
| HAO WATAT UT TIL UM TAU MATUM US010038710B2

(12) United States Patent
Bersch

(10) Patent No . : US 10 , 038 , 710 B2
(45) Date of Patent : Jul . 31 , 2018

(54) EFFICIENT IDENTIFICATION OF LOG
EVENTS IN ENTERPRISE THREAT
DETECTION

(71) Applicant : SAP SE , Walldorf (DE)
(72) Inventor : Viktor Bersch , Heidelberg (DE)
(73) Assignee : SAP SE , Walldorf (DE)
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U . S . C . 154 (b) by 219 days .

7 , 457 , 793 B2 11 / 2008 Weigt et al .
7 , 457 , 794 B2 11 / 2008 Weigt et al .
7 , 624 , 092 B2 11 / 2009 Lieske et al .
7 , 756 , 808 B2 7 / 2010 Weigt et al .
7 , 756 , 809 B2 7 / 2010 Weigt et al .
7 , 761 , 396 B2 7 / 2010 Weigt et al .
7 , 971 , 209 B2 6 / 2011 Eberlein et al .
8 , 051 , 034 B2 11 / 2011 Mehta et al .
8 , 234 , 312 B2 7 / 2012 Thomas
8 , 307 , 012 B2 11 / 2012 Thomas
8 , 661 , 103 B2 2 / 2014 Mehta et al .
8 , 775 , 671 B2 7 / 2014 Rodeck et al .
8 , 892 , 454 B2 11 / 2014 Rabetge et al .
8 , 924 , 415 B2 . 12 / 2014 Thomas
8 , 954 , 602 B2 2 / 2015 Seifert et al .
9 , 037 , 678 B2 5 / 2015 Mehta et al .
9 , 148 , 488 B2 9 / 2015 Rabetge et al .

2006 / 0195415 A1 * 8 / 2006 Meyer . G06K 9 / 6282
2008 / 0288513 AL 11 / 2008 Bezrukov et al .

(Continued)
Primary Examiner — Joseph P Hirl
Assistant Examiner — Hassan Saadoun
(74) Attorney , Agent , or Firm — Fish & Richardson P . C .

(21) Appl . No . : 14 / 979 , 015
(22) Filed : Dec . 22 , 2015

(65) Prior Publication Data
US 2017 / 0180404 A1 Jun . 22 , 2017

@

(57)

@

(51) Int . Cl .
H04L 29 / 06 (2006 . 01)
G06F 1730 (2006 . 01)

(52) U . S . CI .
CPC H04L 63 / 1425 (2013 . 01) ; G06F 1730185

(2013 . 01) ; G06F 1730327 (2013 . 01) ; G06F
17 / 30598 (2013 . 01) ; H04L 63 / 1433 (2013 . 01)

(58) Field of Classification Search
None
See application file for complete search history .

ABSTRACT
A first set of log entries is identified . A plurality of log entry
classes occurring in the first set of log entries is determined .
Each log entry in a given log entry class has a same number ,
type , and ordering of components . A vector of component
type identifiers is determined for each log entry class . Each
identifier in a vector for a given log entry class identifies a
position and type of a component included in a log entry
belonging to the given log entry class . A classification tree
is created using the vectors . An unclassified log entry not
included in the first set of log entries is identified . A log entry
class is assigned to the unclassified log entry using the
classification tree to create a classified log entry . One or
more security threat patterns are evaluated using the classi
fied log entry .

(56) References Cited
U . S . PATENT DOCUMENTS

6 , 532 , 305 B1 *
7 , 380 , 205 B2
7 . 457 , 792 B2

3 / 2003 Hammen GO6K 9 / 6282
382 / 159

5 / 2008 Bezrukov et al .
11 / 2008 Weigt et al . 12 Claims , 12 Drawing Sheets

Identify a first set of log entries BO2

Determine a plurality of log entry classes occurring in the first set of log entries 804

Determine a vector of component type identifiers for each log entry class R5806

Create a classification tree using the vectors 808 UUUUU Identify an unclassified log entry not included in the first set of log entries N5810

Assign a log entry class to the unclassified log entry
using the classification tree to create a classified log entry

Evaluate one or more security threat patterns using the classified log entry

US 10 , 038 , 710 B2
Page 2

(56) References Cited

U . S . PATENT DOCUMENTS

2013 / 0304665 A1
2013 / 0304666 AL
2013 / 0326079 Al
2013 / 0326087 AL
2016 / 0092552 A1 *

11 / 2013 Rodeck et al .
11 / 2013 Rodeck et al .
12 / 2013 Seifert et al .
12 / 2013 Storz et al .
3 / 2016 Morfonios G06F 17 / 30091

707 / 737

* cited by examiner

Attacker
Business User
5 104

atent

1062

* Conduct

Abuse systems

1107

Www

* * * *

1027

Log Providing Systems
Sinh

Jul . 31 , 2018

=

- =

-

* *

*

wwwwwwwwwww

Threat Detection System

Push data

humanitatis

Event Stream Processor

Push data
Vanage system

WWWWWWWWWW

108

ir

O

Mianaga system

112

* * * * * * * * * * * * * * * *

Sheet 1 of 12

System Administrator

System Administrator

2005 100

FIG . 1

US 10 , 038 , 710 B2

WINNINWESTERNMENTWOWERENANONE? MMMMMMMMMMMMMMMM

U . S . Patent

MASTMANAGEMENTRAMAHAMMAM
AHAMAHAMM

MAMAMAMAMAHA
HTTER

HAMAHA
:

Internal Systems
MMMMMMAMANHww

?

???? ???? ???? ???? ????? ???

?????

214

Threat Detection System

Web Server
208

???????????????????????????????????????

)

204

NEWS

NMNMNMNMNMNM

HHHHH :

WWEREN
T

R

ONMANNERANSWEENSENTERNATIONSTARGENEWS MAMAHAMAHAMM

MAMAHAMMERINTERMAN

titistitist

Jul . 31 , 2018

DB Output Adapter212
TERNATH

????? 210

WINCHANNERANCERENEWERENCHUNTAIWANGHAINMENUENCERENEWS

MMMMMMMMMMMMMMMMMMMM
PPPPDF

Data Window

216

NNNNNNNNNNNNNNNNNNNNN

?

THERMINITEMMMMMENTRAINTERNMEMMMMMMY

Akik

Third Party

??
- -

Sheet 2 of 12

ikiwihain

|

System = 206

???? : 218

Event Stream Processor

STEPHENHERENTRAVENNHENHAPTEMPHPMYWIMPHONE

ERMINE?
THERMETHERENTERNERGETH

202

NSENSENTERNATION MOMOTOSHIONSTERNESSENTENEWS
STERNATIONAMESSENSENSENSENTENSENSHINESSE
S ESSIONSTEMENTERNATION
SAMSUNSHINESSENSENTENSENSEN

| US 10 , 038 , 710 B2

FIG . 2

(304e

304a

304b

3040 304f

304g

Nov 9 16 : 14 : 15 Nov 10 00 : 14 : 15 dnstyo01 30 . 44 . 133 . 38 + 01 : 00 dhcpd bind update on

30 . 43 . 51 . 228 got ack from a258218 - a218b30 : xid mismatch .

U . S . Patent

3040

304h

3041

304 ;

3041

3025

304k

Jul . 31 , 2018

FIG . 3A

Sheet 3 of 12

(3082

308a

308b 308 308 308f

3089

- -

< Timestamp > < Timestamp > < Var > < IP > + < Time > dhcpd bind update on

< IP > got ack from < Var > : xid mismatch 308h 308 308 3081

308k

FIG . 3B

S

303

US 10 , 038 , 710 B2

U . S . Patent

- - - - - - -

94049 404h

404a

404 404c 404d 404 4049 *

404f

< Timestamp > < Timestamp > < Var > < IP > + < Time > dhcpd bind update on < IP >

- - - - - - - - -

ped

- -

- -

-

- - -

401

4041

- 404j

FIG . 4A

Jul . 31 , 2018 Sheet 4 of 12

410b > (4100

410d 54100 S 410j

(410f

< 0 0 1 2 3 12 13 14 15 2 >

402

410

410g - 4101

FIG . 4B

US 10 , 038 , 710 B2

U . S . Patent

0 < TimeStamp >
1 < Var > 2 < IP >

3 < Time >

4080 408b

Jul . 31 , 2018

4080 4080 408e

12 dhcpd 13 bind 14 update 15 on

408f

Sheet 5 of 12

4089 · 408h

403

FIG . 4C

US 10 , 038 , 710 B2

Vector | Class

U . S . Patent

5022 0345 10 - 2 - 506 5042 0312 | 1 - 2 - 508
FIG . 5A

Jul . 31 , 2018 Sheet 6 of 12

ol < TimeStamp >
1 < Time > 2 < Var > 3 < P >

4 xid 5 mismatch 6 bind 7 update
FIG . 5B

510 47

US 10 , 038 , 710 B2

U . S . Patent Jul . 31 , 2018 Sheet 7 of 12 US 10 , 038 , 710 B2

518
Pos : 0
Type : 0

Classes : { 0 , 1 }

520
Pos : 1
Type : 3

Classes : { 0 , 1 }

522
Pos : 2
Type : 4

Classes : { 0 }
M NIN 62 - 2 . 5 My Way www Root

512
(532 - 38 . 540

2 - 542 in 546

2momme
Pos : 3
Type : 2

Classes { 1 }
528

Pos : 2
Type : 1

Classes { 1 }
526

Pos : 3
Type : 5

Classes { 0 }
524 - - - 548

XXX

Class : 1
514

Class : 0
516

509 mm

FIG . 5C

Log Entry to Classify :
Nov 9 16 : 14 : 15 30 . 44 . 133 . 38 xid mismatch .

- - - - - - - - - - - www

534 536 544
530)

FIG . 5D

622 Pos : 0
Type : d

Patterns : { 0 , 1 } /

626
Pos : 1 Type : d

Patterns : { 0 , 1 }

632 Pos : 2 Type : " "
Patterns : { 0 }

U . S . Patent

41 41

Root

web

-

614

620

- 624

628

- 630

wa

Pos : 3 Type : 7
Patterns { 1 }

Pos : 2 Type : 1
Patterns { 1 }

Pos : 3 Type : a
Patterns { 0 }

Jul . 31 , 2018

634

a www

Pos : 7 Type : d
Patterns { 1 }

Pos : 6 Type : d
Patterns { 1 }

Pos : 5 Type : -
Patterns { 1 }

Pos : 4 Type : d
Patterns { 1 }

en meni

Pos : 4 Type : a Patterns { 0 }

Sheet 8 of 12

d 32 - 5 - 3 - 5

-

Z 618 Pattern 1

616 Pattern o

Pos : 9 Type : d
Patterns { 0 }

Kerron drowon

Pos : 7 Type : d
Patterns { 0 }

wwwZ

-

Pos : 6 Type : “ "
Patterns { 0 }

v . "

" com

Pos : 5 Type : a
Patterns { 0 }

US 10 , 038 , 710 B2

600)

FIG . 6A

U . S . Patent

Pattern 0 : 2602 17 Nov 15 2606
dd aaa dd - 2 - 608

Jul . 31 , 2018

Pattern 1 : 2604 11 - 17 - 15 - 2 - 610

Sheet 9 of 12

219 - pp - pp - pp

FIG . 6B

US 10 , 038 , 710 B2

atent Jul . 31 , 2018 Sheet 10 of 12 US 10 , 038 , 710 B2

0 Wo :
Made ; 2 009 .

???? ' / yet

T en de o

* # M
plochnaline pole
Clasu s splintedLinnaplittedline length -

m

CHP Nola sore W
for pess oarele de mobilnu vie do rrr Y split esilinas

and
QUETA Vodeo
CU Vodle muminscano
WS < Stellene lenger than
if yomon C owelchen

de la band

emaine

nir

??

menor ??

Narle nextNode Ov Nodeos
CUEIX Nola childpadype ,

mo
Nodes :

??

???

???

???? *

wo rrrrrrrrrrrrrrrrrrrrrrrr 9000
ON OLD WOWO LION

ond
clear Vum mox in leade dass wild claseNum to
learNola da

ond
200

FIG . 7 700

U . S . Patent Jul . 31 , 2018 Sheet 11 of 12 US 10 , 038 , 710 B2

Identify a first set of log entries 802

XXXXXX XXXXXXXXXXXXXXXX X XXXX

w

Determine a plurality of log entry classes occurring in the first set of log entries * 804

wwwwwwwww ww

Wn447AS0N4X4404 Determine a vector of component type identifiers for each log entry class 806

X404040404994940404 Create a classification tree using the vectors 808

wwwwwwwwwwwww w wwwwwwww44444444 * * * * * * * * * * * * * * wwwwwwwwwwwwwwwwwwwwwwwww * * * * * * * * * * * * * * * *

W MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW W W WWWWWWWWWWWWWWWWWW

Identify an unclassified log entry not included in the first set of log entries WRX 5810

? ???Xxxxxxx????????????????????????

ort

Assign a log entry class to the unclassified log entry
using the classification tree to create a classified log entry httpp " 812 RRRRRR

WWWWWWWWWWWWWWWWWWWWW * * *

WWXWWWwwwwww

7

Evaluate one or more security threat patterns using the classified log entry 814

800 FIG . 8

* * *

fu

Network 930

U . S . Patent

* 904

5 906

* *

1

* * *

* * *

* * *

* * * * *

* * *

*

* * * *

* *

*

* * *

* * *

*

* * * * * *

w

Interface

Wecoming
STAMINE

?

Processor

WWW

P

H ARWWW . HHHHH

wwwwwwwwwwwwww

910

WWWWWWWWWWWWWWWWWWWWwwwwww
* * *

Application
AY Y

Jul . 31 , 2018

xxxxxxxxxxxxxxxxxxxxxxxx?????

Database

2KAUHEALTH22AZK44
* * * * *

22 002
902

Memory
????

903 12 . 903 ortodooo
ooooooooo

WAKTURA

API Wwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwwwwwww Service Layer

Sheet 12 of 12

wwwwwwwwwwwwwwwwww
913 Computer MATRIXXXXXXXN7T17

900

FIG . 9

US 10 , 038 , 710 B2

US 10 , 038 , 710 B2

215

EFFICIENT IDENTIFICATION OF LOG ing , for each log entry class , a vector of component type
EVENTS IN ENTERPRISE THREAT identifiers for a given log entry class , each identifier in the

DETECTION vector identifying a position and type of a component
included in a log entry belonging to the given log entry class ;

CROSS - REFERENCE TO RELATED 5 creating a classification tree using the vectors ; identifying an
APPLICATIONS unclassified log entry not included in the first set of log

entries ; assigning a log entry class to the unclassified log
This application is a co - pending application of U . S . entry using the classification tree to create a classified log

application Ser . No . 14 / 978 , 984 , filed on Dec . 22 , 2015 entry ; and evaluating one or more security threat patterns
entitled “ SYSTEM AND USER CONTEXT IN ENTER - 10 using the classified log entry .
PRISE THREAT DETECTION ” ; and U . S . application Ser . The foregoing and other implementations can each
No . 14 / 978 , 963 , filed on Dec . 22 , 2015 entitled “ KNOWL - optionally include one or more of the following features ,
EDGE BASE IN ENTERPRISE THREAT DETECTION ” : alone or in combination :
and U . S . application Ser . No . 14 / 978 , 995 , filed on Dec . 22 , A first aspect , combinable with the general implementa
2015 entitled “ LOG NORMALIZATION IN ENTERPRISE 15 tion , wherein assigning a log entry class to the unclassified
THREAT DETECTION ” ; the entire contents of each and as log entry using the classification tree comprises evaluating
a whole are incorporated herein by reference . tokens of the unclassified log entry in accordance with the

classification tree .
BACKGROUND A second aspect , combinable with the general implemen

20 tation , wherein the classification tree comprises a plurality
A computing system may maintain a data log which of candidate log entry classes , evaluating tokens of the

documents events and other activities occurring within the unclassified log entry comprises eliminating candidate log
computing system . The data log can be stored , for example , entry classes from consideration until one remaining candi
in a file , database , or some other repository . Each entry in the date log entry class remains , and assigning the log entry
data log can include a description of an event being logged , 25 class comprises assigning the one remaining candidate log
and a timestamp indicating the occurrence of the event . The entry class to the unclassified log entry .
entries in the data log can correspond to transactions occur A third aspect , combinable with the general implementa
ring within the computing system , error conditions , or other tion , wherein each log entry class is associated with a unique
types of events . Identification of events in data logs is often log entry class identifier .
inefficiently performed . 30 A fourth aspect , combinable with the general implemen

tation , wherein each log entry class identifier is included in
SUMMARY a leaf node of the classification tree .

A fifth aspect , combinable with the general implementa
The present disclosure relates to efficient identification of tion , wherein each vector is represented in the classification

log events in enterprise threat detection . 35 tree as a path beginning at a root node and ending at a
A first set of log entries is identified . A plurality of log respective leaf node corresponding to the log entry class

entry classes occurring in the first set of log entries is associated with the vector .
determined . Each log entry in a given log entry class has a A sixth aspect , combinable with the general implementa
same number , type , and ordering of components . A vector of tion , wherein each respective non - leaf node of the classifi
component type identifiers is determined for each log entry 40 cation tree corresponds to a particular token position of the
class . Each identifier in a vector for a given log entry class unclassified log entry and to one or more candidate log entry
identifies a position and type of a component included in a classes that are each represented by a sub - path of the
log entry belonging to the given log entry class . A classifi - classification tree beginning at the root node and ending at
cation tree is created using the vectors . An unclassified log the respective non - leaf node .
entry not included in the first set of log entries is identified . 45 A seventh aspect , combinable with the general implemen
A log entry class is assigned to the unclassified log entry tation , wherein each branch of the classification tree is
using the classification tree to create a classified log entry . associated with a component type identifier of one or more
One or more security threat patterns are evaluated using the vectors .
classified log entry . An eighth aspect , combinable with the general implemen

Other implementations can include corresponding com - 50 tation , wherein each branch is associated with a test which
puter systems , apparatuses , and computer programs evaluates a current token of the unclassified log message to
recorded on one or more computer storage devices , each determine whether the current token matches a component
configured to perform the actions of the methods . A system type associated with the branch .
of one or more computers can be configured to perform ninth aspect , combinable with the general implemen
particular operations or actions by virtue of having software , 55 tation , comprising following a respective branch to a next
firmware , hardware , or a combination of software , firmware , node of the classification tree when an outcome of the test
or hardware installed on the system that in operation causes associated with the branch indicates a match between the
or causes the system to perform the actions . One or more current token and the component type associated with the
computer programs can be configured to perform particular branch .
operations or actions by virtue of including instructions that , 60 A tenth aspect , combinable with the general implemen
when executed by data processing apparatus , cause the tation , wherein assigning the log entry class comprises
apparatus to perform the actions . determining that the next node is associated with the one

For example , one computer - implemented method remaining candidate log entry class and no other candidate
includes : identifying a first set of log entries ; determining a log entry classes , and assigning the one remaining candidate
plurality of log entry classes occurring in the first set of log 65 log entry class to the unclassified log entry .
entries , each log entry in a given log entry class having a The subject matter described in this specification can be
same number , type , and ordering of components ; determin - implemented in particular implementations so as to realize

US 10 , 038 , 710 B2

one or more of the following advantages . An unclassified log applications without departing from scope of the disclosure .
entry can be efficiently classified using a classification tree . Thus , the present disclosure is not intended to be limited to
The classification tree can be used to rule out candidate the described and / or illustrated implementations , but is to be
classes for the unclassified log entry until one candidate accorded the widest scope consistent with the principles and
class remains . The remaining candidate class can be 5 features disclosed herein .
assigned to the unclassified log entry . Classified log entries FIG . 1 is a high - level architectural block diagram illus
can be used to detect security threats . Classified log entries trating an example distributed computing system (EDCS)
can be used for log management . Classified log entries can 100 for the efficient identification of log events in enterprise
be used for resolving problems occurring in distributed threat detection , according to an implementation . Log - pro
systems . Other advantages will be apparent to those of 10 viding systems 102 can generate various types of log data ,
ordinary skill in the art . such as from automated processes and through the use of

The details of one or more implementations of the subject such systems by business users 104 and other users . The
matter of this specification are set forth in the accompanying log - providing systems 102 can include heterogeneous land
drawings and the description below . Other features , aspects , scapes , business systems , interconnected systems , mobile
and advantages of the subiect matter will become apparent 15 and cloud - based systems , applications , network components
from the description , the drawings , and the claims . (e . g . , proxies , routers , switches) , or any other system that

generates log data . Log data can include , for example , data
DESCRIPTION OF DRAWINGS from user change logs , business transaction logs , change

document logs , gateway logs , HTTP (Hypertext Transfer
FIG . 1 is a high - level architectural block diagram illus - 20 Protocol) server logs , read access logs , system logs , security

trating an example distributed computing system (EDCS) audit logs , etc .
for efficient identification of log events in enterprise threat Log data generated by log - providing systems 102 can
detection , according to an implementation . provide a wealth of information regarding activities that

FIG . 2 is a lower - level architectural block diagram illus - occur within an application , a database , an operating system ,
trating additional components of the EDCS of FIG . 1 for 25 or a network component , for example . Log data can also
efficient identification of log events in enterprise threat include evidence of malicious activity performed , for
detection , according to an implementation . example , by an attacker user 106 or an attacking computing

FIGS . 3A and 3B illustrate an example log entry and a system (e . g . , a log providing system 102 used by the attacker
corresponding log entry structure , respectively , according to user 106) . A threat detection system 108 can evaluate log
an implementation . 30 data generated by the log - providing systems 102 to identify

FIGS . 4A - 4C illustrate an example log entry structure , an potential security threats .
example log entry class vector , and example log entry The log - providing systems 102 can provide log data to an
component identifier mappings , respectively , according to event stream processor 110 . The event stream processor 110
an implementation . can , for example , provide one or more services to the

FIG . 5A illustrates example log entry class vectors that 35 log - providing systems 102 for providing log data to the
respectively correspond to first and second log entry classes , event stream processor 110 . As illustrated , log data is pushed
according to an implementation . from the log providing system 102 to the event stream

FIG . 5B illustrates example log entry component identi processor 110 using a " push ” service provided by the event
fier mappings , according to an implementation . stream processor 110 . In other implementations , log data can

FIG . 5C illustrates an example classification tree , accord - 40 be pulled or pushed / pulled to / from the log providing system
ing to an implementation . 102 using a pull or push / pull service provided by the event

FIG . 5D illustrates an example unclassified log entry , stream processor 110 . In still other implementation , the
according to an implementation . event stream processor 110 can register with each individual

FIG . 6A illustrates an example classification tree that can log providing system 102 which provides a push and / or pull
be used to determine whether a token of a raw log entry is 45 service to allow the event stream processor 110 to access log
a timestamp , according to an implementation . data . In other possible implementations , the push and / or pull

FIG . 6B illustrates example date patterns , according to an services can be provided by one or both of the log providing
implementation . system 102 and the event stream processor 110 . As will be

FIG . 7 illustrates an example algorithm for building a understood by those of ordinary skill in the art , other
classification tree , according to an implementation . 50 methods of transferring log data between the components of

FIG . 8 is a flow chart of an example method for efficient the EDCS 100 are possible . These other methods , where
identification of log events in enterprise threat detection , consistent with this disclosure , are considered to be within
according to an implementation . the scope of this disclosure .

FIG . 9 is a block diagram of an exemplary computer used Typically , the event stream processor 110 can normalize ,
in the EDCS , according to an implementation . 55 filter , transform , and / or enrich log data , from multiple log

Like reference numbers and designations in the various providing systems 102 , As described in more detail below ,
drawings indicate like elements . the event stream processor 110 can classify received log

data , such as log data received from a log - providing system
DETAILED DESCRIPTION 102 that does not initially have an identified structure . For

60 example , the event stream processor 110 can generate a
The following detailed description is presented to enable classification tree using training data provided by a system

any person skilled in the art to make , use , and / or practice the administrator 112 and use the classification tree to classify
disclosed subject matter , and is provided in the context of received log entries .
one or more particular implementations . Various modifica - The event stream processor 110 can provide data , includ
tions to the disclosed implementations will be readily appar - 65 ing classified log data , to the threat detection system 108 .
ent to those skilled in the art , and the general principles Note that data provided to the threat detection system 108
defined herein may be applied to other implementations and can , similar to data transfer between a log providing system

US 10 , 038 , 710 B2

102 and the event stream processor 110 , be configured to be the training log entries . The runtime parser 218 can evaluate
accessible using a push and / or pull service provided by the the training log entries to determine a plurality of log entry
event stream process or 110 and / or the threat detection classes occurring in the training log entries . Each log entry
system 108 or another method consistent with this disclo - in a given log entry class has a same number , type , and
sure . The threat detection system 108 can , for example , 5 ordering of components , for example . Components can
evaluate the classified log data to determine whether the include items occurring in a log message , such as a time
classified log data matches one or more threat detection stamp , user identifier , system identifier , IP (Internet Proto
patterns that are defined , e . g . , by a system administrator 114 , col) address , URL (Uniform Resource Locator) , variable
using one or more rules . A runtime component of the threat text , literal text , or other items .
detection system 108 can determine whether a received , 10 Using the training log entries , the runtime parser 218 can
classified log entry matches one or more rules . When a determine a vector of component type identifiers for each
received , classified log entry matches a rule , an alert can be determined log entry class . A vector for a log entry class can
generated , for example . represent the component types included in log entries

FIG . 2 is a lower - level architectural block diagram 200 belonging to the log entry class . Each identifier in a vector
illustrating additional components of the EDCS of FIG . 1 for 15 can identify a position and type of a component included in
efficient identification of log events in enterprise threat a log entry belonging to the log entry class associated with
detection , according to an implementation . An event stream the vector . As described in more detail below , the runtime
processor 202 (e . g . , event stream processor 110) can receive parser 218 can create a classification tree using the vectors
log data , for example , from one or more internal systems 204 to identify log events in the received training log entries .
and / or from one or more third party systems 206 (e . g . , each 20 In the production mode , the runtime parser 218 can be
of internal system 204 and third party system 206 as a log used to identify an unclassified log entry not included in the
generating system 102) . In the illustrated block diagram 200 , training log entries . For example , the runtime parser 218 can
the internal systems 204 can , for example , communicate receive an unclassified log message from a third party
using HTTP with a web server 208 which connects the system 206 . As described in more detail below , the runtime
internal systems 204 with the event stream processor 202 . 25 parser 218 can assign a log entry class to the unclassified log
The web server 208 can forward log data to the event stream entry using the created classification tree to create a classi
processor 202 . Third party systems 206 can forward log data fied log entry . The classified log entry 214 can then be
to the event stream processor 202 using , for example , User provided to the threat detection system 214 to be used to
Datagram Protocol (UDP) or other protocol consistent with evaluate one or more security threat patterns .
this disclosure . 30 The method used by the runtime parser 218 to use the

An input stream component 210 can augment data classification tree to classify an unclassified log message can
received from the internal systems 204 or third party sys - be referred to as fast - forward decision - making method . The
tems 206 with user or system context information . For fast - forward decision making method can result in a faster
example , the input stream component 210 can add a system classification of the unclassified log entry as compared to
identifier and other system context information to received 35 other methods , such as pattern - matching the full raw unclas
log data . As another example , the input stream component sified log entry against known patterns . The fast - forward
210 can identify a system - specific user identifier in received decision making method can include evaluating tokens of
log data and add a global user context identifier to the the unclassified log message according to matching tests
received log data . The global user context identifier can be associated with the classification tree . The matching tests
used to identify log data associated with a particular user that 40 can be used to eliminate candidate log entries classes from
is associated with multiple systems . User information can be consideration until , for example , one candidate log entry
anonymized , such as with a user pseudonym . A database class remains . The runtime parser 218 can then assign the
(DB) output adapter 212 can provide the augmented data to one remaining candidate log entry class to the unclassified
a threat detection system 214 (e . g . , threat detection system log entry . In other implementations , one or more remaining
108) . A data window 216 can be used by the event stream 45 candidate log entry classes can remain that can be disam
processor 202 to store data received from the threat detec - biguated using known or proprietary disambiguation - type
tion system 214 , such as configuration data used for the algorithms to select the appropriate log entry class .
classification of received log data . FIGS . 3A and 3B illustrate an example log entry 302 and

In some implementations and as illustrated in FIG . 2 , the a corresponding log entry structure 303 , respectively ,
structure of data received from the internal systems 204 can 50 according to an implementation . As will be understood by
be known by the event stream processor 202 so that par - those of ordinary skill in the art , this example is only one of
ticular identification of log events is not necessary . However , a myriad of possible log entries and log entry structures . The
the structure of data received from the third party systems example log entry 302 is provided for clarity and under
206 may be initially unknown by the event stream processor standing and is not meant to limit the disclosure in any way .
202 . The runtime parser 218 can be configured to identify / 55 The log entry 302 includes multiple components , with each
classify received log entries that have an unknown structure component being either literal text , variable text , or an
for the purposes of enterprise threat detection . instance of a particular data type . For example , the log entry

In typical implementations , the runtime parser 218 can 302 includes a first timestamp 304a , a second timestamp
operate in two modes : 1) a training mode in which the 304b , first variable text 304c , a first IP address 304d , a literal
runtime parser 218 learns log entry patterns based on 60 “ + ” symbol 304e , a time value 304f , literal text 304g of
training data and builds a classification tree to be used for “ dhcpd bind update on ” , a second IP address 304h , literal
classifying log entries and 2) a production mode in which the text 304i of " got ack from ” , second variable text 304j , a
runtime parser 218 classifies incoming log entries using the literal “ . " symbol 304k , and literal text 3041 of " xid mis
classification tree . match ” .

In the training mode , the runtime parser 218 can identify 65 The log entry structure 303 represents the structure of the
a set of training log entries . For example , an administrator log entry 302 and can be used to define a class that represents
user (e . g . , system administrator 112 of FIG . 1) can upload all log entries that conform to a same structure . The log entry

US 10 , 038 , 710 B2

structure 303 includes sets of markup symbols (e . g . , tags , “ < FIG . 5A illustrates example log entry class vectors 502
> ') which indicate data types and positions of components and 504 that respectively correspond to first and second log
included in the log entry 302 . The log entry structure 303 entry classes , according to an implementation . The example
includes a tag for each typed or variable data instance log entry class vectors 502 and 504 can be used to generate
included in the log entry 302 . Literal text , literal symbols , 5 a classification tree (e . g . , the classification tree 509
and white space included in the log entry 302 is left described below with respect to FIG . 5C) . The first and
unchanged in the log entry structure 303 . second log entry classes represent classes of log entries

discovered in training log data . The log entry class vector For example , a first timestamp tag 308a , a second time
502 , which has an identifier of “ O ” for the first log entry class stamp tag 308b , a first variable tag 308c , a first IP tag 308d ,

a time tag 308f , a second IP tag 308h , and a second variable 10 as a last element 506 , includes elements “ O ” , “ 3 ” , “ 4 ” , and
“ 5 ” which each identify a type and position of a component tag 308j correspond to the first timestamp 304a , the second included in log entries that belong to the first log entry class . timestamp 304b , the first variable text 304c , the first IP Similarly , the log entry class vector 504 , which has an address 304d , the time value 304f , the second IP address identifier of “ 1 ” for the second log entry class as a last 304h , and the second variable text 304j , respectively . Literal 15 element 508 , includes elements “ O ” , “ 3 ” , “ 1 ” , and “ 2 ” which items 308e , 308g , 308k , and 3081 respectively correspond to each identify a type and position of a component included in

the literal symbol 304e , the literal text 308g , the literal log entries that belong to the second log entry class . The
symbol 304k , and the literal text 3041 . vector elements included in the example log entry class
FIGS . 4A - 4C illustrate an example log entry structure 401 vectors 502 and 504 can correspond to predefined compo

(e . g . , a portion of log entry structure 303) , an example log 20 nent - identifier mappings .
entry class vector 402 , and example log entry component FIG . 5B illustrates example log entry component identi
identifier mappings 403 , respectively , according to an imple - fier mappings 510 , according to an implementation . Based
mentation . The log entry structure 401 illustrates a structure on the log entry component identifier mappings 510 , the
of a particular class of log entries . For example , each log elements “ O ” , “ 3 ” , “ 4 ” , and “ 5 ” of the log entry class vector
entry in the class has a same structure that includes a first 25 502 respectively represent timestamp , IP address , “ xid ”
timestamp , a second timestamp , variable text , a first IP literal text , and “ mismatch ” literal text components that are
address , a time value , and a second IP address respectively included in log entries that are associated with the first log
corresponding to tags 404a , 4046 , 404c , 404d , 404e , and entry class . Similarly , the elements “ O ” , “ 3 ” , “ 1 ” , and “ 2 ” of
404f included the log entry structure 401 . Each log entry in the log entry class vector 504 respectively represent time
the class also includes literal text values “ dhcpd ” 404g , 30 stamp , IP address , time , and variable text components that
" bind ” 404h , " update ” 404i ” , and “ on ” 404j . are included in the second log entry class .

The log entry component identifier mappings 403 FIG . 5C illustrates an example classification tree 509 ,
includes mappings of unique identifiers to unique types of according to an implementation . The classification tree 509
components included in the log entry structure 401 . For includes a root node 512 and leaf nodes 514 and 516 . The
example , a unique identifier is assigned to each data type 35 leaf node 514 corresponds to the second log entry class and
included in the log entry structure 401 (e . g . , < TimeStamp > , is associated with a class identifier of “ 1 ” corresponding to
< Var > , < IP > , and < Time > are assigned identifiers of 0 , 1 , 2 , the last element 508 of the log entry class vector 508 .
and 3 , as illustrated by mapping entries 408a , 4086 , 408c , Similarly , the leaf node 516 corresponds to the first log entry
and 408d , respectively) . Each literal text token included in class and is associated with a class identifier of “ O ” corre
the log entry structure 401 is also assigned a unique iden - 40 sponding to the last element 506 of the log entry class vector
tifier (e . g . , mapping entries 408e , 408f , 408g , and 408h 506 . The first log entry class is represented in the classifi
illustrate the mapping of identifiers 12 , 13 , 14 , and 15 to the cation tree 509 by a path from the root node 512 to the leaf
literal text values “ dhcpd ” 404g , “ bind ” 404h , “ update ” node 516 , including intervening nodes 518 , 520 , 522 , and
404i , and “ on ” 404j , respectively) . In some implementa - 524 . The second log entry class is represented in the
tions , literal symbols (e . g . , " + ") and whitespace included in 45 classification tree 509 by a path from the root node 512 to
the log entry structure 401 are not assigned identifiers in the the leaf node 514 , including intervening nodes 518 , 520 ,
log entry component identifier mappings 403 . 526 , and 528 . An algorithm that can be used to generate the

The log entry class vector 402 is an identifier - based classification tree 509 is discussed in more detail below with
representation of the log entry structure 401 , using identi - respect to FIG . 8 .
fiers from the log entry component identifier mappings 403 . 50 FIG . 5D illustrates an example unclassified log entry 530 ,
As described in more detail below , the log entry class vector according to an implementation . The classification tree 509
402 , and other log entry class vectors for other classes of log can be used to classify the unclassified log entry 530 . The
entries that may be discovered in a particular log , are used unclassified log entry 530 can be , for example , a raw log
for creating a classification tree for the particular log . The entry 530 . A raw log entry is a text string , for example , such
log entry class vector 402 includes a series of identifiers , 55 as a line in an unstructured log . A runtime parser (e . g . , the
with each identifier corresponding to a type and position of runtime parser 218 described above with respect to FIG . 2)
a component of the log entry structure 401 . can evaluate the raw log entry 530 in accordance with the

For example , the vector element 410a of “ O ” in the first classification tree 509 .
position of the log entry class vector 402 corresponds to the Each node of the classification tree 509 , including the root
< Timestamp > tag 404a and the mapping entry 408a . Simi - 60 node 512 and nodes 518 - 528 , can be associated with one or
larly , vector elements 4106 , 410c , 410d , 410e , and 410f more test functions , which are each configured to test a
respectively correspond to the tags 4046 , 404c , 404d , 404e , current token of an unclassified log entry regarding whether
and 404f , and to the mapping entries 408a , 408b , 408c , the token matches an expected component type . The
408d , and 408c . Vector elements 410g , 410h , 410i , and 410 ; expected types of tokens are identified based on the structure
respectively correspond to the literal text values " dhcpd ” 65 of the classification tree 509 .
404g , “ bind ” 404h , " update ” 404i , and “ on ” 404 ; , and to the For example , each branch of the classification tree 509
mapping entries 408e , 408f , 408g , and 408h , respectively . identifies known component types that have occurred in

US 10 , 038 , 710 B2
10

training data at a particular token position of a training log does match the literal text “ xid ” and based on that determi
entry . For example , a branch 532 originating at the root node nation , can follow the branch 540 so that the node 522 is the
512 indicates that training data log entries have started with current node under test .
a component of a type associated with an identifier of “ O ” The runtime parser can determine that the node 522 is
(e . g . , a timestamp , as indicated by the log entry component 5 associated with only one remaining candidate class (e . g . , a
identifier mappings 510) . The branch 532 is associated with class " O ") to be assigned as the class of the raw log entry
a test which indicates whether a first token of an unclassified 530 . Because there is only one remaining candidate class ,
log entry (e . g . , a first token 534 of the raw log entry 530) is the runtime parser can determine that further navigation of
of a timestamp component type . In some implementations , the classification tree 509 is unnecessary (e . g . , that tests
a test to determine whether a token is a timestamp uses a 10 associated with branches 546 and 548 do not need to be
nested classification tree , as described in more detail below performed) . The runtime parser can use the classification
with respect to FIG . 7 . tree to exclude other all other candidate classes other than

While classifying the raw log entry 530 , the runtime the remaining candidate class , and can therefore assign the
parser can execute the test function associated with the remaining candidate class to the raw log entry 530 .
timestamp component type , determine that the first token 15 If , when performing each test in a set of tests associated
534 is a timestamp , and follow the branch 532 so that the with branches originating from a node , the runtime parser
node 518 is a current node under test . The node 518 indicates determines that all tests in the set have failed , the runtime
that a current token position of the raw log entry 530 is “ O ” parser can determine that the class of the raw log entry 530
(e . g . , a first token position , with token positions starting at is unknown . If unknown log entry types are encountered ,
zero) , that the type of the first token has been identified as 20 additional training phases can be performed . Incremental
a component of a type “ 0 ” (e . g . , timestamp) , and that training data can be used to update the classification tree 509
candidate classes of the raw log entry 530 at this point of to represent additional training instances , for example .
classification are classes “ O ” and “ 1 ” (e . g . , the first and FIG . 6A illustrates an example classification tree 600 that
second log entry classes) . can be used to determine whether a token of a raw log entry

The runtime parser can identify a next token (e . g . , a 25 is a timestamp , according to an implementation . In some
second token 536) of the raw log entry 530 and can implementations , other classification trees can be used to
determine that only one branch (e . g . , a branch 538) origi - determine whether a token matches other types of compo
nates from the node 518 . The runtime parser can identify a nents . Timestamp values can be in any of a variety of
component type as (e . g . , IP address) associated with a formats , or patterns . A timestamp value can include various
component type of “ 3 ” corresponding to the branch 538 . The 30 combinations of both date and time patterns , for example .
runtime parser can execute a test associated with the IP The classification tree 600 can be used to represent combi
address component type to determine that the second token nations of date and time patterns . However , for brevity of
536 matches an IP address . Based on the successful outcome description and to assist understanding , the illustrated clas
of the IP address test associated with the branch 538 , the sification tree 600 represents two example date - only patterns
runtime parser can follow the branch 538 so that the node 35 that may be included in a timestamp .
520 is the current node under test . FIG . 6B illustrates example date patterns 602 and 604 ,

The node 520 indicates that a current token position of the according to an implementation . The date pattern 602 (ex
raw log entry 530 is “ 1 ” (e . g . , a second token position) , that emplified by a date sample 606 of “ 17 Nov 15 ') can be
the type of the second token has been identified as a represented as a coded pattern 608 of " dd aaa dd ” , where a
component of a type “ 3 ” (e . g . , an IP address) , and that 40 “ d ” represents a digit and an “ a ” represents a letter (e . g . , the
candidate classes of the raw log entry 530 at this point of coded pattern 608 includes two digits representing a day
classification are still the classes “ O ” and “ 1 ” . A branch 540 value , three characters representing a month value , and two
and a branch 542 both originate from the node 520 . The digits representing the last two digits of a year value) .
branches 540 and 542 respectively indicate that training log Similarly , the date pattern 604 (exemplified by a date sample
entries have included both a component of type “ 4 ” (e . g . , 45 610 of “ 11 - 17 - 15 ") can be represented as a coded pattern
“ xid ” literal text) and a component of type “ 1 ” (e . g . , a time 612 of " dd - dd - dd ” (e . g . , the coded pattern 612 includes two
value) as a third component of respective training log digits representing a month value , a first dash , two digits
entries . representing a day value , a second dash , and two digits

The runtime parser can identify a third token 544 of the representing the last two digits of a year value) .
raw log entry 530 and a test function token associated with 50 The coded patterns 608 and 612 are represented in the
the branch 542 which determines whether the third token classification tree 600 . For example , the coded pattern 608
544 is a time value . The runtime parser can perform the test (and by association , the date pattern 602) is represented by
associated with the branch 542 to determine that the third a path starting at a root node 614 and ending at a leaf node
token 544 is not a time value . Test functions can be written 616 . The coded pattern 612 (and by association , the date
to determine , as efficiently as possible , whether a given 55 pattern 604) is represented by a path starting at the root node
token does not match a particular component type . For 614 and ending at a leaf node 618 .
example , the test function associated with the branch 542 The runtime parser can use the classification tree 600 to
can be written to determine whether a given token starts with determine whether a token matches a date pattern repre
a non - numeric value . A time value can be assumed to start sented in the classification tree 600 . For example , the
with a numeric value , so detecting a non - numeric value in a 60 runtime parser can perform an “ is digit ” test on the first
first character of a token can be a way to determine that the character of the token (e . g . , as represented by a branch 620) .
token is not a time value . If the first character of the token is not a digit , the runtime

Based on determining that the third token 544 is not a time parser can determine that the token is not a date value . If the
value , the runtime parser can identify and perform a test first character of the token is a digit , the runtime parser can
function associated with the branch 540 which determines 65 follow the branch 620 to proceed to a node 622 . The node
whether the third token 544 matches the literal text “ xid ” . 622 indicates that both the date pattern 602 and the date
The runtime parser can determine that the third token 544 pattern 604 are still candidate patterns , so the runtime parser

US 10 , 038 , 710 B2

can perform another “ is digi? test on the second character node variable can refer to the root node 612 . At line 7 , the
of the token (e . g . , as represented by a branch 624) . If the runtime parser 218 begins execution of a second repetition
second character of the token is not a digit , the runtime structure that can be used to iterate over the elements of the
parser can determine that the token is not a date value . If the array . At line 8 , the runtime parser 218 extracts a current
second character of the token is a digit , the runtime parser 5 component type from the array .
can follow the branch 624 to proceed to a node 626 . At line 9 , the runtime parser 218 determines whether the

The node 626 indicates that both the date pattern 602 and class number associated with the current line of training data
the date pattern 604 are still candidate patterns . Both a is in a class collection associated with the current node . If the
branch 628 and a branch 630 originate from the node 626 . class number associated with the current line is not in a class
The runtime parser can perform a test corresponding to the 10 collection , the runtime parser 218 adds the class number to
branch 628 to determine whether the third character of the the classes collection associated with the current node . At
token is a space character . If the third character is a space line 10 , the runtime parser 218 increments an instance count
character , the runtime parser can follow the branch 628 to a associated with the current node .
node 632 . The node 632 indicates that only the date pattern At line 11 , the runtime parse 218 determines whether all
602 is a remaining candidate pattern . Accordingly , the 15 elements of the array have been processed . If all lines of the
runtime parser 632 can classify the token as a date value . In array have not been processed , the runtime parser 218
some implementations , the pattern 602 is also associated determines , at line 12 , whether the child nodes associated
with the token . with the current node include the current component type . If

If the third character is not a space character , the runtime the child nodes associated with the current node do not
parser can perform a test corresponding to the branch 630 to 20 include the current component type , the runtime parser 218 ,
determine whether the third character is a dash character . If at line 13 , creates a new node object . At line 14 , the runtime
the third character is a dash character , the runtime parser can parser 218 links the new node to the current node as a child
follow the branch 630 to a node 634 . The node 634 indicates node and associates the current component type with the
that only the date pattern 604 is a remaining candidate new node . At line 16 , the runtime parser 218 sets a current
pattern . Accordingly , the runtime parser 632 can classify the 25 node reference to the newly created node .
token as a date value . In some implementations , the pattern If all lines of the array have been processed (e . g . , based
604 is also associated with the token . If the third character on the determination performed at line 11) , the runtime
is not a dash character , the runtime parser can determine that parser 218 , determines , at line 19 , whether the current node
the token is not a date value , since no candidate patterns includes a leaf node as a child node . If the current node does
have matched the token . 30 not include a leaf node as a child node , the runtime parser
As mentioned , the classification tree 600 can be expanded 218 adds a leaf node , at line 20 , as a child node of the current

to represent numerous other patterns of dates and also date node . At line 22 , the runtime parser 218 determines whether
and time combinations that represent a timestamp . Accord the class number corresponding to the current line is
ingly , traversal of the classification tree 600 can be more included in a class collection associated with the leaf node ,
complex than what is illustrated . Regardless of the number 35 and if not , adds the class number to the classes collection
of patterns represented , the classification tree 600 can be associated with the leaf node .
configured so that traversal of the classification tree 600 FIG . 8 is a flow chart of an example method for efficient
results in an earliest possible determination of whether a identification of log events in enterprise threat detection ,
token represents a date or timestamp pattern represented in according to an implementation . For clarity of presentation ,
the classification tree 600 . 40 the description that follows generally describes method 800

FIG . 7 illustrates an example algorithm 700 for building in the context of FIGS . 1 - 8 . However , it will be understood
a classification tree , according to an implementation . As will that method 800 may be performed , for example , by any
be understood by those of ordinary skill in the art , this other suitable system , environment , software , and hardware ,
example is only one of a myriad of possible algorithms or a combination of systems , environments , software , and
consistent with this disclosure . The example algorithm 700 45 hardware as appropriate .
is provided for clarify and understanding and is not meant to At 802 , a first set of log entries is identified . The first set
limit the disclosure in any way . At line 1 , the runtime parser of log entries can be , for example , training log entries . From
218 creates a tree object . For example , the runtime parser 802 , method 800 proceeds to 804 .
218 can create a tree object representing the classification At 804 , a plurality of log entry classes occurring in the
tree 600 . At line 2 , the runtime parser 218 creates a root node 50 first set of log entries is determined . Each log entry in a
object . For example , the runtime parser 218 can create a given log entry class has a same number , type , and ordering
node object that represents the root node 612 . At line 3 , the of components . Components can be of different data types .
runtime parser 218 begins execution of a first repetition For instance , example components can include timestamps ,
structure that is used to iterate over each line of training data . time values , IP addresses , variable text , literal text , user
The training data can include vectors such as the vectors 602 55 identifiers , etc . From 804 , method 800 proceeds to 806 .
and 604 that each represent a class of log entries . At 806 , a vector of component type identifiers is deter

At line 4 , the runtime parser 218 places a current line of mined for each log entry class . Each component type iden
training data into an array , with a class number of the current tifier in a vector identifies a position and type of a compo
line included in the last position of the array and the other nent included in a log entry belonging to the log entry class
elements of the array including component type identifiers 60 associated with the vector . From 806 , method 800 proceeds
included in the vector corresponding to the current line of to 808 .
training data . At line 5 , the runtime parser 218 extracts the At 808 , a classification tree is created using the vectors .
class number of the current line of training data from the From 808 , method 800 proceeds to 810 . The classification
array . For example , if the current line corresponds to the tree can represent a plurality of candidate log entry classes .
vector 602 , a class number of “ 0 ” can be extracted . 65 Each log entry class can be associated with a unique log

At line 6 , the runtime parser 218 initializes a current node entry class identifier . Each log entry class identifier can be
variable to refer to the root node . For example , the current included in a leaf node of the classification tree . Each vector

14
US 10 , 038 , 710 B2

13
can be represented in the classification tree as a path FIGS . 1 and 2) . In some implementations , one or more
beginning at a root node and ending at a respective leaf node components of the computer 902 may be configured to
corresponding to the log entry class associated with the operate within a cloud - computing - based environment .
vector . Each respective non - leaf node of the classification At a high level , the computer 902 is an electronic com
tree can correspond to a particular token position of the 5 puting device operable to receive , transmit , process , store , or
unclassified log entry and to one or more candidate log entry manage data and information associated with the EDCS .
classes that are each represented by a sub - path of the According to some implementations , the computer 902 may
classification tree beginning at the root node and ending at also include or be communicably coupled with a cloud the respective non - leaf node . Each branch of the classifica computing server , application server , e - mail server , web tion tree can be associated with a component type identifier 10 server , caching server , streaming data server , business intel included in one or more vectors . Each branch can be ligence (BI) server , and / or other server . associated with a test which evaluates a current token of the
unclassified log message to determine whether the current The computer 902 can generate requests to transmit over

network 930 (e . g . , as a client device) or receive requests token matches a component type associated with the branch .
At 810 , an unclassified log entry not included in the first 15 ove 15 over network 930 from a client application (e . g . , a web

set of log entries is identified . For example , the unclassified browser or other application) and responding to the received
log entry can be received from a log - providing system . From requests by processing the said requests in an appropriate
810 , method 800 proceeds to 812 . software application , hardware , etc . In addition , requests

At 812 , a log entry class is assigned to the unclassified log may also be sent to the computer 902 from internal users
entry using the classification tree to create a classified log 20 (e . g . , from a command console or by other appropriate
entry . Assigning the log entry class to the unclassified log access method) , external or third - parties , other automated
entry can include evaluating tokens of the unclassified log applications , as well as any other appropriate entities , indi
entry in accordance with the classification tree . Candidate viduals , systems , or computers .
log entry classes can be eliminated from consideration until Each of the components of the computer 902 can com
one remaining candidate log entry class remains , and the one 25 municate using a system bus 903 . In some implementations ,
remaining candidate log entry class can be assigned to the any and / or all the components of the computer 902 , both
unclassified log entry . hardware and / or software , may interface with each other

Evaluating tokens can include identifying a current token and / or the interface 904 over the system bus 903 using an
of the unclassified log message and one or more respective API 912 and / or a service layer 913 . The API 912 may
branches of a current node of the classification tree . A test for 30 include specifications for routines , data structures , and
each respective branch can be identified and performed , each object classes . The API 912 may be either computer - lan
test evaluating the current token of the unclassified log g uage independent or dependent and refer to a complete
message to determine whether the current token matches a interface , a single function , or even a set of APIs . The
component type associated with the branch . A respective service layer 913 provides software services to the computer
branch can be followed to a next node of the classification 35 902 and / or the EDCS . The functionality of the computer 902
tree when an outcome of the test associated with the branch may be accessible for all service consumers using this
indicates a match between the current token and the com - service layer . Software services , such as those provided by
ponent type associated with the branch . Assigning the log the service layer 913 , provide reusable , defined business
entry class can include determining that the next node is functionalities through a defined interface . For example , the
associated with the one remaining candidate log entry class 40 interface may be software written in JAVA , C + + , ABAP , or
and no other candidate log entry classes and assigning the other suitable language providing data in extensible markup
one remaining candidate log entry class to the unclassified language (XML) format or other suitable format . While
log entry . From 812 , method 800 proceeds to 814 . illustrated as an integrated component of the computer 902 ,

At 814 , one or more security threat patterns is evaluated alternative implementations may illustrate the API 912 and /
using the classified log entry . For example , a threat pattern 45 or the service layer 913 as stand - alone components in
that includes the log entry class , and a threat associated with relation to other components of the computer 902 and / or the
the threat pattern , can be identified . One or more actions can EDCS . Moreover , any or all parts of the API 912 and / or the
be performed in response to identifying the threat . service layer 913 may be implemented as child or sub

FIG . 9 is a block diagram 900 of an exemplary computer modules of another software module , enterprise application ,
902 used in the EDCS , according to an implementation . The 50 or hardware module without departing from the scope of this
illustrated computer 902 is intended to encompass any disclosure .
computing device such as a server , desktop computer , lap The computer 902 includes an interface 904 . Although
top / notebook computer , wireless data port , smart phone , illustrated as a single interface 904 in FIG . 9 , two or more
personal data assistant (PDA) , tablet computing device , one interfaces 904 may be used according to particular needs ,
or more processors within these devices , or any other 55 desires , or particular implementations of the computer 902
suitable processing device , including both physical and / or and / or the EDCS . The interface 904 is used by the computer
virtual instances of the computing device . Additionally , the 902 for communicating with other systems in a distributed
computer 902 may comprise a computer that includes an environment — including within the EDCS connected to
input device , such as a keypad , keyboard , touch screen , or the network 930 (whether illustrated or not) . Generally , the
other device that can accept user information , and an output 60 interface 904 comprises logic encoded in software and / or
device that conveys information associated with the opera - hardware in a suitable combination and operable to com
tion of the computer 902 , including digital data , visual municate with the network 930 . More specifically , the
and / or audio information , or a GUI . interface 904 may comprise software supporting one or

The computer 902 can process for / serve as a client , a more communication protocols associated with communi
server , and / or any other component of the EDCS (whether or 65 cations such that the network 930 or interface ' s hardware is
not illustrated) . The illustrated computer 902 is communi - operable to communicate physical signals within and outside
cably coupled with a network 930 (e . g . , network 140 of of the illustrated EDCS .

US 10 , 038 , 710 B2
15

The computer 902 includes a processor 905 . Although The terms " data processing apparatus , " " computer , ” or
illustrated as a single processor 905 in FIG . 9 , two or more " electronic computer device " (or equivalent as understood
processors may be used according to particular needs , by one of ordinary skill in the art) refer to data processing
desires , or particular implementations of the computer 902 hardware and encompass all kinds of apparatus , devices , and
and / or the EDCS . Generally , the processor 905 executes 5 machines for processing data , including by way of example ,
instructions and manipulates data to perform the operations a programmable processor , a computer , or multiple proces
of the computer 902 . Specifically , the processor 905 sors or computers . The apparatus can also be or further
executes the functionality required for efficient identification include special purpose logic circuitry , e . g . , a central pro
of log events in enterprise threat detection . cessing unit (CPU) , an FPGA (field programmable gate

The computer 902 also includes a database 906 and 10 array) , or an ASIC (application - specific integrated circuit) .
memory 908 that hold data for the computer 902 and / or In some implementations , the data processing apparatus
other components of the EDCS . Although illustrated as a and / or special purpose logic circuitry may be hardware
single database 906 and memory 908 in FIG . 9 , two or more based and / or software - based . The apparatus can optionally
databases 906 and memories 908 may be used according to include code that creates an execution environment for
particular needs , desires , or particular implementations of 15 computer programs , e . g . , code that constitutes processor
the computer 902 and / or the EDCS . While database 906 and firmware , a protocol stack , a database management system ,
memory 908 are illustrated as integral components of the an operating system , or a combination of one or more of
computer 902 , in alternative implementations , the database them . The present disclosure contemplates the use of data
906 and memory 908 can be external to the computer 902 processing apparatuses with or without conventional oper
and / or the EDCS . In some implementations , the database 20 ating systems , for example LINUX , UNIX , WINDOWS ,
906 can be a conventional database or an in - memory data - MAC OS , ANDROID , IOS or any other suitable conven
base , or a mix of both . In some implementations , the tional operating system .
database 906 and memory 908 can be combined into one A computer program , which may also be referred to or
component . described as a program , software , a software application , a

The application 907 is an algorithmic software engine 25 module , a software module , a script , or code , can be written
providing functionality according to particular needs , in any form of programming language , including compiled
desires , or particular implementations of the computer 902 or interpreted languages , or declarative or procedural lan
and / or the EDCS , particularly with respect to functionalities guages , and it can be deployed in any form , including as a
required for efficient identification of log events in enterprise stand - alone program or as a module , component , subroutine ,
threat detection . For example , application 907 can serve as 30 or other unit suitable for use in a computing environment . A
the event stream processor 110 , the runtime parser 218 , or computer program may , but need not , correspond to a file in
any other component of the EDCS (whether or not illus - a file system . A program can be stored in a portion of a file
trated) . Further , although illustrated as a single application that holds other programs or data , e . g . , one or more scripts
907 , the application 907 may be implemented as multiple stored in a markup language document , in a single file
applications 907 on the computer 902 . In addition , although 35 dedicated to the program in question , or in multiple coor
illustrated as integral to the computer 902 , in alternative dinated files , e . g . , files that store one or more modules ,
implementations , the application 907 can be external to the sub - programs , or portions of code . A computer program can
computer 902 and / or the EDCS . be deployed to be executed on one computer or on multiple

There may be any number of computers 902 associated computers that are located at one site or distributed across
with , or external to , the EDCS and communicating over 40 multiple sites and interconnected by a communication net
network 930 . Further , the term “ client , " " user , " and other work . While portions of the programs illustrated in the
appropriate terminology may be used interchangeably as various figures are shown as individual modules that imple
appropriate without departing from the scope of this disclo - ment the various features and functionality through various
sure . Moreover , this disclosure contemplates that many objects , methods , or other processes , the programs may
users may use one computer 902 , or that one user may use 45 instead include a number of sub - modules , third - party ser
multiple computers 902 . vices , components , libraries , and such , as appropriate . Con

Implementations of the subject matter and the functional versely , the features and functionality of various compo
operations described in this specification can be imple - nents can be combined into single components as
mented in digital electronic circuitry , in tangibly embodied appropriate .
computer software or firmware , in computer hardware , 50 The processes and logic flows described in this specifi
including the structures disclosed in this specification and cation can be performed by one or more programmable
their structural equivalents , or in combinations of one or computers executing one or more computer programs to
more of them . Implementations of the subject matter perform functions by operating on input data and generating
described in this specification can be implemented as one or output . The processes and logic flows can also be performed
more computer programs , i . e . , one or more modules of 55 by , and apparatus can also be implemented as , special
computer program instructions encoded on a tangible , non purpose logic circuitry , e . g . , a CPU , an FPGA , or an ASIC .
transitory computer - storage medium for execution by , or to Computers suitable for the execution of a computer
control the operation of , data processing apparatus . Alter - program can be based on general or special purpose micro
natively or in addition , the program instructions can be processors , both , or any other kind of CPU . Generally , a
encoded on an artificially generated propagated signal , e . g . , 60 CPU will receive instructions and data from a read - only
a machine - generated electrical , optical , or electromagnetic memory (ROM) or a random access memory (RAM) or
signal that is generated to encode information for transmis - both . The essential elements of a computer are a CPU for
sion to suitable receiver apparatus for execution by a data performing or executing instructions and one or more
processing apparatus . The computer - storage medium can be memory devices for storing instructions and data . Generally ,
a machine - readable storage device , a machine - readable stor - 65 a computer will also include , or be operatively coupled to ,
age substrate , a random or serial access memory device , or receive data from or transfer data to , or both , one or more
a combination of one or more of them . mass storage devices for storing data , e . g . , magnetic , mag

17
US 10 , 038 , 710 B2

18
neto - optical disks , or optical disks . However , a computer server , or that includes a front - end component , e . g . , a client
need not have such devices . Moreover , a computer can be computer having a graphical user interface or a Web browser
embedded in another device , e . g . , a mobile telephone , a through which a user can interact with an implementation of
personal digital assistant (PDA) , a mobile audio or video the subject matter described in this specification , or any
player , a game console , a global positioning system (GPS) 5 combination of one or more such back - end , middleware , or
receiver , or a portable storage device , e . g . , a universal serial front - end components . The components of the system can be
bus (USB) flash drive , to name just a few . interconnected by any form or medium of wireline and / or

Computer - readable media (transitory or non - transitory , as wireless digital data communication , e . g . , a communication appropriate) suitable for storing computer program instruc network . Examples of communication networks include a tions and data include all forms of non - volatile memory , 10 local area network (LAN) , a radio access network (RAN) , a media and memory devices , including by way of example metropolitan area network (MAN) , a wide area network semiconductor memory devices , e . g . , erasable program se (WAN) , Worldwide Interoperability for Microwave Access mable read - only memory (EPROM) , electrically erasable (WIMAX) , a wireless local area network (WLAN) using , for programmable read - only memory (EEPROM) , and flash
memory devices ; magnetic disks , e . g . , internal hard disks or 15 example , 02 . 11 I disks or 15 example , 802 . 11 a / b / g / n and / or 802 . 20 , all or a portion of the
removable disks ; magneto - optical disks ; and CD - ROM , Internet , and / or any other communication system or systems
DVD + / - R , DVD - RAM , and DVD - ROM disks . The at one or more locations . The network may communicate
memory may store various objects or data , including caches , with , for example , Internet Protocol (IP) packets , Frame
classes , frameworks , applications , backup data , jobs , web Relay frames , Asynchronous Transfer Mode (ATM) cells ,
pages , web page templates , database tables , repositories 20 voice , video , data , and / or other suitable information between
storing business and / or dynamic information , and any other network addresses .
appropriate information including any parameters , variables , The computing system can include clients and servers . A
algorithms , instructions , rules , constraints , or references client and server are generally remote from each other and
thereto . Additionally , the memory may include any other typically interact through a communication network . The
appropriate data , such as logs , policies , security or access 25 relationship of client and server arises by virtue of computer
data , reporting files , as well as others . The processor and the programs running on the respective computers and having a
memory can be supplemented by , or incorporated in , special client - server relationship to each other .
purpose logic circuitry . In some implementations , any or all of the components of

To provide for interaction with a user , implementations of the computing system , both hardware and / or software , may
the subject matter described in this specification can be 30 interface with each other and / or the interface using an
implemented on a computer having a display device , e . g . , a application programming interface (API) and / or a service
CRT (cathode ray tube) , LCD (liquid crystal display) , LED layer . The API may include specifications for routines , data
(Light Emitting Diode) , or plasma monitor , for displaying structures , and object classes . The API may be either com
information to the user and a keyboard and a pointing puter language independent or dependent and refer to a
device , e . g . , a mouse , trackball , or trackpad by which the 35 complete interface , a single function , or even a set of APIs .
user can provide input to the computer . Input may also be The service layer provides software services to the comput
provided to the computer using a touchscreen , such as a ing system . The functionality of the various components of
tablet computer surface with pressure sensitivity , a multi - the computing system may be accessible for all service
touch screen using capacitive or electric sensing , or other consumers using this service layer . Software services pro
type of touchscreen . Other kinds of devices can be used to 40 vide reusable , defined business functionalities through a
provide for interaction with a user as well ; for example , defined interface . For example , the interface may be soft
feedback provided to the user can be any form of sensory ware written in JAVA , C + + , or other suitable language
feedback , e . g . , visual feedback , auditory feedback , or tactile providing data in extensible markup language (XML) format
feedback ; and input from the user can be received in any or other suitable format . The API and / or service layer may
form , including acoustic , speech , or tactile input . In addi - 45 be an integral and / or a stand - alone component in relation to
tion , a computer can interact with a user by sending docu - other components of the computing system . Moreover , any
ments to and receiving documents from a device that is used or all parts of the service layer may be implemented as child
by the user ; for example , by sending web pages to a web or sub - modules of another software module , enterprise
browser on a user ' s client device in response to requests application , or hardware module without departing from the
received from the web browser . 50 scope of this disclosure .

The term “ graphical user interface , ” or “ GUI , ” may be While this specification contains many specific imple
used in the singular or the plural to describe one or more mentation details , these should not be construed as limita
graphical user interfaces and each of the displays of a tions on the scope of any invention or on the scope of what
particular graphical user interface . Therefore , a GUI may may be claimed , but rather as descriptions of features that
represent any graphical user interface , including but not 55 may be specific to particular implementations of particular
limited to , a web browser , a touch screen , or a command line inventions . Certain features that are described in this speci
interface (CLI) that processes information and efficiently fication in the context of separate implementations can also
presents the information results to the user . In general , a GUI be implemented in combination in a single implementation .
may include a plurality of user interface (UI) elements , some Conversely , various features that are described in the context
or all associated with a web browser , such as interactive 60 of a single implementation can also be implemented in
fields , pull - down lists , and buttons operable by the business multiple implementations separately or in any suitable sub
suite user . These and other UI elements may be related to or combination . Moreover , although features may be described
represent the functions of the web browser . above as acting in certain combinations and even initially

Implementations of the subject matter described in this claimed as such , one or more features from a claimed
specification can be implemented in a computing system that 65 combination can in some cases be excised from the combi
includes a back - end component , e . g . , as a data server , or that nation , and the claimed combination may be directed to a
includes a middleware component , e . g . , an application sub - combination or variation of a sub - combination .

20

25

US 10 , 038 , 710 B2
19 20

Particular implementations of the subject matter have to the unclassified log entry , and wherein evaluating
been described . Other implementations , alterations , and tokens of the unclassified log entry comprises :
permutations of the described implementations are within identifying a current token of the unclassified log
the scope of the following claims as will be apparent to those entry and one or more respective branches of the
skilled in the art . While operations are depicted in the 5 identified current node of the classification tree ;
drawings or claims in a particular order , this should not be determining , for each of the one or more respective
understood as requiring that such operations be performed in branches of the identified current token , whether the particular order shown or in sequential order , or that all the identified current token matches a component illustrated operations be performed (some operations may be type associated with the respective branch ;
considered optional) , to achieve desirable results . In certain 10 following a respective branch to a next node of the circumstances , multitasking and / or parallel processing may classification tree in response to determining that be advantageous and performed as deemed appropriate . the identified current token matches the compo Moreover , the separation and / or integration of various
system modules and components in the implementations nent type associated with the branch ;

in response to determining that the next node is a described above should not be understood as requiring such 15
separation and / or integration in all implementations , and it non - leaf node and that the next node is associated
should be understood that the described program compo with only one remaining candidate log entry class
nents and systems can generally be integrated together in a and no other candidate log entry classes , assigning
single software product or packaged into multiple software the one remaining candidate log entry class to the
products . unclassified log entry ; and

Accordingly , the above description of example implemen in response to determining that the next node is
tations does not define or constrain this disclosure . Other associated with two or more remaining candidate
changes , substitutions , and alterations are also possible log entry classes , returning to the determining
without departing from the spirit and scope of this disclo operation for a next token of the unclassified log
sure . entry ; and

evaluating , by the at least one processor , one or more
What is claimed is : security threat patterns using the classified log entry .
1 . A computer - implemented method executed by at least 2 . The method of claim 1 , wherein each log entry class is

one processor , the method comprising : associated with a unique log entry class identifier .
identifying , by the at least one processor , a first set of log 30 3 . The method of claim 2 , wherein each log entry class

entries ; identifier is included in a leaf node of the classification tree .
determining , by the at least one processor , a plurality of 4 . The method of claim 1 , wherein each branch of the

log entry classes occurring in the first set of log entries , classification tree is associated with a component type
each log entry in a given log entry class having a same identifier of one or more vectors .
number , type , and ordering of components ; 35 5 . A non - transitory , computer - readable medium storing

determining , by the at least one processor and for each log computer - readable instructions , the instructions executable
entry class , a vector of component type identifiers for by a computer and configured to instruct the computer to :
a given log entry class , each identifier in the vector identify a first set of log entries ;
identifying a position and type of a component included determine a plurality of log entry classes occurring in the
in a log entry belonging to the given log entry class ; 40 first set of log entries , each log entry in a given log

creating , by the at least one processor , a classification tree entry class having a same number , type , and ordering of
using the vectors , wherein the classification tree com components ;
prises a plurality of candidate log entry classes , determine , for each log entry class , a vector of component
wherein each log entry class is associated with a leaf type identifiers for a given log entry class , each iden
node of the classification tree , wherein each vector is 45 tifier in the vector identifying a position and type of a
represented in the classification tree as a path beginning component included in a log entry belonging to the
at a root node and ending at a respective leaf node given log entry class ;
corresponding to the log entry class associated with the create a classification tree using the vectors , wherein the
vector , and wherein each respective non - leaf node of classification tree comprises a plurality of candidate log
the classification tree corresponds to a particular token 50 entry classes , wherein each log entry class is associated
position of an unclassified log entry and to one or more with a leaf node of the classification tree , wherein each
candidate log entry classes that are each represented by vector is represented in the classification tree as a path
a sub - path of the classification tree beginning at the beginning at a root node and ending at a respective leaf
root node and ending at the respective non - leaf node ; node corresponding to the log entry class associated

identifying , by the at least one processor , an unclassified 55 with the vector , and wherein each respective non - leaf
log entry not included in the first set of log entries ; node of the classification tree corresponds to a particu

assigning , by the at least one processor , a log entry class lar token position of an unclassified log entry and to one
to the unclassified log entry using the classification tree or more candidate log entry classes that are each
to create a classified log entry , wherein assigning the represented by a sub - path of the classification tree
log entry class to the unclassified log entry using the 60 beginning at the root node and ending at the respective
classification tree comprises : non - leaf node ;
evaluating tokens of the unclassified log entry in accor - identify an unclassified log entry not included in the first

dance with the classification tree by eliminating set of log entries ;
candidate log entry classes from consideration until assign a log entry class to the unclassified log entry using
one remaining candidate log entry class remains , 65 the classification tree to create a classified log entry ,
wherein assigning the log entry class comprises wherein assigning the log entry class to the unclassified
assigning the one remaining candidate log entry class log entry using the classification tree comprises :

21

30

US 10 , 038 , 710 B2
22

evaluating tokens of the unclassified log entry in accor assign a log entry class to the unclassified log entry
dance with the classification tree by eliminating using the classification tree to create a classified log
candidate log entry classes from consideration until entry , wherein assigning the log entry class to the
one remaining candidate log entry class remains , unclassified log entry using the classification tree
wherein assigning the log entry class comprises 5 comprises :
assigning the one remaining candidate log entry class
to the unclassified log entry , and wherein evaluating evaluating tokens of the unclassified log entry in
tokens of the unclassified log entry comprises : accordance with the classification tree by elimi
identifying a current token of the unclassified log nating candidate log entry classes from consider

entry and one or more respective branches of the 10 ation until one remaining candidate log entry class
identified current node of the classification tree ; remains , wherein assigning the log entry class

determining , for each of the one or more respective comprises assigning the one remaining candidate
branches of the identified current token , whether log entry class to the unclassified log entry , and
the identified current token matches a component wherein evaluating tokens of the unclassified log
type associated with the respective branch ; 15 entry comprises :

following a respective branch to a next node of the identifying a current token of the unclassified log
classification tree in response to determining that entry and one or more respective branches of
the identified current token matches the compo the identified current node of the classification nent type associated with the branch ; tree ; in response to determining that the next node is a 20
non - leaf node and that the next node is associated determining , for each of the one or more respec

tive branches of the identified current token , with only one remaining candidate log entry class
and no other candidate log entry classes , assigning whether the identified current token matches a
the one remaining candidate log entry class to the component type associated with the respective
unclassified log entry ; and 25 branch ;

in response to determining that the next node is following a respective branch to a next node of the
associated with two or more remaining candidate classification tree in response to determining
log entry classes , returning to the determining that the identified current token matches the
operation for a next token of the unclassified log component type associated with the branch ;
entry ; and in response to determining that the next node is a

evaluate one or more security threat patterns using the non - leaf node and that the next node is associ
classified log entry . ated with only one remaining candidate log

6 . A system , comprising : entry class and no other candidate log entry
a memory ; classes , assigning the one remaining candidate
at least one hardware processor interoperably coupled 35 log entry class to the unclassified log entry ; and with the memory and configured to : in response to determining that the next node is identify a first set of log entries ; associated with two or more remaining candi determine a plurality of log entry classes occurring in date log entry classes , returning to the deter the first set of log entries , each log entry in a given mining operation for a next token of the unclas log entry class having a same number , type , and 40 sified log entry ; and ordering of components ;

determine , for each log entry class , a vector of com evaluate one or more security threat patterns using the
ponent type identifiers for a given log entry class , classified log entry .
each identifier in the vector identifying a position 7 . The non - transitory , computer - readable medium of
and type of a component included in a log entry 45 claim 5 , wherein each log entry class is associated with a
belonging to the given log entry class ; unique log entry class identifier .

create a classification tree using the vectors , wherein 8 . The non - transitory , computer - readable medium of
the classification tree comprises a plurality of can claim 7 , wherein each log entry class identifier is included didate log entry classes , wherein each log entry class in a leaf node of the classification tree . is associated with a leaf node of the classification 50
tree , wherein each vector is represented in the clas 9 . The non - transitory , computer - readable medium of
sification tree as a path beginning at a root node and claim 5 , wherein each branch of the classification tree is
ending at a respective leaf node corresponding to the associated with a component type identifier of one or more
log entry class associated with the vector , and
wherein each respective non - leaf node of the classi - 55 10 . The system of claim 6 , wherein each log entry class
fication tree corresponds to a particular token posi - is associated with a unique log entry class identifier .
tion of an unclassified log entry and to one or more 11 . The system of claim 10 , wherein each log entry class
candidate log entry classes that are each represented identifier is included in a leaf node of the classification tree . by a sub - path of the classification tree beginning at
the root node and ending at the respective non - leaf 60 12 . The system of claim 6 , wherein each branch of the

classification tree is associated with a component type node ;
identify an unclassified log entry not included in the identifier of one or more vectors .

first set of log entries ;

vect

* * * * *

