US 20230030081A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2023/0030081 A1

HARADEN et al. 43) Pub. Date: Feb. 2, 2023
(54) ERROR RECOVERY AND POWER (52) US. CL
MANAGEMENT BETWEEN NODES OF AN CPCc...... HO4L 1/08 (2013.01); HO4L 1/0072
INTERCONNECTION NETWORK (2013.01)
(71) Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US) (57) ABSTRACT
(72) Inventors: Ryan Scott HARADEN, Duvall, WA
(US); Christopher Michael
BABECKI, Seattle, WA (US) Improved techniques for recovering from an error condition
without requiring a re-transmittal of data across a high-speed
(21) Appl. No.: 17/963,473 data link and for improved power usage are disclosed herein.
) A data stream is initiated. This stream includes different
(22) Filed: Oct. 11, 2022 types of packets. Error correcting code (ECC) is selectively
L. imposed on a control data type packet. A transmitter node
Related U.S. Application Data and a receiver node are connected via a hard link that has
(63) Continuation of application No. 17/345,910, filed on multiple virtual channels. Each virtual channel is associated
Jun. 11, 2021, now Pat. No. 11,502,783, which is a with a corresponding power-consuming node. When the
continuation of application No. 16/880,018, filed on receiver node receives the control data type packet, error
May 21, 2020, now Pat. No. 11,050,514. correction is performed if needed without re-transmittal.
L . . When a final data type packet is transmitted for each virtual
Publication Classification channel, the transmitter node transmits an end condition
(51) Int. CL type packet. A corresponding power-consuming node that
HO4L 1/08 (2006.01) corresponds to the respective virtual channel transitions
HO4L 1/00 (2006.01) from an active state to a low power state.
HMD
400
Front-End Housing S STSTS————— _— Back-End Housing
415 e Adjustable Flex Fit Arm ”“N\ 435
P e o s o e b} 410 r' ””””””””” |
t . | }
| Display ; High-Speed Links | CPU(s) |
f Circuitry i 410A | 440A }
E 420 : o | :
| b pe] GPU(s) i
| CPU(s) i | 4408 !
; 4208 : . |
E ! : HPU !
GPU(s) ! » ‘
; 420¢ N | 440¢ }
i | b
E SOC : Battery
I 4200 } First Compute Unit Second Compute Unit 445
L ________ e d 420 440
Wiring Wiring
425 b 450
523 o 229
M“‘MMMWMNNM”N’#
Adjustable Flex Fit Arm
. 430 405 .
N - P TZ-455
* Low-Speed Links -
\ 405A M“MMM”'

g1 a4nbiy VI a4nbi4

US 2023/0030081 A1

oct
j0203014 sng

0tET

SvT
auue ™~
IPUEERI_/ .////J“m 1oped T

S0t
jpuuey)

Feb. 2,2023 Sheet 1 of 19

@yoed

¢l 001
{EUIULIB] U0112RUUOYD) jBUILIIB] UOIIDRUUOD

Patent Application Publication

US 2023/0030081 A1

Feb. 2,2023 Sheet 2 of 19

Patent Application Publication

\\\

51C meumm wmxuma meuma
Aurt paRds-yaiH

00t
A10MIoN UO1133UU0213a3UY

Z 24nbi4
592
193084
/\ T TTTm T T N
}
{ | -
0o — 1. R —
mmN\N_, 1111111 3] L 1k vz o715 Jayng
SR N s S e N s RN N L
@N\NL;H:U_H:H__H_DDTM — —
[BUURYD |ENTIA //{ lllllllllllllllll _ 184jng Jajing
§ v
,” \\\
/ \\\\
} 07T
4 L uieasls eeg
\ \\
/, \\\\\ >
I P etttV VD TP <oz
apon PU— ((((m (= (K 3pON

€ aunbi4

o,

US 2023/0030081 A1

VS0E
QINH

01¢
Aejdsig

0ce
T

Feb. 2,2023 Sheet 3 of 19

850t
QINH

S1€
Uiy

Patent Application Publication

US 2023/0030081 A1

Feb. 2,2023 Sheet 4 of 19

Patent Application Publication

Ssv-7 _ .

057
BULIA

27
Alaneg

537
Buisnoy pui-oeg

P 24nbi4
S,
- Vor T
syur pesds-mo
S0V
Wy U4 X314 sjgeisnipy

obp oty
1un 21ndwo) puodlas 3un 31ndo) 3si4

VOiv
U pesds-ysiH

47 >
x:;;;;fi?s&wm 34 mmz m_mmwms,_‘mwz\i&\xax\s

.

A

30y
{sindo

a0y
{sindd

voZy
Anaa
Aetdsig

STy
8uisnoy pu3-jucsy

007
QNH

US 2023/0030081 A1

Feb. 2,2023 Sheet 5 of 19

Patent Application Publication

G 2unbi4

)

334
uoqaiy 0zs
uoqgnd

SIS
uo110d 8uijpung

.

N

T
~ u_w_,li;\

. 0€S 01S
21929 3|qed

TN

N

mOm]]]]]]]]]]]]]]]]]]]]]]]]]] -
Fuisnoy pug-1uoi4

US 2023/0030081 A1

Feb. 2,2023 Sheet 6 of 19

Patent Application Publication

008

e e R e AR AR AR T R T R R W T e e e ew e e e e e e T A R e S e e e e e e R

558
wan
13set duluueds

059
W8N
iose dutuueas

SvS
uoI3I94Q
Suuuedg

GE9
SNIIN

g a4nbi4

u

ove

poads-ysiy

509
Aspnoay Aepdsig

09
181Hug 48]

209 209

C_ fas A_
Y Xt (X}
~ oy o~
w O [Sn

(%)

Jaypuay Jasen
A

0ca

VIAd

(3%
diyd Junug-ving

A
§
i
i

019

diyD {ddq} Buissaaoid
Aejdsiq jeudig

vOrS

US 2023/0030081 A1

Feb. 2,2023 Sheet 7 of 19

Patent Application Publication

g/ ainbiy4

900, \\\V

Hun s8se
/ SWAN

ovL
{sA3 ~39)
eaJy Jujuueds

450/
Y317 Jase]

0gL
Sunein

M Al

GEL
guneso 3x3

apindanep

v/ 24nbi4

0zL
a1ey ysa.yay

V00L 2

VS0L
317 49s€]

Hun 49587
/ SW3IN
AO4
_mucONtOI
P
AO4
|eaILI3A

uoI133.41Qg Suluueds

DL 2inbi4

US 2023/0030081 A1

(=
o
S
=]
=]
= AO4
) egluoziio
= jeluozioH .
2 . Y
g AN
e AOH ,, N
= V' >
& {ea114aA VA] N
N / L D) N Sy
3 T \ aull L Jue|gA
R \ / / \
—
LD /.K
A \\ / ,/ /
7 \ \
4 A
\ D
C ,/ g
\ \\
&
\\ z/
VA N

0sL
doamsg

Patent Application Publication
N
1
{
i
1
1
i
1
1
1
i
3
1
i
]
1
i
1
1
1
i
]
i
i
1
1
i
1
1
i
;
1
A

US 2023/0030081 A1

Feb. 2,2023 Sheet 9 of 19

Patent Application Publication

g aunbi4

58
wswaninbay

AIBA023Y SIBMpPIEH d11BWOINY

078
Juswalmbay aoveualul d1d 1ous

<T8
WwsWannbay Jamod mon

018
1U3W3Nbay pesysasp mo1

<08
wawainbay ejeq awil-[gay

008
syuawalinbay jeuonetsd

US 2023/0030081 A1

Feb. 2,2023 Sheet 10 of 19

Patent Application Publication

0¢6
syaded
adAl e1eQ

ez

6 24nbi4

q16
193284 UOHIPUOD Pu3

0€6
eieq |axid

016

1Ped 9dAj e1eq |04U0)-UON

56
203

506
1Ped adAj eleq |04u0)

/

006
12y0Rd

Patent Application Publication Feb. 2,2023 Sheet 11 of 19 US 2023/0030081 A1

1005
1010

ECC
1000

Figure 10

Single Bit Error Correction
Double Bit Error Detection

US 2023/0030081 A1

Feb. 2,2023 Sheet 12 of 19

Patent Application Publication

IT 24nbit4

& YD

Zuo

% 7

7

G

2

4o

s owe

G—

MO} Weans eleq

0011

sfauUeYD (BN1IA

1@3peg uonipuo) puz —zHH

1oed adAy eleq jonuod-uon — 274

19¥oed adA} ejeq jo4uod x\wi

US 2023/0030081 A1

Feb. 2,2023 Sheet 13 of 19

Patent Application Publication

oeet
SPOIN H0

STl
APOIN JOMOg MO

oZet
IPOIN BAIIY

21 24nbily

STZT
i1y fese

02T T2 .

TYD

i
|
{
i
"
}
\ 4

Oter
49881

G—

MO} Wieans exed

001
SjoUUBYD [BNIAA

19284 UORIPUO) Pu3

US 2023/0030081 A1

Feb. 2,2023 Sheet 14 of 19

Patent Application Publication

€T 24nbi14

SIET OTE1
1y0ed adA} uopipuo) puj jeutd aley 10143 Xe |eansiiels

00€T
syavOed UORIPUOD pud 3jdiHNIAL

®peq uoiipuod puz — 2t

pT 2inbi4

US 2023/0030081 A1

SOPT

1yeq ady G—

eleq] [041U07Y)
W MO Weauls eyeq

Feb. 2,2023 Sheet 15 of 19

H 77 O T T

=

£ i)))
~N—

=

om

= 0Vl STVt Y4 2" STYT
Dn._.. 133 13%2kd {sjioed
= adAj eieq uoijipuo) pug
1= |OJIUOT-UON

=

om

=

=y

-

= —

2 6%

Dnm wesJis e1eg

Yo

«

= ST ainbid

2

(=]

e

(=]

(=

e

o

(=]

(o]

[99]

-]
YA S
uleiiay

Feb. 2,2023 Sheet 16 of 19

01ST S0ST
apoN [NDN ND% e apoN

0zst
Jauwilj uewpeaq

0047
40443 jui] pieH

Patent Application Publication

US 2023/0030081 A1

Feb. 2,2023 Sheet 17 of 19

Patent Application Publication

91 a4nbi4

uotdnII0) By Mojly ‘Pa1vla(] Sulsg sieyded
adAl Bied j003U0-UCN Byl U uondniio) of

asuodsay uf puy SPON JOAISIBY Y] IV Sivded

adA} eijeQ jonuco-uon ayj 40 1dieday uodn

1515084 Of

V%

A

orol

SPON 48A1333Y 2y 0O} S12Ed
9dAL eieQ {04U0D-LON Byl Sulrusued)
uidog o) apON 4313UsSUEL] Bl Isne)

V%

Ge9t

sijoed adA] eyeq joIIu0I-UON Y|
U0 003 9yt Suisoduy) woid uieaay Ajanilasies
puy s190ed adAl eje(|CJIUCI-UDN 9343UDD

S¢9t

0Zst

pa12233Q S} 40443 ON
UBLUM UOIID84407) 10443
Butwioiad wiosd utelysy

pPo31291ag
SPA0LF Uy Uaymp 203
ayy Buisn 19%oed odAL
gjeq jo43u0D 3y uQ
UOI18440]) 10447 W09

V%

0£91

ST9T — _

A

y Y

%

_

IPON JSOAIBIDY ¥ Of

134084 adA} BlE(|011U07) DY HWSURL] O] SPON JallWISULB] V¥ 3sne)

aed adAl eleq j03U0) 8yl UO (D3] apol Bundeno)
10443 asodw] AjJani139)9S puy 1084 odA} BlE(|041U0D) Y 31843URD

sadA} pieQ uaidiQ

10 S13%0B4 apnpuy 0} S| 10y LWBaLS Bled v 40 UONRIBUBD 31Biliu)

US 2023/0030081 A1

Feb. 2,2023 Sheet 18 of 19

Patent Application Publication

LT 24nb14

1an1200Y 8y 0] 19ard adAf UoINPUODY) pul

Jeuld ¥ PUSS O] FPON JS1MWISURL] 9] BSNEY ‘S[aUUBRYT) [BNIIA YL
$0 iV SSOU0Y PIIUWISULL] UD3Y anRH SiBYded 3dA rle(jeuld 4oy

4

UL —>

PO 13MOd MO Y 01 PO
SAIIIY UY WO UoIHSURL]
O} jouuey) [enA aaoadsay
3yl of spuodsaiiod
18y] B8pON BUlWNSUOI-JaMod
Buipuodsaiio) y asne)d

siooed adAL
UDILPUOD pU3 310N 10 8UQD
‘1auueyD [eniiA sandadsay
pies 404 Jwisuel) o}
SPON J1}UWsSuURIf 9y ashed

Y

+

_

{BUUEYD [BNLUA 9AIDBdSTY PIES SS0U0Y
panliwisurl} udIg SeH I;oed adAy rieq jeutd v Uy AJiauap)

:BUIMO[]04 DY L WH0MB4 [BUURYD) [eNUIA aA110adsay yoeT 104

A

sjauLRYY) |ENLIA BYL JOAD DPON 49A1939Y 3L 0f STaNDed 3yl

JWISURIL Of DPON JSTHWSURI] DYL aSNED) PUY Siayded 9y 21e4uan

A

sadAj Jusuaiig

JO SIaed apN(BU} Of a4y 1BY] SWealls rleqd JO Uoesuan a1eniy)

00L1

45147

US 2023/0030081 A1

Feb. 2,2023 Sheet 19 of 19

Patent Application Publication

0E8T
HIoMmIap

8T a4nbiy4

0¢81
a8ei035

Asynoay Agpdsig

5181

0181
o/i

(

SO81T
$}10553204d

00871

wiaisAs sandwod

* ™\ Q0081

80081

)\ voost

US 2023/0030081 Al

ERROR RECOVERY AND POWER
MANAGEMENT BETWEEN NODES OF AN
INTERCONNECTION NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 17/345,910 filed on Jun. 11, 2021,
entitled “ERROR RECOVERY AND POWER MANAGE-
MENT BETWEEN NODES OF AN INTERCONNEC-
TION NETWORK,” which is a continuation of U.S. patent
application Ser. No. 16/880,018 filed on May 21, 2020,
entitled “ERROR RECOVERY AND POWER MANAGE-
MENT BETWEEN NODES OF AN INTERCONNEC-
TION NETWORK,” which issued as U.S. Pat. No. 11,050,
514 on Jun. 9, 2021, which applications are expressly
incorporated herein by reference in their entirety.

BACKGROUND

[0002] A computing architecture may comprise any num-
ber of interconnected nodes, such as CPUs, GPUs, NICs,
Wi-Fi cards, memory, and so forth. These various nodes can
be connected to one another via different types of connec-
tions, including wired connections or even wireless connec-
tions.

[0003] A wired connection is often referred to as a “hard
link” and physically connects one node to another node. One
type of wired connection (and specifically a type of bus
protocol) is the PCle (peripheral component interconnect
express) connection. PCle is a type of interface designed to
connect high-speed nodes together. PCle links come in
numerous different configurations and may include differing
numbers of “lanes™ or “channels” which are paths through
which data is permitted to travel from one node to another
node. By way of example, PCle links often have between 1
and 32 different lanes. FIG. 1 illustrates an example con-
nection terminal 100, which may be any type of high-speed
connection terminal, including PCle. This connection ter-
minal 100 is shown as including at least one channel 105
(aka a lane) as well as a number of packets (e.g., packet 110
and packet 115) traversing that channel 105. In this example
illustration, the packets 110 and 115 are represented as
vehicles to help with the following analogous description.
The packets 110 and 115 travel the channel 105 in accor-
dance with the bus protocol 120 the connection terminal 100
uses (e.g., the bus protocol 120 may be the PCle protocol, or
some other high-speed protocol).

[0004] In this example, the channel 105 can be thought of
as a one-lane road on which cars (e.g., the packets 110 and
115) travel. With a one lane road, each subsequent car is
limited by the speed of a preceding car. For instance, if the
packet 110 were delayed for some reason on the channel
105, then the packet 115 will also be delayed. Increasing the
number of channels allows for more data packets to be
transmitted from one node to another node. For instance, if
the connection terminal 100 were to include a second
channel, then data packets could move across those two
channels at two packets per cycle, and so on based on the
number of channels.

[0005] With that basic understanding, it should now be
noted how each channel (e.g., channel 105) typically has its
own corresponding buffer. The reason packet 115 is not able
to “pass” packet 110 is because packet 110 is currently

Feb. 2, 2023

allocated to the channel 105’s buffer. Packet 115 is unable to
use the buffer until such time as packet 110 is released from
the buffer. Therefore, if packet 110 is blocked or remains idle
while being allocated to the buffer, the subsequent packets
will also remain idle. Increasing the number of channels in
the hard link enables more data to be transmitted by enabling
parallel transmittal, but hard links are often limited in
physical size, thereby restricting the number of channels.
[0006] The concept of virtualization has been introduced
to solve some of the sizing constraints associated with hard
links. A so-called “virtual” channel operates by decoupling
resources (e.g., a buffer) that were previously allocated to
the actual channel. This decoupling is performed by effec-
tively providing multiple different buffers for each single
channel. FIG. 1B is illustrative.

[0007] FIG. 1B shows a connection terminal 125, which is
representative of the connection terminal 100, and a channel
130, which is representative of the channel 105. Here,
channel 130 has had its buffer resources virtualized to
effectively sub-divide the channel into multiple channels or
lanes. For instance, channel 130 is shown as including a
virtual lane 135 and a virtual lane 140. Additionally, a set of
packets are being transmitted across lane 135 (e.g., see
packet 145) and a different set of packets are being trans-
mitted across lane 140 (e.g., see packet 150). Now, the
channel 130 is able to support a larger number of packets
than channel 105, and the packets travelling along that
channel may not be impeded by an idling packet in a
different lane. In this regard, the “road” of channel 130 has
been modified to include additional lanes, similar to a
multi-lane highway. Further, if packet 145 were blocked, a
different buffer is available to enable packet 150 to be
transmitted. Accordingly, implementing virtual channels in a
hard link is similar to the idea of adding new lanes to a road
system.

[0008] When it comes to hard links, the resource that is
considered to be the most costly is typically the bandwidth
of the hard physical wire/channel. Buffer memory is often
viewed as being the second most costly resource. Virtual-
ization of the hard link achieves significant efficiency gains
because those resources are used in a more efficient manner
via the decoupling mentioned earlier. While virtualization
does add a small expense, its expense is overshadowed by
the other efficiency gains.

[0009] While high-speed connection terminals and proto-
cols (e.g., PCle) provide substantial benefits, these types of
terminals can require high levels of power to operate. When
these types of terminals are used in battery-powered com-
puting architectures, the higher power drains can impose
substantial burdens on the system.

[0010] Additionally, as is usually the case with many
computing components, errors can occur when data packets
are being transmitted. For instance, transient errors may
occur from any number of factors, including environmental
factors (e.g., temperature, electrostatic buildup, humidity,
etc.), rough handling of the system, and so forth. Traditional
buses handle these errors in an unsophisticated manner by
simply re-transmitting the data when an error is detected.
Some systems, however, have a real-time need (or a need
that approximates real-time) for the data, so re-transmittal
may not be a viable solution. Accordingly, although tradi-
tional systems provide many benefits, these systems are still
quite inadequate when design considerations require low
power and real-time usage of transmitted data.

US 2023/0030081 Al

[0011] The subject matter claimed herein is not limited to
embodiments that solve any disadvantages or that operate
only in environments such as those described above. Rather,
this background is only provided to illustrate one exemplary
technology area where some embodiments described herein
may be practiced.

BRIEF SUMMARY

[0012] Embodiments disclosed herein relate to systems,
devices (e.g., hardware storage devices, wearable devices,
etc.), and methods configured to improve transmissions
between a transmitter node and a receiver node via a
high-speed high-bandwidth link by recovering from an error
condition without requiring a re-transmittal of data.

[0013] In some embodiments, a data stream is initiated,
where this data stream is designed to include packets of
different data types, including a control data type and a
non-control data type. A control data type packet is gener-
ated. Here, error correcting code (ECC) is selectively
imposed on the control data type packet. This ECC is
configured to enable errors occurring in the control data type
packet to be corrected at the receiver node. Consequently,
re-transmittal of the control data type packet is prevented.
The transmitter node then transmits the control data type
packet to the receiver node. Upon receipt of the control data
type packet at the receiver node, error correction on the
control data type packet using the ECC is performed when
an error is detected or, alternatively, error correction is
refrained from being performed when no error is detected.
Additionally, non-control data type packets are generated.
Here, the embodiments selectively refrain from imposing
the ECC on the non-control data type packets. The process
of selectively refraining from imposing the ECC on the
non-control data type packets operates to reduce bandwidth
usage over the hard link as compared to imposing ECC on
the non-control data type packets. The transmitter node then
begins transmitting the non-control data type packets to the
receiver node. Upon receipt of the non-control data type
packets at the receiver node and in response to an error in a
non-control data type packet being detected, the embodi-
ments allow corruption of data in the non-control data type
packet to persist because this corruption is negligible.
[0014] Some embodiments are configured to improve
power usage of a device (e.g., a battery operated device) by
identifying when packet transmissions across virtual chan-
nels are complete and by causing nodes to enter a low power
state/mode when those packet transmissions are complete.
[0015] Here, a transmitter node and a receiver node are
connected via a hard link. Additionally, multiple virtual
channels are initialized on the hard link, where each virtual
channel is associated with a corresponding power-consum-
ing node. Data streams are generated, where these streams
are configured to include packets of different types, includ-
ing a data type packet and an end condition type packet. The
embodiments generate the packets and cause the transmitter
node to transmit the packets to the receiver node over the
virtual channels. Each virtual channel transmits one or more
of the packets in different data streams. For each respective
virtual channel, a number of operations are performed. One
operation includes identifying when a final data type packet
has been transmitted across each respective virtual channel.
Another operation includes causing the transmitter node to
transmit (for that respective virtual channel) one or more end
condition type packets. Another operation includes causing

Feb. 2, 2023

a corresponding power-consuming node that corresponds to
the respective virtual channel to transition from an active
state to a low power state/mode. After final data type packets
have been transmitted across all of the virtual channels, the
transmitter node also sends a final end condition type packet
to the receiver node. This final end condition type packet
informs the receiver node that the data stream is complete.
[0016] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.
[0017] Additional features and advantages will be set forth
in the description which follows, and in part will be obvious
from the description, or may be learned by the practice of the
teachings herein. Features and advantages of the invention
may be realized and obtained by means of the instruments
and combinations particularly pointed out in the appended
claims. Features of the present invention will become more
fully apparent from the following description and appended
claims or may be learned by the practice of the invention as
set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] In order to describe the manner in which the
above-recited and other advantages and features can be
obtained, a more particular description of the subject matter
briefly described above will be rendered by reference to
specific embodiments which are illustrated in the appended
drawings. Understanding that these drawings depict only
typical embodiments and are not therefore to be considered
to be limiting in scope, embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

[0019] FIGS. 1A and 1B provide an introduction to vir-
tualizing hard links.

[0020] FIG. 2 illustrates how data packets are able to
travel over virtual channels from one node to another node.
[0021] FIG. 3 illustrates an example head-mounted device
(HMD) that may require low power usage for hard links and
real-time data usage requirements.

[0022] FIG. 4 illustrates some internal features, including
a high-speed link, of the HMD.

[0023] FIG. 5 illustrates an abstracted viewpoint of some
of the computing components of the HMD.

[0024] FIG. 6 illustrates how an HMD can use a laser-
based microelectromechanical scanning (MEMS) mirror
system to display content.

[0025] FIGS. 7A, 7B, and 7C illustrate additional features
regarding the MEMS mirror system.

[0026] FIG. 8 illustrates some operational requirements
that are considered by the disclosed embodiments.

[0027] FIG. 9 illustrates the use of different types of
packets for transmitting data to achieve the benefits dis-
closed herein.

[0028] FIG. 10 illustrates how error correcting code
(ECC) may be used to help prevent re-transmittal of data.

[0029] FIG. 11 illustrates how the different packet types
can be transmitted over any number of virtual channels or
virtual lanes.

[0030] FIG. 12 illustrates a power saving technique that
operates to transition nodes to a low power state when
certain packets are detected.

US 2023/0030081 Al

[0031] FIG. 13 illustrates how errors can be mitigated
when attempting to identify the end of a data stream, where
those errors are mitigated via the use of a specially config-
ured end condition type packet. Multiple end condition type
packets may be transmitted to reduce the likelihood of
misidentifying the end of a data stream.

[0032] FIG. 14 illustrates an example of a data stream that
includes the different types of packets.

[0033] FIG. 15 illustrates how a receiver node can be
configured to include a deadman timer.

[0034] FIG. 16 illustrates a flowchart of an example
method for improving transmissions between a transmitter
node and a receiver node via a high-speed high-bandwidth
link by recovering from an error condition without requiring
a re-transmittal of data.

[0035] FIG. 17 illustrates a flowchart of an example
method for improving power usage by identifying when
packet transmissions across virtual channels are complete
and by causing nodes to enter a low power state when those
packet transmissions are complete.

[0036] FIG. 18 illustrates an example computer system
configured to be able to perform any of the disclosed
operations.

DETAILED DESCRIPTION

[0037] Embodiments disclosed herein relate to systems,
devices (e.g., hardware storage devices, wearable devices,
etc.), and methods configured to improve transmissions
between a transmitter node and a receiver node via a
high-speed high-bandwidth link (e.g., the link has 4x-8x the
bandwidth requirements of standard PCle) by recovering
from an error condition without requiring a re-transmittal of
data.

[0038] In some embodiments, a data stream is initiated.
This stream includes a control data type packet and a
non-control data type packet. Error correcting code (ECC) is
selectively imposed on the control data type packet. This
ECC enables errors occurring in the control data type packet
to be corrected at the receiver node. When the receiver node
receives the control data type packet, error correction is
performed if needed. The embodiments also selectively
refrain from imposing ECC on the non-control data type
packets. When the receiver node receives the non-control
data packets and in response to an error in the non-control
data type packets being detected, the embodiments allow the
corruption of this data to persist because it has an acceptable
level of impact.

[0039] Some embodiments are configured to improve
power usage of a battery-operated device by identifying
when packet transmissions across virtual channels are com-
plete and by causing nodes to enter a low power state when
those packet transmissions are complete.

[0040] In some embodiments, a transmitter node and a
receiver node are connected via a hard link that has multiple
virtual channels initialized thereon. Each virtual channel is
associated with a corresponding power-consuming node.
Data streams are generated, where these streams include
data type packets and end condition type packets. The
transmitter node transmits the packets to the receiver node
over the virtual channels. Each virtual channel transmits one
or more of the packets. For each respective virtual channel,
a number of operations are performed. One operation
includes identifying when a final data type packet has been
transmitted across each respective virtual channel. Another

Feb. 2, 2023

operation includes causing the transmitter node to transmit
(for that respective virtual channel) an end condition type
packet. Another operation includes causing a corresponding
power-consuming node that corresponds to the respective
virtual channel to transition from an active state to a low
power state. After final data type packets have been trans-
mitted across all of the virtual channels, the transmitter node
sends a final end condition type packet to the receiver node.
This final end condition type packet informs the receiver
node that all of the data streams across all of the virtual
channels are complete.

Examples of Technical Benefits, Improvements,
And Practical Applications

[0041] The following section outlines some example
improvements and practical applications provided by the
disclosed embodiments. It will be appreciated, however, that
these are just examples only and that the embodiments are
not limited to only these improvements.

[0042] The disclosed embodiments improve the existing
technology in numerous ways. For instance, by practicing
the principles disclosed herein, the embodiments are able to
reduce the amount of bandwidth consumed by packets
transmitted over virtual channels when errors are detected
for those packets. That is, whereas previous systems simply
re-transmitted faulty or error-ridden packets (thereby con-
suming additional bandwidth over the virtual channel), the
embodiments are able to selectively apply error correcting
code (ECC) to certain types of high priority “control” data
type packets. These types of packets are packets that include
control information regarding how a set of subsequent
packets (i.e. non-control data type packets) are to be utilized.
[0043] The control data type packets are differentially
compressed and operate to control how the data in the
non-control data type packets is used. Whereas an error on
a single non-control data type packet results in an acceptable
level of corruption, an error to the control data type packets
may potentially result in corruption for the entire remaining
data stream. As such, the embodiments beneficially apply
ECC to the control data type packets. Because each data
stream typically includes only a single control data type
packet, imposing the ECC results in a nominal increase to
the virtual channel’s bandwidth. Despite this nominal
increase, the benefits that are achieved by the ECC are
substantial because the ECC allows for the receiving node to
correct and/or detect the errors without requiring re-trans-
mittal of the control data type packet (i.e. the system is
resilient to errors without a re-transmit). As such, the
embodiments improve the operational efficiency of the com-
puter system by eliminating or at least reducing the likeli-
hood of requiring packet re-transmittal. Additionally, ECC is
not traditionally used for bus protocols; instead, ECC is
typically used for memory-based operations. In this regard,
the embodiments are also utilizing ECC in a new manner.
[0044] The disclosed embodiments also improve the tech-
nical field by minimizing or reducing the amount of battery
consumption that is consumed. Specifically, the embodi-
ments configure and utilize a so-called “end condition
packet” or “end condition type packet” that is specially
configured to impose nominal usage of the virtual channel’s
bandwidth while also acting as a flag to trigger a power-
consuming node to transition to a low power state/mode.
Because each virtual channel may be associated with its own
corresponding power-consuming node, the end condition

US 2023/0030081 Al

packets, which may be sent across the different virtual
channels at different times, enables the system to reduce
power usage by allowing nodes to turn off at earlier times as
compared to conventional systems. In this regard, the
embodiments improve the battery usage of the computer
system by enabling power-consuming nodes to transition to
low power states/modes earlier than what was previously
available in conventional systems. In actual implementa-
tions, the embodiments have achieved upwards of 8x the
power savings of conventional systems.

[0045] In embodiments dealing with a scanning MEMS
mirror, the system is also able to beneficially supply all the
lasers with a minimum virtual channel buffer at roughly the
same time. So the length of the data that is sent per virtual
stream is relatively low (single % of the line of pixels or
sweep). The hardware is able to keep each virtual channel
supplied with data so the data can be given to the lasers with
a very low latency while not consuming a large amount of
the buffer’s bandwidth. Some of these features may also be
implemented by hardware such that the software stack is
essentially non-existent.

[0046] Additionally, the embodiments are able to benefi-
cially capitalize on virtualization. For instance, suppose an
error occurs on one of the virtual channels. The embodi-
ments are able to allow the other virtual channels to com-
plete their transmissions and processes despite the one
virtual channel experiencing an error. By way of a specific
example, suppose a red laser corresponds to one virtual
channel. Further suppose an error occurs relative to this
virtual channel. The other lasers and the other virtual chan-
nels are able to complete their respective operations despite
the error occurring on the one virtual channel. By transmit-
ting the end condition packet, the system is also able to reset
itself (e.g., the laser and virtual channel that experienced the
error) despite the error so that the laser and virtual channel
can still be used.

Interconnection Networks

[0047] Attention will now be directed to FIG. 2, which
illustrates an example of an interconnection network 200.
The interconnection network 200 may comprise any number
of interconnected nodes, such as node 205 and node 210.
Examples of nodes 205 and 210 may be any type of
computing component, including high-speed computing
components. For instance, the nodes 205 and 210 can be any
type of CPU, GPU, HPU (holographic processing unit),
DMA (display module assembly) chip, a MEMS system,
memory, and so forth, without limit. As shown, node 205 is
connected or tethered to node 210 via a high-speed link 215.
High-speed link 215 may be any type of physical channel
connection that supports high-speed data transmissions.

[0048] Communication between node 205 and node 210
occurs by transmitting messages from a transmitter node
(e.g., node 205) to a receiver node (e.g., node 210) (though
the messages can potentially be transmitted back and forth).
A message may be divided or broken down into one or more
different “packets” that are transmitted in the form of a data
stream 220. As used herein, a “packet” is the smallest body
or unit of data/information that contains routing, sequencing,
and payload information. That is, the message may be
subdivided into any number of constituent parts, and those
parts may be transmitted in the form of a packet, such as
packets 225, 230, and 235. In the example of FIG. 2, the
node 205 is a transmitter node because node 205 is sending

Feb. 2, 2023

the data stream 220 to the node 210, which is a receiver
node. When the node 210 receives the packets, the node 210
will organize the packets to reform the original message.
[0049] Embodiments disclosed herein may virtualize the
high-speed link 215 to include any number of virtual chan-
nels. For instance, the hard link 240 is representative of the
high-speed link 215. This hard link 240 is shown as includ-
ing any number of virtual channels, such as virtual channels
245, 250, 255, and 260. Packets (e.g., packet 265) are shows
as being transmitted across those different virtual channels.
[0050] Each virtual channel is associated with its own
respective buffer. For instance, virtual channel 245 may be
associated with buffer 270, and virtual channel 250 may be
associated with buffer 275. The other virtual channels are
associated with their own respective buffers, even though
that is not currently shown in FIG. 2. Each buffer may have
a corresponding buffer size 280. In accordance with the
disclosed principles, hardware is able to keep the channel’s
bandwidth balanced between various requesters (i.e. receiv-
ing nodes). In some cases, the buffer sizes for all of the
different buffers may be the same while in other cases the
buffer sizes may be different. Some buffer sizes may be the
same for some buffers while other buffer sizes may be
different. In any event, the buffer size 280 is based on the
total buffer size available for the hard link 240. In some
cases, the length of data included in any particular packet of
the data stream is restricted based on buffer sizes of virtual
channels initialized for the hard link. Accordingly, FIG. 2
shows how packets may be transmitted from one node to
another node via a high-speed link.

Example Head-Mounted Device (HMD)

[0051] Attention will now be directed to FIGS. 3, 4, and
5. These figures provide example illustrations of a head-
mounted device (HMD), which is a computing architecture
that may include any number of interconnected nodes or the
interconnection network 200 of FIG. 2. Notably, while a
substantial portion of this disclosure is focused on the use of
nodes in an HMD, one will appreciate that the disclosed
principles are not limited to only these scenarios. Rather,
nodes can be included in any type of computing architecture,
without restriction, and the embodiments may be practiced
with those different computing architectures. Accordingly,
the discussion surrounding the HMD is for example pur-
poses only and should not be interpreted as being limiting.
[0052] Mixed-reality (MR) systems, including virtual-re-
ality (VR) and augmented-reality (AR) systems, have
received significant attention because of their ability to
create truly unique experiences for their users. For reference,
conventional VR systems create completely immersive
experiences by restricting their users’ views to only virtual
environments. This is often achieved through the use of a
head-mounted device (HMD) that completely blocks any
view of the real world. As a result, a user is entirely
immersed within the virtual environment. In contrast, con-
ventional AR systems create an augmented-reality experi-
ence by visually presenting virtual objects that are placed in
or that interact with the real world.

[0053] As used herein, VR and AR systems are described
and referenced interchangeably. Unless stated otherwise, the
descriptions herein apply equally to all types of MR systems,
which (as detailed above) include AR systems, VR reality
systems, and/or any other similar system capable of display-
ing virtual content.

US 2023/0030081 Al

[0054] FIG. 3 shows a user 300 wearing an HMD 305A,
which is an example of the MR system mentioned above.
The user 300 can wear the HMD 305A to view and interact
with an MR scene. HMD 305B, which is a blown-up view
of the HMD 305A, includes a display 310, a first arm 315,
and a second arm 320. As shown, the display 310 is oriented
towards the front of the HMD 305B so as to be positioned
near the user’s eyes.

[0055] It will be appreciated that display 310 can include
any type of display. In some embodiments, display 310
includes a microelectromechanical scanning (MEMS) mir-
ror display in which image pixels are individually rastered
by a laser and mirror assembly. In other embodiments,
display 310 includes any type of light-emitting diodes,
plasma displays, liquid crystal displays, and so on. Accord-
ingly, any type of display may be included within HMD
305B, and the embodiments should not be limited to a
particular type.

[0056] FIG. 4 shows an HMD 400, which is an abstracted
representation of the HMD 305B from FIG. 3, using some
abstracted block depictions to represent HMD components.
It will be appreciated that these blocks are for example
purposes only and should not be viewed literally as having
block-like shapes.

[0057] HMD 400 includes a first adjustable flex-fit arm
405 (i.e. the same as in FIG. 3) and a second adjustable
flex-fit arm 410. The first adjustable flex fit arm 405 is shown
as including any number of low-speed links 405 A (aka wires
or channels) while the second adjustable flex fit arm 410 is
shown as including any number of high-speed links 410A.
Of course, the high-speed and low-speed wires can be
positioned on either side of the HMD and are not limited to
a specific side. Further detail on these wires will be provided
later. Furthermore, it should be noted that these wires may
be configured as ribbons and/or bundled cables.

[0058] The high-speed links 410A can be used to transmit
high-speed display data and/or sensor data (e.g., camera
data, such as head tracking and depth detection) between the
compute units located in the front-end housing and the
compute units located in the back-end housing. These high-
speed links 410A are designed to have low latency, thereby
enabling a high number of compute cycles or communica-
tions to be passed therethrough.

[0059] In contrast, the low-speed links 405A can be used
to provide power, ground (e.g., connections to a battery), or
switching mechanisms. That is, in some cases, the low-speed
links 405 A also include switches or signals that can operate
at lower speeds as compared to the compute cycles of the
high-speed links 410A.

[0060] HMD 400 also includes a front-end housing 415,
which includes a first compute unit 420 and wiring 425. The
ellipsis 430 is provided to illustrate how the front-end
housing 415 may include additional components or struc-
tures as well.

[0061] The first compute unit 420 is shown as including a
number of different compute elements. Specifically, these
compute elements include, but are not limited to, display
circuitry 420A (e.g., such as display 310 from FIG. 3,
including a digital display processing (DPP) chip, an analog
chip that drives a display module assembly (DMA), the
DMA itself, lasers, and a MEMS mirror system), one or
more CPU(s) 420B (i.e. central processing units), one or
more GPU(s) 420C (i.e. graphical processing units), and a
SOC 420D (i.e. a system on chip). These compute elements/

Feb. 2, 2023

units are provided to render any number of virtual images for
a user to view and interact with.

[0062] HMD 400 also includes a back-end housing 435,
which includes a second compute unit 440, a battery 445,
and wiring 450. The ellipsis 455 demonstrates how any
number of other compute elements, structures, or features
may be included with the back-end housing 435. The first
adjustable flex fit arm 405 connects the front-end housing
415 to the back-end housing 435, and the second adjustable
flex fit arm 410 similarly connects the front-end housing 415
to the back-end housing 435.

[0063] The second compute unit 440 is shown as including
one or more CPU(s) 440A, one or more GPU(s) 440B, and
a holographic processing unit HPU 440C. As used herein, an
HPU (e.g., HPU 440C) refers to a compute processing unit
that obtains and integrates real-world data into an MR scene.
In some cases, HPU 440C controls any number of inertial
measurement units (IMU), head and hand tracking cameras,
and depth cameras to generate a spatial mapping of the
real-world environment. Using this spatial mapping, HMD
400 (and in particular HPU 440C) can cause holograms or
virtual images to be projected for the user to view and
interact with.

[0064] It will be appreciated that although SOC 420D is
shown as being included in the front-end housing 415 and
the HPU 440C is shown as being included in the back-end
housing 435, the positions can be reversed. In other cases,
both of the compute units can be included in the front-end
housing 415 or both can be included in the back-end housing
435. Accordingly, FIG. 4 is provided to simply show one
example implementation regarding the placement and con-
figuration of some of the compute units of an HMD.
Additionally, the battery 445 can also be positioned in the
front-end housing 415 if so desired.

[0065] FIG. 5 provides another perspective of an HMD
500, which is representative of the HMDs discussed thus far.
HMD 500 includes a front-end housing 505, just like front-
end housing 415 of FIG. 4. HMD 500 also includes arm 505,
with a bundled cable 510 passing therethrough. At a different
segment of arm 505, the electrical wires are bundled
together at the bundling portion 515 where they are struc-
tured as a nested cable ribbon 520.

[0066] HMD 500 includes another arm 525, with a
bundled cable 530 passing therethrough. Similarly, arm 525
also includes a nested cable ribbon 535. Accordingly, the
HMD 500 includes two arms (e.g., arm 505 and arm 525),
with each arm having a corresponding set of electrical wires
passing through the internal confines, or rather the internal
cavities, of those arms.

[0067] The high-speed link 215 from FIG. 2 may be
representative of the high-speed links 410A from FIG. 4.
Similarly, the ribbon 520 and the bundled cable 510 from
FIG. 5 may be representative of the high-speed link 215. The
nodes 205 and 210 from FIG. 2 may be representative of any
of'the compute units illustrated in FIG. 4, such as the display
circuitry 420A, the CPU(s) 420B and 440A, the GPU(s)
420C and 4406, the SOC 420D, and the HPU 440C. In some
embodiments, the nodes may be individual compute units
located within either one of the front-end housing 415 of
FIG. 4 or the back-end housing 435. For instance, the
display circuitry 420A may include any number of lasers,
digital display processing (DPP) chips, DMAs, DMA-driv-

US 2023/0030081 Al

ing chips, or MEMS mirror systems. These compute units
may also be representative of the nodes introduced in FIG.
2.

[0068] Additionally, these compute units may have short-
ened high-speed links connecting those elements. To clarify,
whereas the high-speed links 410A shown in FIG. 4 illus-
trate how the front-end housing 415 can be connected to the
back-end housing 435, it may be the case that there are
additional high-speed links connecting individual nodes
located within the front-end housing 415 exclusively or
within the back-end housing 435 exclusively. In that case,
those links will be relatively shorter than the high-speed
links 410A. In any event, the HMDs discussed herein may
use any number of high-speed links to connect different
high-speed compute units, such as those described above.

Laser-Based MEMS Display System

[0069] FIG. 6 shows some components that may be
included within a display for a MR computing system,
which includes HMD 600. HMD 600 is representative of the
HMDs discussed thus far. The illustrated components are
beneficially provided to render any type of virtual image.
Specifically, FIG. 6 focuses on the display circuitry 605 used
to render images, which circuitry is representative of the
display circuitry 420A of FIG. 4. The display circuitry 605
includes, but is not limited to, a digital display processing
(DPP) chip 610, an analog display module assembly (DMA)
driving chip 615, the DMA 620, laser emitters 625 and 630
(though more or less may be provided), and a MEMS system
635. A DMA is often architected for up to four different
lasers, so it may be the case that there are multiple DMAs
in the HMD 600.

[0070] In practice, the DPP chip 610 transmits image data
(in the form of packets) to the DMA-driving chip 615 over
a high-speed high-bandwidth hard link at a rate so that the
line of data being transmitted is typically one “sweep” ahead
of where certain lasers are actually projecting data. Conse-
quently, the buffers of the virtual lanes are being used to
pre-send pixel information for pixels that are to be illumi-
nated at some point in the future. Further details on
“sweeps” will be provided later.

[0071] In this regard, the laser emitters 625 and 630
function as projectors for the HMD 600. The virtual chan-
nels are able to buffer the one-sweep-ahead display data in
the packets. The DPP chip 610, the DMA-driving chip 615,
the laser emitter 625, and even the MEMS system 635 may
all be considered “nodes,” as referred to in the earlier
figures. Furthermore, there is a high-speed link 640 between
at least the DPP chip 610 and the DMA-driving chip 615.
Other high-speed links may be present between any of the
other nodes as well. The DPP chip 610 operates to provide
information regarding how images are to be projected via
the MEMS system 635.

[0072] Laser emitter 625 (aka “laser assembly,” “laser
device,” or simply “laser”) includes one or more lasers. The
example shown in FIG. 6 illustrates a (first) laser 625A, a
(second) laser 625B, and a (third) laser 625C, though more
or less may be provided. Examples of these lasers may be a
red laser, a green laser, and a blue laser such that the laser
emitter 625 is a red, green, blue (RGB) laser assembly
having RGB lasers. While only three lasers are presently
shown, it will be appreciated that any number of lasers may
be provided in HMD 600 (e.g., perhaps 1-4 red lasers, 1-4
green lasers, and 1-4 blue lasers). Moreover, in some

Feb. 2, 2023

embodiments, lasers 625A, 625B, and 625C may be
included within their own different discrete packaging unit.
In some embodiments, an infrared (IR) laser may be
included as a part of laser emitter 625 or within a separate
packaging unit.

[0073] In some embodiments, such as the one shown in
FIG. 6, the laser light from the lasers 625A, 625B, and 625C
is optically/spectrally combined to form RGB laser light
640. That is, the laser light 640A from laser 625A, the laser
light 640B from laser 625B, and the laser light 640C from
laser 625C is optically/spectrally combined (e.g., either
within the laser emitter 625 or outside of the laser emitter
625) to produce a single collimated beam of red, green, and
blue RGB laser light 640. It will be appreciated that RGB
laser light 640 may be a continuous beam of RGB laser light,
or, alternatively, it may be a pulsed beam of RGB laser light.
[0074] RGB laser light 640 is then directed to a micro-
electromechanical scanning (“MEMS”) mirror system 635.
MEMS mirror system 635 includes a multi-directional mir-
ror array that is able to rapidly redirect and aim laser light
to any desired pixel location. For example, scanning direc-
tion 645 shows how MEMS mirror system 635 is able to
rapidly redirect pulsed or continuous scanning laser light
650 and scanning laser light 655 to any location. Here,
scanning laser light 650 and 655 originate from RGB laser
light 640.

[0075] While only two instances of the scanning laser light
are labeled, it will be appreciated that MEMS mirror system
635 is able to redirect any number of laser emissions. By
scanning laser light back and forth horizontally and up and
down vertically, the display circuitry 605 is able to illumi-
nate individual pixels of a virtual image within a desired
field of view. Because the display circuitry 605 is able to
illuminate individual pixels so rapidly, display circuitry 605
is able to render an entire virtual image (e.g., an image
frame) for a user to view and interact with without the user
realizing that the virtual image was progressively generated
by scanning individual pixels.

[0076] In some embodiments, the display circuitry 605
includes more than one laser emitter. For instance, FIG. 6
shows a (second) laser emitter 630. In cases where there are
more than one laser emitter, then the emitters can be
configured to jointly or concurrently illuminate pixels to
generate an image frame. In some cases, the different laser
emitters may be associated with different DMAs as well. In
some embodiments, an image frame is illuminated by one,
two, or more than two separate laser emitters. In some
implementations, there may be 12 different lasers, or even
more than 12 lasers. In some cases, the multiple separate
laser emitters concurrently illuminate corresponding pixels.
In other cases, the multiple separate laser emitters stagger
when pixels are illuminated.

[0077] FIGS. 7A, 7B, and 7C further expand on the
operations of a MEMS mirror system by showing how a
MEMS/laser unit 700A can be used in a VR type of HMD
and how a MEMS/laser unit 700B can be used in an AR type
of HMD, respectively. MEMS/laser units 700A and 700B
are both example implementations of the MEMS mirror
system 635 shown in FIG. 6. Pulsed or continuous laser light
650 and laser light 655 in FIG. 6 are example implementa-
tions of laser light 705A and 705B.

[0078] In FIG. 7A, the display 710 is representative of a
VR display of a VR type HMD. As described earlier, ina VR
situation, the user’s view of the real-world is entirely

US 2023/0030081 Al

occluded such that the user is able to see only a VR
environment. Here, display 710 is shown as including a
vertical field of view (“FOV™) and a horizontal FOV. FIG.
7A also shows the progressively backward and forward
horizontal and upward and downward vertical scanning
direction 715 in which the MEMS/laser unit 700A is able to
scan individual pixels of a virtual image onto the display
710. By rapidly scanning/rastering the individual pixels, the
MEMS/laser unit 700A is able to render an entire virtual
image or even an entire VR environment.

[0079] Building on the earlier discussion, it will be appre-
ciated that each pixel rastered on the display 710 is gener-
ated by pulsing the laser included within the MEMS/laser
unit 700A. In this manner, it is possible to illuminate each
pixel on display 710 in a pixel-by-pixel basis all the way
from the top portion of the display 710 to the bottom portion
of the display 710. Consequently, as the MEMS mirror
system in the MEMS/laser unit 700A is scanned/aimed at a
given pixel position on the display 710, the laser is pulsed
to a determined intensity or power output level so as to
properly illuminate that pixel within the overall virtual
image. The frame is over when the last pixel is illuminated,
and the MEMS/laser unit 700A enters a so-called “vblank”
time period in which the MEMS/laser unit 700A resets its
mirrors to an original starting position so as to generate a
new frame. The period of time to scan each new frame and
to reset during the vblank period is referred to as the refresh
rate 720. Examples rates for the refresh rate 720 can be
between 90 Hz and 120 Hz, though other rates may be used
as well.

[0080] FIG. 7B shows an example implementation within
an AR system. Instead of scanning pixels on a display (e.g.,
display 710), the AR system causes its MEMS/laser unit
700B to scan pixels onto the user’s eye through the use of
a waveguide 725, which receives the laser light and then
directs the laser light towards the user’s eye. In this regard,
FIG. 7B is representative of a scanning waveguide display.

[0081] To illustrate, FIG. 7B shows MEMS/laser unit
700B generating pulsed laser light 705B which is directed
towards waveguide 725. Waveguide 725 includes an entry
grating 730 (aka an “input port” or “input grating”), through
which pulsed laser light 705B enters waveguide 725, and an
exit grating 735, through which pulsed laser light 705B exits
waveguide 725. Waveguide 725 is structured to enable the
pulsed laser light 705B to propagate through it so that the
pulsed laser light 705B can be redirected to a desired
location, such as the scanning area 740. In many instances,
the scanning area 740 corresponds to a user’s eye.

[0082] FIG.7C illustrates the vblank time 745 and a sweep
750. As described earlier, the vblank time 745 is the period
of time in which no pixels are being illuminated (thus no
data stream is being transmitted between the DPP chip 610
and the DMA-driving chip 615); rather, the MEMS system
is resetting its mirror to return to an original start position so
as to begin generating a new frame. Often, the vblank time
745 consumes between 10%-30% of the frame’s time
period. In some cases, the vblank 745 is about 20% of the
time allocated for the particular frame. The sweep 750 refers
to a single horizontal pass of the MEMS mirror system when
scanning an individual line of pixels of the frame. Stated
differently, a sweep is half of a full period of the fast scan
mirror of the MEMS mirror system. By way of example and
not limitation, the sweep 750 can be considered or viewed

Feb. 2, 2023

as a line of pixels spanning from one side of the display (or
scanning area) to the other side of the display (or scanning
area).

[0083] Notably, it may be the case that not every pixel of
a sweep will be illuminated by all the lasers (also it may be
the case that each virtual channel corresponds to a respective
laser). Consequently, it may be the case that there are
different sweep sizes per virtual channel.

[0084] Accordingly, the disclosed principles may be prac-
ticed in any type of computing architecture. In some imple-
mentations, the principles are utilized in the context of an
HMD and in particular for some of the different nodes of the
HMD (e.g., the DPP chip 610 and the DMA-driving chip
615 of FIG. 6). Additional details regarding the various
operations of the embodiments will now be discussed in
more detail in the following sections.

Improved Techniques for Power Usage And Error
Correction/Detection

[0085] Attention will now be directed to FIG. 8, which
lists a number of operational requirements 800, or rather,
operational features, that may be followed by one, some, or
all of the disclosed embodiments. These requirements will
be introduced at a high level at this point, and a further
discussion regarding these requirements will be provided
later throughout the remaining portion of this disclosure.

[0086] Initially, the operational requirements 800 include
a real-time data requirement 805. As discussed earlier in
connection with the HMDs, the HMDs are used to display
content to a user. The HMD has the real-time requirement
805 because it needs to draw something on its screen (or
otherwise illuminate pixels), and the data pipeline for
instructing how to draw those pixels is already working on
new pixels to draw (e.g., the one sweep ahead aspect
mentioned earlier), so it is desirable to avoid re-transmitting
data. To further clarify, each laser of the HMD may have its
own real-time requirements for when pixel data is to be
received by the chip(s) driving those lasers.

[0087] Furthermore, the content dynamically changes
based on a number of different factors, some of which
include pose/orientation of the HMD, scene changes of the
MR scene, interactions with the holograms, and so forth. As
such, when the embodiments are practiced in the context of
an HMD, the data transmitted from one node to another node
in the HMD may be required to satisfy the real-time data
requirement 805. What this means is that the ability to
re-transmit data, as conventional systems do when faced
with errors in the data, is now not available for the HMD
implementations. To clarify, re-transmittal to resolve or
correct errors is not available because of the real-time data
requirement 805. As such, the disclosed principles introduce
a new and different technique for responding to errors,
which technique will be discussed in more detail later.

[0088] The operational requirements 800 also include a
low overhead requirement 810. As discussed earlier, there is
limited bandwidth over the hard link between nodes. The
disclosed principles provide techniques for error correction
that not only conform to the real-time data requirement 805
but that also result in a low amount of additional overhead
being placed on the bus protocol. As such, the disclosed
embodiments provide substantial benefits by introducing
negligible overhead in order to achieve substantial gains.

US 2023/0030081 Al

This negligible overhead is achieved because only certain
types of packets (not all) are given error protection, which
causes the overhead.

[0089] The operational requirements 800 further include a
low power requirement 815. Based on certain characteristics
of the data stream, the embodiments are able to selectively
deactivate power-consuming nodes in order to reduce
power. For instance, in the context of an HMD, the embodi-
ments are able to cause lasers to enter a low power state
based on the detection of certain data packets that are
transmitted between nodes.

[0090] Some embodiments also conform to a short point-
to-point (PTP) interface requirement 820 in which the
different nodes are positioned a short distance relative to one
another. As used herein, a so-called “short” distance is one
in which transmission loss of the hard link is negligible as
a result of the physical length of the hard link. Example
lengths include, but are not limited to, lengths between O
inches and up to about 6 inches. Some embodiments also
operate at so-called medium lengths, which are lengths
beyond 6 inches and perhaps reaching up to 10 inches.
[0091] Additionally, the operational requirements 800
include an automatic hardware recovery requirement 825 (as
opposed to reliance on a software recovery operation). This
requirement or feature enables the hardware to automatically
recover after an error is detected. Further discussion on each
of these features will be provided later.

Packets Types

[0092] To achieve the above requirements and benefits,
some embodiments cause specific types of packets to be
transmitted from one node to another node in the data
stream. FIG. 9 illustrates an example packet 900, which is
representative of the packets that were discussed in FIG. 2.
Notably, packet 900 may take on different forms, including
a control data type packet 905, a non-control data type
packet 910, and an end condition packet 915.

[0093] The control data type packet 905 and the non-
control data type packet 910 are examples of packets that
contain data (i.e. data type packets 920) while the end
condition packet 915 operates as a flag for triggering a
certain action to occur (i.e. a flag informing the receiver
node that the data stream is complete). That is, the end
condition packet 915 gives the status of the virtual lane
based on a condition in which the control data type packet
905 indicates there was an end for the data stream, thereby
triggering a status bit to be set (per virtual channel) and
thereby triggering the transmission of the end condition
packet 915.

[0094] In some embodiments, after all of the virtual lanes
have finished sending their respective data streams, the last
virtual channel to finish sending its data stream sends an
additional final end condition packet that gives the status of
all of the virtual lanes. Further details on this feature will be
discussed later. In any event, the transmitter node does not
send any new traffic for a virtual channel (e.g., once one or
more end condition packets have been transmitted via that
virtual channel) until such time as when all the virtual
channels have completed transmitting their respective data
streams for the sweep. When a new sweep is initiated or a
new frame is initiated, then the virtual channels will once
again commence sending packets.

[0095] As used herein, the control data type packet 905 is
a type of packet that includes control data for controlling

Feb. 2, 2023

how a particular operation is to be performed. For instance,
with reference to the HMD example, the control data type
packet 905 may include timing information as to when a
laser is to emit laser light, payload type information, virtual
channel/lane information, and may further include place-
ment information as to where (e.g., which specific pixel) the
laser is to pulse its laser light. The control data type packet
905 may also include header information indicating which
channel or virtual channel is to be used. For instance, each
laser of an HMD may be associated with its own respective
virtual channel. The control data type packet 905 may
include control information and virtual channel information
for that virtual channel’s corresponding laser.

[0096] In some cases, the content included in the control
data type packet 905 is compressed (e.g., differentially
compressed) and includes data for an entire sweep of the
corresponding laser. To clarify, a sweep is an entire line of
pixels. The control data type packet 905 may include timing
and placement information not only for a single pixel but
rather for all of the pixels that are to be illuminated by the
one corresponding laser across the entire line or sweep of
pixels. The control data type packet 905 is the first packet
that is transmitted in a data stream across a virtual channel.
A different data stream may be transmitted across each one
of the different virtual channels, and the control data type
packet 905 is the first packet that will be transmitted in that
data stream (unless no pixels in a sweep are going to be
illuminated by the corresponding laser, then only an end
condition packet 915 will be transmitted).

[0097] Because of the importance of the control data type
packet 905, this packet is protected using error correcting
code ECC 925. To clarity, because the timing and placement
information included in the control data type packet 905 was
differentially compressed and of high importance, ECC 925
is used to protect the data from errors that may occur during
transmission. If an error were permitted to persist on the data
included in the control data type packet 905, then the entire
sweep may be corrupted, thereby resulting in artifacts (e.g.,
blurring, jitter, etc.) being introduced into the resulting
image frame. FIG. 10 provides some additional description
regarding ECC 1000, which is representative of the ECC
925 of FIG. 9.

[0098] Specifically, the ECC 1000 includes at least two
types of protections, including single bit error correction
1005 and double bit error detection 1010. In some embodi-
ments, the error protection is an x-bit error correction and an
x+1-bit error detection. The ECC 1000 is selected to ensure
that the ECC 1000 supports the error rate. The ECC 1000
may, in some instances, be 8 bits per control data type
packet, or some other selected number of bits based on the
length of the control data type packet. Selectively imposing
the ECC 1000 on the control data type packet provides
substantial benefits, which will be discussed momentarily.

[0099] Returning to FIG. 9, the non-control data type
packet 910 is a packet that includes payload information,
such as for how to illuminate a particular pixel in a sweep
(e.g., color intensity, duration, laser pulse size, etc.). As
such, the non-control data type packet 910 includes pixel
data 930 describing the mechanics of how a pixel is to be
illuminated.

[0100] Whereas a single control data type packet may be
sent in each new data stream across a virtual channel, there
may be any number of non-control data type packets that are
sent in the data stream. Furthermore, corruption of any

US 2023/0030081 Al

single non-control data type packet may result in only a
single pixel being corrupted. HMDs often have a refresh rate
of between 90 Hz and 120 Hz and also have very high
resolution rates (e.g., each image frame is megabytes in
resolution quality), so corruption of a single pixel may not
be noticeable by a user of the HMD. In view of those
conditions, the embodiments selectively refrain from impos-
ing ECC on the non-control data type packet 910. Errors that
occur for the non-control data type packet 910 are simply
accepted because the influence resulting from any such error
is considered nominal.

[0101] By imposing ECC 925 on the control data type
packet 905, the embodiments satisfy the real-time data
requirement 805 of FIG. 8 because the ECC 925 allows for
error correction and detection at the receiver node, such that
a re-transmittal of the control data type packet 905 need not
be performed and real-time processing may be performed.
Similarly, by imposing the ECC 925 on only the control data
type packet 905 but not on the non-control data type packet
910 (which typically constitute a majority of the packets
transmitted in a data stream), the embodiments satisfy the
low overhead requirement 810 because additional data (i.e.
the ECC) is being applied to only a single packet as opposed
to multiple packets. As such, the amount of additional
overhead is also nominal. Additionally, by imposing the
ECC, the embodiments are able to automatically recover
upon detecting an error (i.e. the ECC enables errors to be
automatically detected and resolved and when a new sweep
happens, past errors are not imputed on new sweeps because
the end condition packets informed the receiver node the
data stream is complete for that sweep), such that the
automatic hardware recovery requirement 825 is also satis-
fied. Accordingly, the embodiments impose different data
protection requirements based on data type, or rather dif-
ferent packet type.

[0102] The end condition packet 915 is a packet used to
trigger when the data stream is complete. That is, the end
condition packet 915 is the last packet that is sent over the
data stream after all of the non-control data type packets are
transmitted. If no pixels in a particular sweep are to be
illuminated by a specific laser, then it may be the case that
no control data type packet or non-control data type packets
are transmitted over that laser’s corresponding virtual chan-
nel. Instead, only the end condition packet 915 may be sent.
In some cases, to help mitigate against possible errors, a
plurality of end condition packets may be transmitted.
Further discussion on this feature will be provided later.

Data Streams Across Virtual Channels

[0103] FIG. 11 shows an example scenario involving
multiple virtual channels 1100, which are representative of
the virtual channels discussed thus far and which are trans-
mitting the three different packet types introduced in FIG.
10. FIG. 11 shows a scenario in which there are 12 virtual
channels, and the data stream flow is flowing from the left
to the right. Additionally, the different packet types are
illustrated using different shading techniques. In this
example scenario, each virtual channel corresponds to a
single respective laser in the HMD, and each virtual channel
has its own corresponding data stream being transmitted.

[0104] Referring first to channel (ch.) 1, FIG. 11 shows
how ch. 1’s data stream starts with a control data type
packet, then includes five non-control data type packets, and
then includes an end condition packet. Channel 2 is similar

Feb. 2, 2023

in that it includes one control data type packet, two non-
control data type packets, and an end condition packet.
Channels 1 and 2 are transmitting data because the lasers
corresponding to those channels will be used to illuminate
pixels in a sweep. Channel 3, on the other hand, corresponds
to a laser that will not be used to illuminate pixels in the
sweep. As a consequence, the data stream being transmitted
across ch. 3 includes only an end condition packet. This end
condition packet beneficially informs the receiver node (e.g.,
the DMA-driving chip 615 from FIG. 6) that ch. 3’s corre-
sponding laser will not be used for this particular sweep.
Accordingly, if a laser is not going to be used during a
particular sweep, then the data stream transmitted for that
laser’s virtual channel will include only one or more end
condition packets. In this regard, there may be any number
of asynchronous or non-symmetric data flows being trans-
mitted across the different virtual channels. FIG. 12 illus-
trates some of the benefits of using end condition packets.

[0105] Specifically, FIG. 12 focuses on virtual channels
1200, which are representative of the virtual channels 1100
of FIG. 11. For brevity purposes, only ch. 1 is being
displayed, but the ellipsis 1205 symbolizes how any number
of channels may be present.

[0106] FIG. 12 shows how an end condition packet has
been transmitted across ch. 1. It may be the case that the end
condition packet followed any number of non-control data
type packets and a control data type packet or it may be the
case that no non-control data type packets and control data
type packet was transmitted. Regardless, the end condition
packet operates as a trigger 1210 to notify that system that
a corresponding power consuming node can be transitioned
from a power consuming mode to a reduced power consum-
ing mode. This triggering operation is beneficial because the
system now knows the power consuming node is idle and
thus can be transitioned to the reduced power consuming
mode.

[0107] For instance, in the context of an HMD, the HMD
includes a laser emitter 1215 that itself includes laser 1215A,
1215B, and 1215C. Channel 1 is the virtual channel corre-
sponding specifically to laser 1215A. Transmitting the end
condition packet across ch. 1 causes the system to recognize
that use of the laser 1215 A is now complete and thus can be
transitioned from an active mode 1220 of generating laser
light to either a low power mode 1225 or perhaps even an off
mode 1230. The low power mode 1225 is a mode in which
the laser 1215A consumes less power than the active mode
1220 because the laser 1215A is not actively generating laser
light. The low power mode 1225 may be a mode in which
the laser 1215A is still turned on, however. The off mode
1230, in contrast, may be a mode in which the laser is
entirely turned off. Of course, these principles may be
applied to any type of node, and not just to a laser.

[0108] As shown in FIG. 12, the end condition packet has
triggered an operation in which the laser 1215A is now no
longer emitting laser light, whereas the lasers 1215B and
1215C may still be emitting laser light. With reference to
FIG. 11, transmitting the end condition packets across each
of the different virtual channels enables each virtual chan-
nel’s corresponding node to transition to the low power
state, thereby enabling the system to preserve battery life.
Furthermore, transitioning the nodes to the low power state
may be performed asynchronously relative to the other
virtual channels. For instance, based on the placement of the
end condition packets in FIG. 11, the laser (or node) corre-

US 2023/0030081 Al

sponding to ch. 6 will be the first laser to transition power
modes. The laser (or node) corresponding to ch. 4 will be the
next laser to transition power modes because its end condi-
tion packet is next in line relative to the other end condition
packets that are being transmitted.

[0109] In some embodiments, multiple end condition
packets are transmitted over a virtual channel to mitigate any
risks that may occur from errors during transmission, which
errors may result in any one particular end condition packet
not being recognized as such by the receiving node. Accord-
ingly, FIG. 13 shows a condition in which multiple end
condition packets 1300 are being transmitted over a virtual
channel (i.e. ch. 1).

[0110] In FIG. 13, there are 8 total end condition packets
that are being transmitted. Sometimes only a single end
condition packet is transmitted while other times 2, 3, 4, 5,
6,7, 8, or more than 8 end condition packets are transmitted.
Either a fixed number of end condition packets may always
be transmitted or a variable number of end condition packets
may be transmitted, where the variable number may be
based on the statistical max error rate 1310 that is detected
or computed for a data stream transmitted over a virtual
channel. Transmitting multiple end condition packets is
often beneficial because transient errors may be introduced
into any single end condition packet, making that packet
either unreadable by the receiver node or undetectable as an
end condition packet by the receiver node. In this regard,
redundantly sending multiple end condition packets safe-
guards against possible error-occurring scenarios. Because
each end condition packet is being provided as a triggering
flag, each end condition packet may be lightweight and
contain only a small amount of information. Consequently,
transmitting the end condition packets over the virtual
channel consumes only a negligible amount of bandwidth
and resources.

[0111] Turning briefly back to FIG. 11, ch. 1 is shown as
being the last channel to transmit an end condition packet.
Whichever virtual lane transmits an end condition packet
last, then the data stream for that virtual lane is tasked with
performing a so-called wrap-up operation in which its end
condition packets constitute a “final” end condition type
packet 1315, as illustrated in FIG. 13. The final end condi-
tion type packet 1315 provides additional information to the
receiver node indicating that all the data streams for all the
other virtual lanes are also complete.

[0112] Such a feature is beneficial in the context of an
HMD because the final end condition type packet 1315 also
symbolizes the end of a sweep. By symbolizing the end of
a sweep, the display circuitry can effectively start anew with
the understanding that past errors are now done and any new
errors will be associated with the line of pixels in the new
sweep. Additionally, the final end condition type packet
1315 can operate to inform any nodes that were previously
transitioned to a low power state to begin a ramp up process
of transitioning back to the active state, if a ramp up period
is needed for those nodes.

[0113] FIG. 14 shows a summary view of a data stream
1400 in accordance with the principles discussed thus far.
Data stream 1400 is being transmitted over ch. 1 and
includes a control data type packet 1405 as the leading or
first packet, which control data type packet 1405 is protected
using ECC 1410. Subsequent to the control data type packet
1405, the data stream includes a non-control data type
packet 1415, which is not protected using ECC. If errors

Feb. 2, 2023

were to occur on the non-control data type packet 1415, any
such errors are allowed and considered acceptable without
re-transmittal. The ellipsis 1420 indicates how any number
of non-control data type packets may be transmitted in the
data stream 1400. After the last non-control data type packet
is transmitted, the data stream 1400 includes one or more
end condition packet(s) 1425 that inform the receiver node
the data stream 1400 is complete and that operate as a notice
that ch. 1’s corresponding node can transition to a low power
state to thereby preserve battery. Accordingly, the embodi-
ments further satisfy the low power requirement 815 of FI1G.
8 by selectively and incrementally transitioning nodes to low
power states in response to one or more end condition
packets being transmitted over a virtual channel.

[0114] FIG. 15 shows an example scenario in which the
embodiments are able to respond to a hard link error 1500
in which the physical channel between two nodes may
become corrupted (e.g., a hard high or low pull), shorted, an
input/output /O issue, a physical chip error, or even physi-
cally broken. Specifically, FIG. 15 shows two nodes, node
1505 and node 1510, both of which are representative of the
nodes discussed thus far. In this example, node 1505 is a
transmitter node and node 1510 is the receiver node. In
accordance with the principles discussed thus far, node 1505
is sending any number of packets to the node 1510.

[0115] Now, however, there is a hard link error 1500 on the
channel or virtual channel. The ellipsis 1515 symbolizes the
lack of continued transmittal of packets over a period of
time. In some cases, the nodes 1505 and 1510 may not be
able to directly detect the occurrence of the hard link error
1500. As such, the embodiments configure the node 1510
(i.e. the receiver node) to include a so-called deadman timer
1520. This deadman timer 1520 may be triggered upon the
initial receipt of packets in a data stream. The deadman timer
1520 can continue to elapse time until a threshold amount of
time has been reached. This threshold amount of time can be
set to any value but will typically be a value that is
substantially larger than time values usually used to transmit
data streams. For example, the duration of the threshold time
period may be based on past historical trends for data
streams. For instance, the threshold time period may be set
to 2%, 3%, 4%, or perhaps even 5x the historically identified
average period of time in which data streams are transmitted.
From this, one will appreciate how the deadman timer 1520
may be used to identify when some error has occurred. That
is, if the threshold period of time used by the deadman timer
1520 elapses after initial receipt of a packet, then the node
1510 can determine that there may be a hard link error 1500.
[0116] In some cases, the deadman timer 1520 is triggered
when any packet is received via any one of the virtual
channels or other channels existing between the node 1505
and 1510. In some cases, the deadman timer 1520 may be
triggered in response to some other indication in the system,
where the indication indicates that the node 1510 should be
receiving packets but currently is not. Accordingly, the
receiver node may include the deadman timer 1520, which
helps the system identify hard link errors 1500 and which
triggers a timeout for receiving packets from the transmitter
node. In this manner, the hardware is able to automatically
detect hard link errors.

[0117] FIG. 15 also shows an optional retrain 1525 opera-
tion. When a bus/channel is initially used, it often undergoes
an initial training or calibration operation to identify an “i”
(i.e. current) that produces the lowest possible error rate on

US 2023/0030081 Al

the wire for data that is transmitted over the wire. For
instance, the calibration is performed to identify differences
between a “0” bit on the line and a “1” bit on the line. The
“i” mentioned above refers to the amount of current above
or below a threshold that is needed in order to represent a “1”
and how much current below the threshold is needed in order
to represent a “0.” When performing this initial calibration,
the system is able to skew or modify the wire, link, or
channel to try to lower the probability of error by making “i”
larger. The larger the “i,” the bigger the current difference is
required to represent a “1” or a “0.” Performing this cali-
bration helps prevent a “0” from being identified as being a
“1” and vice-versa on the wire.

[0118] Insome cases (though perhaps not for cases involv-
ing an actual break to the wire), the embodiments are able
to trigger the retrain 1525 operation to occur to re-train or
re-calibrate the “i”” value listed earlier. For instance, if the
node 1510 identifies a threshold number of packets that have
errors, then the node 1510 can trigger the retrain 1525
operation. In some specific implementations, the ECC may
be triggered to correct a control data type packet, and the
triggering of the ECC may be further configured to trigger
the retraining of the hard link. As discussed earlier, the ECC
(which may trigger the retraining process) can be utilized for
errors that are determined to be correctable based on the
design constraints of the ECC. For instance, if the ECC is
designed to correct single bit errors and detect double bit
errors, then single bit errors will be corrected and double bit
errors will be detected. Likewise, if the ECC is designed to
correct x-bit errors and detect x+1-bit errors, then x-bit
errors will be corrected and x+1-bit errors will be detected.
Accordingly, the disclosed principles should not be limited
to any specific type of ECC or error.

[0119] The retain 1525 operation can be scheduled to
occur during the vblank period that was mentioned earlier.
As discussed earlier, the vblank time often consumes about
20% of the time scheduled for a frame, so the retrain 1525
operation can be performed during this time period prior to
the illumination of a new frame.

[0120] Accordingly, the embodiments are able to use any
ECC-corrected errors to operate as a notice that the hard link
may need to be retrained in the manner described above.
This retraining process may be performed automatically
(e.g., perhaps by the hardware) during the vblank time
period in which the nodes/lasers are typically idle such that
no data transmissions are occurring on the virtual channels.

Example Method(s)

[0121] The following discussion now refers to a number of
methods and method acts that may be performed. Although
the method acts may be discussed in a certain order or
illustrated in a flow chart as occurring in a particular order,
no particular ordering is required unless specifically stated,
or required because an act is dependent on another act being
completed prior to the act being performed.

[0122] Attention will now be directed to FIG. 16, which
illustrates a flowchart of an example method 1600 that may
be performed by a computer system or even any of the
HMDs discussed thus far. Method 1600 is configured to
improve transmissions between a transmitter node and a
receiver node via a high-speed high-bandwidth link. These
improvements are achieved by recovering from an error
condition without requiring a re-transmittal of data across
the link. Additionally, the embodiments are able to isolate a

Feb. 2, 2023

misbehaving or error-prone channels (e.g., a physical chan-
nel or a virtual channel) so that the error-prone channel does
not impact other channels (virtual or otherwise). Notably,
the system (e.g., any type of computer system, including an
HMD) includes the transmitter node and the receiver node
connected via the hard link. By way of example, the trans-
mitter node may be the DPP chip 610 from FIG. 6, and the
receiver node may be the DMA-driving chip 615 of the
HMD 600. Of course, other types of nodes may be used as
well.

[0123] Initially, method 1600 includes an act (act 1605) of
initiating generation of a data stream that is to include
packets of different data types, including a control data type
and a non-control data type. For instance, the data stream
220 from FIG. 2 may be representative of the data stream in
act 1605, and the control data type packet 905 and the
non-control data type packet 910 from FIG. 9 are represen-
tative of the packets discussed in act 1605.

[0124] Method 1600 also includes an act (act 1610) of
generating a control data type packet (e.g., the control data
type packet 905 from FIG. 9) and selectively imposing error
correcting code (ECC) (e.g., ECC 925 from FIG. 9) on the
control data type packet. This ECC is configured to enable
errors occurring in the control data type packet to be
corrected at the receiver node. As a consequence, re-trans-
mittal of the control data type packet is prevented and the
hardware is able to automatically recover from the error
without a re-transmittal. The ECC on the control data type
packet is configured to perform single bit error correction
and double bit error detection (i.e. SECDED). In some cases,
the ECC is designed to perform x-bit error correction and
x+1-bit error detection, as recited earlier.

[0125] Method 1600 also includes an act (act 1615) of
causing the transmitter node to transmit the control data type
packet to the receiver node. For instance, FIG. 11 shows how
a control data type packet is transmitted over channel 1.
Additionally, each channel or virtual channel may have its
own corresponding data stream. One will appreciate how the
transmission may occur over a virtual channel or a physical
channel that is not virtual. Indeed, the embodiments may be
practiced using any type of channel without limit.

[0126] Upon receipt of the control data type packet at the
receiver node, a number of operations may be performed.
For instance, act 1620 shows how the method 1600 includes
performing error correction on the control data type packet
using the ECC when an error is detected. Alternatively, act
1625 shows how the method 1600 includes refraining from
performing error correction when no error is detected.
Notably, when ECC is performed, this ECC is performed
without impacting data streams that may be flowing across
the other channels or virtual channels. To clarify, by prac-
ticing the disclosed principles, an error on one channel (be
it virtual or otherwise) will not impact the operations of the
other channels.

[0127] In parallel or even in series with acts 1620 or 1625,
method 1600 shows an act (act 1630) of generating non-
control data type packets (e.g., non-control data type packet
910 from FIG. 9). The non-control data type packets include
pixel data (laser color, color intensity, shape of the laser
pulse, etc.) used to display content. Act 1630 also includes
selectively refraining from imposing the ECC on the non-
control data type packets.

[0128] For instance, FIG. 11 shows how ECC is imposed
on only the control data type packets while no ECC is

US 2023/0030081 Al

imposed on the non-control data type packets, which packets
typically represent a majority of the packets in the data
stream. The process of selectively refraining from imposing
the ECC on the non-control data type packets operates to
reduce bandwidth usage over the hard link as compared to
imposing ECC on the non-control data type packets.
Because there is usually only a single control data type
packet in each data stream, imposing the ECC on that packet
will have only a nominal impact on bandwidth and resource
usage.

[0129] The transmitter node is then caused (act 1635) to
begin transmitting the non-control data type packets to the
receiver node. Upon receipt of the non-control data type
packets at the receiver node and in response to corruption
(i.e. an error) in one or more of the non-control data type
packets being detected, method 1600 includes an act (act
1640) of allowing the corruption to persist.

[0130] Whereas an uncorrected error to the control data
type packet may result in an entire sweep of pixels being
corrupted and causing artifacts, an error to a non-control
data type packet often results in corruption of only a single
pixel of an HMD. A single pixel artifact is often not even
noticeable at the refresh rates used by the HMD. For
non-HMD implementations, corruption of the non-control
data type packets may also be negligible. The receiver node
is able to automatically recover when a single or multibit
error is detected in a particular one of the non-control data
type packets by accepting the error for a period of time (e.g.,
a time period associated with a sweep) and then resetting
error flags for a new sweep.

[0131] Accordingly, by performing the above operations,
the embodiments are able to selectively recover from some
errors in a data stream (e.g., errors occurring on the control
data type packet) without requiring re-transmittal of the
packets. Such operations enable the embodiments to satisfy
real-time requirements for data packets, thereby improving
the operational efficiency of the system while also reducing
bandwidth usage of the virtual channels.

[0132] FIG. 17 illustrates a flowchart of an example
method 1700 that may also be performed by any type of
computer system, including an HMD. Method 1700 is
configured to improve power usage by identifying when
packet transmissions across virtual channels are complete
and by causing nodes to enter a low power state/mode when
those packet transmissions are complete. The computer
system also includes a transmitter node and a receiver node
(e.g., any of the nodes discussed thus far) connected via a
hard link. Here, multiple virtual channels are initialized on
the hard link, and each virtual channel is associated with a
corresponding power-consuming node (e.g., perhaps a
laser).

[0133] Method 1700 initially includes an act (act 1705) of
initiating generation of data streams that are to include
packets, some of which include different types, including
data type packets and end condition type packets. For
instance, each data stream may include either only end
condition packets or, alternatively, a combination of one
control data type packet, any number of non-control data
type packets, and a selected number of end condition pack-
ets. To clarity, the data type packets may include a control
data type packet 905 of FIG. 9 and a non-control data type
packet 910 (or any number of such packets). The end
condition type packet may be the end condition packet 915
of FIG. 9. As discussed earlier, ECC may be imposed on one

Feb. 2, 2023

or more of the data type packets (e.g., the control data type
packets) but is not imposed on any of the end condition type
packets.

[0134] Method 1700 also includes an act (act 1710) of
generating the packets and causing the transmitter node to
transmit the packets to the receiver node over the virtual
channels. Each virtual channel transmits its own correspond-
ing data stream configured in the manner described above
such that each virtual channel transmits one or more of the
different types of packets.

[0135] For each respective virtual channel included in the
plurality of virtual channels, a number of operations are then
performed as represented by act 1715. Specifically, act
1715A includes identifying when a final data type packet has
been transmitted across each respective virtual channel.
After act 1715A, there is an act 1715B of causing the
transmitter node to transmit (for each respective virtual
channel) one or more end condition type packets. In some
implementations, the one or more end condition type pack-
ets that are transmitted include multiple end condition type
packets. Determining how many end condition type packets
are to be transmitted may be based on different factors,
including a statistical max error rate, detected environmental
conditions that may cause an increased likelihood of tran-
sient errors, and others. In some cases, at least 8 different end
condition type packets are transmitted for each respective
virtual channel. In some cases, different numbers of end
condition type packets may be sent for each of the different
virtual channels (e.g., one channel may have 4 end condition
type packets sent through it while another channel may have
16 end condition type packets sent through it). The redun-
dancy of sending multiple end condition type packets pro-
tects against errors that may occur for any one or more of
those packets.

[0136] Also after act 1715A, there is an act 1715C of
causing a corresponding power-consuming node that corre-
sponds to that respective virtual channel to transition from a
powered or active state/mode to a low power state/mode. An
example will be helpful.

[0137] FIG. 11 shows multiple virtual channels, each
transmitting its own corresponding data stream. A data
stream may include a combination of control data type
packets, non-control data type packets, and end condition
packets or, alternatively only end condition packets. In
accordance with act 1715A and with reference to ch. 1, the
embodiments are able to identify when the last non-control
data type packet is sent (e.g., in ch. 1 the last non-control
data type packet is the fifth from the right). In response to
that identification step, the embodiments are able to cause
the transmitter node to transmit an end condition packet (or
perhaps multiple end condition packets). Additionally, as
shown in FIG. 12, the embodiments are able to cause a
corresponding node (e.g., laser 1215A corresponds to ch. 1)
to transition from the active mode 1220 to a low power mode
1225 or even an off mode 1230.

[0138] Returning to FIG. 17, after the final or last data type
packets have been transmitted across all of the virtual
channels, method 1700 includes an act (act 1720) of causing
the transmitter node to send a final end condition type packet
to the receiver. The final end condition type packet informs
the receiver that the data stream is complete not only for that
specific virtual channel but for all of the other virtual
channels as well. The final end condition type packet men-
tioned in act 1720 is representative of the final end condition

US 2023/0030081 Al

type packet 1315 of FIG. 13. In some cases, the final end
condition type packet is transmitted over a particular virtual
channel that is last to transmit its non-control data type
packets as compared to other ones of the virtual channels
that also transmitted packets.

[0139] As discussed above, in some embodiments, the
power-consuming nodes that correspond to the plurality of
virtual channels are lasers. Furthermore, the final end con-
dition type packet may further inform the receiver node that
data streams on other ones of the virtual channels in the
plurality of virtual channels are also complete.

[0140] Some embodiments are able to perform a combi-
nation of the acts recited in both method 1600 of FIG. 16 and
method 1700 of FIG. 17. None of the disclosed features are
mutually exclusive and any feature recited in this disclosure
may be combined with any other feature, without limit.
[0141] Accordingly, the disclosed embodiments operate to
improve data transmissions and also to improve power
efficiency. To improve the data transmissions, the embodi-
ments selectively apply ECC to only a specific type of
packet and refrain from applying the ECC to other types of
packets. Doing so results in only a nominal increase to
resource usage yet results in substantial benefits because
now re-transmitting packets that have become corrupted can
be avoided. The embodiments also beneficially transition
nodes to low power states upon identifying conditions in
which specific types of packets are detected in a data stream.

Example Computer/Computer Systems

[0142] Attention will now be directed to FIG. 18 which
illustrates an example computer system 1800 that may
include and/or be used to perform any of the operations
described herein. Computer system 1800 may take various
different forms. For example, computer system 1800 may be
embodied as a tablet 1800A, a desktop or a laptop 1800B, a
wearable device (e.g., HMD 1800C, which is representative
of the HMDs discussed thus far), a mobile device, or any
other type of standalone device as represented by the ellipsis
1800D. Computer system 1800 may also be a distributed
system that includes one or more connected computing
components/devices that are in communication with com-
puter system 1800.

[0143] In its most basic configuration, computer system
1800 includes various different components. FIG. 18 shows
that computer system 1800 includes one or more processor
(s) 1805 (aka a “hardware processing unit”), input/output
1/0 1810, display circuitry 1815, and storage 1820.

[0144] Regarding the processor(s) 1805, it will be appre-
ciated that the functionality described herein can be per-
formed, at least in part, by one or more hardware logic
components (e.g., the processor(s) 1805). For example, and
without limitation, illustrative types of hardware logic com-
ponents/processors that can be used include Field-Program-
mable Gate Arrays (“FPGA”), Program-Specific or Appli-
cation-Specific Integrated Circuits (“ASIC”), Program-
Specific Standard Products (“ASSP”), System-On-A-Chip
Systems (“SOC”), Complex Programmable Logic Devices
(“CPLD”), Central Processing Units (“CPU”), Graphical
Processing Units (“GPU”), or any other type of program-
mable hardware.

[0145] The /O 1810 may include any type of input or
output device. Examples include, but are not limited to,
displays, keyboards, mouse, stylus, joystick, touchscreens,

Feb. 2, 2023

and so forth without limit. The display circuitry 1815 is
representative of the display circuitry 605 from FIG. 6.
[0146] As used herein, the terms “executable module,”
“executable component,” “component,” “module,” or
“engine” can refer to hardware processing units or to soft-
ware objects, routines, or methods that may be executed on
computer system 1800. The different components, modules,
engines, and services described herein may be implemented
as objects or processors that execute on computer system
1800 (e.g. as separate threads).

[0147] Storage 1820 may be physical system memory,
which may be volatile, non-volatile, or some combination of
the two. The term “memory” may also be used herein to
refer to non-volatile mass storage such as physical storage
media. If computer system 1800 is distributed, the process-
ing, memory, and/or storage capability may be distributed as
well.

[0148] Storage 1820 is shown as including executable
instructions (i.e. code 1825). The executable instructions
represent instructions that are executable by the processor(s)
1805 of computer system 1800 to perform the disclosed
operations, such as those described in the various methods.
[0149] The disclosed embodiments may comprise or uti-
lize a special-purpose or general-purpose computer includ-
ing computer hardware, such as, for example, one or more
processors (such as processor(s) 1805) and system memory
(such as storage 1820), as discussed in greater detail below.
Embodiments also include physical and other computer-
readable media for carrying or storing computer-executable
instructions and/or data structures. Such computer-readable
media can be any available media that can be accessed by a
general-purpose or special-purpose computer system. Com-
puter-readable media that store computer-executable
instructions in the form of data are “physical computer
storage media” or a “hardware storage device.” Computer-
readable media that carry computer-executable instructions
are “transmission media.” Thus, by way of example and not
limitation, the current embodiments can comprise at least
two distinctly different kinds of computer-readable media:
computer storage media and transmission media.

[0150] Computer storage media (aka “hardware storage
device”) are computer-readable hardware storage devices,
such as RAM, ROM, EEPROM, CD-ROM, solid state
drives (“SSD”) that are based on RAM, Flash memory,
phase-change memory (“PCM”), or other types of memory,
or other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium that can be
used to store desired program code means in the form of
computer-executable instructions, data, or data structures
and that can be accessed by a general-purpose or special-
purpose computer.

[0151] Computer system 1800 may also be connected (via
a wired or wireless connection) to external sensors (e.g., one
or more remote cameras) or devices via a network 1830. For
example, computer system 1800 can communicate with any
number devices or cloud services to obtain or process data.
In some cases, network 1830 may itself be a cloud network.
Furthermore, computer system 1800 may also be connected
through one or more wired or wireless networks to remote/
separate computer systems(s) that are configured to perform
any of the processing described with regard to computer
system 1800.

[0152] A “network,” like network 1830, is defined as one
or more data links and/or data switches that enable the

US 2023/0030081 Al

transport of electronic data between computer systems,
modules, and/or other electronic devices. When information
is transferred, or provided, over a network (either hardwired,
wireless, or a combination of hardwired and wireless) to a
computer, the computer properly views the connection as a
transmission medium. Computer system 1800 will include
one or more communication channels that are used to
communicate with the network 1830. Transmissions media
include a network that can be used to carry data or desired
program code means in the form of computer-executable
instructions or in the form of data structures. Further, these
computer-executable instructions can be accessed by a gen-
eral-purpose or special-purpose computer. Combinations of
the above should also be included within the scope of
computer-readable media.

[0153] Upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or
data link can be buffered in RAM within a network interface
module (e.g., a network interface card or “NIC”) and then
eventually transferred to computer system RAM and/or to
less volatile computer storage media at a computer system.
Thus, it should be understood that computer storage media
can be included in computer system components that also
(or even primarily) utilize transmission media.

[0154] Computer-executable (or computer-interpretable)
instructions comprise, for example, instructions that cause a
general-purpose computer, special-purpose computer, or
special-purpose processing device to perform a certain func-
tion or group of functions. The computer-executable instruc-
tions may be, for example, binaries, intermediate format
instructions such as assembly language, or even source code.
Although the subject matter has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described
features or acts described above. Rather, the described
features and acts are disclosed as example forms of imple-
menting the claims.

[0155] Those skilled in the art will appreciate that the
embodiments may be practiced in network computing envi-
ronments with many types of computer system configura-
tions, including personal computers, desktop computers,
laptop computers, message processors, hand-held devices,
multi-processor systems, microprocessor-based or program-
mable consumer electronics, network PCs, minicomputers,
mainframe computers, mobile telephones, PDAs, pagers,
routers, switches, and the like. The embodiments may also
be practiced in distributed system environments where local
and remote computer systems that are linked (either by
hardwired data links, wireless data links, or by a combina-
tion of hardwired and wireless data links) through a network
each perform tasks (e.g. cloud computing, cloud services
and the like). In a distributed system environment, program
modules may be located in both local and remote memory
storage devices.

[0156] The present invention may be embodied in other
specific forms without departing from its spirit or charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope
of the invention is, therefore, indicated by the appended

Feb. 2, 2023

claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:

1. A method for recovering from an error condition
without requiring a re-transmittal of data across a link, said
method comprising:

causing a data stream to include packets of different data

types, including a control data type and a non-control
data type;
generating a control data type packet and selectively
imposing error correcting code (ECC) on the control
data type packet, the ECC enabling errors that occur in
the control data type packet to be corrected without
re-transmittal of the control data type packet;

transmitting the control data type packet in the data
stream;

generating a non-control data type packet and selectively

refraining from imposing the ECC on the non-control
data type packet; and

transmitting the non-control data type packet in the data

stream.

2. The method of claim 1, wherein the ECC on the control
data type packet performs one of: single bit error correction
or double bit error detection.

3. The method of claim 1, wherein a length of data
included in any particular packet of the data stream is
restricted based on a buffer size of a virtual channel.

4. The method of claim 1, wherein the ECC is 8 bits per
control data type packet.

5. The method of claim 1, wherein the non-control data
type packet is one of a plurality of non-control data type
packets, and wherein the plurality of non-control data type
packets constitute a majority of packets transmitted in the
data stream.

6. The method of claim 1, wherein a deadman timer
triggers a timeout for receiving packets.

7. The method of claim 1, wherein an automatic recovery
occurs when a multibit error is detected in the non-control
data type packet.

8. The method of claim 1, wherein the ECC is further
configured to trigger retraining of the link.

9. The method of claim 1, wherein a bandwidth used by
the link is more than 4 times a bandwidth used by PCle.

10. The method of claim 1, wherein the non-control data
type packet includes pixel data used to display content.

11. A computer system that facilitates recovery from an
error condition without requiring a re-transmittal of data
across a link, said computer system comprising:

at least one processor; and

at least one hardware storage device that stores instruc-
tions that are executable by the at least one processor to
cause the computer system to:
cause a data stream to include packets of different data
types, including a control data type and a non-control
data type;
generate a control data type packet and selectively
impose error correcting code (ECC) on the control
data type packet, the ECC enabling errors that occur
in the control data type packet to be corrected
without re-transmittal of the control data type packet;

US 2023/0030081 Al

transmit the control data type packet in the data stream;

generate a non-control data type packet and selectively
refrain from imposing the ECC on the non-control
data type packet; and

transmit the non-control data type packet in the data
stream.

12. The computer system of claim 11, wherein the ECC on
the control data type packet performs single bit error cor-
rection.

13. The computer system of claim 11, wherein the ECC on
the control data type packet performs double bit error
detection.

14. The computer system of claim 11, wherein a length of
data included in any particular packet of the data stream is
restricted based on a buffer size of a virtual channel initial-
ized for the link.

15. The computer system of claim 11, wherein the non-
control data type packet includes pixel data used to display
content.

16. A method for facilitating power usage by identifying
when packet transmissions across virtual channels are com-
plete and by causing nodes to enter a low power mode when
those packet transmissions are complete, said method com-
prising:

causing data streams to include packets, some of which

are of different types, including a data type and an end
condition type;

15

Feb. 2, 2023

generating the packets and transmitting the packets over
a plurality of virtual channels;

for at least one virtual channel included in the plurality of
virtual channels, performing the following:

identifying when a final data type packet has been
transmitted across said at least one virtual channel;

transmitting, for said at least one virtual channel, one or
more end condition type packets; and

causing a corresponding power-consuming node that
corresponds to said at least one virtual channel to
transition from a first mode to a second mode.

17. The method of claim 16, wherein the power-consum-
ing nodes are lasers.

18. The method of claim 16, wherein error correcting code
(ECC) is imposed on a control data type packet included
among the data type packets but is not imposed on any of the
end condition type packets.

19. The method of claim 16, wherein the one or more end
condition type packets that are transmitted include multiple
end condition type packets.

20. The method of claim 19, wherein determining how
many end condition type packets are to be transmitted is
based on a statistical max error rate.

#* #* #* #* #*

