(19)	Europäisches Patentamt European Patent Office Office européen des brevets	(11) EP 3 816 190 A1
(12)	EUROPEAN PATE published in accordance	ENT APPLICATION ce with Art. 153(4) EPC
(43) (21)	Date of publication: 05.05.2021 Bulletin 2021/18 Application number: 19823745.5	 (51) Int Cl.: <i>C07K 19/00</i> ^(2006.01) <i>A61K 48/00</i> ^(2006.01) (86) International application number:
(22)	Date of filing: 13.03.2019	PCT/CN2019/077922 (87) International publication number: WO 2019/242338 (26.12.2019 Gazette 2019/52)
(84)	Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States: BA ME Designated Validation States: KH MA MD TN	 FU, Yangxin Shanghai 200072 (CN) WANG, Xin Shanghai 200072 (CN) YE, Shengqin Shanghai 200072 (CN) LI, Fanlin Shanghai 200072 (CN) ZHANG Huibui
(30)	Priority: 20.06.2018 CN 201810636409	Shanghai 200072 (CN)
(71)	Applicant: Shanghai Longyao Biotechnology Inc., Ltd Shanghai 200072 (CN)	(74) Representative: Böhm, Brigitte Weickmann & Weickmann Patent- und Rechtsanwälte PartmbB Postfach 860 820
(72) •	Inventors: YANG, Xuanming Shanghai 200072 (CN)	81635 München (DE)

(54) CHIMERIC ANTIGEN RECEPTOR COMPRISING CO-STIMULATORY RECEPTOR AND APPLICATION THEREOF

(57) Provided by the present invention is a chimeric antigen receptor comprising a co-stimulatory receptor, the chimeric antigen receptor having a structure of scFv(X)-(Y)CD3zeta-2A-(Z); X comprises a tumortargeting antibody or a ligand or receptor capable of specifically binding to a tumor; Y is an intracellular region of the co-stimulatory receptor, and Z is a co-stimulatory receptor that is selected from among ICOS, CD28, CD27, HVEM, LIGHT, CD40L, 4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226. Further provided by the present invention are CAR-T cells that are constructed by means of a recombinant expression vector of the described chimeric antigen receptor, a preparation method therefor and an application thereof. The CAR-T cells described in the present invention significantly improve the tumor-killing abilities and amplification abilities thereof.

Description

Technical Field

⁵ **[0001]** The present invention relates to the field of cellular immunotherapeutic technology, especially relates to a chimeric antigen receptor comprising a co-stimulatory receptor and use thereof.

Background of the Invention

- 10 [0002] The use of immunological therapy for overcoming tumors has always been an important direction in the application of immunology in translational medicine. With the development of various omics (genomics, proteomics, etc.), tumor cells have been widely recognized due to their immunogenicity caused by mutations, which lays a theoretical foundation for tumor immunotherapy. At the same time, with the accumulation of tumor immunology research itself, tumor immunotherapy has recently made a great progress, and a series of new immunotherapy methods have gradually
- ¹⁵ entered into the clinic. The current tumor immunology research has established the central position of T cell killing in tumor immunotherapy, and the chimeric antigen receptor T cell (CAR-T cell) is a tumor-killing cell which has combined the targeted recognition of antibody and the tumor-killing function of T cell, and been generated by artificial modification. [0003] The concept of chimeric antigen receptor T cell was first proposed by Gross, Waks and Eshhar in 1989. They expressed TNP-recognizing antibodies on T cells, achieving antigen-specific, non-MHC-restricted T cell activation and
- 20 enhanced effect, and proposed the concept of the application of CAR-T technology in tumor treatment. According to this principle, tumor-specific antibodies are embedded into T cells, which will give T cells new tumor-killing capabilities. After that, CAR-T technology was introduced into anti-tumor clinical trials, but the final clinical results of early CAR-T cells are not ideal since their intracellular signal transmission domain contains only the first signal, and the selected tumor type is a solid tumor. In 2008, the Fred Hutchison Cancer Institute and other institutions used CAR-T to treat B
- ²⁵ cell lymphoma, although the treatment results are not ideal, the key to this clinical trial is to demonstrate that CAR-T treatment with CD20-expressing B cells as the target is relatively safe. Subsequently, in 2010, NCI reported a case of successful treatment of B-cell lymphoma, using CAR-T targeting CD19, the patient's lymphoma was controlled, normal B cells were also eliminated, and serum Ig was significantly reduced, providing a theoretical and practical support for the effectiveness of CAR-T in the treatment of B cell-derived lymphomas. In 2011, a team led by Dr. Carl June of the
- 30 University of Pennsylvania in the United States used CAR-T that specifically recognizes CD19 for the treatment of chronic lymphocytic leukemia derived from B cells, showing a "cure" effect. After that, clinical trials have also been launched in relapsed and refractory acute lymphoblastic cell leukemia, and good results have also been achieved. Due to this breakthrough progress and the development of other immune regulation methods, Science magazine ranked tumor immunotherapy as the number one scientific and technological breakthrough in 2013. This success has caused wide-
- spread influence in countries around the world, and countries have begun to carry out a large number of CAR-T-based scientific research and clinical trials of tumor treatment.
 [0004] The structure of CAR consists of an extracellular antigen recognition domain, an extracellular hinge region, a transmembrane domain, and an intracellular signal transduction domain. The extracellular antigen recognition domain
- generally consists of a single-chain antibody, which specifically recognizes membrane surface molecules of the tumor cell, or can be a ligand or receptor of certain tumor-specific antigens, etc. The extracellular hinge region is a spatial structure that separates the antigen recognition domain from the transmembrane domain, and its purpose is to provide a suitable spatial position, so that the extracellular antigen recognition domain can maintain the correct structure and transmit the intracellular signals before and after recognizing the antigen. The transmembrane domain is a domain for ensuring the positioning of the CAR molecule on the membrane surface. The intracellular signal transduction domain is
- ⁴⁵ a key part of mediating the CAR signal transduction, and is usually a combination of one or several first signals (for the recognition of TCR and MHC-I-peptide complex) and second signals (for the recognition of costimulatory receptor and costimulatory ligand). The first-generation CAR contains only the first signal, the second-generation CAR has one first signal and one second signal, and the third-generation CAR has one first signal and two second signal domains. Although CAR-T has achieved a great success in the treatment of leukemia derived from B cell, its relatively high recurrence rate
- ⁵⁰ and low effectiveness for solid tumors are important challenges currently. Therefore, there is an urgent clinic need of developing a new generation of high-efficiency CAR-T currently. In addition to the third-generation CAR-T, there are currently other new CAR-T design strategies, that is, new regulatory molecules independent of CAR are introduced on the basis of the second-generation CAR-T to further enhance the function of CAR-T.
- [0005] The application of CAR-T targeting the B cell surface targeting molecules CD19 and CD20 prepared from the patient's own blood cells in the treatment of B cell leukemia has been relatively mature, but there are a large number of recurrences, even though the response rate is high. In addition, the treatment efficiency for solid lymphoma is relatively low, which is related to the immunosuppressive microenvironment in solid tumors.

[0006] In solid tumors, there are a variety of immune cells, tumor cells and stromal cells, which together constitute the

tumor microenvironment. The tumor microenvironment is usually immunosuppressive, and can inhibit endogenous antitumor T cell responses or adoptive T cells (such as CAR-T) at multiple levels, for example, leading to exhaustion of T cells and loss of tumor killing function, and eventually leading to the clearance of T cells. How to enhance the activation ability of CAR-T in solid tumors so that CAR-T can fight against the immune suppression in the tumor microenvironment is an important idea and direction for expanding CAR-T to solid tumor treatment.

[0007] However, the current CAR-T domains in clinical use still have insufficient tumor killing and expansion abilities, and have poor efficacy in controlling solid tumors/metastasis. Some CAR-T use novel regulatory molecules such as IL-12, 4 - 1BBL, etc. These molecules will also produce non-specific activation effects on other non-CAR-T cells in addition to affecting the CAR-T, which may cause immune side effects.

10

15

5

Summary of the Invention

[0008] An object of the present invention is to address the defects in the prior art, provide a chimeric antigen receptor including a co-stimulatory receptor and use thereof, and provide a CAR-T cell constructed by a recombinant expression vector of the chimeric antigen receptor. For example, OX40 is an important co-stimulatory receptor which is primarily expressed in activated CD4 and CD8 T cells, and displays a variety of functions during the activation of T cells. They can promote the activation of T cells, exhibit more effector molecules, and reduce the expression of gene associated with apoptosis. Integrating the co-stimulatory receptor signal into the CAR-T has a potential effect-enhancing function. **[0009]** To address the aforesaid object, the present invention utilizes the following technical solutions:

- a first object of the present invention is to provide a chimeric antigen receptor including a co-stimulatory receptor and having a structure of scFv(X)-(Y)CD3zeta-2A-(Z); wherein X is a tumor-targeting antibody or a ligand or receptor capable of specifically binding to a tumor; Y is an intracellular domain of a co-stimulatory receptor, and said co-stimulatory receptor is selected from ICOS, CD28, CD27, HVEM, LIGHT, CD40L, 4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226; Z is a co-stimulatory receptor, and said co-stimulatory receptor is selected from ICOS, CD28, CD27, HVEM, LIGHT, CD40L, 4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226; Z is a co-stimulatory receptor, and said co-stimulatory receptor is selected from ICOS, CD28, CD27, HVEM,
- LIGHT, CD40L, 4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226.
 [0010] For further optimizing the aforesaid chimeric antigen receptor, the technical means used in the present invention further includes:

Further, the X is selected from anti-CD 19 antibody, anti-CD20 antibody, EGFR antibody, HER2 antibody, EGFRVIII antibody, anti-PSMA antibody, anti-BCMA antibody, anti-CD22 antibody, anti-CD30 antibody. Understandably, X can also be other protein capable of specifically binding to a tumor.
 Further, said X is anti-CD20 antibody, said Y is 4-1BB, said Z is one selected from OX40, HVEM, ICOS, CD27, 4-1BB.
 Further, said scFv(X)-(Y)CD3zeta is scFv-antihCD20-20BBZ having a sequence of SEQ ID No. 1; said OX40 has a sequence of SEQ ID No.2; said HVEM has a sequence of SEQ ID No.3; said ICOS has a sequence of SEQ ID No.4; said CD27 has a sequence of SEQ ID No.5; said 4-1BB has a sequence of SEQ ID No.6; and said 2A has a sequence of SEQ ID No.7, SEQ ID No.8, SEQ ID No.9 or SEQ ID No. 10.

[0011] Wherein the aforesaid sequences are as follows:

40	SEQ ID No.1:
	QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATS
45	NLASGVPVRFSGSGSGTSYSLTISRVEAEDAATYYCQQWTSNPPTFGGGTKLEI
	KGGGGSGGGGGGGGGGGGQVQLQQPGAELVKPGASVKMSCKASGYTFTSYNM
	HWVKQTPGRGLEWIGAIYPGNGDTSYNQKFKGKATLTADKSSSTAYMQLSSL
50	TSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSAAAATTTPAPRPPTPAPT
	IASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYC
55	KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAP
55	AYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNEL
	QKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR;

SEQ ID No.2:

MCVGARRLGRGPCAALLLLGLGLSTVTGLHCVGDTYPSNDRCCHECRP GNGMVSRCSRSQNTVCRPCGPGFYNDVVSSKPCKPCTWCNLRSGSERKQLCT ATQDTVCRCRAGTQPLDSYKPGVDCAPCPPGHFSPGDNQACKPWTNCTLAG KHTLQPASNSSDAICEDRDPPATQPQETQGPPARPITVQPTEAWPRTSQGPSTRP VEVPGGRAVAAILGLGLVLGLLGPLAILLALYLLRRDQRLPPDAHKPPGGGSFR TPIQEEQADAHSTLAKI;

SEQ ID No.3:

MEPPGDWGPPPWRSTPKTDVLRLVLYLTFLGAPCYAPALPSCKEDEYPVG SECCPKCSPGYRVKEACGELTGTVCEPCPPGTYIAHLNGLSKCLQCQMCDPA MGLRASRNCSRTENAVCGCSPGHFCIVQDGDHCAACRAYATSSPGQRVQKGG TESQDTLCQNCPPGTFSPNGTLEECQHQTKCSWLVTKAGAGTSSSHWVWWF LSGSLVIVIVCSTVGLIICVKRRKPRGDVVKVIVSVQRKRQEAEGEATVIEALQ APPDVTTVAVEETIPSFTGRSPNH;

SEQ ID No.4:

MKSGLWYFFLFCLRIKVLTGEINGSANYEMFIFHNGGVQILCKYPDIVQQ 55 FKMQLLKGGQILCDLTKTKGSGNTVSIKSLKFCHSQLSNNSVSFFLYNLDHSH ANYYFCNLSIFDPPFKVTLTGGYLHIYESQLCCQLKFWLPIGCAAFVVVCILG CILICWLTKKKYSSSVHDPNGEYMFMRAVNTAKKSRLTDVTL;

40

30

15

SEQ ID No.5:

 MARPHPWWLCVLGTLVGLSATPAPKSCPERHYWAQGKLCCQMCEPGTF
 ⁴⁵ LVKDCDQHRKAAQCDPCIPGVSFSPDHHTRPHCESCRHCNSGLLVRNCTITAN AECACRNGWQCRDKECTECDPLPNPSLTARSSQALSPHPQPTHLPYVSEMLEA
 ⁵⁰ RTAGHMQTLADFRQLPARTLSTHWPPQRSLCSSDFIRILVIFSGMFLVFTLAGA LFLHQRRKYRSNKGESPVEPAEPCRYSCPREEEGSTIPIQEDYRKPEPACSP;

55

SEQ ID No.6:

MGNSCYNIVATLLLVLNFERTRSLQDPCSNCPAGTFCDNNRNQICSPCPPN
 ⁵ SFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQ
 DCKQGQELTKKGCKDCCFGTFNDQKRGICRPWTNCSLDGKSVLVNGTKERD
 ¹⁰ VVCGPSPADLSPGASSVTPPAPAREPGHSPQIISFFLALTSTALLFLLFFLTLRFSV
 VKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL;

SEQ ID No.7: GSGATNFSLLKQAGDVEENPGP;
 SEQ ID No.8: GSGEGRGSLLTCGDVEENPGP;
 SEQ ID No.9: GSGQCTNYALLKLAGDVESNPGP;
 SEQ ID No.10: GSGVKQTLNFDLLKLAGDVESNPGP.

[0012] Further, the extracellular hinge region of said chimeric antigen receptor is a region selected from CD8a or IgG; and the transmembrane domain of said chimeric antigen receptor is one selected from CD8a, CD28, CD137 or CD3.

[0013] A second object of the present invention is to provide a recombinant expression vector of any one of the aforesaid chimeric antigen receptors.

[0014] A third object of the present invention is to provide a CAR-T cell constructed by a recombinant expression vector of any one of the aforesaid chimeric antigen receptors.

²⁵ **[0015]** A fourth object of the present invention is to provide a method of preparing the aforesaid CAR-T cell which includes the following steps:

step 1: construction of lentiviral vector and production of virus;

incorporating 2A between scFv(X)-(Y)CD3zeta and Z to form a fusion protein, adding a lentiviral vector to both ends
 of the fusion protein, and co-transfecting with lentiviral packaging plasmid to obtain an scFv(X)-(Y)CD3zeta-2A-(Z) virus;

step 2, preparation of scFv(X)-(Y)CD3zeta-2A-(Z) CAR-T cell;

culturing purified human PBMC and infecting said PBMC with the scFv(X)-(Y)CD3zeta-2A-(Z) virus obtained in Step 1, and subjecting them to cell expansion under suitable conditions to prepare scFv(X)-(Y)CD3zeta-2A-(Z)CAR-T cell.

35

40

20

[0016] For further optimizing the method of preparing the aforesaid CAR-T cell, the technical means used in the present invention further includes:

Further, said construction of lentiviral vector and production of virus include: incorporating 2A between scFv(X)-(Y)CD3zeta and Z by overlap PCR to form a fusion protein, and adding restriction sites to both ends of the fusion protein to clone a lentiviral vector; subjecting the clones sequenced correctly to a large scale endotoxin-free extraction, and co-transfecting with lentiviral packaging plasmid, after a predetermined period of time, collecting a supernatant, filtering, centrifuging to concentrate the virus to obtain an scFv(X)-(Y)CD3zeta-2A-(Z) virus.

[0017] Still further, the specific steps of the construction of lentiviral vector and production of virus are as follows: incorporating 2A sequence between scFv(X)-(Y)CD3zeta and OX40 by overlap PCR, adding EcoRI and Sall restriction sites to both ends of the fusion protein to clone the pCDH-MSCVEF vector, subjecting the clones sequenced correctly to a large scale endotoxin-free extraction, and co-transfecting with lentiviral packaging plasmid into 293X; after 48 and

- 72 hours, collecting the supernatant, filtering it by a 0.45uM filter and performing centrifugation at 25000RPM for 2 hours to concentrate the viruses to obtain the scFv(X)-(Y)CD3zeta-2A-(Z) virus. **[0018]** Further, the specific steps of the preparation of scFv(X)-(Y)CD3zeta-2A-(Z) CAR-T cell include: isolating human
- PBMC for purification, inoculating into a culture plate under suitable stimulation conditions, culturing for a predetermined period of time, infecting said PBMC with the scFv(X)-(Y)CD3zeta-2A-(Z) virus obtained in Step 1, and subjecting it to cell expansion under suitable stimulation conditions, after 2 rounds of expansion under stimulation, the obtained cells are the scFv(X)-(Y)CD3zeta-2A-(Z) CAR-1 cells.
- [0019] Further, the stimulation conditions for culturing the isolated and purified human PBMC are anti-hCD3 and antihCD28; and the stimulation conditions for cell expansion are stimulation by use of artificial antigen presenting cell or anti-hCD3/28 every 6 days.

[0020] Still further, the specific steps of preparing the scFv(X)-(Y)CD3zeta-2A-(Z) CAR-T cell are as follows: purifying human PBMC by a Stemcell T cell isolation kit, inoculating into a 96-well culture plate coated by anti-hCD3 and anti-

hCD28. After 2 days, infecting the cells with the scFv(X)-(Y)CD3zeta-2A-(Z) virus at MOI=10-20. After 1 day, continuing to culture the cells with the medium changed, and stimulating them by artificial antigen presenting cell or anti-hCD3/28 every 6 days. After 2 rounds of stimulation, the obtained cells are scFv(X)-(Y)CD3zeta-2A-(Z) CAR-T cells.

- **[0021]** Further, said X is selected anti-CD 19 antibody, anti-CD20 antibody, EGFR antibody, HER2 antibody, EGFRVIII antibody.
- **[0022]** Further, said X is anti-CD20 antibody, said Y is 4-1BB, said Z is one selected from OX40, HVEM, ICOS, CD27, 4-1BB.

[0023] Further, said scFv(X)-(Y)CD3zeta is scFv-antihCD20-20BBZ having a sequence of SEQ ID No. 1; said OX40 has a sequence of SEQ ID No.2; said HVEM has a sequence of SEQ ID No.3; said ICOS has a sequence of SEQ ID

No.4; said CD27 has a sequence of SEQ ID No.5; said 4-1BB has a sequence of SEQ ID No.6; and said 2A has a sequence of SEQ ID No.7.

[0024] Further, the lentiviral packaging plasmid in Step 1 includes VSV-g, pMD Gag/Pol, RSV-REV, and the centrifugation is performed with Beckman ultracentrifuge and SW28 head.

[0025] A fifth object of the present invention is to provide a formulation including the aforesaid CAR-T cell or the CAR ¹⁵ T cell prepared by the aforesaid preparation method. Further, the formulation also includes a pharmaceutically diluents or excipient.

[0026] A sixth object of the present invention is to provide a use of the aforesaid chimeric antigen receptor, the aforesaid CAR-T cell or the CAR-T cell prepared by the aforesaid preparation method in preparation of a medicament for treating or preventing tumor.

20 [0027] Further, said tumors are solid tumors. Examples of said solid tumors include, but are not limited to, lymphomas, renal tumors, neuroblastoma, germ cell tumor, osteosarcoma, chondrosarcoma, soft tissue sarcoma, liver tumor, thy-moma, pulmonary blastoma, pancreatoblastoma, hemangioma, etc.

[0028] As compared with the prior art, the present invention has the following beneficial effects:

- the CAR-T cell of the present invention significantly increases the tumor killing ability and expansion ability, and exhibits
 a greatly increased solid/metastasis tumor killing ability. The CAR-T cell of the present invention includes a co-stimulatory receptor (ICOS, CD28, CD27, HVEM, LIGHT, CD40L, 4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226, etc.), instead of a conventionally used ligand or excreted factor, and works only on the CAR-T cell, thereby reducing the risk of causing an immune side effect.
- [0029] The present invention first utilizes the co-stimulatory receptor in the construction of CAR-T. As compared with the current CAR-T technology in clinic use, the present invention significantly increases the activation ability and survival ability of CAR-T cell in tumors, and controls the ability of solid/metastatic tumors, thereby improving the therapeutic effect of the CAR-T cell to get a more superior anti-tumor therapeutic effect.

Brief Description of the Drawings

35

45

5

[0030]

FIG. 1 is an illustrative schematic view showing the molecular structure of chimeric antigen receptor (CAR) including the third signal receptor in embodiments of the present invention;

⁴⁰ FIG. 2 is a schematic view showing the virus titer measured after 293 cells were infected with BBZ-2A-OX40 virus in an embodiment of the present invention;

FIG. 3 is a schematic view showing the virus titer measured after 293 cells were infected with BBZ-2A-HVEM virus in an embodiment of the present invention;

FIG. 4 is a schematic view showing the virus titer measured after 293 cells were infected with BBZ-2A-ICOS virus in an embodiment of the present invention;

FIG. 5 is a schematic view showing the virus titer measured after 293 cells were infected with BBZ-2A-CD27 virus in an embodiment of the present invention;

FIG. 6 is a schematic view showing the virus titer measured after 293 cells were infected with BBZ-2A-4-1BB virus in an embodiment of the present invention;

- FIG. 7 is a schematic view showing the results of phenotypic analysis of BBZ CAR-T cell and BBZ-2A-OX40 CAR-T cell in an embodiment of the present invention;
 FIG. 8 is a schematic view showing the results of phenotypic analysis of BBZ CAR-T cell and BBZ-2A-HVEM CAR-T cell in an embodiment of the present invention;
- FIG. 9 is a schematic view showing the results of phenotypic analysis of BBZ CAR-T cell and BBZ-2A-ICOS CAR-T cell in an embodiment of the present invention;

FIG. 10 is a schematic view showing the results of phenotypic analysis of BBZ CAR-T cell and BBZ-2A-CD27 CAR-T cell in an embodiment of the present invention;

FIG. 11 is a schematic view showing the results of phenotypic analysis of BBZ CAR-T cell and BBZ-2A-4-1BB CAR-

T cell in an embodiment of the present invention;

FIG. 12 is a schematic view showing the expansion ability of BBZ CAR-T cell and BBZ-2A-OX40 CAR-T cell in an embodiment of the present invention;

FIG. 13 is a schematic view showing the tumor killing ability of BBZ CAR-T cell and BBZ-2A-OX40 CAR-T cell in an embodiment of the present invention;

FIG. 14 is a schematic view showing the anti-tumor ability of BBZ CAR-T cell and BBZ-2A-OX40 CAR-T cell in an embodiment of the present invention;

FIG. 15 is a schematic view showing the *in vivo* survival ability of BBZ CAR-T cell and BBZ-2A-OX40 CAR-T cell in an embodiment of the present invention.

10

15

5

Detailed Description of the Invention

[0031] The present invention provides a chimeric antigen receptor including a co-stimulatory receptor having a structure of scFv(X)-(Y)CD3zeta-2A-(Z); wherein X is a tumor-targeting antibody or other protein; Y is an intracellular domain of a co-stimulatory receptor, and said co-stimulatory receptor is selected from ICOS, CD28, CD27, HVEM, LIGHT, CD40L,

4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226; Z is a co-stimulatory receptor, and said co-stimulatory receptor is selected from ICOS, CD28, CD27, HVEM, LIGHT, CD40L, 4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226. The present invention also relates to a CAR-T cell constructed by a recombinant expression vector of any one of the aforesaid chimeric antigen receptor and a preparation method therefor, a formulation including the CAR-T cell, and a use of the CAR-T cell.

[0032] Hereinafter the embodiments of the present invention are further described with reference to the accompanying drawings and examples. The following examples are only for more clearly illustrating the technical solutions of the present invention, but not for limiting the protective scope of the present invention.

[0033] The chimeric antigen receptor (CAR) molecules including a co-stimulatory receptor used in the following examples of the present invention are BBZ-2A-OX40, BBZ-2A-HVEM, BBZ-2A-ICOS, BBZ-2A-CD27, BBZ-2A-4-1BB, respectively, and their structures are shown in FIG. 1.

EXAMPLE 1 - Preparation of 20BBZ-2A-OX40 CAR-T cell

³⁰ **[0034]** The preparation of the 20BBZ-2A-OX40 CAR-T cell in this example includes the following steps:

1. Construction of lentiviral vector pCDH-MSCVEF-20BBZ-2A-OX40 and production of virus

incorporating 2A (SEQ ID No. 7) sequence between scFv-antihCD20-20BBZ (SEQID No.1) and OX40 (SEQ ID No.2) by overlap PCR, and adding EcoRI and Sall restriction sites to both ends to clone the pCDH-MSCVEF vector.

- ³⁵ Subjecting the clones sequenced correctly to a large scale endotoxin-free extraction, and co-transfecting with lentiviral packaging plasmid (VSV-g, pMD Gag/Pol, RSV-REV) into 293X. After 48 and 72 hours, collecting the supernatant, filtering it by a 0.45uM filter, and performing centrifugation with Beckman ultracentrifuge and SW28 head at 25000 RPM for 2 hours to concentrate the virus, which is pCDH-MSCVEF-20BBZ-2A-OX40 virus (briefly, 20BBZ-2A-OX40 virus) for the subsequent production of CAR-T cell. Meanwhile, producing the control pCDH-MSCVEF-
- 40 20BBZ virus (briefly, 20BBZ virus), and infecting 293 cells with the obtained virus to measure the virus titer, as shown in FIG. 2.

2. Preparation of 20BBZ-2A-OX40 CAR-T cell and 20BBZ CAR-T cell

purifying human PBMC by a Stemcell T cell isolation kit, and inoculating into a 96-well culture plate coated with antihCD3 and anti-hCD28. After 2 days, infecting the cells with 20BBZ virus and 20BBZ-2A-OX40 virus at MOI=10-20.

⁴⁵ After 1 day, continuing to culture the cells with the medium changed, and stimulating them by artificial antigen presenting cell or anti-hCD3/28 every 6 days. After 2 rounds of stimulation, the obtained cells are 20BBZCAR-T cell and 20BBZ-2A-OX40 CAR-T cell for subsequent experiments and phenotypic analysis. The results are shown in FIG. 7. It can be seen that the obtained cells are CAR-POSITIVE.

50 EXAMPLE 2- Preparation of 20BBZ-2A-HVEM CAR-T cell

[0035] The preparation of the 20BBZ-2A-HVEM CAR-T cell in in this example includes the following steps:

- 1. Construction of lentiviral vector pCDH-MSCVEF-20BBZ-2A-HVEM and production of virus
- ⁵⁵ incorporating 2A (SEQ ID No. 8) sequence between scFv-antihCD20-20BBZ (SEQID No. 1) and HVEM (SEQID No.3) by overlap PCR, and adding EcoRI and Sall restriction sites to both ends to clone pCDH-MSCVEF vector. Subjecting the clones sequenced correctly to a large scale endotoxin-free extraction, and co-transfecting with lentiviral packaging plasmid (VSV-g, pMD Gag/Pol, RSV-REV) into 293X. After 48 and 72 hours, collecting the super-

natant, filtering it by a 0.45uM filter, and performing centrifugation with Beckman ultracentrifuge and SW28 head at 25000 RPM for 2 hours to concentrate the virus, which is pCDH-MSCVEF-20BBZ-2A-HVEM virus (briefly, 20BBZ-2A-HVEM virus) for the subsequent production of CAR-T cell. Meanwhile, producing the control pCDH-MSCVEF-20BBZ virus (briefly, 20BBZ virus). Infecting 293 cells with the obtained virus to measure the virus titer, as shown in FIG. 3.

5

2. Preparation of 20BBZ-2A-HVEM CAR-T cell and 20BBZ CAR-T cell

purifying human PBMC by a Stemcell T cell isolation kit, and inoculating into a 96-well culture plate coated with antihCD3 and anti-hCD28. After 2 days, infecting the cells were infecte with 20BBZ virus and 20BBZ-2A-HVEM virus at MOI=10-20. After 1 day, continuing to culture the cells with the medium changed, and stimulating them by artificial

antigen presenting cell or anti-hCD3/28 every 6 days. After 2 rounds of stimulation, the obtained cells are 20BBZCAR-T cell and 20BBZ-2A-HVEM CAR-T cell for subsequent experiments and phenotypic analysis. The results are shown in FIG. 8. It can be seen from the figure that the obtained cells are CAR-POSITIVE.

EXAMPLE 3 - Preparation of 20BBZ-2A-ICOS CAR-T cell

15

[0036] The preparation of the 20BBZ-2A-ICOS CAR-T cell in this example includes the following steps:

1. Construction of lentiviral vector pCDH-MSCVEF-20BBZ-2A-ICOS and production of virus

- incorporating 2A (SEQ ID No. 9) sequence between scFv-antihCD20-20BBZ (SEQID No. 1) and ICOS (SEQID No.4) by overlap PCR, and adding EcoRI and Sall restriction sites to both ends to clone pCDH-MSCVEF vector. Subjecting the clones sequenced correctly to a large scale endotoxin-free extraction, and co-transfecting with lentiviral packaging plasmid (VSV-g, pMD Gag/Pol, RSV-REV) into 293X. After 48 and 72 hours, collecting the supernatant, filtering it by a 0.45uM filter, and performing centrifugation with Beckman ultracentrifuge and SW28 head at 25000 RPM for 2 hours to concentrate the virus, which is pCDH-MSCVEF-20BBZ-2A-ICOS virus (briefly, 20BBZ-
- 25 2A-ICOS virus) for the subsequent production of CAR-T cell. Meanwhile, producing the control pCDH-MSCVEF-20BBZ virus (briefly, 20BBZ virus), and infecting 293 cells with the obtained virus to measure the virus titer, as shown in FIG. 4.
 - 2. Preparation of 20BBZ-2A-ICOS CAR-T cell and 20BBZ CAR-T cell purifying human PBMCs by a Stemcell T cell isolation kit, and inoculating into a 96-well culture plate coated with anti-hCD3 and anti-hCD28. After 2 days, infecting the cells with 20BBZ virus and 20BBZ-2A-ICOS virus at MOI=10-20. After 1 day, continuing to culture the cells with the medium changed, and stimulating them by artificial antigen presenting cell or anti-hCD3/28 every 6 days. After 2 rounds of stimulation, the obtained cells are 20BBZCAR-T cell and 20BBZ-2A-ICOS CAR-T cell for subsequent experiments and phenotypic analysis. The results are shown in FIG. 9. It can be seen from the figure that the obtained cells are CAR-POSITIVE.
- 35

30

EXAMPLE 4- Preparation of 20BBZ-2A-CD27 CAR-T cell

[0037] The preparation of 20BBZ-2A-CD27 CAR-T cell in this example includes the following steps:

Construction of lentiviral vector pCDH-MSCVEF-20BBZ-2A-CD27 and production of virus

incorporating 2A (SEQ ID No. 10) sequence between scFv-antihCD20-20BBZ (SEQID No. 1) and CD27 (SEQID No.5) by overlap PCR, and adding EcoRI and Sall restriction sites to both ends to clone pCDH-MSCVEF vector. Subjecting the clones sequenced correctly to a large scale endotoxin-free extraction, and co-transfecting with lentiviral packaging plasmid (VSV-g, pMD Gag/Pol, RSV-REV) into 293X. After 48 and 72 hours, collecting the super-

- ⁴⁵ natant, filtering it by a 0.45uM filter, and performing centrifugation with Beckman ultracentrifuge and SW28 head at 25000 RPM for 2 hours to concentrate the virus, which is pCDH-MSCVEF-20BBZ-2A-CD27 virus (briefly, 20BBZ-2A-CD27 virus) for the subsequent production of CAR-T cell. Meanwhile, producing the control pCDH-MSCVEF-20BBZ virus (briefly, 20BBZ virus), and infecting 293 cells with the obtained virus to measure the virus titer, as shown in FIG. 5.
- ⁵⁰ 2. Preparation of 20BBZ-2A-CD27 CAR-T cell and 20BBZ CAR-T cell purifying human PBMC by a Stemcell T cell isolation kit, and inoculating into a 96-well culture plate coated with anti-hCD3 and anti-hCD28. After 2 days, infecting the cells with 20BBZ virus and 20BBZ-2A-CD27 virus at MOI=10-20. After 1 day, continuing to culture the cells with the medium changed, and stimulating them by artificial antigen presenting cell or anti-hCD3/28 every 6 days. After 2 rounds of stimulation, the obtained cells are 20BBZCAR-T cell and 20BBZ-2A-CD27 CAR-T cell for subsequent
- ⁵⁵ experiments and phenotypic analysis. The results are shown in FIG. 10. It can be seen from the figure that the obtained cells are CAR-POSITIVE.

EXAMPLE 5- Preparation of 20BBZ-2A-4-1BB CAR-T cell

40

[0038] The preparation of the 20BBZ-2A-4-1BB CAR-T cell in this example includes the following steps:

- ⁵ 1. Construction of lentiviral vector pCDH-MSCVEF-20BBZ-2A-4-1BB and production of virus incorporating 2A (SEQ ID No. 7) sequence between scFv-antihCD20-20BBZ (SEQID No. 1) and 4-1BB (SEQID No.6) by overlap PCR, and adding EcoRI and Sall restriction sites to both ends to clone pCDH-MSCVEF vector. Subjecting the clones sequenced correctly to a large scale endotoxin-free extraction, and co-transfecting with lentiviral packaging plasmid (VSV-g, pMD Gag/Pol, RSV-REV) into 293X. After 48 and 72 hours, collecting the super-
- natant, filtering it by a 0.45uM filter, and performing centrifugation with Beckman ultracentrifuge and SW28 head at 25000 RPM for 2 hours to concentrate the virus, which is pCDH-MSCVEF-20BBZ-2A-4-1BB virus (briefly, 20BBZ-2A-4-1BB virus) for the subsequent production of CAR-T cell. Meanwhile, producing the control pCDH-MSCVEF-20BBZ virus (briefly, 20BBZ virus), infecting 293 cells with the obtained virus to measure the virus titer, as shown in FIG. 6.
- 2. Preparation of 20BBZ-2A-4-1BB CAR-T cell and 20BBZ CAR-T cell purifying human PBMC by a Stemcell T cell isolation kit, and inoculating into a 96-well culture plate coated with anti-hCD3 and anti-hCD28. After 2 days, infecting the cells with 20BBZ virus and 20BBZ-2A-4-1BB virus at MOI=10-20. After 1 day, continuing to culture the cells with the medium changed, and stimulating them by artificial antigen presenting cell or anti-hCD3/28 every 6 days. After 2 rounds of stimulation, the obtained cells are 20BBZCAR-T cell and 20BBZ-2A-4-1BB CAR-T cell for subsequent
- 20 experiments and phenotypic analysis. The results are shown in FIG. 11. It can be seen from the figure that the obtained cells are CAR-POSITIVE.

EXAMPLE 6 - Comparison of expansion abilities of 20BBZ CAR-T cell and 20BBZ-2A-OX40 CAR-T cell

²⁵ **[0039]** 20BBZ CAR-T cell and 20BBZ-2A-OX40 CAR-T cell prepared in Step 2 of Example 1 were continuously cultured for 14 days, and stimulated with artificial antigen presenting cell once every 6 days. The cells were counted, and the results are shown in FIG. 12. It can be seen from the figure that 20BBZ-2A-OX40 CAR-T cell has enhanced proliferation ability as compared with 20BBZCAR-T cell.

30 EXAMPLE 7 - Comparison of tumor-killing abilities of 20BBZ CAR-T cell and 20BBZ-2A-OX40 CAR-T cell

[0040] 20BBZ CAR-T cell and 20BBZ-2A-OX40 CAR-T cell obtained in Step 2 of Example 1, 20BBZ-2A-ICOS CAR-T cell obtained in Step 2 of Example 3, and 20BBZ-2A-CD27 CAR-T cell obtained in Step 2 of Example 4 were inoculated into a 96-well plate, and Raji tumor cells were added at a CAR-T:tumor cell ratio of 1:1, 1:2, 1:4. After 24 and 48 hours, the survival rates of tumor cells were compared, and the results are shown in FIG. 13. It can be seen from the figure that 20BBZ-2A-OX40/ICOS/CD27 CAR-T cell has similar tumor killing ability as compared with 20BBZ CAR-T cell, and some CAR-T including the co-stimulatory receptor has a stronger tumor killing ability.

EXAMPLE 8 - Comparison of anti-tumor ability and in vivo survival ability of 20BBZ CAR-T cell and 20BBZ-2A-OX40 CAR-T cell

[0041] 10⁶ Nalm-6 tumor cells were intravenously inoculated into B-NDG mice, which were treated with 10⁷ 20BBZ CAR-T cells and 20BBZ-2A-OX40 CAR-T cells after 6 days. The mice were observed for their survival rates, and some mice were detected for the level of tumor cells and CAR-T cells in their marrow on Day 7. The results are shown in FIG.

⁴⁵ 14 and FIG. 15, respectively. It can be seen from the figure that 20BBZ-2A-OX40 CAR-T cell, as compared with 20BBZ CAR-T cell, significantly prolongs the survival of mice, and expanded more in vivo.
[0042] It can be seen from the aforesaid examples that the present invention constructs a novel CAR-T cell including a co-stimulatory receptor, which significantly increases the activation ability, survival ability, expansion ability of the CAR-T cells in tumors, as compared with the current CAR-T technology in clinic use, and has a more superior anti-tumor

50 therapeutic effect. [0043] Hereinbefore the specific embodiments of the present invention are described in details. However, they are only used as examples, and the present invention is not limited to the specific embodiments as described above. For those skilled in the art, any equivalent modifications and substitutions made to the present invention are encompassed in the scope of the present invention. Therefore, all the equal transformations and modifications without departing from

⁵⁵ the spirit and scope of the present invention should be covered in the scope of the present invention.

SEQUENCE LISTING

	<110:	> S	HANG	HAI	LONG	SYA0	BIO-	-TECH	I INC	2., 1	LTD						
5	<120: APPL:	> C ICAT	HIME ION	RIC THE	ANT] REOF	GEN	RECH	SPTOF	R COM	(PRIS	SING	C0-8	STIM	JLATO	ORY 1	RECEPTOR	AND
	<130	> 7	2208	P EP	?−₩O												
	<140:	> W	0201	9CN	77922	2											
10	<141:	> 2	019-	-03-1	L3												
	<1503	> C	N201	8104	53640	19											
	<151	> 2	018-	-06-2	20												
15	<160	> 1	0														
	<170:	> P	aten	itIn	vers	sion	3.5										
	<210:	> 1															
	<211:	> 4	68														
20	<212	> P: > A	RT rtif	icia	al Se	auer	ıce										
	<220	>	h						han		שממו						
	~2232	> T.	ne s	eque	ence	OIS	SCE V-	-anti	IncDa	20-20	1004						
25	<400	> 1															
	Gln : 1	Ile	Val	Leu	Ser 5	Gln	Ser	Pro	Ala	Ile 10	Leu	Ser	Ala	Ser	Pro 15	Gly	
	Glu 1	Lys `	Val	Thr 20	Met	Thr	Cys	Arg	Ala 25	Ser	Ser	Ser	Val	Ser 30	Tyr	Ile	
30	His ?	Trp 3	Phe	Gln	Gln	Lys	Pro	Gly	Ser	Ser	Pro	Lys	Pro	Trp	Ile	Tyr	
	Ala '	Thr 50	35 Ser	Asn	Leu	Ala	Ser	40 Gly	Val	Pro	Val	Arg 60	45 Phe	Ser	Gly	Ser	
	Gly S	Ser	Gly	Thr	Ser	Tyr	Ser	Leu	Thr	Ile	Ser	Arg	Val	Glu	Ala	Glu	
05	65			mh es		70	0	C 1 m	C 1	m	75 mh.m	0	1	Dese	Dese	80 The	
35	Asp /	Ala .		Class	85	Tyr	Cys	GIN	GIN	90	Thr	ser	Asn	Pro	95 95		
	Phe (GIV.	GIY	100		цуз	Leu al	Glu	105	цуз	GTA	GIY	сту	110	ser	GIY	
	сту (ыу	GLY 115	Ser	σту	σту	σту	120	ser	GIN	vai	GIN	Leu 125	GIN	GIN	Pro	
40	Gly Z	Ala (130	Glu	Leu	Val	Lys	Pro 135	Gly	Ala	Ser	Val	Lys 140	Met	Ser	Cys	Lys	
	Ala S	Ser	Gly	Tyr	Thr	Phe	Thr	Ser	Tyr	Asn	Met	His	\mathtt{Trp}	Val	Lys	Gln	
	145 Thr 1	Pro	Glv	Ara	Glv	150 Leu	G111	Tro	Tle	Glv	155 Ala	Tle	Tur	Pro	Glv	160 Asn	
45			1	y	165	200	014			170			-1-		175		
	Gly A	Asp	Thr	Ser	Tyr	Asn	Gln	Lys	Phe	Lys	Gly	Lys	Ala	Thr	Leu	Thr	
	Ala A	Asp	Lys 195	Ser	Ser	Ser	Thr	Ala 200	Tyr	Met	Gln	Leu	Ser 205	Ser	Leu	Thr	
50	Ser (Glu) 210	Asp	Ser	Ala	Val	Tyr 215	Tyr	Cys	Ala	Arg	Ser 220	Thr	Tyr	Tyr	Gly	
	Gly 2 225	Asp	Trp	Tyr	Phe	Asn 230	Val	Trp	Gly	Ala	Gly 235	Thr	Thr	Val	Thr	Val 2 4 0	
	Ser A	Ala .	Ala	Ala	Ala	Thr	Thr	Thr	Pro	Ala	Pro	Arg	Pro	Pro	Thr	Pro	
55	Ala 1	Pro	Thr	Ile	245 Ala	Ser	Gln	Pro	Leu 265	250 Ser	Leu	Arg	Pro	Glu 270	255 Ala	Cys	
	Arg I	Pro J	Ala	Ala	Gly	Gly	Ala	Val	His	Thr	Arg	Gly	Leu	Asp	Phe	Ala	

10

			275					280					285			
	Cys	As p 290	Ile	Tyr	Ile	Trp	Ala 295	Pro	Leu	Ala	Gly	Thr 300	Cys	Gly	Val	Leu
5	Leu 305	Leu	Ser	Leu	Val	Ile 310	Thr	Leu	Tyr	Cys	Lys 315	Arg	Gly	Arg	Lys	Lys 320
	Leu	Leu	Tyr	Ile	Phe 325	Lys	Gln	Pro	Phe	Met 330	Arg	Pro	Val	Gln	Thr 335	Thr
	Gln	Glu	Glu	Asp 340	Gly	Cys	Ser	Cys	Arg 345	Phe	Pro	Glu	Glu	Glu 350	Glu	Gly
10	Gly	Cys	Glu 355	Leu	Arg	Val	Lys	Phe 360	Ser	Arg	Ser	Ala	As p 365	Ala	Pro	Ala
	Tyr	Gln 370	Gln	Gly	Gln	Asn	Gln 375	Leu	Tyr	Asn	Glu	Leu 380	Asn	Leu	Gly	Arg
	Arg 385	Glu	Glu	Tyr	Asp	Val 390	Leu	Asp	Lys	Arg	Arg 395	Gly	Arg	Asp	Pro	Glu 400
15	Met	Gly	Gly	Lys	Pro 405	Arg	Arg	Lys	Asn	Pro 410	Gln	Glu	Gly	Leu	Tyr 415	Asn
	GIu -	Leu	GIn	Lys 420	Asp	Lys	Met	Ala	G1u 425	Ala	Tyr	Ser	GIu -	11e 430	GLÀ	Met
	Lys	GLY	G1u 435	Arg	Arg	Arg	GLY	Lys 440	GLY	His	Asp	GTÀ	Leu 445	Tyr	GIn	GLÀ
20	Leu	450	Thr	Ата	THE	гÀг	азр 455	Thr	туг	Asp	ALA	460	HIS	Met	GIN	ALA
	465	PIO	PIO	Arg												
25	<210 <211)> 2 L> 2	2 277													
	<212 <213	2> 1 3> 1	PRT Artii	ficia	al Se	equer	nce									
	<220)>														
30	<220 <223)> 3> t	che s	seque	ence	of (X4 0									
30	<220 <223 <400)> 3> t)> 2	che s 2	seque	ence	of (0 X40									
30	<220 <223 <400 Met 1)> 3> t)> 2 Cys	che s 2 Val	seque Gly	ence Ala 5	of (Arg	DX40 Arg	Leu	Gly	Arg 10	Gly	Pro	Cys	Ala	Ala 15	Leu
30 35	<220 <223 <400 Met 1 Leu)> 3> t)> 2 Cys Leu	che s 2 Val Leu	Gly Gly Gly 20	Ala 5 Leu	of (Arg Gly	DX40 Arg Leu	Leu Ser	Gly Thr 25	Arg 10 Val	Gly Thr	Pro Gly	Cys Leu	Ala His 30	Ala 15 Cys	Leu Val
30 35	<220 <223 <400 Met 1 Leu Gly)> 3> t 0> 2 Cys Leu Asp	the s Val Leu Thr 35	Gly Gly Gly 20 Tyr	Ala 5 Leu Pro	of (Arg Gly Ser	DX40 Arg Leu Asn	Leu Ser Asp 40	Gly Thr 25 Arg	Arg 10 Val Cys	Gly Thr Cys	Pro Gly His	Cys Leu Glu 45	Ala His 30 Cys	Ala 15 Cys Arg	Leu Val Pro
30 35	<220 <223 <400 Met 1 Leu Gly Gly)> 3> t Cys Leu Asp 50	the s Val Leu Thr 35 Gly	Gly Gly 20 Tyr Met	Ala 5 Leu Pro Val	of (Arg Gly Ser Ser	Arg Leu Asn Arg 55	Leu Ser Asp 40 Cys	Gly Thr 25 Arg Ser	Arg 10 Val Cys Arg	Gly Thr Cys Ser	Pro Gly His Gln 60	Cys Leu Glu 45 Asn	Ala His 30 Cys Thr	Ala 15 Cys Arg Val	Leu Val Pro Cys
30 35 40	<220 <223 <400 Met 1 Leu Gly Gly Arg 65)> 3> t Cys Leu Asp Asn 50 Pro	val Leu Thr 35 Gly Cys	Gly Gly 20 Tyr Met Gly	Ala 5 Leu Pro Val Pro	of (Arg Gly Ser Ser Gly 70	OX40 Arg Leu Asn Arg 55 Phe	Leu Ser Asp 40 Cys Tyr	Gly Thr 25 Arg Ser Asn	Arg 10 Val Cys Arg Asp	Gly Thr Cys Ser Val 75	Pro Gly His Gln 60 Val	Cys Leu Glu 45 Asn Ser	Ala His 30 Cys Thr Ser	Ala 15 Cys Arg Val Lys	Leu Val Pro Cys Pro 80
30 35 40	<220 <223 <400 Met 1 Leu Gly Gly Arg 65 Cys)> 3> t Cys Leu Asp Asn 50 Pro Lys	The s Val Leu Thr 35 Gly Cys Pro	Gly Gly 20 Tyr Met Gly Cys	Ala 5 Leu Pro Val Pro Thr 85	of (Arg Gly Ser Ser Gly 70 Trp	Arg Leu Asn Arg 55 Phe Cys	Leu Ser Asp 40 Cys Tyr Asn	Gly Thr 25 Arg Ser Asn Leu	Arg 10 Val Cys Arg Asp Arg 90	Gly Thr Cys Ser Val 75 Ser	Pro Gly His Gln 60 Val Gly	Cys Leu Glu 45 Asn Ser Ser	Ala His 30 Cys Thr Ser Glu	Ala 15 Cys Arg Val Lys Arg 95	Leu Val Pro Cys Pro 80 Lys
30 35 40	<220 <223 <400 Met 1 Leu Gly Gly Arg 65 Cys Gln)> 3> t Cys Leu Asp Asn 50 Pro Lys Leu	The solution of the solution o	Gly Gly 20 Tyr Met Gly Cys Thr 100	Ala 5 Leu Pro Val Pro Thr 85 Ala	of (Arg Gly Ser Ser Gly 70 Trp Thr	Arg Leu Asn Arg 55 Phe Cys Gln	Leu Ser Asp 40 Cys Tyr Asn Asp	Gly Thr 25 Arg Ser Asn Leu Thr 105	Arg 10 Val Cys Arg Asp Arg 90 Val	Gly Thr Cys Ser Val 75 Ser Cys	Pro Gly His Gln 60 Val Gly Arg	Cys Leu Glu 45 Asn Ser Ser Cys	Ala His 30 Cys Thr Ser Glu Arg 110	Ala 15 Cys Arg Val Lys Arg 95 Ala	Leu Val Pro Cys Pro 80 Lys Gly
30 35 40 45	<pre><220 <223 <400 Met 1 Leu Gly Gly Arg 65 Cys Gln Thr</pre>)> 3> t Cys Leu Asp Asn 50 Pro Lys Leu Gln	The solution of the solution o	Gly Gly 20 Tyr Met Gly Cys Thr 100 Leu	Ala 5 Leu Pro Val Pro Thr 85 Ala Asp	of (Arg Gly Ser Ser Gly 70 Trp Thr Ser	Arg Leu Asn Arg 55 Phe Cys Gln Tyr	Leu Ser Asp 40 Cys Tyr Asn Asp Lys 120	Gly Thr 25 Arg Ser Asn Leu Thr 105 Pro	Arg 10 Val Cys Arg Asp Arg 90 Val Gly	Gly Thr Cys Ser Val 75 Ser Cys Val	Pro Gly His Gln 60 Val Gly Arg Asp	Cys Leu Glu 45 Asn Ser Ser Cys Cys 125	Ala His 30 Cys Thr Ser Glu Arg 110 Ala	Ala 15 Cys Arg Val Lys Arg 95 Ala Pro	Leu Val Pro Cys Pro 80 Lys Gly Cys
30 35 40 45	<pre><220 <223 <400 Met 1 Leu Gly Gly Arg 65 Cys Gln Thr Pro </pre>)> 3> t Cys Leu Asp Asn 50 Pro Lys Leu Gln Pro 130	The solution of the solution o	Gly Gly 20 Tyr Met Gly Cys Thr 100 Leu His	Ala 5 Leu Pro Val Pro Thr 85 Ala Asp Phe	of (Arg Gly Ser Ser Gly 70 Trp Thr Ser Ser	Arg Leu Asn Arg 55 Phe Cys Gln Tyr Pro 135	Leu Ser Asp 40 Cys Tyr Asn Asp Lys 120 Gly	Gly Thr 25 Arg Ser Asn Leu Thr 105 Pro Asp	Arg 10 Val Cys Arg Asp Arg 90 Val Gly Asn	Gly Thr Cys Ser Val 75 Ser Cys Val Gln	Pro Gly His Gln 60 Val Gly Arg Asp Ala	Cys Leu Glu 45 Asn Ser Cys Cys 125 Cys	Ala His 30 Cys Thr Ser Glu Arg 110 Ala Lys	Ala 15 Cys Arg Val Lys Arg 95 Ala Pro Pro	Leu Val Pro Cys Pro 80 Lys Gly Cys Trp
30 35 40 45	<pre><220 <223 <400 Met 1 Leu Gly Gly Arg 65 Cys Gln Thr Pro Thr 145</pre>)> 3> t Cys Leu Asp Asn 50 Pro Lys Leu Gln Pro 130 Asn	The solution of the solution o	Gly Gly 20 Tyr Met Gly Cys Thr 100 Leu His Thr	Ala 5 Leu Pro Val Pro Thr 85 Ala Asp Phe Leu	of (Arg Gly Ser Ser Gly 70 Trp Thr Ser Ser Ala	Arg Leu Asn Arg 55 Phe Cys Gln Tyr Pro 135 Gly	Leu Ser Asp 40 Cys Tyr Asn Asp Lys 120 Gly Lys	Gly Thr 25 Arg Ser Asn Leu Thr 105 Pro Asp His	Arg 10 Val Cys Arg Asp Arg 90 Val Gly Asn Thr	Gly Thr Cys Ser Val 75 Ser Cys Val Gln Leu 155	Pro Gly His Gln 60 Val Gly Arg Asp Ala 140 Gln	Cys Leu Glu 45 Asn Ser Cys Cys 125 Cys Pro	Ala His 30 Cys Thr Ser Glu Arg 110 Ala Lys Ala	Ala 15 Cys Arg Val Lys Arg 95 Ala Pro Pro Ser	Leu Val Pro Cys Pro 80 Lys Gly Cys Trp Asn 160
30 35 40 45 50	<pre><220 <223 <400 Met 1 Leu Gly Gly Gly Arg 65 Cys Gln Thr Pro Thr 145 Ser</pre>)> 3> t Cys Leu Asp Asn 50 Pro Lys Leu Gln Pro 130 Asn Ser	The solution of the solution o	Gly Gly 20 Tyr Met Gly Cys Thr 100 Leu His Thr Ala	Ala 5 Leu Pro Val Pro Thr 85 Ala Asp Phe Leu Ile 165	of (Arg Gly Ser Ser Gly 70 Trp Thr Ser Ser Ala 150 Cys	Arg Leu Asn Arg 55 Phe Cys Gln Tyr Pro 135 Gly Glu	Leu Ser Asp 40 Cys Tyr Asn Asp Lys 120 Gly Lys Asp	Gly Thr 25 Arg Ser Asn Leu Thr 105 Pro Asp His Arg	Arg 10 Val Cys Arg Asp Arg 90 Val Gly Asn Thr Asp 170	Gly Thr Cys Ser Val 75 Ser Cys Val Gln Leu 155 Pro	Pro Gly His Gln 60 Val Gly Arg Ala 140 Gln Pro	Cys Leu Glu 45 Asn Ser Cys Cys 125 Cys Pro Ala	Ala His 30 Cys Thr Ser Glu Arg 110 Ala Lys Ala Thr	Ala 15 Cys Arg Val Lys Arg 95 Ala Pro Pro Ser Gln 175	Leu Val Pro Cys Pro 80 Lys Gly Cys Trp Asn 160 Pro
30 35 40 45 50	<pre><220 <223 <400 Met 1 Leu Gly Gly Arg 65 Cys Gln Thr Pro Thr 145 Ser Gln</pre>)> 3> t Cys Leu Asp Asn 50 Pro Lys Leu Gln Pro 130 Asn Ser Glu	The solution of the solution o	Gly Gly 20 Tyr Met Gly Cys Thr 100 Leu His Thr Ala Gln 180	Ala 5 Leu Pro Val Pro Thr 85 Ala Asp Phe Leu Ile 165 Gly	of (Arg Gly Ser Ser Gly 70 Trp Thr Ser Ser Ala 150 Cys Pro	Arg Leu Asn Arg 55 Phe Cys Gln Tyr Pro 135 Gly Glu Pro	Leu Ser Asp 40 Cys Tyr Asn Asp Lys 120 Gly Lys Asp Ala	Gly Thr 25 Arg Ser Asn Leu Thr 105 Pro Asp His Arg 185	Arg 10 Val Cys Arg 90 Val Gly Asn Thr Asp 170 Pro	Gly Thr Cys Ser Val 75 Ser Cys Val Gln Leu 155 Pro Ile	Pro Gly His Gln 60 Val Gly Arg Ala 140 Gln Pro Thr	Cys Leu Glu 45 Asn Ser Cys Cys Cys Cys Pro Ala Val	Ala His 30 Cys Thr Ser Glu Arg 110 Ala Lys Ala Thr Gln 190	Ala 15 Cys Arg Val Lys Arg 95 Ala Pro Pro Ser Gln 175 Pro	Leu Val Pro Cys Pro 80 Lys Gly Cys Trp Asn 160 Pro Thr
 30 35 40 45 50 	<pre><220 <223 <400 Met 1 Leu Gly Gly Arg 65 Cys Gln Thr Pro Thr 145 Ser Gln Glu Glu</pre>	<pre>>> t >3> t Cys Leu Asp Asn 50 Pro Lys Leu Gln Pro 130 Asn Ser Glu Ala</pre>	Thr J Cys Pro Cys Pro 115 Gly Cys Asp Thr Trp 195	Gly Gly 20 Tyr Met Gly Cys Thr 100 Leu His Thr Ala Gln 180 Pro	Ala 5 Leu Pro Val Pro Thr 85 Ala Asp Phe Leu Ile 165 Gly Arg	of (Arg Gly Ser Ser Gly 70 Trp Thr Ser Ser Ala 150 Cys Pro Thr	X40 Arg Leu Asn Arg 55 Phe Cys Gln Tyr Pro 135 Gly Glu Pro Ser	Leu Ser Asp 40 Cys Tyr Asn Asp Lys 120 Gly Lys Asp Ala Gln 200	Gly Thr 25 Arg Ser Asn Leu Thr 105 Pro Asp His Arg 185 Gly	Arg 10 Val Cys Arg 90 Val Gly Asn Thr Asp 170 Pro	Gly Thr Cys Ser Val 75 Ser Cys Val Gln Leu 155 Pro Ile Ser	Pro Gly His Gln 60 Val Gly Arg Asp Ala 140 Gln Pro Thr Thr	Cys Leu Glu 45 Asn Ser Cys Cys Cys Cys Cys Pro Ala Val Arg 205	Ala His 30 Cys Thr Ser Glu Arg 110 Ala Lys Ala Thr Gln 190 Pro	Ala 15 Cys Arg Val Lys Arg 95 Ala Pro Pro Ser Gln 175 Pro Val	Leu Val Pro Cys Pro 80 Lys Gly Cys Trp Asn 160 Pro Thr Glu

	Leu 225 Arg	Gly Arg	Leu Asp	Leu Gln	Gly Arg	Pro 230 Leu	Leu Pro	Ala Pro	Ile Asp	Leu Ala	Leu 235 His	Ala Lys	Leu Pro	Tyr Pro	Leu Gly	Leu 240 Gly
5	Glv	Ser	- Phe	Arg	245 Thr	Pro	Ile	Gln	- Glu	250 Glu	Gln	- Ala	Asp	Ala	255 His	Ser
0		•		260	T 1-				265					270		
	Thr	Leu	A1a 275	гүз	шe											
10	<210)> >	3 283													
	<212 <213	2> 1 3> 1	PRT Arti:	ficia	al Se	eque	ice									
15	<220 <223)> }> ·	the s	seque	ence	of I	IVEM									
	<400)> :	3													
	Met 1	Glu	Pro	Pro	Gly 5	Asp	Trp	Gly	Pro	Pro 10	Pro	Trp	Arg	Ser	Thr 15	Pro
20	Lys	Thr	Asp	Val 20	Leu	Arg	Leu	Val	Leu 25	Tyr	Leu	Thr	Phe	Leu 30	Gly	Ala
	Pro	Cys	Tyr 35	Ala	Pro	Ala	Leu	Pro 40	Ser	Cys	Lys	Glu	Asp 45	Glu	Tyr	Pro
	Val	Gly 50	Ser	Glu	Cys	Cys	Pro 55	Lys	Cys	Ser	Pro	Gly 60	Tyr	Arg	Val	Lys
25	Glu 65	Ala	Cys	Gly	Glu	Leu 70	Thr	Gly	Thr	Val	Cys 75	Glu	Pro	Cys	Pro	Pro 80
	Gly	Thr	Tyr	Ile	Ala	His	Leu	Asn	Gly	Leu	Ser	Lys	Cys	Leu	Gln	Cys
	Gln	Met	Cys	Asp	Pro	Ala	Met	Gly	Leu	Arg	Ala	Ser	Arg	Asn	Cys	Ser
30	Arg	Thr	Glu	Asn	Ala	Val	Cys	Gly	Cys	Ser	Pro	Gly	His	Phe	Cys	Ile
	Val	Gln	Asp	Gly	Asp	His	Cys	Ala	Ala	Cys	Arg	Ala	125 Tyr	Ala	Thr	Ser
	Ser	130 Pro	Gly	Gln	Arg	Val	135 Gln	Lys	Gly	Gly	Thr	140 Glu	Ser	Gln	Asp	Thr
35	145 Leu	Cvs	Gln	Asn	Cvs	150 Pro	Pro	Glv	Thr	Phe	155 Ser	Pro	Asn	Glv	Thr	160 Leu
		-1- Cl.,	<u> </u>	<u></u>	165			<i>1</i>	<u> </u>	170					175	
	GIU	GTU	cys	180	птр	GTU	IUL	гуз	185	Ser	пр	гéп	Val	190	гуз	AId
40	Gly	Ala	Gly 195	Thr	Ser	Ser	Ser	His 200	Trp	Val	Trp	Trp	Phe 205	Leu	Ser	Gly
	Ser	Leu 210	Val	Ile	Val	Ile	Val 215	Cys	Ser	Thr	Val	Gly 220	Leu	Ile	Ile	Cys
	Val 225	Lys	Arg	Arg	Lys	Pro 230	Arg	Gly	Asp	Val	Val 235	Lys	Val	Ile	Val	Ser 240
45	Val	Gln	Arg	Lys	Arg 245	Gln	Glu	Ala	Glu	Gly 250	Glu	Ala	Thr	Val	Ile 255	Glu
	Ala	Leu	Gln	Al a 260	Pro	Pro	Asp	Val	Thr 265	Thr	Val	Ala	Val	Glu 270	Glu	Thr
	Ile	Pro	Ser 275	Phe	Thr	Gly	Arg	Ser 280	Pro	Asn	His					
50			270					200								
	<21(<21))> L> :	4 199													
	<212	2> 1	PRT	· - نما	0-											
55	~213)> A	CLII:	rcia.	L 360	lueno	je									
	<22(<223)> 3> ·	the s	seque	ence	of	100	5								

	<400)> 4	1													
	Met	Lys	Ser	Gly	Leu	Trp	Tyr	Phe	Phe	Leu	Phe	Cys	Leu	Arg	Ile	Lys
	ı Val	Leu	Thr	Gly	5 Glu	Ile	Asn	Gly	Ser	10 Ala	Asn	Tyr	Glu	Met	15 Phe	Ile
5	Phe	His	Asn	20 Gly	Gly	Val	Gln	Ile	25 Leu	Cys	Lys	Tyr	Pro	30 Asp	Ile	Val
	Gln	Gln	35 Phe	Lys	Met	Gln	Leu	40 Leu	Lys	Gly	Gly	Gln	45 Ile	Leu	Cys	Asp
10	Leu 65	Thr	Lys	Thr	Lys	Gly 70	Ser	Gly	Asn	Thr	Val 75	Ser	Ile	Lys	Ser	Leu
	Lys	Phe	Cys	His	Ser 85	Gln	Leu	Ser	Asn	Asn 90	Ser	Val	Ser	Phe	Phe 95	Leu
	Tyr	Asn	Leu	Asp 100	His	Ser	His	Ala	Asn 105	Tyr	Tyr	Phe	Cys	Asn 110	Leu	Ser
15	Ile	Phe	As p 115	Pro	Pro	Pro	Phe	Lys 120	Val	Thr	Leu	Thr	Gly 125	Gly	Tyr	Leu
	His	Ile 130	Tyr	Glu	Ser	Gln	Leu 135	Cys	Cys	Gln	Leu	Lys 140	Phe	Trp	Leu	Pro
	Ile 145	Gly	Cys	Ala	Ala	Phe 150	Val	Val	Val	Cys	Ile 155	Leu	Gly	Cys	Ile	Leu 160
20	Ile	Cys	Trp	Leu	$\frac{\text{Thr}}{165}$	Lys	Lys	Lys	Tyr	Ser 170	Ser	Ser	Val	His	Asp 175	Pro
	Asn	Gly	Glu	Tyr 180	Met	Phe	Met	Arg	Ala 185	Val	Asn	Thr	Ala	Lys 190	Lys	Ser
	Arg	Leu	Thr 195	Asp	Val	Thr	Leu									
25		_														
	<210)> 5	5													
	<211	L> 2	260													
	<213	3> 1	Artif	ficia	al Se	eque	ıce									
30						1										
	<220)>														
	<223	3> t	the s	seque	ence	of (CD27									
	<400)> 5	5													
35	Met 1	Ala	Arg	Pro	His 5	Pro	Trp	Trp	Leu	Cys 10	Val	Leu	Gly	Thr	Leu 15	Val
	Gly	Leu	Ser	Ala 20	Thr	Pro	Ala	Pro	Lys 25	Ser	Cys	Pro	Glu	Arg 30	His	Tyr
	Trp	Ala	Gln 35	Gly	Lys	Leu	Cys	Cys 40	Gln	Met	Cys	Glu	Pro 45	Gly	Thr	Phe
40	Leu	Val 50	Lys	Asp	Cys	Asp	Gln 55	His	Arg	Lys	Ala	Ala 60	Gln	Cys	Asp	Pro
	Cys 65 6	Ile	Pro	Gly	Val	Ser 70	Phe	Ser	Pro	Asp	His 75 -	His -	Thr	Arg	Pro	His 80
	Cys	Glu	Ser	Cys	Arg 85 Agn	HIS	Cys	Asn	Ser	90 90	Leu	Leu	vai	Arg	Asn 95 Clm	Cys
45	Thr Dra	Jie	Thr	100	Asn	Ala	GIU	Cys	105	Cys	Arg	Asn	GIY	110 Bro	GIN	Cys
	Thr	Ala	115 Arg	Ser	Ser	Gln	Ala	120 1.eu	Ser	Pro	His	Pro	125 Gln	Pro	Thr	His
50	T	130	y	Vol	991 991	C1	135	Lou	C1	A1-		140 Th-	×1-	c1	u: -	
	Leu 145	FIO	TÀL	val	ser	150	Met	ьeu	GTU	ыта	лгд 155	Thr	мта	сту	nlS	Met 160
	Gln	Thr	Leu	Ala	As p 165	Phe	Arg	Gln	Leu	Pro 170	Ala	Arg	Thr	Leu	Ser 175	Thr
55	His	Trp	Pro	Pro	Gln	Arg	Ser	Leu	Cys	Ser	Ser	Asp	Phe	Ile	Arg	Ile
				180					185					190		

	Leu l	Phe	Leu	His	Gln	Arg	Arg 215	Lys	Tyr	Arg	Ser	Asn 220	Lys	Gly	Glu	Ser
	Pro V	Val	Glu	Pro	Ala	Glu	Pro	Cys	Arg	Tyr	Ser	Cys	Pro	Arg	Glu	Glu
	225					230		-	2	-	235	-		2		240
5	Glu (Gly	Ser	Thr	Ile 245	Pro	Ile	Gln	Glu	As p 250	Tyr	Arg	Lys	Pro	Glu 255	Pro
	Ala (Cys	Ser	Pro 260												
10	<210	> 6	5													
10	<2112	> 2 > P	:55 'RT													
	<213	> A	rtif	licia	al Se	equer	ıce									
	<220:	>														
15	<223	> t	he s	eque	ence	of 4	1–1BI	3								
	<400	> 6	5													
	Met (Gly	Asn	Ser	Cys	Tyr	Asn	Ile	Val	Ala	Thr	Leu	Leu	Leu	Val	Leu
20	Asn 1	Phe	Glu	Arg 20	5 Thr	Arg	Ser	Leu	Gln 25	Asp	Pro	Cys	Ser	Asn 30	Cys	Pro
20	Ala (Gly	Thr 35	Phe	Cys	Asp	Asn	Asn 40	Arg	Asn	Gln	Ile	Cys 45	Ser	Pro	Cys
	Pro I	Pro 50	Asn	Ser	Phe	Ser	Ser 55	Ala	Gly	Gly	Gln	Arg 60	Thr	Cys	Asp	Ile
25	Cys 2 65	Arg	Gln	Cys	Lys	Gly 70	Val	Phe	Arg	Thr	Arg 75	Lys	Glu	Cys	Ser	Ser 80
	Thr :	Ser	Asn	Ala	Glu 85	Cys	Asp	Cys	Thr	Pro 90	Gly	Phe	His	Cys	Leu 95	Gly
	Ala (Gly	Cys	Ser 100	Met	Cys	Glu	Gln	Asp 105	Cys	Lys	Gln	Gly	Gln 110	Glu	Leu
30	Thr 1	Lys	Lys 115	Gly	Cys	Lys	Asp	Cys 120	Cys	Phe	Gly	Thr	Phe 125	Asn	Asp	Gln
	Lys A	Arg 130	Gly	Ile	Cys	Arg	Pro 135	Trp	Thr	Asn	Cys	Ser 140	Leu	Asp	Gly	Lys
	Ser V	Val	Leu	Val	Asn	Gly	Thr	Lys	Glu	Arg	Asp	Val	Val	Cys	Gly	Pro
35	Ser I	Pro	Ala	Asp	Leu	Ser	Pro	Gly	Ala	Ser	Ser	Val	Thr	Pro	Pro	Ala
	D		•	-	165	61		- -	D	170	T 1 -	T 1 -	a	D 1	175 Db-	
	Pro A	ALA	Arg	180	Pro	сту	HIS	Ser	185	GIN	шe	тте	Ser	Pne 190	Pne	Leu
	Ala 1	Leu	Thr 195	Ser	Thr	Ala	Leu	Leu 200	Phe	Leu	Leu	Phe	Phe 205	Leu	Thr	Leu
40	Arg I	Phe 210	Ser	Val	Val	Lys	Arg 215	Gly	Arg	Lys	Lys	Le u 220	Leu	Tyr	Ile	Phe
	Lys (Gln	Pro	Phe	Met	Arg	Pro	Val	Gln	Thr	Thr	Gln	Glu	Glu	Asp	Gly
	225 Cvs \$	Ser	Cvs	Ara	Phe	230 Pro	Glu	Glu	Glu	Glu	235 Glv	Glv	Cvs	Glu	Leu	240
45	-1		-1-	y	245					250	1	1	-1-		255	
	<210:	> 7	,													
	<2112	> 2 > P	2 87													
	<213	> A	rtif	ficia	al Se	equer	ice									
50	-200															
	<223	> t	he s	seque	ence	of 2	2 a									
	<400	> 7	,													
55	Gly S	Ser	Gly	Ala	Thr	Asn	Phe	Ser	Leu	Leu	Lys	Gln	Ala	Gly	Asp	Val
	I Glu (Glu	Asn	Pro	э Gly	Pro				10					12	

			20												
	<210>	8													
	<211>	21													
5	<212>	PRT													
	<213>	Arti	ficia	al Se	equer	nce									
	<220>														
	<223>	the a	seque	ence	of 2	2A									
10															
	<400>	8													
	Gly Se	r Gly	Glu	Gly	Arq	Gly	Ser	Leu	Leu	Thr	Cys	Gly	Asp	Val	Glu
	1	-		5	2	-			10			· -		15	
	Glu As:	n Pro	Gly	Pro											
15			20												
10															
	<210>	9													
	<211>	23													
	<212>	PRT													
a a	<213>	Arti	ficia	al Se	equer	nce									
20															
	<220>														
	<223>	the a	seque	ence	of 2	2 A									
	<400>	9													
25	Gly Se	r Gly	Gln	Cys	Thr	Asn	Tyr	Ala	Leu	Leu	Lys	Leu	Ala	Gly	Asp
	1	-		5			-		10		-			15	-
	Val Gl	u Ser	Asn	${\tt Pro}$	Gly	${\tt Pro}$									
			20												
	<210>	10													
30	<211>	25													
	<212>	PRT													
	<213>	Arti	ficia	al Se	equer	nce									
	<220>														
35	<223>	the a	seque	ence	of 2	2 A									
	<400>	10													
	Gly Se	r Gly	Val	Lys	Gln	Thr	Leu	Asn	Phe	Asp	Leu	Leu	Lys	Leu	Ala
	1			5					10					15	
40	Gly As	p Val	Glu	Ser	Asn	${\tt Pro}$	Gly	${\tt Pro}$							
			20					25							

Claims

- 45
- A chimeric antigen receptor comprising a co-stimulatory receptor, wherein said chimeric antigen receptor has a structure of scFv(X)-(Y)CD3zeta-2A-(Z);
- wherein X comprises a tumor-targeting antibody or a ligand or receptor capable of specifically binding to a tumor; Y is an intracellular domain of a co-stimulatory receptor, and said co-stimulatory receptor is selected from ICOS,
 CD28, CD27, HVEM, LIGHT, CD40L, 4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226; and Z is a co-stimulating receptor, and said co-stimulatory receptor is selected from ICOS, CD28, CD27, HVEM, LIGHT, CD40L, 4-1BB, OX40, DR3, GITR, CD30, TIM1, SLAM, CD2, CD226.
- The chimeric antigen receptor comprising a co-stimulatory receptor according to claim 1, wherein said X is selected from anti-CD 19 antibody, anti-CD20 antibody, EGFR antibody, HER2 antibody, EGFRVIII antibody, anti-PSMA antibody, anti-BCMA antibody, anti-CD22 antibody, anti-CD30 antibody.
 - 3. The chimeric antigen receptor comprising a co-stimulatory receptor according to claim 1, wherein said X is anti-

CD20 antibody, said Y is 4-1BB, said Z is one selected from OX40, HVEM, ICOS, CD27, 4-1BB.

- 4. The chimeric antigen receptor comprising a co-stimulatory receptor according to claim 3, wherein said scFv(X)-(Y)CD3zeta is scFv-antihCD20-20BBZ with a sequence of SEQ ID No. 1; said OX40 has a sequence of SEQ ID No.2; said HVEM has a sequence of SEQ ID No.3; said ICOS has a sequence of SEQ ID No.4; said CD27 has a sequence of SEQ ID No.5; said 4-1BB has a sequence of SEQ ID No.6; and said 2A has a sequence of SEQ ID No.7, SEQ ID No.8, SEQ ID No.9 or SEQ ID No.10.
- A CAR-T cell constructed by a recombinant expression vector of said chimeric antigen receptor according to any one of claims 1-4.
 - 6. A method of preparing said CAR-T cell according to claim 5, comprising the following steps:

step 1, construction of lentiviral vector and production of virus;

- incorporating 2A between scFv(X)-(Y)CD3zeta and Z to form a fusion protein, adding a lentiviral vector to both ends of the fusion protein, and co-transfecting with a lentiviral packaging plasmid to obtain an scFv(X)-(Y)CD3zeta-2A-(Z) virus; and
 - step 2, preparation of scFv(X)-(Y)CD3zeta-2A-(Z) CAR-T cell;
- culturing purified human PBMC, and infecting said PBMC with the scFv(X)-(Y)CD3zeta-2A-(Z) virus obtained in Step 1, subjecting them to cell expansion under suitable conditions to prepare the scFv(X)-(Y)CD3zeta-2A-(Z) CAR-T cell.
 - **7.** The method of preparing said CAR-T cell according to claim 6, wherein said construction of lentiviral vector and production of virus comprises:
- ²⁵ incorporating 2A between scFv(X)-(Y)CD3zeta and Z by overlap PCR to form a fusion protein, and adding restriction sites to both ends of the fusion protein to clone a lentiviral vector; subjecting the clones sequenced correctly to a large scale endotoxin-free extraction, and co-transfecting with a lentiviral packaging plasmid; after a predetermined time period, collecting a supernatant, filtering, centrifuging to concentrate the virus to obtain an scFv(X)-(Y)CD3zeta-2A-(Z) virus.
 - 8. The method of preparing said CAR-T cell according to claim 6, wherein said preparation of said scFv(X)-(Y)CD3zeta-2A-(Z) CAR-T cell comprises: isolating human PBMC for purification, inoculating into a culture plate under suitable stimulation conditions, culturing them for a predetermined period of time, infecting said PBMC with the scFv(X)-(Y)CD3zeta-2A-(Z) virus produced in Step 1, and subjecting them to cell expansion under suitable stimulation conditions, after 2 rounds of expansion under stimulation, the obtained cells are the scFv(X)-(Y)CD3zeta-2A-(Z) CAR-T cells.
 - **9.** A formulation, comprising said CAR-T cell according to claim 5.
- 40 10. Use of said chimeric antigen receptor according to any one of claims 1-4 or said CAR-T cell according to claim 5 in the preparation of a medicament for treating or preventing tumors.

45

5

15

20

30

35

50

55

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

Bone marrow

FIG. 14

FIG. 15

INTERNA	TIONAL	SEARCH	REPORT

AL	to International Patent Classification (IPC) or to both national classification and IPC	
B. FI	ELDS SEARCHED	
Minimum	documentation searched (classification system followed by classification symbols)	
C07	К, А61К, А61Р	
Document	ation searched other than minimum documentation to the extent that such documents are included in	n the fields searcl
Electronic	data base consulted during the international search (name of data base and, where practicable, search	ch terms used)
CNI	KI, CNABS, CNTXT, DWPI, CPEA, SIPOABS, EPTXT, WOTXT, USTXT, JPTXT, ELSEVIE	ER, EMBASE, a
Ten	ms: CAR, CAR-T, 嵌合抗原受体, 共表达, co-express+, CD19, CD20, HVEM, OX40, ICOS, CD27 BL 中国专利生物序列检索系统和检索的序列	', 4-1BB等; GEN m and seared sea
SEC	QID NO: 1-10.	in and source soq.
C. DC	OCUMENTS CONSIDERED TO BE RELEVANT	
Category*	* Citation of document, with indication, where appropriate, of the relevant passages	Relevant to cla
X	BOICE, M. et al. "Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by	1, 2
	Modified CAR-T Cells" <i>Cell</i> , Vol. 167, 06 October 2016 (2016-10-06).	
	p. 412, right column, last paragraph, and figure 7	
Y	BOICE, M. et al. "Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by	3-10
	Modified CAR-1 Cells" <i>Cell</i> , Vol. 167, 06 October 2016 (2016-10-06),	
	p. 412, left column, last paragarph to right column, paragarph 2, and p. 412, tight column, paragarph 1, and figure 7	
Y	CN 107384963 A (BELLASTEM BIOTECHNOLOGY LIMITED) 24 November 2017	3-10
	(2017-11-24)	
	claims 1-7, and description, paragraph [0003]	
Furthe	claims 1-7, and description, paragraph [0003]	
Furthe	er documents are listed in the continuation of Box C. al categories of cited documents: er dofining the ground street of the art theight is not again that and not in conflict with the application "T" later document published after the intern date and not in conflict with the application and the and not in conflict with the application er document date an	ational filing date o
Furthe * Specia "A" docum to be c	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. al categories of cited documents: nent defining the general state of the art which is not considered of particular relevance "T" later document published after the intern date and no tin conflict with the applicating principle or theory underlying the invent "X"	ational filing date of on but cited to unde ion
* Specia *'A' docum to be c -''E'' earlier filing	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. al categories of cited documents: ent defining the general state of the art which is not considered of particular relevance: application or patent but published on or after the international date "T" https://www.com/com/com/com/com/com/com/com/com/com/	ational filing date c on but cited to unde ion claimed invention c d to involve an inve
Furthe * Specia "A" docum to be c "E" earlier filing "L" docum cited o specia	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. al categories of cited documents: nent defining the general state of the art which is not considered of particular relevance application or patent but published on or after the international date ent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other	ational filing date o on but cited to under ion claimed invention c d to involve an inver claimed invention c tep when the doc
* Specia *A" docum to be c *E" earlier filing. *L" docum specia *O" docum	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. al categories of cited documents: nent defining the general state of the art which is not considered of particular relevance: application or patent but published on or after the international date nent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other it referring to an oral disclosure, use, exhibition or other	ational filing date o on but cited to under ion claimed invention c d to involve an inver claimed invention c claimed invention c couments, such cor rt
* Specia * Specia * A" docum to be for filing * C" earlier filing * C" docum reted specia * O" docum means * P" docum the pri	 claims 1-7, and description, paragraph [0003] ber documents are listed in the continuation of Box C. al categories of cited documents: and teategories of cited documents: and teategories of cited documents: and teategories of cited documents: application or patent but published on or after the international date anent which may threw doubts on priority claim(s) or which is to establish the publication date of another citation or other international filing date but later than "Y" document of particular relevance; the considered to involve an inventive significant or other international filing date but later than "&" document member of the same patent far the international filing date but later than 	ational filing date of on but cited to unde ion claimed invention of to involve an inve claimed invention of locuments, such con urt mily
Furthe * Specia "A" docum to be c "E" earlier filing "C" docum cited t specia "O" docum means "P" docum the pri Date of the	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. al categories of cited documents: ent defining the general state of the art which is not considered of particular relevance: application or patent but published on or after the international date ent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other it referring to an oral disclosure, use, exhibition or other international filing date but later than intry date claimed actual completion of the international search Date of mailing of the international search	ational filing date of on but cited to unde- ion latimed invention of d to involve an inve- claimed invention of locuments, such con urt mily
Furthe * Specia "A" docum to be c "E" earlier filing. "C" docum cited t specia "O" docum means "P" docum the pri Date of the	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. al categories of cited documents: ent defining the general state of the art which is not considered of particular relevance: application or patent but published on or after the international date ent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other it referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later than iority date claimed actual completion of the international search 28 April 2019	ational filing date c on but cited to unde ion laimed invention c claimed invention c claimed invention c tocuments, such cor urt mily
Furthe * Specia "A" docum to be c "E" earlier filing "C" docum cited specia specia specia "O" docum means "P" docum means "P" docum means Name and n	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. I categories of cited documents: ent defining the general state of the art which is not considered of particular relevance application or patent but published on or after the international date nent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other international filing date but later than oral disclosure, use, exhibition or other international filing date but later than introduce a completion of the international search actual completion of the international search Date of mailing of the international search 28 April 2019 23 May 2019 nailing address of the ISA/CN Authorized officer	ational filing date of on but cited to under ion cited to under claimed invention of to involve an inver- claimed invention of tep when the doc locuments, such con rt mily
Furthe * Specia "A" docum to be c "E" earlier filing. "L" docum means "P" docum means "P" docum the pri Date of the Name and n State In	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. al categories of cited documents: nent defining the general state of the art which is not considered of particular relevance: application or patent but published on or after the international date nent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other international filing date but later than invertive signified nent referring to an oral disclosure, use, exhibition or other international filing date but later than invity date claimed actual completion of the international filing date but later than actual completion of the ISA/CN nailing address of the ISA/CN tablectual Property Office of the P. R. China (ISA/	ational filing date of on but cited to unde ion claimed invention of to involve an inve claimed invention of tep when the doc locuments, such cou rt mily n report
Furthe * Specia "A" docum to be c "E" earlier filing "U" docum cited u specia "O" docum means "P" docum the pri Date of the Name and n State In CN) No. 6, X 100088	claims 1-7, and description, paragraph [0003] er documents are listed in the continuation of Box C. al categories of cited documents: ent defining the general state of the art which is not considered of particular relevance: application or patent but published on or after the international date ent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other it referring to an oral disclosure, use, exhibition or other it referring to an oral disclosure, use, exhibition or other it enternational filing date but later than fority date claimed actual completion of the international Search Date of mailing of the international search 28 April 2019 ataling address of the ISA/CN Authorized officer	ational filing date o on but cited to under ion claimed invention c d to involve an inver claimed invention c tep when the doc locuments, such cor ut mily n report

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No. PCT/CN2019/077922 Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet) 5 1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing: 11 forming part of the international application as filed: a. 1 in the form of an Annex C/ST.25 text file. 10 on paper or in the form of an image file. furnished together with the international application under PCT Rule 13ter.1(a) for the purposes of international search b. only in the form of an Annex C/ST.25 text file. c. furnished subsequent to the international filing date for the purposes of international search only: 15 in the form of an Annex C/ST.25 text file (Rule 13ter.1(a)). on paper or in the form of an image file (Rule 13ter.1(b) and Administrative Instructions, Section 713). 2. In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that forming part of the application as filed or does not go beyond the application as filed, as appropriate, were furnished. 20 3. Additional comments: 25 30 35 40 45 50 55 Form PCT/ISA/210 (continuation of first sheet) (January 2015)

		INTERNATI Information	IONA n on pa	J SEARCH REPORT tent family members		International a	application No. T/CN2019/077922
5	Pate: cited in	nt document n search report		Publication date (day/month/year)	Patent family me	mber(s)	Publication date (day/month/year)
	CN	107384963	A	24 November 2017	None		
10							
15							
20							
25							
30							
35							
40							
45							
50							
55	Form PCT/ISA/2	210 (patent family a	nnex) (,	January 2015)			