for avoiding changing of a measuring region due to a
complicated structure of the cell. The Raman spectroscopy
system 1 according to the present embodiment comprises a
diode pumped solid state (DPSS) laser light source 12, a
spectrometer 14, a CCD (charge-coupled device) detector (a
cooled CCD camera) 16, an inverted microscope 18, and a
Raman optical system 20. Laser light emitted from the DPSS
laser light source 12 enters an optical path via a laser optical
fiber 32, and passes through a lens 202, an ND (Neutral
Density) filter 204, a shutter 205, and a band-pass filter 206.
Thereafter, the laser light is reflected by a flat mirror 208 and
a dichroic mirror 210, and arrives at a biaxial Galvano
mirror 30 which comprises Galvano mirrors arranged on an
X axis and a Y axis that are orthogonal to each other. By
rotating the biaxial Galvano mirror 30 at high speed, laser
light can be applied in a turning manner to a region that has
been predetermined in a bright field image and includes a
cell 50. Further, it is possible to adopt, as laser light
outputted from the DPSS laser light source 12, various kinds
of'laser light such as 266 nm (nanometer) (a Deep UV laser),
320 nm (a DPSS laser), 325 nm (a He—Cd laser), 442 nm
(a He—Cd laser), 447 nm (an air cooled Ar+ laser), 448 nm
(an air cooled Ar+ laser), 514 nm (an air cooled Ar+ laser),
532 nm (a DPSS laser), 633 nm (a He—Ne laser), 785 nm
(a near-infrared semiconductor laser), 839 nm (an air cooled
semiconductor laser), 1064 nm (an air cooled DPSS laser),
and so on, and the kind of the laser light can selected
appropriately by a person skilled in the art.

[0068] FIG. 3 is a figure showing examples of scenes
wherein approximately circular specific regions in cells are
irradiated by laser light. As shown in FIG. 3, with respect to
each of individual cells (with respect to a single cell), it is
possible to irradiate a region in the cell with laser light.
When performing measurement of each of cells, any region
in a cell can be designated as an irradiation region (an
irradiation area). For example, a largest available region can
be designated as the irradiation region. For example, in the
case that a circular cell having a diameter of 8-15 pum (a
human T cell or the like) is selected as an object of
measurement, a circular region having a diameter of 10 pm
may be selected as an irradiation region. Especially, since
Raman scattered light generated from a nucleus region and
that of the Raman scattered light generated from a region
other than the nucleus region (cytoplasm) are different from
each other, it is preferable to designate, as a measurement
region, a region that covers the nucleus and the cytoplasm.
By adopting the above construction, the present system
integrates Raman scattered light originated in a nucleus with
Raman scattered light originated in cytoplasm, and makes it
possible to detect the above Raman scattered light as a single
Raman signal. In a different example, it is possible to
designate a limited region in a cell as an irradiation region.
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For example, in the case that an adhered cell is selected as
an object of measurement, it is also possible to limit a
region, that is to be designated as an irradiation region, to
that where a nucleus exists. Further, it is possible to limit a
region, that is to be designated as an irradiation region, to
that (cytoplasm) other than a region including a nucleus.

[0069] In a different construction, it is also possible to set
a region, that is to be irradiated by laser light, to have a large
size, and irradiate plural cells existing in the region collec-
tively with laser light (FIG. 40 and so on). Regarding the
expression “approximately circular shape,” it should be
reminded that it is intended to allow the meaning of the
above expression to cover a circular shape having some
distortion (a case that the shape is almost circular), in
addition to a completely circular shape (perfect circle).
Further, although the Raman spectroscopy system 1 accord-
ing to the present embodiment emits laser light to an
approximately circular region including one or plural cells in
FIG. 3, it is also possible to emit laser light to a quadrangle
region (for example, any one of various kinds of quadrangles
such as a square, a rectangular, a thombus, a parallelogram,
a trapezoid, or the like may be adopted) including one or
plural cells. Further, the Raman spectroscopy system 1 can
emit, in a turning manner, laser light to a region that has any
one of shapes such as a triangle shape, a hexagon shape, and
so on, and includes one or plural cells. Further, the Raman
spectroscopy system 1 according to the present embodiment
may emit laser light to any one of various shaped region
including one or plural cells in such a manner that the
position irradiated with the laser light moves from an outer
side to an inner side of the region (i.e., from an outer
periphery to a center in the region) in a turning manner, or
moves from the inner side to the outer side of the region in
a turning manner. Further, the Raman spectroscopy system
1 according to the present embodiment may emit laser light
to any one of various shaped region including one or plural
cells in such a manner that the position irradiated with the
laser light moves, in a turning manner in a rotation direction,
from an outer side to an inner side of the region and finally
to a position close to the center of the region, and, thereafter,
moves, in a turning manner to move spirally in the above
rotation direction or a reverse rotation direction, from the
inner side to the outer side of the region; and, further, it may
be possible to repeat the above laser light emitting process,
i.e., the process for moving the position irradiated with the
laser light, in a turning manner, from the outer side to the
inner side and thereafter from the inner side to the outer side
of the region. By the above construction, the shaped region
can be irradiated fully and sufficiently. Further, the rotation
direction at the time when the laser light is emitted in a
turning manner may be a clockwise rotation direction or a
counterclockwise rotation direction. Further, the intervals in
the spiral, that is a track of the turning-manner movement,
can be adjusted appropriately. It should be reminded that the
expression “in a turning manner (emitting laser light in a
turning manner)” herein means action to emit laser light as
if a spiral is drawn thereby.

[0070] Further, regarding the Raman spectroscopy system
1 according to the present embodiment, the region that can
be irradiated by the laser light is, for example, an approxi-
mately circular region having a radius of 0.25-150 pm
(micrometer) or a quadrangle region having a minor axis
(the X-axis direction or the Y-axis direction of the biaxial
Galvano mirror 212) of 0.5-300 pum, the marking speed is
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0.002-2 mm/ms (millimeter/millisecond), and so on. The
moving speed of the laser light can be controlled by con-
trolling the vibration speed of the biaxial Galvano mirror 30.
[0071] Here, FIG. 1 is referred to again: The scattered light
from the cell 50, which has been irradiated by the laser light,
propagates through the path, which is the same as the path
through which the inputted laser light has passed, in an
opposite direction and passes through the dichroic mirror
210 again. Further, the scattered light passes through the
high-pass filter 212, wherein only the high frequency com-
ponents of the scattered light pass through the filter. As a
result, only the Raman scattered light is converged, via the
lens 214, the shutter 215, and the optical fiber 34, to be
inputted to the spectrometer 14. The Raman scattered light
is detected as a Raman spectrum by the CCD detector 16,
wherein the Raman spectrum is defined by a horizontal axis
representing the Raman shift (wavenumber, cm™) and a
vertical axis representing the intensity of the scattered light

(a.u).

(Construction of Raman Spectroscopy System)

[0072] FIG. 2 is a figure which shows an example of a
construction of a Raman spectroscopy system according to
an embodiment of the present invention. It should be
reminded that, in the present construction example, a refer-
ence symbol that is the same as that assigned to a component
in FIG. 1 is assigned to a component which is the same as
or equivalent to the component in FIG. 1. The Raman
spectroscopy system 1 according to the present embodiment
is constructed in such a manner that it comprises a DPSS
laser light source 12, a spectrometer 14, a CCD detector 16,
an inverted microscope 18, a Raman optics 20, and a shutter
controller 38. The shutter controller 38 is a controller for
controlling the shutter 205 and the shutter 215 shown in FIG.
1. Further, the Raman spectroscopy system 1 may comprise
a joystick 44 which is manipulated by a user for adjusting
the stage 40 of the inverted microscope 18, and a stage
controller 42 for controlling the stage of the inverted micro-
scope 18 in response to movement of the joystick 44.
Further, the Raman spectroscopy system 1 may comprise an
epi-illumination controller 46 for controlling epi-illumina-
tion device 48 for the inverted microscope 18.

[0073] Also, the Raman spectroscopy system 1 may fur-
ther comprise a computer device 50, and input/output inter-
faces such as a keyboard 52, a mouse 54, and so on and a
monitor device 15 for manipulation of the computer device
50 by a user. The computer device 50 may obtain spectrum
data of a cell detected by the CCD detector 16, and display
the spectrum data in the form of a graph or the like by the
monitor device 56. Further, the computer device 50 can
execute machine learning software. The machine learning
software may be unsupervised or supervised machine learn-
ing software that receives spectrum data as input and outputs
answers such as those relating to classification of cells and
s0 on, as will be explained later. The computer device 50 can
be realized by using a hardware construction similar to that
of a general computer device.

[0074] The computer device 50 may comprise, for
example, a processor, a RAM (Random Access Memory), a
ROM (Read Only Memory), a built-in hard disk device, a
removable memory such as an external hard disk device, a
CD, a DVD, a USB memory, a memory stick, a SD card, or
the like, an input/output user interface (a touch panel, a
speaker, a microphone, a lamp, or the like), a wired/wireless
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communication interface which can communicate with
another computer device, and so on. For example, the
processor in the computer device 50 may read various kinds
of programs such as a spectrum data analyzing program, a
machine learning program, and so on, that have been stored
in a hard disk device, a ROM, a removable memory, or the
like, and put them into a memory such as a RAM or the like;
and execute the programs while reading, from a hard disk
device, a ROM, a removable memory, or the like, spectrum
data of a cell that were detected by the CCD detector 16.
[0075] According to the Raman spectroscopy system and
the spectrum data obtaining method explained above, a
Raman spectrum in a wide region can be obtained in a short
period of time. By adopting the above construction, laser
light can be emitted efficiently and evenly while suppressing
damage to a cell.

(Method for Classifying Cells)

[0076] The present invention also provides a method for
classifying cells. The cell classification method comprises,
as explained above, a step of classifying a cell based on
spectrum data obtained from the cell. In the present case, cell
classification includes classification of the kinds of cells and
classification of the states of cells. The states of cells include
aphysiological state of a cell, an activated state of'a cell (due
to an endogenous or exogenous stimulator, a signal trans-
duction substance, a compound other than the above, or the
like), and so on. As the above states, states of cell division,
cell death, cell neoplastic transformation, cell differentia-
tion, cell dedifferentiation, metabolic state change, form or
shape change, cell infection due to a foreign cell (an
infectious cell such as a virus, a bacteria, or the like), and so
on can be listed, and it should be reminded that the states are
not limited to those listed above. Further, a cell may be in
any of a floating state and an adhered state.

[0077] Cells which are to be used as objects of analysis are
animal cells, plant cells, microbial cells, and so on, i.e., the
cells are not limited specifically. As animal cells, cells
originated in creatures in mammals, birds, reptiles, amphib-
ians, fishes, and so on can be listed, and, preferably, the cells
are those originated in a human, a dog, a mouse, a rat, a cat,
a horse, a goat, a sheep, a bovine, a flog, and so on. For
example, the cells to be listed are those included in undif-
ferentiated cells, multipotent cells, pluripotent cells, differ-
entiated cells, germ cells, and somatic cells, and it should be
reminded that the cells are not limited to those listed above.
More specifically, the cells to be listed are Jurkat cells (the
human T cell line), mouse embryonic fibroblasts (MEFs),
embryonic stem cells, immortalized human adipose-derived
mesenchymal stem cells (hMSCs), human induced pluripo-
tent stem cells (hiPSCs), and so on, and it should be
reminded that the cells are not limited to those listed above.
As plant cells, cells originated in angiosperms, gymno-
sperms, pteridophytes, bryophytes, algae, and so on can be
listed, and, preferably, the cells are those originated in
vegetables, flowers, trees, and so on. The microbial cells can
be any of those in prokaryotes and eukaryotes. For example,
the cells which can be listed are those in colon bacilli,
Staphylococcus, halophilic bacteria, thermophilic bacteria,
yeast, fungi, bacteria, and so on, and it should be reminded
that the cells are not limited to those listed above.

[0078] The step of classifying a cell comprises a step of
comparing spectrum data obtained from a cell, which is an
object of analysis, with standard spectrum data. In this
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regard, the standard spectrum data is Raman spectrum data
obtained from a cell with respect to which the type or the
state has been known. The standard spectrum data may be
obtained at any timing. For example, it may be obtained
during a stage before analysis, during analysis, or after
analysis.

[0079] The standard spectrum data are obtained with
respect to each of different kinds of cells or each of cells in
different states. Further, in the case that standard spectrum
data of each of cells include a characteristic spectrum region,
it is preferable that the characteristic spectrum region be
specified. There may be one or more characteristic spectrum
regions. Further, in the case that plural characteristic spec-
trum regions exist, it is possible to perform analysis of a cell
by using all of the characteristics; however, it is also possible
to perform analysis of the cell by selecting a highly relevant
characteristic and using it. A person skilled in the art can
perform selection of such a spectrum in an appropriate
manner.

[0080] Further, the step of classifying a cell can be per-
formed by using machine learning. Machine learning may
be any of supervised machine learning and unsupervised
machine learning. By using machine learning, learning from
data, that are obtained as a result of analysis, is performed
autonomously; so that it is expected that accuracy of clas-
sification of a cell increases as the number of repetitions of
analysis increases.

[0081] The present invention will be explained more spe-
cifically with reference to the embodiments explained
below. It should be reminded that the embodiments are those
provided to understand the present invention, and are not
those intended to be used for limiting the scope of the
present invention.

EMBODIMENTS

(Tangible Construction of Raman Spectroscopy System)

[0082] The inventors have performed measurement of
cells by using a Raman spectroscopy system according to a
present embodiment. In above measurement, the Ti2-U
microscope available from Nikon Corporation was used as
the inverted microscope 18. As a means for excitation, a
DPSS 532-nm green laser (DL 532-100: maximum output,
120 mW (milliwatt)) coupled to an optical fiber was used. As
the objective lens, Lambda 40xC/NA 0.95 (Nikon Corpo-
ration, CFI Plan Apo Lambda) was used in a sample stage
in a state that laser light having power of approximately 40
mW was being outputted, wherein the laser spot size was set
to that less than 450 nm. The backscattered Raman signal
was dispersed by a spectrometer comprising a 1200 g
grating (AIRIX Corp., STR200-2L.C), and detected by using
a CCD camera (Andor Technology Limited, iVac316). The
detectable Raman spectrum region was 46-3110 cm™. Fur-
ther, for allowing laser light to move in a specific region, a
biaxial Galvano mirror was arranged in a laser light path.

(Collecting of Raman Data)

[0083] For calibration of the spectrometer, a spectrum of
sulfur, that is a Raman shift standard, was measure before
sample measurement. The spectrum of sulfur was detected
by using a point irradiation method, by using an ND (Neutral
Density) filter 1 or 5% and by setting exposure time to 1
second. For correction, detected three characteristic spec-
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trum peaks were adjusted to correspond to 153.8, 219.1, and
473.2 cm™! (ASTME1840-96, DOIL: 10.1520/E1840-96).
(Comparison Between Raman Spectrum Obtained by Per-
forming Point Method and that Obtained by Performing
Irradiation Method According to Present Embodiment)
[0084] A prior-art point irradiation (point) method and an
irradiation method performed by the Raman spectroscopy
system 1 according to the present embodiments were com-
pared with each other.

(1) Comparison in the Case when Palmitic Acid is Used as
Analysis Subject

[0085] High-purity (<95%) solid palmitic acid was used as
an analysis subject. The spectrum of the solid palmitic acid
was obtained by performing point irradiation (the laser spot
diameter <450 nm) (a in FIG. 4). On the other hand,
regarding the case of the irradiation method according to the
present embodiment, the spectra of the solid palmitic acid
were obtained in circular regions having diameters of 5, 10,
and 20 pm (b-d in FIG. 4). The exposure time of the laser in
the case of each of the irradiation methods was set to 1
second, and the oscillation speed of each mirror of the
biaxial Galvano mirror 30 was adjusted to make the laser
possible to illuminate the whole region of a circle even if the
circle has a diameter of 20 pm (1 mm/ms).

[0086] With respect to all the methods, peaks based on the
palmitic acid were found at 1059, 1124, 1293, 1419, 1435,
1462, 2842, 2879, and 2921 cm™" (FIG. 5). As a result that
the above spectrum was collated with the spectral database
provided by Wiley Science solutions (KnowltAll), it was
confirmed that it coincides with the spectrum of the palmitic
acid (code: FFRX #478) (FIGS. 8-10). Accordingly, it was
proved that the irradiation method according to the present
embodiment generated, without degrading the intensity,
spectrum data comparable to those obtained by performing
the conventional point irradiation method.

(2) Comparison in the Case when Living Cells are Used as
Analysis Subjects

[0087] Next, Raman measurement of living cells, that was
performed according to the irradiation method according to
the present embodiment, was tested by using Jurkat cells of
the human T cell line. In the present irradiation method, the
exposure time was set to 3 seconds, and the spectrum was
measured in a circular region having a diameter of 10 um in
a cell (b in FIG. 6). On the other hand, in the case that the
prior-art point irradiation method was used and the exposure
time was set to that equal to that in the above case, i.e., 3
seconds, three spectra were obtained in random positions (a
in FIG. 6). It was shown, with respect to both the irradiation
method according to the present embodiment and the point
irradiation method, that there are characteristic peaks of
nucleic acid (685, 748, 783 cm™), protein (1003, 1450
cem™), lipid (1125, 1580, 1654 cm™), and so on in the
fingerprint region of 600-1800 cm™" (FIG. 7). The spectra
obtained by performing the irradiation method according to
the present embodiment did not show any decrease in
sensitivity compared with those obtained by performing
point irradiation. Three spectra obtained by point irradiation
had some Raman shift regions having different intensities,
such as 748 cm™, 1125 cm™, and so on.

(Classification of Cell Types Using Irradiation Method
According to Present Embodiment)

[0088] For confirming whether cell types can be classified
by using the irradiation method according to the present
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embodiment, spectra were obtained from Jurkat cells, mouse
embryonic fibroblasts (MEFs), immortalized human adi-
pose-derived mesenchymal stem cells (hMSCs), and human
induced pluripotent stem cells (hiPSCs).

(1) Cells in Floating States

[0089] MEFs, hMSCs and hiPSCs, i.e., except Jurkat
cells, are usually cultured in adhered states on culture dishes.
For matching each of the states of cells to that of the Jurkat
cell, the cells were processed by using Tryp™® Express
Enzyme (registered trademark) or Accutase (the both are
available from Thermo Fisher Scientific, Waltham, MA,
USA), and measured when they were in floating states. With
respect to each cell, Raman spectrum was obtained by
performing measurement in a circular region having a
diameter of 10 um. Measurement performed during the
floating state is shown in FIG. 11. In the floating states, 50
cells for each cell type were measured (a total of 200
samples). The obtained spectra were smoothed, baseline
corrected, and normalized. Average spectrum data of respec-
tive cells are shown in FIG. 12.

[0090] For examining discrimination of respective cell
types, spectra that have been obtained as multivariate data
for principal component analysis (PCA), that is an unsuper-
vised machine learning method, were used. First five prin-
cipal components (PCs) that contribute to dispersion of all
cells were extracted by the PCA, and distribution of cells
with respect to the five PCs were plotted in the form of a pair
plot or showed in the form of kernel density estimation
distribution (FIG. 13). Contribution of the five PCs to the
cell dispersion in the floating states were 64.89%, 10.52%,
3.86%, 2.83%, and 1.63%. The quantities of loads with
respect to the wavenumbers of the five PCs, with respect to
cell dispersion during the floating states, are shown in the
form of graphs (FIG. 14). With respect to PC1 and PC2 in
the floating states, visual classification of them could be
made (FIG. 15). The Jurkat cells, MEFs, hMSCs, and iPSCs
showed different cell distribution densities. Especially, in the
floating states, it was shown that PC1 contributes to classi-
fying of the four species.

[0091] Next, classification was validated by supervised
machine learning method. With respect to the above classi-
fication, a linear discriminant analysis (LDA) that is a
supervised learning technique, was used. The LDA is a
method to create classification axes by extracting features
between classes and optimize separation of the classes. For
testing the accuracy of classification, all spectrum data (200
floating-state cells) were randomly divided to training data
accounting for 80% and test data accounting for 20%. The
LDA defined, by using the training data, new three or two
classification axes (the number of extracted axes is that
obtained by subtracting 1 from the number of classes) that
could best classify the cell types. Next, by applying the test
data to the extracted axes, accuracy of classification was
tested. FIG. 16 shows, in terms of respective cell types,
distribution of cells with respect to LD1 and LD2 axes. The
cells in the training data used to extract the classification
axes are shown in the form of kernel density estimation
distribution, and the cells used in the test data are shown in
the form of a plot. The LDA classified the four cell types
more clearly than the PCA, and the cells in the test data
100%-matched the original labels. By adopting machine
learning to combine it, it has become possible to classify the
cell types in the floating conditions more accurately.
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(2) Cells in Adhered States

[0092] With respect to the MEFs, hMSCs and hiPSCs,
measurement of them was also performed in the states that
they were adhered to culture dishes (FIGS. 17-22). In the
adhered states, 100 cells for each cell type were measured (a
total of 300 samples). The obtained spectra were smoothed,
baseline corrected, and normalized. Average spectrum data
of respective cells are shown in FIG. 18. It was possible to
classify cell types in the states of adhesive culturing.
[0093] For examining discrimination of respective cell
types, spectra that have been obtained as multivariate data
for principal component analysis (PCA), that is an unsuper-
vised machine learning method, were used. First five prin-
cipal components (PCs) that contribute to dispersion of all
cells were extracted by the PCA, and distribution of cells
with respect to the five PCs were plotted in the form of a pair
plot or showed in the form of kernel density estimation
distribution (FIG. 19). Contribution of the five PCs to the
cell dispersion in the adhered states were 49.7%, 12.3%,
7.16%, 3.93%, and 1.69%. The quantities of loads with
respect to the wavenumbers of the five PCs, with respect to
cell dispersion during the adhered states, are shown in the
form of graphs (FIG. 20). With respect to PC2 and PC3 in
the adhered states, visual classification of them could be
made most preferably (FIG. 21). The MEFs, hMSCs, and
iPSCs showed different cell distribution densities. Espe-
cially, PC2 contributed to classification of the hMSCs and
iPSCs, and PC2 contributed to classification of MEFs and
hMSCs.

[0094] Next, classification was tested by performing train-
ing with respect to the spectrum data by using machine
learning. With respect to the above classification, a linear
discriminant analysis (LDA) that is a supervised learning
technique, was used. The LDA is a method to create clas-
sification axes by extracting features between classes and
optimize separation of the classes. For testing the accuracy
of classification, all spectrum data (300 adhered-state cells)
were randomly divided to training data accounting for 80%
and test data accounting for 20%. The LDA defined, by
using the training data, new three or two classification axes
(the number of extracted axes is that obtained by subtracting
1 from the number of classes) that could best classify the cell
types. Next, by applying the test data to the extracted axes
to test accuracy of classification. FIG. 22 shows, in terms of
respective cell types, distribution of cells with respect to
LD1 and LD2 axes. The cells in the training data used to
extract the classification axes are shown in the form of
kernel density estimation distribution, and the cells used in
the test data are shown in the form of a plot. The LDA
classified the three cell types more clearly than the PCA, and
the cells in the test data 100%-matched the original labels.
By adopting machine learning to combine it, it has become
possible to classify the cell types in the adhesive cultivation
states more accurately. (Classification of Same Cells in
Different States)

[0095] It was examined whether same cell types in differ-
ent states can be discriminated by using spectra obtained by
performing the irradiation method according to the present
embodiment. Jurkat cells (the human T cell line) were
stimulated to obtain activated cells. The above cells and
naive cells were analyzed. For stimulating the cells, mag-
netic beads bonded with CD3 and CD28 antibodies were
used (FIG. 23). For confirming activation of the cells, gPCR
was performed. It was confirmed with respect to the acti-
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vated cells that gene expression level of the activation
markers I[.-2 and TNF-a had increased, compared with that
relating to the naive cells.

[0096] 300 spectra were obtained from the activated cells
and the naive cells, respectively, by performing the present
irradiation method. For avoiding effect of the magnetic bead
on the spectrum, the spectrum was measured in a circular
region having a diameter of 5 pm. With respect to each of the
activated cell and the naive cell, averages of spectrum data
in the region of the Raman shift of 600-2980 cm™" are shown
in FIG. 24.

[0097] Next, the spectrum data were applied to the super-
vised machine learning and an attempt to clearly classify the
activation states was made. For achieving highly accurate
classification of the activated cells and the naive cells, the
linear discriminant analysis (LDA), partial least squares-
discriminant analysis (PLS-DA) based on discriminant
analysis, multilayer perceptron (MLP) based on artificial
neural networks (ANN), and support vector machine (SVM)
were tested.

[0098] For supervised machine learning, all data of the
activated cells and the naive cells were randomly divided to
training data accounting for 80% and test data accounting
for 20%. Axes for classifying the two cell types by using
four classification methods were extracted by using the
training data, and the test data were classified in relation to
the above defined axes. A false positive ratio (FPR) and a
true positive rate (TPR) were calculated from the original
label and the classified label of the test data, and receiver
operating characteristic (ROC) curves were created by using
the FPR and the TPR. Further, an area under the ROC curve
(AUQC) that represents classification accuracy, sensitivity,
and specificity, and a root mean square error (RMSE) (Table
1) were calculated. Table 1 shows average values that were
obtained after repeating the classification test ten times.

TABLE 1
Method Sensitivity Specificity AUC RMSE
LDA 0.96 0.91 0.93 0.25
PLS-DA 0.92 0.99 0.95 0.21
SVM 0.97 0.98 0.97 0.15
MLP 0.98 0.98 0.98 0.14
[0099] AUCs of the LDA, PLS-DA, SVM and MLP were

0.93, 0.95, 0.97, and 0.98, respectively, and all of them were
judged to be high. By using PLS-DA that is used as a
dimensionality reduction method, two kinds of feature quan-
tities that contribute to classification of the states of the cells
were extracted as PLS scores. By using scores 1 and 2 that
were used for extracting activated cells and naive cells, the
training data were shown in the form of a kernel density
estimation distribution. Thereafter, the test data (represented
by dots) were superimposed on the training data (FIG. 25).
By adopting the supervised machine learning method to
combine it, it has become possible to classify activated cells
and naive cells more accurately.

(Classification of Same Cells in Different States (Stimula-
tion with Refined CD3/CD28 Antibodies))

[0100] It was examined whether same cell types in differ-
ent states can be discriminated by using spectra obtained by
performing the irradiation method according to the present
embodiment. Jurkat cells (the human T cell line) were
stimulated to obtain activated cells. The above cells and
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naive cells were analyzed. For stimulating the cells, refined
CD3 and CD28 antibodies were used. In this regard, the
“refined CD3 and CD28 antibodies” mean CD3 antibodies
and CD28 antibodies which are free (i.e., to which magnetic
beads are not bonded). For confirming activation of the cells,
a positive ratio of activation markers CD69 was measured
by using a flow cytometer (FIG. 26). It was confirmed with
respect to the cells after stimulation that the positive ratio of
CD69 had increased, compared with that relating to the
controls (the naive cells).

[0101] 100 spectra were obtained from the activated cells
and the naive cells, respectively, by performing the present
irradiation method. The spectrum was measured in a circular
region having a diameter of 5 pm. With respect to each of the
activated cell and the naive cell, averages of spectrum data
in the region of the Raman shift of 600-2980 cm™ are shown
in FIG. 27.

[0102] Next, the spectrum data were applied to the super-
vised machine learning and an attempt to clearly classify the
activation states was made. For achieving highly accurate
classification of the activated cells and the naive cells, the
linear discriminant analysis (LDA), partial least squares-
discriminant analysis (PLS-DA) based on discriminant
analysis, multilayer perceptron (MLP) based on artificial
neural networks (ANN), and support vector machine (SVM)
were tested.

[0103] For supervised machine learning, all data of the
activated cells and the naive cells were randomly divided to
training data accounting for 80% and test data accounting
for 20%. Axes for classifying the two cell types by using
four classification methods were extracted by using the
training data, and the test data were classified in relation to
the above defined axes. A false positive ratio (FPR) and a
true positive rate (TPR) were calculated from the original
label and the classified label of the test data, and receiver
operating characteristic (ROC) curves were created by using
the FPR and the TPR. Further, an area under the ROC curve
(AUC) that represents classification accuracy, sensitivity,
and specificity, and a root mean square error (RMSE) (Table
2) were calculated. Table 2 shows average values that were
obtained after repeating the classification test ten times.

TABLE 2
Method Sensitivity Specificity AUC RMSE
LDA 0.99 1.00 0.99 0.05
PLS-DA 1.00 1.00 1.00 0
SVM 1.00 1.00 1.00 0
MLP 0.99 0.99 0.99 0.03
[0104] AUCs of'the LDA, PLS-DA, SVM and MLP were

0.99, 1.00, 1.00, and 0.99, respectively, and all of them were
judged to be high. By using PLS-DA that is used as a
dimensionality reduction method, two kinds of feature quan-
tities that contribute to classification of the states of the cells
were extracted as PLS scores. By using scores 1 and 2 that
were used for extracting activated cells and naive cells, the
training data were shown in the form of a kernel density
estimation distribution. Thereafter, the test data (represented
by dots) were superimposed on the training data (FIG. 28).
By adopting the supervised machine learning method to
combine it, it has become possible to classify activated cells
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and naive cells more accurately. (Classification of Same
Cells in Different States (Stimulation with PMA and
A23187))

[0105] It was examined whether same cell types in differ-
ent states can be discriminated by using spectra obtained by
performing the irradiation method according to the present
embodiment. Jurkat cells (the human T cell line) were
stimulated to obtain activated cells. The above cells and
naive cells were analyzed. Also, the cells were stimulated
with PMA (phorbol 12-myristate 13-acetate (which has been
known as a tumor promoter), 20 ng/ml) and calcium iono-
phore A23187 (1 uM). Thereafter, with respect to the
processed cells, a positive ratio of activation markers CD69
was measured by using a flow cytometer (FIG. 29). It was
confirmed with respect to the cells after stimulation that the
positive ratio of CD69 was approximately 100%.

[0106] 100 spectra were obtained from the activated cells
and the naive cells, respectively, by performing the present
irradiation method. The spectrum was measured in a circular
region having a diameter of 10 pum. With respect to each of
the activated cell and the naive cell, averages of spectrum
data in the region of the Raman shift of 600-2980 cm™" are
shown in FIG. 30.

[0107] Next, the spectrum data were applied to the super-
vised machine learning and an attempt to clearly classify the
activation states was made. For achieving highly accurate
classification of the activated cells and the naive cells, the
linear discriminant analysis (LDA), partial least squares-
discriminant analysis (PLS-DA) based on discriminant
analysis, multilayer perceptron (MLP) based on artificial
neural networks (ANN), and support vector machine (SVM)
were tested.

[0108] For supervised machine learning, all data of the
activated cells and the naive cells were randomly divided to
training data accounting for 80% and test data accounting
for 20%. Axes for classifying the two cell types by using
four classification methods were extracted by using the
training data, and the test data were classified in relation to
the above defined axes. A false positive ratio (FPR) and a
true positive rate (TPR) were calculated from the original
label and the classified label of the test data, and receiver
operating characteristic (ROC) curves were created by using
the FPR and the TPR. Further, an area under the ROC curve
(AUQC) that represents classification accuracy, sensitivity,
and specificity, and a root mean square error (RMSE) (Table
3) were calculated. Table 3 shows average values that were
obtained after repeating the classification test ten times.

TABLE 3
Method Sensitivity Specificity AUC RMSE
LDA 0.89 0.97 0.94 0.25
PLS-DA 0.95 0.97 0.97 0.17
SVM 0.96 0.98 0.97 0.15
MLP 0.92 0.97 0.95 0.20
[0109] AUCs of the LDA, PLS-DA, SVM and MLP were

0.94,0.97, 0.97, and 0.95, respectively, and all of them were
judged to be high. By using PLS-DA that is used as a
dimensionality reduction method, two kinds of feature quan-
tities that contribute to classification of the states of the cells
were extracted as PLS scores. By using scores 1 and 2 that
were used for extracting activated cells and naive cells, the
training data were shown in the form of a kernel density
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estimation distribution. Thereafter, the test data (represented
by dots) were superimposed on the training data (FIG. 31).
By adopting the supervised machine learning method to
combine it, it has become possible to classify activated cells
and naive cells more accurately.

(Classification of Same Cells in Different States (Stimula-
tion with PMA))

[0110] It was examined whether same cell types in differ-
ent states can be discriminated by using spectra obtained by
performing the irradiation method according to the present
embodiment. Jurkat cells (the human T cell line) were
stimulated to obtain activated cells. The above cells and
naive cells were analyzed. Also, the cells were stimulated
with PMA (20 ng/ml). Thereafter, with respect to the pro-
cessed cells, a positive ratio of activation markers CD69 was
measured by using a flow cytometer (FIG. 32). It was
confirmed with respect to the cells after stimulation that the
positive ratio of CD69 was approximately 100%.

[0111] 100 spectra were obtained from the activated cells
and the naive cells, respectively, by performing the present
irradiation method. The spectrum was measured in a circular
region having a diameter of 10 pum. With respect to each of
the activated cell and the naive cell, averages of spectrum
data in the region of the Raman shift of 600-2980 cm™" are
shown in FIG. 33.

[0112] Next, the spectrum data were applied to the super-
vised machine learning and an attempt to clearly classify the
activation states was made. For achieving highly accurate
classification of the activated cells and the naive cells, the
linear discriminant analysis (LDA), partial least squares-
discriminant analysis (PLS-DA) based on discriminant
analysis, multilayer perceptron (MLP) based on artificial
neural networks (ANN), and support vector machine (SVM)
were tested.

[0113] or supervised machine learning, all data of the
activated cells and the naive cells were randomly divided to
training data accounting for 80% and test data accounting
for 20%. Axes for classifying the two cell types by using
four classification methods were extracted by using the
training data, and the test data were classified in relation to
the above defined axes. A false positive ratio (FPR) and a
true positive rate (TPR) were calculated from the original
label and the classified label of the test data, and receiver
operating characteristic (ROC) curves were created by using
the FPR and the TPR. Further, an area under the ROC curve
(AUC) that represents classification accuracy, sensitivity,
and specificity, and a root mean square error (RMSE) (Table
4) were calculated. Table 4 shows average values that were
obtained after repeating the classification test ten times.

TABLE 4
Method Sensitivity Specificity AUC RMSE
LDA 0.96 0.97 0.97 0.16
PLS-DA 1.00 1.00 1.00 0
SVM 1.00 1.00 1.00 0
MLP 0.99 0.99 0.99 0.05
[0114] AUCs of the LDA, PLS-DA, SVM and MLP were

0.97, 1.00, 1.00, and 0.99, respectively, and all of them were
judged to be high. By using PLS-DA that is used as a
dimensionality reduction method, two kinds of feature quan-
tities that contribute to classification of the states of the cells
were extracted as PLS scores. By using scores 1 and 2 that
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were used for extracting activated cells and naive cells, the
training data were shown in the form of a kernel density
estimation distribution. Thereafter, the test data (represented
by dots) were superimposed on the training data (FIG. 34).
By adopting the supervised machine learning method to
combine it, it has become possible to classify activated cells
and naive cells more accurately.

(Classification of Same Cells in Different States (Stimula-
tion with PHA))

[0115] It was examined whether same cell types in differ-
ent states can be discriminated by using spectra obtained by
performing the irradiation method according to the present
embodiment. Jurkat cells (the human T cell line) were
stimulated to obtain activated cells. The above cells and
naive cells were analyzed. Also, the cells were stimulated
with PHA (Phytohemagglutinin, 1 pg/ml). Thereafter, with
respect to the processed cells, a positive ratio of activation
markers CD69 was measured by using a flow cytometer
(FIG. 35). It was confirmed with respect to the cells after
stimulation that the positive ratio of CD69 was approxi-
mately 100%.

[0116] 100 spectra were obtained from the activated cells
and the naive cells, respectively, by performing the irradia-
tion method according to the present embodiment. The
spectrum was measured in a circular region having a diam-
eter of 10 um. With respect to each of the activated cell and
the naive cell, averages of spectrum data in the region of the
Raman shift of 600-2980 cm™" are shown in FIG. 36.
[0117] Next, the spectrum data were applied to the super-
vised machine learning and an attempt to clearly classify the
activation states was made. For achieving highly accurate
classification of the activated cells and the naive cells, the
linear discriminant analysis (LDA), partial least squares-
discriminant analysis (PLS-DA) based on discriminant
analysis, multilayer perceptron (MLP) based on artificial
neural networks (ANN), and support vector machine (SVM)
were tested.

[0118] For supervised machine learning, all data of the
activated cells and the naive cells were randomly divided to
training data accounting for 80% and test data accounting
for 20%. Axes for classifying the two cell types by using
four classification methods were extracted by using the
training data, and the test data were classified in relation to
the above defined axes. A false positive ratio (FPR) and a
true positive rate (TPR) were calculated from the original
label and the classified label of the test data, and receiver
operating characteristic (ROC) curves were created by using
the FPR and the TPR. Further, an area under the ROC curve
(AUQC) that represents classification accuracy, sensitivity,
and specificity, and a root mean square error (RMSE) (Table
5) were calculated. Table 5 shows average values that were
obtained after repeating the classification test ten times.

TABLE 5
Method Sensitivity Specificity AUC RMSE
LDA 0.89 0.97 0.94 0.25
PLS-DA 0.95 0.99 0.97 0.17
SVM 0.96 0.98 0.97 0.15
MLP 0.92 0.97 0.95 0.20
[0119] AUCs of the LDA, PLS-DA, SVM and MLP were

0.94,0.97, 0.97, and 0.95, respectively, and all of them were
judged to be high. By using PLS-DA that is used as a
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dimensionality reduction method, two kinds of feature quan-
tities that contribute to classification of the states of the cells
were extracted as PLS scores. By using scores 1 and 2 that
were used for extracting activated cells and naive cells, the
training data were shown in the form of a kernel density
estimation distribution. Thereafter, the test data (represented
by dots) were superimposed on the training data (FIG. 37).
By adopting the supervised machine learning method to
combine it, it has become possible to classify activated cells
and naive cells more accurately.

(Inference of States of Jurkat Cells Using Irradiation Method
According to Present Embodiment and Machine [earning)

[0120] It was examined whether same cell types in differ-
ent states can be discriminated by using spectra obtained by
performing the irradiation method according to the present
embodiment. Jurkat cells (the human T cell line) were
stimulated with magnetic beads bonded with CD3 and CD28
antibodies. It was forecasted that, in the stimulation process,
a cell is activated via various kinds of states. Thus, after
application of stimulation to the cells, sampling of the cells
was performed at timing when respective periods of time,
specifically, O hour, 0.5 hours, 3 hours, 6 hours, and 24
hours, have elapsed (FIG. 38). With respect to each of the
sampled cells, the Raman spectrum was measured in a
circular region having a diameter of 10 km.

[0121] Next, activation states of the cells were discrimi-
nated by using LDA. By using all data of the cells as training
data, classification axes were created. Thereafter, as test
data, visual classification was shown by using distribution of
cells relating to the scores 1 and 2 extracted by LDA (FIG.
39). The cells used in the training data are shown in the form
of kernel density estimation distribution, and unknown cells
used in the test data were plotted on lines. It was possible to
classify cells in different activation stages.

(Measurement of Plural Cells)

[0122] Plural cells were measured at the same time by
using the irradiation method according to the present
embodiment.

[0123] Raman measurement of living cells using the pres-
ent irradiation method was tested by using Jurkat cells. The
region of measurement was set to be wide to make the region
in such a manner that plural cells exist in the region, and the
Raman spectra in a region having a diameter of 40 pum were
measured. In measurement, with respect to each of cells
existing in a circular region having a diameter of 40 um, a
spectrum in a circular region having a diameter of 10 um
was measured ((a) in FIG. 40). Further, regarding the cells
existing in the circular region having the diameter of 40 pm,
spectrum measurement was performed in such a manner that
all the cells were measured collectively ((b) in FIG. 40).

[0124] Result thereof is shown in FIG. 41. With respect to
any of the cases of measurement performed by using any of
the methods, it was shown that there are characteristic peaks
of nucleic acid (685, 748, 783 cm™), protein (1003, 1450
cm™), lipid (1125, 1580, 1654 cm™'), and so on in the
fingerprint region of 600-1800 cm™". Thus, in addition to the
case wherein each of cells is measured individually, it was
possible to measure cells existing in a designated region
collectively.
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(Measurement of Plural Cells)

[0125] Plural cells were measured at the same time by
using the irradiation method according to the present
embodiment.

[0126] Raman measurement of living cells using the pres-
ent irradiation method was tested by using human pancreas
cancer cell line (Capan-1) cells and hMSCs. Capan-1 cells
and hMSCs were cultured (both of them were put into the
adhered states), respectively, and Raman spectra were mea-
sured in 10 spots in a region having a diameter of 80 um.
Regarding spectrum measurement, it was performed in such
a manner that all the cells existing in the circular region
having the diameter of 80 um were measured collectively
(FIG. 42).

[0127] Average spectrum data of respective cells are
shown in FIG. 43. Even if plural cells are measured collec-
tively, it is possible to classify Capan-1 cells and hMSCs.

[0128] For testing discrimination of respective cell types,
spectra obtained as multivariate data for principal compo-
nent analysis (PCA), that is an unsupervised machine learn-
ing method, were used. The PCA extracted first two princi-
pal components (PCs) that contribute to dispersion of all
cells. Contribution of the PCs were 58.98% and 11.68%.
With respect to PC1 and PC2, the Capan-1 cells and the
hMSCs showed different cell distribution densities.

[0129] Accordingly, it was confirmed that classification of
cell types can be achieved, even if cells existing in a
designated region are measured collectively.

(Measurement of Plural Cells)

[0130] Plural cells were measured at the same time by
using the irradiation method according to the present
embodiment.

[0131] It was examined whether same cell types in differ-
ent states can be discriminated. Jurkat cells (the human T
cell line) were stimulated to obtain activated cells. Further,
the cells were stimulated with PHA (phytohemagglutinin
that is known as a T-cell activation factor) (1 pg/ml).
[0132] The cells, which were activated as explained
above, and naive cells were seeded in separate wells, respec-
tively; wherein the number of the activated cell and the
number of the naive cells was 1.75x107/ml. Regarding
spectrum measurement, all cells existing in a region having
a diameter of 80 pm were measured collectively by per-
forming the present irradiation method. With respect to each
cell, Raman spectra were obtained in a total of 18 regions
(nine regions per one well) (FIG. 45).

[0133] Average spectrum data of respective cells are
shown in FIG. 46. Even if plural cells are measured collec-
tively, it is possible to classify activated cells and naive cells.
[0134] For testing discrimination of the activated cells and
the naive cells, spectra obtained as multivariate data for
principal component analysis (PCA), that is an unsupervised
machine learning method, were used. The PCA extracted
first two principal components (PCs) that contribute to
dispersion of all cells. Contribution of the PCs were 10.21%
and 4.16%. In relation to PC1 and PC2, the activated cells
and the naive cells showed different cell distribution densi-
ties (FIG. 47).

[0135] Next, spectrum data were applied to supervised
machine learning to attempt classification of cells. Partial
least squares-discriminant analysis (PLS-DA) was used. For
supervised machine learning, all data of the activated cells
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and the naive cells were randomly divided to training data
accounting for 80% and test data accounting for 20%.
[0136] Two kinds of features that contribute to classifica-
tion of states of the cells were extracted as PLS scores. By
using scores 1 and 2 that were used for extracting activated
cells and naive cells, the training data were shown in the
form of a kernel density estimation distribution. Thereafter,
the test data (represented by dots) were superimposed on the
training data (FIG. 48).

[0137] Accordingly, it was confirmed that classification of
activated cells and naive cells can also be achieved by
measuring cells existing in a designated region collectively.

(Measurement of Plural Cells)

[0138] Plural cells were measured at the same time by
using the irradiation method according to the present
embodiment.

[0139] For normally maintaining hiPSCs (the 201B7 line)
and allowing subculture thereof in a feeder-cell-free state, a
mTeSR1 medium (modified Tenneille Serum Replacer 1,
which is available from STEM CELL) is used often. In such
a case, hiPSCs form a rounded colony (FIG. 49). On the
other hand, in the case that cultivation is performed by using
a DMEM (Dulbecco’s modified Eagle’s medium) which is
generally used for differentiated cells, hiPSCs cannot main-
tain the form of a normal colony, and exhibits an abnormal
form such as a form wherein the outer periphery of the
colony is made flat and so on (FIG. 49).

[0140] Raman spectrum data were obtained in each of a
hiPSC colony having a normal form (cultured in a mTeSR1
medium) and a hiPSC colony having an abnormal form
(cultured in a DMEM medium) by performing the present
irradiation method, wherein the above colonies were those
obtained by performing two types of culture method such as
those explained above. Regarding spectrum measurement,
all cells existing in a region having a diameter of 80 um were
measured collectively (FIG. 50). With respect to each cell,
Raman spectra were obtained in a total of 20 regions (FIG.
51).

[0141] Spectrum data were applied to supervised machine
learning to attempt classification of normal cells and abnor-
mal cells. Partial least squares-discriminant analysis (PLS-
DA) was used. For supervised machine learning, all data of
the normal cells and the abnormal cells were randomly
divided to training data accounting for 80% and test data
accounting for 20%.

[0142] Two kinds of features that contribute to classifica-
tion of states of the cells were extracted as PLS scores. By
using scores 1 and 2 that were used for extracting normal
cells and abnormal cells, the training data were shown in the
forms of a dot plot (FIG. 52).

[0143] Accordingly, it was confirmed that classification of
normal hiPSCs and abnormal hiPSCs can also be achieved
by measuring cells existing in a designated region collec-
tively.

[0144] According to the Raman spectroscopy system, the
spectrum data obtaining method, and the cell classification
method according the above-explained embodiments, laser
irradiation can be performed more evenly, while reducing
damaging of cells.

[0145] In the above description, embodiments of the pres-
ent invention have been explained, and, in this regard, it is
needless to state that the present invention is not limited to
any of the above-explained embodiments, and can be imple-
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mented in any of various different modes within the scope of
the technical idea of the present invention.

[0146] Further, the scope of the present invention is not
limited to that of any of the illustrated embodiments
described and shown in the figures, and it comprises all
embodiments which provide effect that is equal to that the
present invention aims to provide. Further, the scope of the
present invention is not limited to that of any of combina-
tions of characteristics of the invention defined by respective
claims, and it can be defined by any desired combinations of
specific characteristics in all of disclosed respective charac-
teristics.

REFERENCE SIGNS LIST

[0147] 1 Raman spectroscopy system
[0148] 12 DPSS laser light source
[0149] 14 Spectrometer

[0150] 16 CCD detector (Cooled CCD camera)
[0151] 18 Inverted microscope
[0152] 20 Raman optical system
[0153] 30 Biaxial Galvano mirror
[0154] 32 Laser optical fiber

[0155] 34 Optical fiber

[0156] 38 Shutter controller

[0157] 40 Stage

[0158] 42 Stage controller

[0159] 44 Joystick

[0160] 46 Epi-illumination controller
[0161] 48 Epi-illumination device
[0162] 50 Computer device

[0163] 52 Keyboard

[0164] 54 Mouse

[0165] 56 Monitor device

[0166] 202 Lens

[0167] 204 ND filter

[0168] 205 Shutter

[0169] 206 Band-pass filter

[0170] 208 Flat mirror

[0171] 210 Dichroic mirror

[0172] 212 High-pass filter

[0173] 214 Lens

[0174] 215 Shutter

1-3. (canceled)
4. A cell classification method comprising steps of:
receiving Raman scattered light that is outputted from a
cell as a result that laser light is emitted in an approxi-
mately circular manner and in a turning manner to an
approximately circular region where the cell exists;

detecting a Raman spectrum corresponding to the
received Raman scattered light; and

classifying the cell based on spectrum data obtained from

the detected Raman spectrum.

5. The cell classification method as recited in claim 4,
wherein the step of classifying the cell comprises comparing
the obtained spectrum data with standard spectrum data.

6. The cell classification method as recited in claim 4,
wherein the step of classifying the cell is a step of classifying
the kind of the cell.

7. The cell classification method as recited in claim 4,
wherein the step of classifying the cell is a step of classifying
cells in different states.

8. The cell classification method as recited in claim 4,
wherein the step of classifying the cell is performed by using
machine learning.
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9. (canceled)

10. (canceled)

11. The cell classification method as recited in in claim 4,
wherein, in the step of receiving Raman scattered light, the
laser light is emitted in a turning manner to an approximately
circular region in an individual cell.

12. The cell classification method as recited in in claim 4,
wherein, in the step of receiving Raman scattered light, the
laser light is emitted in a turning manner to an approximately
circular region where plural cells exist.

13. The cell classification method as recited in in claim 4,
wherein the cell is in an approximately spherical shape.

14. The cell classification method as recited in in claim 4,
wherein the approximately circular region covers a nucleus
and a cytoplasm of the cell.

#* #* #* #* #*
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