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FORCING STUCK BITS , WATERFALL BITS , making its way into large data storage devices . Spin transfer 
SHUNT BITS AND LOW TMR BITS TO torque magnetic random access memory ( " STT - MRAM ” ) , 
SHORT DURING TESTING AND USING such as the one illustrated in FIG . 1 , or spin transfer 
ON - THE - FLY BIT FAILURE DETECTION switching , uses spin - aligned ( polarized " ) electrons to 
AND BIT REDUNDANCY REMAPPING 5 change the magnetization orientation of the free layer in the 
TECHNIQUES TO CORRECT THEM magnetic tunnel junction . In general , electrons possess a 

spin , a quantized number of angular momentum intrinsic to 
CROSS - REFERENCE TO RELATED the electron . An electrical current is generally unpolarized , 

APPLICATIONS e.g. , it consists of 50 % spin up and 50 % spin down electrons . 
10 Passing a current though a magnetic layer polarizes elec 

The present application is a Continuation - in - Part of , trons with the spin orientation corresponding to the magne 
claims the benefit of and priority to U.S. application Ser . No. tization direction of the magnetic layer ( e.g. , polarizer ) , thus 
1 . 2,672 , filed Oct. 17 , entitled “ ON - THE - FLY produces a spin - polarized current . If a spin - polarized current 
BIT FAILURE DETECTION AND BIT REDUNDANCY is passed to the magnetic region of a free layer in the 
REMAPPING TECHNIQUES TO CORRECT FOR FIXED 15 magnetic tunnel junction device , the electrons will transfer 
BIT DEFECTS ” and hereby incorporated by reference in its a portion of their spin - angular momentum to the magneti 
entirety . zation layer to produce a torque on the magnetization of the 

free layer . Thus , this spin transfer torque can switch the 
FIELD magnetization of the free layer , which , in effect , writes either 

20 a “ 1 ” or a “ O ” based on whether the free layer is in the 
The present patent document relates generally to random parallel or anti - parallel states relative to the reference layer . 

access memory ( RAM ) . More particularly , the present patent Spin transfer torque magnetic random access memory 
document relates to failure detection and correction opera ( “ STT - MRAM ” ) has an inherently stochastic write mecha 
tions in magnetoresistive random - access - memory nism , wherein bits have certain probability of write failure 
( “ MRAM ” ) . The methods and devices described herein are 25 on any given write cycle . The write failures are most 
particularly useful in spin - transfer torque magnetic memory generally random , and have a characteristic failure rate . A 
( STT - MRAM ) devices . high write error rate ( WER ) may make the memory unreli 

able . The error rate can typically increase with age and 
BACKGROUND increased use of the memory . Bit - errors can result in system 

30 crashes , but even if a bit - error does not result in a system 
Magnetoresistive random - access memory ( “ MRAM ” ) is a crash , it may cause severe problems because the error can 

non - volatile memory technology that stores data through linger in the system causing incorrect calculations and 
magnetic storage elements . These elements are two ferro multiply itself into further data . This is problematic espe 
magnetic plates or electrodes that can hold a magnetic field cially in certain applications , e.g. , financial , medical , auto 
and are separated by a non - magnetic material , such as a 35 motive , etc. and is generally commercially unacceptable . 
non - magnetic metal or insulator . This structure is known as The corrupted data can also propagate to storage media and 
a magnetic tunnel junction ( “ MTI ” ) . FIG . 1 illustrates an grow to an extent that is difficult to diagnose and recover . 
exemplary MRAM cell 110 comprising a MTJ 120. In Accordingly servers and other high reliability environ 
general , one of the plates has its magnetization pinned ( i.e. , ments have conventionally integrated Error Correcting Code 
a “ reference layer ” or “ fixed layer ” 130 ) , meaning that this 40 ( ECC ) into their memory subsystems to protect against the 
layer has a higher coercivity than the other layer and requires damage caused by such errors . ECC is typically used to 
a larger magnetic field or spin - polarized current to change enhance data integrity in error - prone or high - reliability 
the orientation of its magnetization . The second plate is systems . Workstations and computer server platforms have 
typically referred to as the free layer 140 and its magneti buoyed their data integrity for decades by adding additional 
zation direction can be changed by a smaller magnetic field 45 ECC channels to their data buses . 
or spin - polarized current relative to the reference layer . Typically ECC adds a checksum stored with the data that 
MRAM devices can store information by changing the enables detection and / or correction of bit failures . This error 

orientation of the magnetization of the free layer . In par correction can be implemented , for example , by widening 
ticular , based on whether the free layer is in a parallel or the data - bus of the processor from 64 bits to 72 bits to 
anti - parallel alignment relative to the reference layer , either 50 accommodate an 8 - bit checksum with every 64 - bit word . 
a “ 1 ” or a “ O ” can be stored in each MRAM cell as shown The memory controller will typically be equipped with logic 
in FIG . 1. Due to the spin - polarized electron tunneling to generate ECC checksums and to verify and correct data 
effect , the electrical resistance of the cell change due to the read from the memory by using these checksums . In con 
orientation of the magnetic fields of the two layers . The ventional memories using STT - MRAM error correction an 
electrical resistance is typically referred to as tunnel mag- 55 error correcting code ( ECC ) , e.g. , BCH ( Bose - Chaudhuri 
netoresistance ( TMR ) which is a magnetoresistive effect that Hocquenghem ) is used to correct errors . 
occurs in a MTJ . The cell's resistance will be different for While conventional error correction , e.g. , ECC are effec 
the parallel and anti - parallel states and thus the cell's tive , they have certain drawbacks . For example , the error 
resistance can be used to distinguish between a “ 1 ” and a correction using ECC is not performed in real - time . In other 
“ O ” . One important feature of MRAM devices is that they 60 words , the ECC correction may be performed during a read 
are non - volatile memory devices , since they maintain the operation , but the error is not corrected as the data is written 
information even when the power is off . The two plates can into the STT - MRAM memory cell . 
be sub - micron in lateral size and the magnetization direction Further , other conventional error correction schemes may 
can still be stable with respect to thermal fluctuations . require considerable overhead because the addresses / loca 
MRAM devices are considered as the next generation 65 tions of all the bad bits in the memory chip need to be stored 

structures for a wide range of memory applications . MRAM prior to performing the correction . The Content Addressable 
products based on spin torque transfer switching are already Memories ( CAMs ) required to store such addresses and 



US 10,489,245 B2 
3 4 

locations occupy significant surface area and are expensive dant bits used in place of the defective bits . In other words , 
because of the high overhead involved in saving the bit instead of using the defective bits , the correct data is written 
addresses / locations for all the failing bits . Storing each into one of the redundant bits for that codeword . In this way , 
address of a defective bit in a CAM also acts as a limit on the defects are detected and corrected in real - time using 
the number of addresses that can potentially be stored . 5 embodiments of the present invention . 
Further , storing addresses of bad bits and then replacing In one embodiment , the redundant bits are also used to 
them with good bits is also not an optimal scheme for correct defective bits when performing a read operation . 
STT - MRAM memories because the defect rate is typically During a read operation , a codeword is simultaneously read 
high and too much memory would be required to store the and any shorted or open bits in the word are on - the - fly 
addresses of all the bad bits . Also , this error mitigation 10 mapped out . The defective bits in the word are replaced 
scheme does not work for defects that are discovered using the redundant bits using the same mapping scheme or 
on - the - fly ( e.g. replacing the bad bits with good bits may algorithm that was used in the prior write operation . It is 
have only happened at the tester phase in manufacturing ) . appreciated that once the defective bits are replaced in 

Further , typically , error schemes like ECC can detect and accordance with the above technique , ECC algorithms can 
correct errors during a read operation , but it does not write 15 still be applied to the resultant word to detect and correct for 
the data back into the memory array . This behavior causes transient bit errors that may exist in the data word in 
the error to stay resident inside the memory array across accordance with embodiments of the present invention . 
multiple accesses and may contribute to a memory failure at In one embodiment , a method for correcting bit defects in 
a later time when additional errors occur . For example , if the a STT - MRAM memory is disclosed . The method comprises 
memory is used for longer periods of time , there is an 20 executing a read before write operation in the STT - MRAM 
increased probability of a second failure occurring in the memory , wherein the STT - MRAM memory comprises a 
same ‘ word’as a first failure . The first failure may lie silently plurality of codewords , wherein each codeword comprises a 
for years as the internal ECC logic repairs the error every plurality of redundant bits . The read before write operation 
time the word is read . When a second ( or third or comprises reading a codeword and on - the - fly mapping 
fourth ) error hits the same word , the internal ECC 25 defective bits in the codeword . Further , the method com 
circuitry is unable to repair the word and corrupted read data prises replacing the one or more defective bits in the 
is provided to the system . codeword with a corresponding one or more redundant bits 

Additionally , ECC is not efficient for correcting high fixed and executing a write operation with corresponding redun 
defect rates . This is particularly problematic for memories dant bits in place of the defective bits . The selection of the 
comprising STT - MRAM that typically have higher failure 30 redundant bits to use in place of the defective bits in the 
rates as compared to other memories . FIG . 2 illustrates the codeword is performed in accordance with a defect bit 
number of codewords with less than 1 bit ECC left reserved mapping scheme . 
as a function of the defect rate . As seen in FIG . 2 , for a 1 % In another embodiment , a method for correcting bit 
defect rate , using a BCH - 3 ECC scheme , over a 100 words defects in a STT - MRAM memory is discussed . The method 
need repair . Conventionally , ECC is appropriate for appli- 35 comprises executing a read operation in the STT - MRAM 
cations where the defect rates are approximately 50 parts per memory , wherein the STT - MRAM memory comprises a 
million ( ppm ) or less . For memories with higher defect rates plurality of codewords , wherein each codeword comprises a 
ECC and other error correction schemes become problem plurality of redundant bits , and wherein the read operation 
atic . Accordingly , in memory applications comprising STT comprises : ( a ) reading a codeword ; and ( b ) mapping defec 
MRAM where defect rates are higher , using only conven- 40 tive bits in the codeword . Further , the method comprises 
tional error mitigation schemes like ECC results in replacing the one or more defective bits in the codeword 
inefficiencies . with a corresponding one or more redundant bits , wherein 

the defective bits are replaced with the redundant bits based 
BRIEF SUMMARY OF THE INVENTION on relative positions of the defective bits in accordance with 

45 a mapping scheme . 
Accordingly , a need exists for a system and method that In a different embodiment , an apparatus for correcting bit 

provides real - time detection and correction of STT - MRAM defects in a STT - MRAM memory is disclosed . The appa 
memory cells and that does not require storing any defective ratus comprises a controller and an STT - MRAM memory 
bit locations . In one embodiment , the present invention comprising a plurality of codewords , wherein each code 
provides an effective method of replacing bit defects using 50 word comprises a plurality of redundant bits , and wherein 
redundant bits added to each codeword of the memory the controller is configured to perform a write operation , 
without incurring a large overhead to peripheral circuits . wherein the write operation comprises executing a read 
Rather than storing a map of the locations of the bad bits , before write operation in the STT - MRAM memory . The read 
embodiments utilize an algorithm to map bad bits of a before write operation comprises : ( a ) reading a codeword ; 
particular codeword to the associated redundancy bits allo- 55 and ( b ) mapping on - the - fly defective bits in the codeword to 
cated to the codeword . redundant bits allocated to the codewords . Further , the write 

In one embodiment , the present invention comprises a operation comprises replacing the one or more defective bits 
memory wherein multiple redundant bits are added to each in the codeword with a corresponding one or more redun 
codeword of the memory . In other words , each codeword of dant bits and executing a write operation with corresponding 
the memory comprises multiple redundant bits , e.g. , 4 , 6 , 8 60 redundant bits in place of the defective bits . 
or more redundant bits per word . Prior to performing a write Embodiments of the present invention include any of the 
operation during memory usage , a codeword is read and any above described embodiments in combination with perform 
shorted ( short - circuited ) or open ( open - circuited ) bits in the ing ECC error correction on the read data word to defect and 
codeword are mapped out on - the - fly . Any shorted or open correct for transient errors therein . 
bits in the codeword that are defective are replaced with one 65 In one embodiment , a method for correcting bit defects in 
of the redundant bits in accordance with a mapping algo a memory array is disclosed . The method comprises deter 
rithm . The write operation is then executed with the redun mining , during a characterization stage , a resistance distri 
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bution for the memory array by classifying a state of each reducing TMR requirements for the sense amplifiers in 
bit - cell in the memory array , wherein the memory array accordance with embodiments of the present invention . 
comprises a plurality of codewords , wherein each codeword FIG . 8A shows a flowchart of an exemplary method for 
comprises a plurality of redundant bits . The method further correcting bit defects in a STT - MRAM memory array during 
comprises determining bit - cells of the resistance distribution 5 a write operation in accordance with embodiments of the 
that are ambiguous , wherein ambiguous bit - cells have present invention . 
ambiguous resistances . Further , the method comprises forc FIG . 8B shows a flowchart of an exemplary method for 
ing the ambiguous bit - cells to short circuits and replacing correcting bit defects in a STT - MRAM memory array during 
each short - circuited ambiguous bit - cell with a correspond a read operation in accordance with embodiments of the 

present invention . ing redundant bit from an associated codeword . FIG . 9 illustrates an apparatus for correcting bit defects in In another embodiment , an apparatus for correcting bit a STT - MRAM memory array in accordance with embodi defects is disclosed . The apparatus comprises a processor ments of the present invention . and a memory array comprising a plurality of codewords , FIG . 10 shows a flowchart 1010 of an exemplary method wherein each codeword comprises a respective plurality of for correcting bit defects in a STT - MRAM memory array in 
redundant bits . Further , the processor is configured to : ( a ) 15 accordance with embodiments of the present invention . 
determine , during a characterization stage , a resistance dis FIG . 11 shows a flowchart 1110 of another exemplary 
tribution for the memory array by classifying a state of each method for correcting bit defects in a STT - MRAM memory 
bit - cell in the memory array ; ( b ) determine bit - cells of the array in accordance with embodiments of the present inven 
resistance distribution that are ambiguous , wherein ambigu tion . 
ous bit - cells have ambiguous resistances ; ( c ) force the 20 
ambiguous bit - cells to short circuits ; and ( d ) replace each DETAILED DESCRIPTION OF THE 
short - circuited ambiguous bit - cell with a corresponding INVENTION 
redundant bit from an associated codeword . 

In a different embodiment , a method for correcting bit Reference will now be made in detail to the various 
defects in a memory is disclosed . The method comprises 25 embodiments of the present disclosure , examples of which 
determining , during a characterization stage , a resistance are illustrated in the accompanying drawings . While 
distribution for a memory array by classifying a state of each described in conjunction with these embodiments , it will be 
bit - cell in the memory array , wherein the memory array understood that they are not intended to limit the disclosure 
comprises a plurality of codewords , wherein each codeword to these embodiments . On the contrary , the disclosure is 
comprises a plurality of redundant bit - cells . Further , the 30 intended to cover alternatives , modifications and equiva 
method comprises determining bit - cells of the resistance lents , which may be included within the spirit and scope of 
distribution that are defective . The method also comprises the disclosure as defined by the appended claims . Further 
forcing defective bit - cells to short circuits and replacing more , in the following detailed description of the present 
each short - circuited defective bit - cell with a corresponding disclosure , numerous specific details are set forth in order to 
redundant bit - cell from an associated codeword . 35 provide a thorough understanding of the present disclosure . 

The following detailed description together with the However , it will be understood that the present disclosure 
accompanying drawings will provide a better understanding may be practiced without these specific details . In other 
of the nature and advantages of the present invention . instances , well - known methods , procedures , components , 

and circuits have not been described in detail so as not to 
BRIEF DESCRIPTION OF THE DRAWINGS 40 unnecessarily obscure aspects of the present disclosure . 

Some portions of the detailed descriptions that follow are 
Embodiments of the present invention are illustrated by presented in terms of procedures , logic blocks , processing , 

way of example , and not by way of limitation , in the figures and other symbolic representations of operations on data bits 
of the accompanying drawings and in which like reference within a computer memory . These descriptions and repre 
numerals refer to similar elements . 45 sentations are the means used by those skilled in the data 

FIG . 1 illustrates an exemplary MRAM cell comprising a processing arts to most effectively convey the substance of 
magnetic - tunnel - junction . their work to others skilled in the art . In the present 

FIG . 2 illustrates the number of codewords with less than application , a procedure , logic block , process , or the like , is 
1 bit ECC left reserved as a function of the defect rate . conceived to be a self - consistent sequence of steps or 

FIG . 3 illustrates the manner in which redundant bits are 50 instructions leading to a desired result . The steps are those 
mapped to defective bits in accordance with an embodiment utilizing physical manipulations of physical quantities . Usu 
of the present invention . ally , although not necessarily , these quantities take the form 

FIG . 4 graphically illustrates the distribution of the resis of electrical or magnetic signals capable of being stored , 
tance states across an STT - MRAM chip array . transferred , combined , compared , and otherwise manipu 

FIG . 5 illustrates the behavior of the defect rate in a 55 lated in a computer system . It has proven convenient at 
memory chip as more redundant bits per word are added in times , principally for reasons of common usage , to refer to 
accordance with an embodiment of the present invention . these signals as transactions , bits , values , elements , symbols , 

FIG . 6 illustrates the manner in which a malfunction can characters , samples , pixels , or the like . 
occur if a bit shorts during a read operation in accordance 
with an embodiment of the present invention . Forcing Stuck Bits , Waterfall Bits , Shunt Bits and 

FIG . 7A graphically illustrates the manner in which the Low TMR Bits to Short During Testing and Using 
distribution of the resistance states across an STT - MRAM On - The - Fly Bit Failure Detection And Bit 
chip array wherein there is overlap between the high and low Redundancy Remapping Techniques to Correct 
resistance states . Them 

FIG . 7B graphically illustrates the manner in which the 65 
distribution of the resistance states across an STT - MRAM Embodiments of the present invention provide real - time 
chip array changes by shorting marginal TMR bits or by detection and correction of MRAM memory cells , and in 

60 
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particular , STT - MRAM cells . In one embodiment , the pres defective bits 330 , 331 , 332 and 333 on - the - fly . Note that the 
ent invention provides an effective method of replacing mapping of the defective bits is conducted simultaneously 
defects using redundant bits added to each codeword of the with the read operation . In one embodiment , the mapping 
memory without incurring a large overhead to peripheral may be performed substantially simultaneously with the 
circuits . 5 read operation , e.g. , in the same cycle with a slight delay or 
As used herein , the term “ data word ” shall apply to the in a subsequent cycle . 

informational bits that are to be written to a memory cell or The defective bits can be identified by their resistance read from a memory cell . The term “ codeword ” shall apply which is detected by sense amplifiers used during the read . to the memory storage elements that store the data word . The 
term “ redundant bits ” shall apply to additional memory 10 is done simultaneously to avoid paying a time penalty . The codeword is read and the mapping of the defective bits 
storage elements that each codeword is supplemented with 
to store the correct state for defective bits within the asso Further , note that performing a read before the write is 

advantageous because the read cycle can be used to deter ciated codeword . 
As explained above , conventional methods of error cor mine which bits need to change when performing the write . 

rection have shortcomings that make them less efficient 15 Accordingly , a power savings can also result from only 
especially when addressing higher error rates for STT writing the bits in a codeword that need to change . In other 
MRAM . For example , the error correction may not be words , during the write cycle , only the bits that need to 
performed in real time . Further , the error correction scheme change will be flipped . 
may be able to detect and correct errors during a read Note that in rare instances it may not be efficient to 
operation , but it does not write the correct data back into the 20 perform a read prior to a write . In such cases , the mapping 
memory array . This behavior causes the error to stay resident scheme that was determined in a prior read cycle may , in one 
inside the memory array across multiple accesses and may embodiment , be used to perform the write operation ( with 
contribute to a memory failure at a later time when addi out conducting an immediately preceding read ) , e.g. , where 
tional errors occur . the last read was performed for the same location prior to 

Additionally , conventional error correction schemes are 25 attempting a write operation . 
not efficient for correcting high fixed defect rates . This is In one embodiment , a verify operation is performed after 
particularly problematic for memories comprising STT the write to ensure that no endurance fails happened during 
MRAM that typically have higher failure rates as compared the write . If an endurance failure , e.g. , a bit shorting during 
to other memories . One reason conventional schemes are the write operation , etc. occurs during the write operation , it 
inefficient for correcting high defect rates is because of the 30 will trigger a failure during the verify operation . In other 
high overhead required to store addresses of all the defective words , it will signal that the write operation failed . 
bit locations . Accordingly , as described above , conventional The shorted or open bits in the codeword , namely bits 
defective bit mapping and replacement schemes consume a 330-333 , are subsequently replaced with one of the redun 
significant amount of space , power and speed . With the dant bits in accordance with a mapping scheme 375. In other 
defect rates of STT - MRAM , the overhead associated with 35 words , the defective bits are swapped out with the redundant 
storing addresses for all the defective bit locations would be bits . In one embodiment , a multiplexer network is used to 
prohibitively high . perform this swapping operation . In one embodiment , one 

In order to address the shortcomings of conventional error multiplexer network per bank of sense amplifiers would be 
correction schemes , embodiments of the present invention required to implement this scheme . 
comprise a memory wherein multiple redundant bits are 40 In one embodiment , in the mapping scheme 375 , the 
added to each codeword of the memory . In other words , each redundant bits are mapped to the defective bits on the basis 
codeword of the memory comprises multiple redundant bits , of relative positions of the defect . In other words , the first 
e.g. , 4 , 6 , 8 or more redundant bits per word . redundant bit ( the left - most bit R1 in FIG . 3 ) gets mapped 

FIG . 3 illustrates the manner in which redundant bits are to the earliest defective bit in codeword 300 ( bit 330 in FIG . 
mapped to defective bits in accordance with an embodiment 45 3 ) . The second redundant bit R2 will get mapped to the 
of the present invention . FIG . 3 illustrates an exemplary second defective bit in codeword 300 ( bit 331 ) . Similarly , 
word 300 that comprises 4 defective bits , namely , bit 330 redundant bit R3 gets mapped to bit 332 while redundant bit 
( short circuit ) , bit 331 ( short circuit ) , bit 332 ( open circuit ) R4 gets mapped to bit 333. Another relatively simple map 
and bit 333 ( short circuit ) . Note that embodiments of the ping scheme would map the redundant bits to the defective 
present invention are particularly suited for correcting 50 bit in a right to left orientation . For example , bit R4 would 
defects related to open circuits ( “ opens ” ) and short circuits be mapped to shorted bit 330 , bit R3 would be mapped to 
( “ shorts ” ) , e.g. , defective bits . For example , short circuited shorted bit 331 , bit R2 would be mapped to open bit 332 and 
bits are a common occurrence in MRAMs and , accordingly , bit R1 will be mapped to shorted bit 333. Because of the 
embodiments of the present invention provide an effective relative simplicity of these mapping schemes , they do not 
way for curing bit defects related to short circuits . Codeword 55 require storing any complex algorithms within the memory 
300 also comprises 4 redundant bits , R1 , R2 , R3 and R4 chip . Note , however , that some logic in the memory chip 
associated with codeword 300. Typically , each codeword in may need to be dedicated to implement even a simple 
the memory will comprise the same number of additional mapping scheme . 
redundant bits . In other embodiments , other replacement schemes or 

Prior to performing a write operation to a codeword , 60 algorithms for mapping redundant bits to the defective bits 
embodiments of the present invention would first read the can also be used to improve efficiency . Such schemes would 
codeword on which the write operation is to be performed . be more complex than simply mapping bits on the basis of 
For example , the reading may be in accordance with a relative positions of the defects and may require program 
read - before - write ( RBW ) operation . Accordingly , codeword ming and storing a corresponding algorithm into the 
300 is read and the shorted ( short - circuited ) or open ( open- 65 memory chip . In some embodiments , however , the replace 
circuited ) bits in the codeword are mapped out . In other ment scheme may be simpler schemes that can be imple 
words , the read operation maps out the locations of the mented with additional logic . 
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Subsequently , the write operation is then executed with the redundant bits using the same mapping scheme that was 
the redundant bits used in place of the defective bits to used in the prior write operation in order to determine the 
receive the write data . In other words , instead of using the data word to be read out . Note that in order to speed up the 
defective bits , the correct data is written into one of the read operation , both the codeword is simultaneously read 
redundant bits for that codeword . Further , in order to save 5 and any mapping of shorted and open bits is performed at the 
power , the write is disabled for the defective bits . In other same time . If speed is not a consideration , then , in one 
words , the write operation does not attempt to write to the embodiment , the reading of the codewords and the mapping 
defective bits . In this way , the defects are advantageously of the defective bits can be separate operations . 
detected and corrected in real - time using embodiments of In one embodiment , if a codeword uses up its allocation 
the present invention . The local bit redundancy scheme 10 of redundant bits , it may borrow redundant bits from neigh 
advantageously replaces defects at the bit level in real - time boring words . For example , if 4 redundant bits are allocated 
without incurring a large overhead in peripheral circuits . per codeword and if a word has more than 4 defective bits , 
Unlike prior error correction schemes that incurred a sig in one embodiment , it may be possible for the codeword to 
nificant overhead as a result of needing to store defective bit borrow vacant redundant bits from neighboring codewords . 
addresses to correct at a later time , embodiments of the 15 This may be possible , for example , if multiple words can be 
present invention advantageously correct bit defects in read simultaneously ( or in the same cycle ) . In such cases , 
memory without the need for storing any defective bit redundant bits may be borrowed from other words that are 
addressees . Further , unlike prior error mitigation schemes read in the same cycle . 
that would perform detection and correction procedures FIG . 4 graphically illustrates the distribution of the resis 
during the testing process prior to shipping , embodiments of 20 tance states across an STT - MRAM chip array . This is a 
the present invention perform detection and correction of resistance distribution . As discussed above , MRAM devices 
errors in real - time ( or in situ ) . store information by changing the orientation of the mag 

In one embodiment , the RBW operation is performed netization of the free layer . In particular , based on whether 
simultaneously or partially simultaneously with the write the free layer is in a parallel or anti - parallel alignment 
operation in order to decrease the overall length of the write 25 relative to the reference layer , either a “ 1 ” or a “ O ” can be 
operation . stored in each MRAM cell as shown in FIG . 1. Due to the 

Embodiments of the present invention also advanta spin - polarized electron tunneling effect , the electrical resis 
geously mitigate errors in the memory chip over the lifetime tance of the cell change due to the orientation of the 
of the chip . In other words , the error correction scheme is not magnetic fields of the two layers . The cell's resistance will 
merely limited to a particular duration of time , e.g. , during 30 be different for the parallel and anti - parallel states and thus 
testing of the chip . If a bit in the memory fails after the chip the cell's resistance can be used to distinguish between a “ 1 ” 
has already shipped and is in use by an end user , the error and a “ O ” . Typically , if the free layer is in parallel alignment 
mitigation scheme will detect the defective bit during a relative the reference layer ( low resistance state , Rlow 
pre - read for a write operation ( or a verify operation ) and 535 ) , this is considered to mean “ 1 ” while if alignment is 
replace the defective bit in the word with a redundant bit . In 35 anti - parallel the resistance will be higher ( high resistance 
other words , the error correction scheme of the present state , R - high 540 ) and this means “ O. " 
invention can detect defective bits on - the - fly over the life As seen in FIG . 4 , memory cells in the STT - MRAM chip 
time of the chip and replace the defective bits with redundant array be distributed so that the cells can typically have one 
bits ( provided there are redundant bits remaining ) . Note , that of four resistance states : R - high 540 , R - low 535 , R - open 545 
it is not uncommon for bits to be shorted out over the 40 or R - short 530. Defective bits that are short - circuited ( and 
lifetime of an MRAM chip . Accordingly , it is advantageous correspond to R - short 530 ) or open - circuited ( and corre 
to have an error correction scheme that accommodates spond to R - open 545 ) can be identified because their resis 
defects that develop over time in a chip . If a newly discov tance will either be significantly lower in the case of 
ered defective bit is present , then the mapping scheme will R - short ) or higher in the case of R - open ) than the typical 
remap the redundant bits to the defective bits in accordance 45 resistances of the R - low and R - high states respectively . 
with the mapping scheme . In one embodiment , in order for the additional states 
By comparison , conventional redundancy schemes store R - open and R - short to be identified during a typical STT 

information regarding the locations of the defective bits in MRAM read operation , additional sense amplifiers are 
CAMs and find and replace the defective portions of the incorporated into the memory chip to perform the resistance 
memory only during the testing process . Embodiments of 50 measurements . A sense amplifier is one of the elements 
the present invention perform correction over the lifetime of which make up the circuitry on a memory chip and are well 
the chip without storing any such locations / addresses of the known . A sense amplifier is part of the read circuitry that is 
defective bits . Further , the correction of the present embodi used when data is read from the memory ; its role is to sense 
ment is performed on - the - fly at read and write speeds . the low power signals from a bit - line that represents a data 
Replacing defective bits over the lifetime of the chip with 55 bit ( 1 or 0 ) stored in a memory cell , and amplify the small 
functional redundant bits also increases the lifetime of the voltage swing to recognizable logic levels so the data can be 
chip . For example , if a bit is shorted after the memory chip interpreted properly by logic outside the memory . 
has already been shipped , it will simply be replaced by a Conventionally , there is one sense amplifier for each 
heretofore unused redundant bit . Accordingly , the lifetime of column of memory cells , so there are usually hundreds or 
the chip is increased because a new redundant bit replaces an 60 thousands of identical sense amplifiers on a modern memory 
older bit which became defective during use . chip . However , in conventional memories , the sense ampli 

In one embodiment , the redundant bits are also used to fiers may only have a single sense reference . In other words , 
correct defective bits when performing a read operation in the sense amplifiers in conventional memories may only be 
accordance with a mapping scheme . During a read opera able to distinguish between a “ 1 ” and a “ O ” . 
tion , a codeword is simultaneously read and any shorted or 65 Embodiments of the present invention , however , require 
open bits in the word are mapped out based on their sensing of additional states ( namely R - open and R - short ) 
resistance . The defective bits in the word are replaced using and , therefore , may require additional sense amplifiers for 
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each column of memory cells so that during a read opera A typical STT - MRAM may contain certain memory cells 
tion , all four states can be distinguished from each other . As that may not clearly fall within any of the states illustrated 
discussed in connection with FIG . 3 , a read operation needs in FIG . 4. In other words , the resistance of certain STT 
to read the bits in the codeword and map out all the defective MRAM cells may be ambiguous preventing them from 
bits within the codeword . In order for the read operation to 5 being easily classified as either a high , low , short or open . 
distinguish between the four potential states ( namely , a “ 1 ” , For example , if the resistance of a cell is in close proximity 
a “ O ” , a short circuit and an open circuit ) , additional sense to any of the sense points , e.g. , points 432 , 432 or 433 , it may 
amplifiers are incorporated in the circuitry for the memory be difficult to classify the state of that cell . Such defects , 
chip . Accordingly , with the additional sense amplifiers , which are neither shorts nor open circuits , are not detectable 
multiple sense points , e.g. , sense points 432 , 431 and 433 10 during user read or verify operations . Examples of such 
may be detected . To detect the additional sense points , defects include stuck bits , waterfalls , shunts and low tunnel 
embodiments of the present invention may , for example , magnetoresistance ( TMR ) bits . 
require two different extra sense amplifiers per bit ( or per In one embodiment of the present invention , all cells with 
column , depending on the structure of the memory ) . Note resistances that cannot be easily classified are converted or 
that sense point or sense reference 431 can be determined 15 forced into short circuited cells during the testing or char 
using a simple calculation : ( ( R - high + R - low ) / 2 ) . acterization stage . Shorting such problematic bits allows 

The various reference points ( e.g. , 431 , 432 and 433 ) can them to be replaced by redundant bits , thereby , precluding 
be set simultaneously so that during a read cycle , the them from being corrected using a more expensive ECC 
different states can be mapped out at the same time . Alter process . In one embodiment , during the testing phase , a test 
natively , if time is not a constraint , the different reference 20 algorithm is executed that determines the number of such 
points can be set serially so that the detection of the various bits and converts them into shorts . 
states is done serially . For example , there may be certain shunted bits in the 

FIG . 5 illustrates the behavior of the defect rate in a region between Rlow 535 and Rshort 530. These bits are not 
memory chip as more redundant bits per word are added in short circuits , however , they are also not completely func 
accordance with an embodiment of the present invention . In 25 tional bits . As a result of certain process anomalies , these 
FIG . 5 , “ F ” represents the number of redundant bits added bits may not be capable of a full swing between Rhigh and 
per code word . As seen in FIG . 5 , when F = 4 ( each code word Rlow . In other words , while the bits may exhibit some 
has 4 redundant bits ) , the defect rate falls lower than 10-10 . switching behavior , they are not capable of exhibiting a full 
With additional redundant bits , e.g. , 6 bits , the defect rate TMR swing in a way that the sense amplifier can clearly 
falls lower than 10-15 but there will be a trade - off between 30 distinguish between the two states of the bit and classify 
a low defect rate and efficiency with increasing number of them as either Rhigh or Rlow . In one embodiment , the 
redundant bits because processing a higher number of redun shunted bits are shorted out so that they can be replaced by 
dant bits takes longer . a corresponding redundant bit . 

In one embodiment , the redundant bits of the present In certain cases , there may be defective bits that skew the 
invention can be combined with other error mitigation 35 WER of the MRAM device . For example , in the case of 
schemes to further reduce defect rates . For example , a magnetic defects , there may be cases where certain bits have 
hybrid scheme may utilize both redundant bits and BCH2 or a defect rate that are much higher than the other bits in the 
BCH3 error correction . For example BCH2 can be com MRAM device . One bit in the memory may , for example , 
bined with redundant bits so that each word in the memory have a high defect rate of 10 - s while other bits in the same 
comprises 32 data - bits , 12 parity bits for BCH2 and 6 40 device have an average defect rate of 10-6 . In order to 
redundant bits . Bit redundancy is used to correct any word prevent the bits with the high defect rate from skewing the 
that has a defect in it . BCH2 error correction is then used to WER , in one embodiment , these bits can be shorted out and 
correct data words which are not completely cleaned up by replaced with redundant bits , e.g. , during memory operation . 
bit redundancy . The hybrid schemes are also effective By way of further example , certain bits may be classified 
because using an ECC scheme , e.g. , BCH2 , BCH3 , Reed 45 as waterfall bits . These bits are typically stuck bits that do 
Solomon , Hamming code and Low Density Parity Check not switch at all either because of a process or magnetic 
( LDPC ) , etc. in conjunction with redundant bits may be able defect . They may be either stuck high or stuck low . These 
to correct for errors , e.g. , write errors , data retention failures , bits may be found in the middle of the distribution , e.g. , 
transient errors , etc. that cannot be cleaned up using only either in the middle of the Rlow distribution 535 or the 
redundant bits . Accordingly , while redundant bits may be 50 middle of the Rhigh distribution 540. Low TMR bits may 
effective at correcting for hard defects within a codeword , exhibit the same behavior as waterfall bits . In other words , 
the error correction process can be supplemented with an low TMR bits may also be either stuck high or stuck low . 
ECC scheme to correct for other types of errors , e.g. , Low TMR bits can also be caused by either a magnetic or 
transient errors that are not caused by hard defects . The ECC process defect . In one embodiment , the waterfall or low 
scheme will typically be applied to a data word after the 55 TMR bits are shorted out so that they can be replaced by a 
redundant bit replacement scheme has already been imple corresponding redundant bit . 
mented to replace bit defects in the corresponding codeword One of the metrics monitored for the bits in an MRAM 
with corresponding redundant bits . Further , instead of using device is retention . The retention of the bit is related to the 
an expensive type of ECC , e.g. , a 4 - bit ECC exclusively to stability of the bit . Retention relates to the amount of time 
correct for errors , embodiments of the present invention 60 that a bit will retain its data . The bits in a memory device 
supplement the redundant bit scheme with a less expensive may have a retention distribution . Some bits , for example , 
type of ECC , e.g. , a 2 - bit to achieve the same or better results may retain their data for several hours while some may only 
than a prohibitively expensive ECC . In other words , com retain their information for under an hour . A given applica 
bining the inclusion of redundant bits with other redundancy tion for an MRAM device may , however , require a minimum 
schemes ( e.g. , ECC ) results in power , time and space 65 retention period . For example , a given application may 
savings because less complex redundancy schemes need to require a minimum retention period of an hour . In one 
be employed embodiment , all bits that have retention rates below an hour 
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can then be shorted out and replaced by redundant bits . In pre - write read operation . To mitigate against this , typically 
other words , bits that do not meet the requirements of a embodiments of the present invention will perform a verify 
particular application can be blown out of the distribution operation following the write . In other words , a write - verify 
and replaced by the redundant bits . ( which effectively is the same as a “ read ' operation ) can be 

Typically , bits in a STT - MRAM memory chip will short 5 performed to make sure no bits shorted or otherwise mal 
during a write operation because of the higher voltage functioned during the write operation . If a malfunction is 
employed during a write operation ( as compared to a read detected during the verify operation , the entire write opera 
operation ) . In certain unlikely instances if a bit shorts during tion is performed again ( which may include the pre - write 
a read operation while the mapping of the defective bits is read operation for mapping out the redundant bits ) . 
being performed , it can cause the replacement scheme to 10 In one embodiment , a verify operation occurs after the 
malfunction . re - write also . In another embodiment , if the verify operation 

FIG . 6 illustrates the manner in which a malfunction can fails , the data word is entered into an error cache ( or 
occur if a bit shorts during a read operation in accordance dynamic redundancy register ) where it is stored for correct 
with an embodiment of the present invention . If a defect , ing at a later time . Examples of functionality that enables 
e.g. , a short 650 appears during a read operation that was not 15 monitoring performance of a client device are described in 
present during an earlier write operation , then all the redun U.S. patent application Ser . No. 15 / 277,799 , entitled 
dant bits 660-663 can get incorrectly assigned especially if " DEVICE WITH DYNAMIC REDUNDANCY REGIS 
a simple replacement scheme is being followed , e.g. , a left TERS ” , filed on 27 Sep. 2016 , and which is hereby incor 
to right or right to left replacement scheme based on the porated by reference in its entirety for all purposes . 
relative positions of the defects . For example , if a simple left 20 If the data word needs to be accessed prior to fixing the 
to right replacement scheme is being followed , then a short malfunction , it is read directly from the cache . In one 
650 that appears during a read operation ( but was not present embodiment , a verify operation occurs after the write to 
when the data was written ) may incorrectly be mapped to error buffer to ensure that the proper information was written 
redundant bit R1 660. This would result in all the following to the error buffer . 
redundant bits also being incorrectly assigned , e.g. , R2 661 25 In one embodiment , in order to improve read speed , the 
would be incorrectly assigned to bit 630 ( instead of 631 ) , R3 bit - cell resistance distribution can be cleaned up by shorting 
662 would be incorrectly assigned to bit 631 ( instead of 632 ) marginal TMR bits or by reducing TMR requirements for 
and so forth . the sense amplifiers . FIG . 7A graphically illustrates the 

To reduce the impact of this issue , a more complex manner in which the distribution of the resistance states 
replacement scheme , e.g. , replacement scheme 375 can be 30 across an STT - MRAM chip array wherein there is overlap 
programmed into the memory chip . As mentioned above , in between the high and low resistance states . As shown in FIG . 
some embodiments , other replacement schemes or algo 7A , the bit - cell resistance distribution comprises region 620 , 
rithms for mapping redundant bits to the defective bits can wherein certain bit - cells in the array have resistances that 
also be used to improve efficiency . Such schemes would be fall in the region 620. This region is also known as the 
more complex than simply mapping bits on the basis of 35 " margin area . ” The margin area is typically a bandwidth of 
relative positions of the defects and would likely require resistances centered around reference point 631 , wherein a 
programming and storing a corresponding algorithm into the sense amplifier will not be able to accurately distinguish a 
memory chip . However , more complex schemes would resistance within the margin area as either Rhigh or Rlow . In 
prevent against problems created as a result of the rare other words , typically , bit - cells with resistances that fall 
circumstance of a bit shorting during a read operation . 40 within margin area 620 ( either directly in the region over 

In one embodiment , the replacement scheme may alter lapping the R - low 622 and R - high curves 624 or in close 
nate between a left - to - right scheme and a right - to - left proximity to the overlap region ) will likely not be read 
scheme . Such a scheme would prevent against all the accurately by a sense amplifier at high speeds . The width of 
redundant bits getting misassigned in the case of a bit failure margin area 620 depends on the speed of the sense amplifier . 
during a read operation . For example , if bit 650 shorts during 45 A sense amplifier will typically be unable to discern between 
a read operation , in a scheme that alternates , redundant bit a “ 1 ” or a “ O ” for STT - MRAM cells when the bit - cell 
R1 660 would be misassigned to bit 650. However , if the resistances are within region 620. Such bits are unreliable 
scheme alternates , then redundant bit R4 663 would be because they may be detected as either a “ O ” or “ 1 ” . In order 
swapped with the right - most bit in the codeword , which in to avoid the overhead of having an ECC process clean up 
this case is , bit 634. Accordingly , instead of all 4 redundant 50 such ambiguous bits , in one embodiment , all bit - cells with 
bits being misassigned , only 2 end up being misassigned in resistances that fall in the overlap region 620 are shorted out . 
a scheme that alternates between the two replacement In one embodiment , the margin area 620 is determined by 
schemes . characterizing the sense amplifier . The width of the margin 

In another embodiment , the replacement scheme may area is dependent on the speed of the sense amplifier . 
restrict the allocation of redundant bits to designated por- 55 Characterizing the sense amplifier comprises moving the 
tions of the code word . For example , for a 32 bit codeword , sense amplifier reference point to the left to determine the 
redundant bit R1 660 may be restricted to defects appearing Margin High reference point 691. After establishing the 
in the first 8 bits of the codeword , R2 661 may be restricted Margin High reference point 691 , the bits with resistance 
to defects appearing in the next 8 bits of the codeword , and values higher than the reference point 691 are determined . 
so forth . While this scheme is effective in restricting the 60 Subsequently , the sense amplifier reference point is moved 
number of redundant bits that may potentially be misaligned to the right to determine the Margin Low reference point 
if a bit shorts during the read operation , it may be problem 692. After establishing the Margin Low reference point 692 , 
atic if all the defective bits are lumped together in one of the the bits with resistance values lower than the reference point 
8 bit sections . 692 are determined . Thereafter , an XOR is performed 

Similar to a bit shorting during a read operation , it is 65 between the two sets of results to establish the bits with 
possible that a bit may short during a write operation after resistance values that lie between the Margin High reference 
the redundant bits have already been mapped out during the point 691 and Margin Low reference point 692. The margin 
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bits in between the two reference points can then be shorted At step 811 , a read operation comprises reading a code 
out and pushed towards the R - short distribution 695 . word in an STT - MRAM memory , wherein the STT - MRAM 

FIG . 7B graphically illustrates the manner in which the memory comprises a plurality of codewords , wherein each 
distribution of the resistance states across an STT - MRAM codeword comprises a plurality of redundant bits . chip array changes by shorting marginal TMR bits or by 5 At step 812 , the read operation maps defective bits in the 
reducing TMR requirements for the sense amplifiers in codeword to redundant bits for the word based on a mapping 
accordance with embodiments of the present invention . scheme . 
When unreliable bits in region 620 are shorted out , the At step 813 , the defective bits in the codeword are R - low 682 and R - high 684 curves move further apart to replaced with a corresponding redundant bit in accordance where there is no overlapping region anymore . In other 10 with the mapping scheme . words , the sense amplifier window is opened up so a 
stringent sense amplifier is no longer required to distinguish At step 814 , an ECC operation is performed on the data 

word read out to correct for transient defects not corrected between a “ 1 ” or “ O ” for ambiguous bits . More stringent 
sense amplifiers typically require more power and longer using the plurality of redundant bits . 
evaluation times , so by shorting out the ambiguous bits , the 15 FIG . 9 illustrates an apparatus for correcting bit defects in 
chip conserves power . Further , all the shorted bits can now a STT - MRAM memory array 900 in accordance with 
be corrected by using the redundant bit replacement scheme embodiments of the present invention . 
rather than using costly ECC procedures . And because each Shown in FIG . 9 , is the memory array 900 comprising a 
codeword in the memory comprises at least 4 redundant bits , codewords array 901 with the corresponding redundant bits 
it is unlikely that any single codeword will have more than 20 902 allocated for each codeword . FIG . 9 also illustrates the 
4 bits shorted out during the process of cleaning up the sense logic 903 that implements the mapping scheme between the 
amplifier window . codewords and the redundant bits . 

In one embodiment , the redundant bit replacement Write logic 906 implements a method for correcting bit 
scheme of the present invention also results in higher defects in a STT - MRAM memory array during a write 
tolerance for write endurance failures . Typically with 25 operation ( as discussed in conjunction with FIG . 8A ) . Read 
MRAM , driving the cells at higher voltages at higher speeds logic 907 implements a method for correcting bit defects in 
results in lower endurance levels . With the bit replacement a STT - MRAM memory array during a read operation ( as 
scheme of the present invention , lower endurance levels can discussed in conjunction with FIG . 8B ) . 
be tolerated because each code word has multiple redundant Further , FIG . 9 illustrates ECC logic 908 that operates in 
bits to replace any defective bits . Accordingly , the chip can 30 conjunction with the read and write logic . Also , the memory 
be allowed to operate at a higher voltage because statisti comprises address 920 and data bus lines 921 that commu 
cally the error rates do not surpass a critical threshold as a nicate with the processor . Further , control bus 922 is illus 
result of the multiple redundant bits being used to replace trates , wherein the control bus would receive commands 
any defects occurring on the fly . Further , because embodi regarding a read / write operation , etc. 
ments of the present invention can be used to correct bit 35 FIG . 10 shows a flowchart 1010 of an exemplary method 
defects over the lifetime of the chip , there is no time limit on for correcting bit defects in a STT - MRAM memory array in 
the efficacy of the scheme . accordance with embodiments of the present invention . 

FIG . 8A shows a flowchart 800 of an exemplary method At step 1011 , a margin area is determined associated with 
for correcting bit defects in a STT - MRAM memory array a resistance distribution for a memory array , e.g. , STT 
during a write operation in accordance with embodiments of 40 MRAM memory array . A read operation is performed on the 
the present invention . memory array to characterize the resistance distribution . The 

At step 801 , a data word to be written into memory is resistance distribution comprises a distribution of bit - cell 
accessed in accordance with a write operation command . resistances for all bits comprising the STT - MRAM memory 
The data word is passed to an ECC hash function , e.g. , to array , wherein the distribution of bit - cell resistances com 
determine a checksum . 45 prises a distribution of acceptable high resistance bits and a 
At step 802 , a read - before - write operation is executed on distribution of acceptable low resistance bits , e.g. , regions 

the STT - MRAM memory array , wherein the STT - MRAM Rlow and Rhigh shown in FIG . 7A . As discussed in con 
memory comprises a plurality of codewords . Further , each nection with FIGS . 7A and 7B , the bit - cell resistance dis 
codeword comprises a plurality of redundant bits . tribution comprises region 620 , wherein certain bit - cells in 
At step 803 , the read - before - write operation executes by 50 the array have resistances that fall in the region 620. This 

reading a codeword . Subsequently , at step 804 , the read region is also known as the “ margin area . ” The margin area 
before - write operation maps defective bits in the codeword is typically a bandwidth of resistances centered around 
to redundant bits for the word based on a mapping scheme . reference point 631 , wherein a sense amplifier will not be 
At step 805 , the defective bits in the codeword are able to accurately distinguish a resistance within the margin 

replaced with a corresponding mapped redundant bit . 55 area as either Rhigh or Rlow . In other words , typically , 
At step 806 , a write operation is executed with corre bit - cells with resistances that fall within margin area 620 

sponding redundant bits in place of the defective bits . ( either directly in the region overlapping the R - low 622 and 
Accordingly , the data word can be saved into the memory R - high curves 624 or in close proximity to the overlap 
using both the codeword and corresponding redundant bits . region ) will likely not be read accurately by a sense amplifier 

At step 807 , verification is performed that the write 60 at high speeds 
operation executed correctly by performing another read Once the margin area is determined , at step 1012 , the 
operation to read out the data word stored in the codeword method comprises forcing the bit - cell resistances of memory 
and corresponding redundant bits . bit - cells associated with the margin area to short circuits in 

FIG . 8B shows a flowchart 810 of an exemplary method order to widen a window between the distribution of accept 
for correcting bit defects in a STT - MRAM memory array 65 able high resistance bits and acceptable low resistance bits . 
during a read operation in accordance with embodiments of Note that steps 1011 to 1012 can occur during product 
the present invention . testing or characterization . 
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Finally , at step 1013 , the method comprises replacing 2. The method of claim 1 , wherein the memory array is an 
each of the short - circuited memory bit - cells with a corre STT - MRAM memory array . 
sponding redundant bit in the codeword associated with the 3. The method of claim 1 , wherein the replacing com 
short - circuited memory bit - cell . For example , during prises : 
memory operation , the replacing can occur in accordance 5 determining a position of a short - circuited bit - cell in an 
with a mapping scheme . In other words , for example , a associated codeword ; and 
redundant bit is mapped to the short - circuited bit in the mapping a corresponding redundant bit of an associated 
codeword in accordance with the position of the short plurality of redundant bits in the associated codeword 
circuited memory bit - cell . During memory operation then , a to the short - circuited bit - cell in accordance with a bit 
redundant bit is stored in the associated codeword in lieu of 10 position of the short - circuited bit - cell in the associated 
the short - circuited bit in accordance with the mapping . As codeword . 
discussed above , a mapping scheme will dictate the manner 4. The method of claim 3 , wherein the mapping is 
in which the redundant bits get mapped to the short - circuited performed in accordance with a mapping scheme . 
bit - cells . 5. The method of claim 4 , wherein in the mapping scheme 

FIG . 11 shows a flowchart 1110 of another exemplary 15 a short - circuited bit - cell is replaced with a corresponding 
method for correcting bit defects in a STT - MRAM memory redundant bit having a position that is based on the bit 
array in accordance with embodiments of the present inven position of the short - circuited bit - cell . 
tion . 6. The method of claim 1 , wherein said state is chosen 

At step 1111 , the resistance distribution of a memory from a group consisting of : high , low , short or open . 
array , e.g. , STT - MRAM is characterized . In other words , a 20 7. The method of claim 1 , wherein the ambiguous bit - cells 
read operation is performed on the memory array to char are selected from a group consisting of : stuck bits ; waterfall 
acterize the resistance distribution . bits ; shunted bits ; and low tunnel magnetoresistance ( TMR ) 

At step 1112 , all bit - cells in the memory array that cannot bits . 
be easily characterized are short - circuited . As noted above , 8. An apparatus for correcting bit defects , the apparatus 
such defects , which are neither shorts nor open circuits , are 25 comprising : 
not detectable during user read or verify operations . a processor ; and 
Examples of such defects include stuck bits , waterfalls , a memory array comprising a plurality of codewords , 
shunts and low tunnel magnetoresistance ( TMR ) bits . Note wherein each codeword comprises a respective plural 
that steps 1111 to 1112 can occur during product testing or ity of redundant bits , and wherein the processor is 
characterization . configured to : 
At step 1113 , the method comprises replacing each of the determine , during a characterization stage , a resistance 

short - circuited memory bit - cells with a corresponding distribution for the memory array by classifying a 
redundant bit in the codeword associated with the short state of each bit - cell in the memory array ; 
circuited memory bit - cell . For example , during memory determine bit - cells of the resistance distribution that are 
operation , the replacing can occur in accordance with a 35 ambiguous , wherein ambiguous bit - cells have 
mapping scheme . In other words , for example , a redundant ambiguous resistances ; 
bit is mapped to the short - circuited bit in the codeword in force the ambiguous bit - cells to short circuits ; and 
accordance with the position of the short - circuited memory replace each short - circuited ambiguous bit - cell with a 
bit - cell . During memory operation then , a redundant bit is corresponding redundant bit from an associated 
stored in the associated codeword in lieu of the short- 40 codeword . 
circuited bit in accordance with the mapping . As discussed 9. The apparatus of claim 8 , wherein the memory array is 
above , a mapping scheme will dictate the manner in which an STT - MRAM memory array . 
the redundant bits get mapped to the short - circuited bit - cells . 10. The apparatus of claim 8 , wherein to replace each 

The above description and drawings are only to be short - circuited ambiguous bit - cell , the processor is config 
considered illustrative of specific embodiments , which 45 ured to : 
achieve the features and advantages described herein . Modi determine a position of a short - circuited bit - cell in an 
fications and substitutions to specific process conditions can associated codeword ; and 
be made . Accordingly , the embodiments in this patent docu map the corresponding redundant bit of an associated 
ment are not considered as being limited by the foregoing plurality of redundant bits of the associated codeword 
description and drawings . to the short - circuited bit - cell in accordance with the 

position of the short - circuited bit - cell . 
We claim : 11. The apparatus of claim 10 , wherein the processor is 
1. A method for correcting bit defects in a memory array , further configured to map the corresponding redundant bit in 

the method comprising : accordance with a mapping scheme . 
determining , during a characterization stage , a resistance 55 12. The apparatus of claim 11 , wherein in the mapping 

distribution for the memory array by classifying a state scheme the short - circuited bit - cell is replaced with the 
of each bit - cell in the memory array , wherein the corresponding redundant bit based on the position of the 
memory array comprises a plurality of codewords , short - circuited bit - cell . 
wherein each codeword comprises a plurality of redun 13. The apparatus of claim 8 , wherein said state is chosen 
dant bits ; 60 from a group consisting of : 

determining bit - cells of the resistance distribution that are high , low , short or open . 
ambiguous , wherein ambiguous bit - cells have ambigu 14. The apparatus of claim 8 , wherein the ambiguous 
ous resistances ; bit - cells are selected from a group consisting of : stuck bits ; 

forcing the ambiguous bit - cells to short circuits ; and waterfall bits ; shunted bits ; and low tunnel magnetoresis 
replacing each short - circuited ambiguous bit - cell with a 65 tance ( TMR ) bits . 
corresponding redundant bit from an associated code 15. A method for correcting bit defects in a memory , the 
word . method comprising : 

50 
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determining , during a characterization stage , a resistance 

distribution for a memory array by classifying a state of 
each bit - cell in the memory array , wherein the memory 
array comprises a plurality of codewords , wherein each 
codeword comprises a plurality of redundant bit - cells ; 5 

determining bit - cells of the resistance distribution that are 
defective ; 

forcing defective bit - cells to short circuits ; and 
replacing each short - circuited defective bit - cell with a 

corresponding redundant bit - cell from an associated 10 
codeword . 

16. The method of claim 15 , wherein the memory array is 
a STT - MRAM memory array . 

17. The method of claim 15 , wherein the defective bit 
cells are ambiguous bit - cells having ambiguous resistances 15 
between being high or low bits . 

18. The method of claim 17 , wherein the ambiguous 
bit - cells are selected from a group consisting of : stuck bits ; 
waterfall bits ; shunted bits ; and low tunnel magnetoresis 
tance ( TMR ) bits . 

19. The method of claim 15 , wherein the defective bit 
cells have a substantially higher WER compared to other 
bit - cells in the memory array 

20. The method of claim 15 , wherein the defective bit 
cells retain their data for lower than a minimum retention 25 
period . 
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