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ARTIFICIAL INTELLIGENCE
COREGISTRATION AND MARKER
DETECTION, INCLUDING MACHINE
LEARNING AND USING RESULTS THEREOF

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application relates, and claims priority, to U.S.
Patent Application Ser. No. 62/903,630, filed Sep. 20, 2019,
the entire disclosure of which is incorporated by reference
herein in its entirety.

FIELD OF THE INVENTION

[0002] This present disclosure generally relates to com-
puter imaging, computer vision, and/or to the field of
medical imaging, particularly to devices/apparatuses, sys-
tems, methods, and storage mediums for artificial intelli-
gence (“AI”) co-registration (also referred to herein as
“coregistration”) and marker detection and/or for using one
or more imaging modalities, including but not limited to,
angiography, Optical Coherence Tomography (OCT), Multi-
modality OCT (MM-OCT), near-infrared fluorescence (NI-
RAF), OCT-NIRAF, etc. Examples of OCT applications
include imaging, evaluating and diagnosing biological
objects, including but not limited to, for gastro-intestinal,
cardio and/or ophthalmic applications, and being obtained
via one or more optical instruments, including but not
limited to, one or more optical probes, one or more catheters,
one or more endoscopes, one or more capsules, and one or
more needles (e.g., a biopsy needle). One or more devices,
systems, methods and storage mediums for characterizing,
examining and/or diagnosing, and/or measuring viscosity of,
a sample or object in artificial intelligence application(s)
using an apparatus or system that uses and/or controls one or
more imaging modalities are discussed herein.

BACKGROUND OF THE INVENTION

[0003] Fiber optic catheters and endoscopes have been
developed to gain access to internal organs. For example, in
cardiology OCT (optical coherence tomography) has been
developed to capture and visualize depth-resolved images of
vessels with a catheter. The catheter, which may include a
sheath, a coil and an optical probe, may be navigated to a
coronary artery.

[0004] Optical coherence tomography (OCT) is a tech-
nique for obtaining high-resolution cross-sectional images
of tissues or materials, and enables real time visualization.
The aim of the OCT techniques is to measure the time delay
of light by using an interference optical system or interfer-
ometry, such as via Fourier Transform or Michelson inter-
ferometers. Light from a light source delivers and splits into
a reference arm and a sample (or measurement) arm with a
splitter (e.g., a beamsplitter). A reference beam is reflected
from a reference mirror (partially reflecting or other reflect-
ing element) in the reference arm while a sample beam is
reflected or scattered from a sample in the sample arm. Both
beams combine (or are recombined) at the splitter and
generate interference patterns. The output of the interferom-
eter is detected with one or more detectors, such as, but not
limited to, photodiodes or multi-array cameras, in one or
more devices, such as, but not limited to, a spectrometer
(e.g., a Fourier Transform infrared spectrometer). The inter-
ference patterns are generated when the path length of the
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sample arm matches that of the reference arm to within the
coherence length of the light source. By evaluating the
output beam, a spectrum of an input radiation may be
derived as a function of frequency. The frequency of the
interference patterns corresponds to the distance between the
sample arm and the reference arm. The higher frequencies
are, the greater are the differences in path length. Single
mode fibers may be used for OCT optical probes, and double
clad fibers may be used for fluorescence and/or spectros-
copy.

[0005] A multi-modality system such as an OCT, fluores-
cence, and/or spectroscopy system with an optical probe is
developed to obtain multiple information at the same time.
During vascular diagnosis and intervention procedures, such
as Percutaneous Coronary Intervention (PCI), users of opti-
cal coherence tomography (OCT) sometimes have difficulty
understanding the tomography image in correlation with
other modalities because of an overload of information,
which causes confusion in image interpretation.

[0006] Percutaneous coronary intervention (PCI) has been
improved dramatically by innovative imaging modalities,
such as coronary angiography and intravascular imaging.
Coronary angiography provides longitudinal silhouettes of
coronary arteries, while intravascular imaging modalities
provide cross-sectional information of coronary arteries.
Since intravascular imaging modalities, such as intravascu-
lar ultrasound (IVUS) and optical coherence tomography
(OCT), provide more precise information about a vessel
lesion (e.g., lumen size, plaque morphology, and implanted
devices), a system was developed that enables physicians to
connect (i.e., coregister) between ex vivo and in vivo
imaging modalities. One of the currently available methods
requires generating a vessel centerline for coregistration
from angiography data that is simultaneously acquired dur-
ing IVUS/OCT pullback. The other one requires generating
an imaging catheter path from angiography data that is
acquired prior to IVUS/OCT pullback with user inputs.
[0007] More specifically, coronary angiography imaging
and intravascular imaging are important imaging modalities
for percutaneous coronary intervention (PCI). A coronary
angiography provides longitudinal silhouettes of coronary
arteries as aforementioned. The longitudinal silhouettes of
the coronary artery are displayed on a monitor to help an
interventional cardiologist guide a catheter insertion to a
targeted region. Using coronary angiography during a PCI
procedure may be preferred because it is easier to guide the
catheter to a lesion when compared to other types of imaging
modalities.

[0008] Another imaging modality used in PCI is intravas-
cular imaging which provides cross-sectional information of
coronary arteries as aforementioned. Intravascular imaging
may include intravascular ultrasound (IVUS) and optical
coherence tomography (OCT) that provides more precise
lesion information, as aforementioned, than a coronary
angiography image. However, relying only on an intravas-
cular imaging modality such as IVUS or OCT in a PCI
procedure is difficult when guiding a catheter to a targeted
region (e.g., a vessel lesion) to gain information about lumen
size, plaque morphology or implanted devices by way of
example.

[0009] A system that enables physicians to connect
between two different imaging modalities including for
example both coronary angiography and intravascular imag-
ing during PCI involves co-registration. Co-registration
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(also referred to herein as “coregistration”) refers to the
spatial alignment of a series of images. For example, co-
registration may refer to the alignment of functional (intra-
vascular imaging) and anatomical (coronary angiography)
images of a patient who undergoes PCI to map functional
information into anatomical space. One benefit associated
with co-registering angiography imaging with intravascular
imaging includes determining where along the longitudinal
silhouette of the coronary artery in an angiography image
frame the intravascular image was acquired.

[0010] Coregistration between angiography and intravas-
cular imaging has two steps: (1) time synchronization of
angiography and intravascular imaging, and (2) radiopaque
marker detection in an angiography image to identify the
acquisition location of intravascular images. However, cur-
rent methods with conventional image processing tech-
niques may provide a limited success rate due to difficulties
that exist in step (2). For example, although a radiopaque
marker may be seen as a darkest spot in an angiography
image, multiple similar dark spots may be found in the same
angiography image, which can pose a challenge for conven-
tional computational image processing techniques to reli-
ably identify the correct point (the one representing the
marker of interest or target of interest) from a multitude of
candidate points that appear similar in the angiography
image.

[0011] Accordingly, it would be desirable to provide at
least one imaging or optical apparatus/device, system,
method, and storage medium that applies machine learning,
especially deep learning, to identify one or more markers in
angiography image frames with a higher success rate when
compared to traditional techniques, and to use the result (i.e.,
identified marker position or positions) to perform coregis-
tration more efficiently.

SUMMARY OF THE INVENTION

[0012] Accordingly, it is a broad object of the present
disclosure to provide imaging (e.g., OCT, NIRAF, etc.)
apparatuses, systems, methods and storage mediums for
using and/or controlling multiple imaging modalities, that
apply machine learning, especially deep learning, to identify
(e.g., detect, locate, or localize, etc.) a marker in an angiog-
raphy image frame with greater or maximum success, and
that use the results to perform coregistration more efficiently
or with maximum efficiency. It is also a broad object of the
present disclosure to provide OCT devices, systems, meth-
ods and storage mediums using an interference optical
system, such as an interferometer (e.g., spectral-domain
OCT (SD-OCT), swept-source OCT (SS-OCT), multimodal
OCT (MM-OCT), etc.).

[0013] One or more embodiments of the present disclosure
may apply machine learning, especially deep learning, to
identify one or more markers in angiography image frames
(e.g., one or more frames from a video, one or more frames
from an image or images, etc.) without user input(s) that
define an area where intravascular imaging pullback occurs.
Using artificial intelligence, for example (but not limited to),
deep/machine learning, residual learning, a computer vision
task (keypoint or object detection and/or image segmenta-
tion), using a unique architecture structure of a model or
models, using a unique training process, using input data
preparation techniques, using input mapping to the model,
using post-processing and interpretation of the output data,
etc., one or more embodiments of the present disclosure may
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achieve a better or maximum success rate of marker detec-
tion from angiography data without (or with less) user
interactions, and may reduce processing and/or prediction
time to display coregistration result(s) based on the marker
detection result(s). In this present disclosure, a model may
be defined as software that takes images as input and returns
predictions for the given images as output. In one or more
embodiments a model may be a particular instance of a
model architecture (set of parameter values) that has been
obtained by model training and selection using a machine
learning and/or optimization algorithm/process. A model
generally consists or is comprised of the following parts: an
architecture defined by a source code (e.g., a convolutional
neural network comprised of layers of parameterized con-
volution kernels and activation functions, etc.) and configu-
ration values (parameters, weights or features) that are
initially set to random values and are then over the course of
the training iteratively optimized given data examples (e.g.,
image-label pairs), an objective function (loss function), and
an optimization algorithm (optimizer).

[0014] One or more embodiments of the present disclosure
may achieve the efficient marker detection and/or efficient
coregistration result(s) by creating an identifier or detector to
detect a radiopaque marker on intravascular imaging cath-
eter from angiography image. In one or more embodiments,
the angiography data may be acquired during intravascular
imaging pullback using a catheter having a radiopaque
marker that may be visualized in an angiography image. In
one or more embodiments, a ground truth identifies a
location of the radiopaque marker. In one or more embodi-
ments, a model (which, in one or more embodiments, may
be software, software/hardware combination, or a procedure
that utilizes one or more machine or deep learning algo-
rithms/procedures/processes that has/have been trained on
data to make one or more predictions for future, unseen data)
has enough resolution to predict the marker location with
sufficient accuracy depending on the application or proce-
dure being performed. The performance of the model may
be further improved by subsequently adding more training
data and retraining the model to create a new instance of the
model with better or optimized performance. For example,
additional training data may include data based on user
input, where the user may identify or correct the location of
the radiopaque marker in an image. One or more embodi-
ments may use the identifier or detector to detect the
radiopaque marker(s).

[0015] One or more methods, medical imaging devices,
Intravascular Ultrasound (IVUS) or Optical Coherence
Tomography (“OCT”) devices, imaging systems, and/or
computer-readable storage mediums for detecting marker
location(s) and/or for performing coregistration using arti-
ficial intelligence may be employed in one or more embodi-
ments of the present disclosure.

[0016] In one or more embodiments, an artificial intelli-
gence training apparatus may include: a memory; one or
more processors in communication with the memory, the
one or more processors operating to: acquire or receive
angiography image data; establish ground truth for all the
acquired angiography image data; split the acquired angiog-
raphy image data into training, validation, and test sets or
groups; choosing or sampling a particular set of hyper-
parameter values for model training, including, but not
limited to, model architecture, the learning rate, and the
initialization of parameter values; iteratively train a model
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using data examples from the training set or group and
evaluate the model using data examples from the validation
set or group and a predefined metric over multiple iterations;
stop the training and evaluation iterations using one or more
predefined or dynamically determined stopping criteria; and
save the trained model to memory; etc. One or more
embodiments may repeat the training, and evaluation pro-
cedure, for a variety of hyper-parameter choices and finally
select one or more models with the optimal, highest, and/or
improved performance defined by one or more predefined
evaluation metrics.

[0017] In one or more embodiments, the one or more
processors may further operate to split the ground truth data
into sets or groups for training, validation, and testing. The
one or more processors may further operate to one or more
of the following: (i) detect or identify the marker(s) or
radiopaque marker(s) in the angiography image data based
on the created identifier or detector; (ii) calculate or improve
a marker detection success rate using application of machine
learning or deep learning; (iii) decide on the model to be
trained based on a marker detection success rate associated
with the model (e.g., if an apparatus or system embodiment
has multiple models to be saved, which have already been
trained previously, a method of the apparatus/system may
select a model for further training based on a previous
success rate, based on a predetermined success factor, or
based on which model is more optimal than another(s), etc.);
(iv) calculate a coregistration success rate and/or determine
whether a location of the detected marker is correct based on
the trained model; and (v) evaluate the marker detection
success rate and/or the coregistration success rate using a
root mean squared error between a predicted location and an
actual location of the marker. In one or more embodiments,
the one or more processors may further operate to one or
more of the following: (i) split the acquired or received
angiography image data into data sets or groups having a
certain ratio or percentages, for example, 70% training data,
15% validation data, and 15% test data; (ii) split the acquired
or received angiography image data randomly; (iii) split the
acquired or received angiography image data randomly
either on a pullback-basis, or a frame-basis; (iv) split the
acquired or received angiography image data based on or
using a new set of a certain or predetermined kinds of data;
and (v) split the acquired or received angiography image
data based on or using a new set of a certain or predeter-
mined data type, the new set being one or more of the
following: a new pullback-basis data set, a new frame-basis
data set, new clinical data, new animal data, new potential
additional training data, new data for a first type of catheter
where the new data has a marker that is similar to a marker
of a catheter used for the acquired or received angiography
image data, new data having a marker that is similar to a
marker of an Optical Coherence Tomography (OCT) cath-
eter. The one or more processors may further operate to one
or more of the following: (i) employ data quality control; (ii)
allow a user to manually select training samples or training
data; (iii) allow the user to identify a marker or a target for
detection and to use such a sample as a data point for model
training; and (iv) use any angio image that is captured during
Optical Coherence Tomography (OCT) pullback for testing.
In one or more embodiments, the one or more processors
may further operate to one or more of the following: (i)
perform image pre-processing; (ii) perform image pre-pro-
cessing by normalizing pixel values; and (iii) perform image
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pre-processing by normalizing pixel values for each indi-
vidual angio frame before training starts and/or for each
batch of angio frames that are input to the model for each
iteration of the training. The one or more processors may
operate to one or more of the following after selecting a
model architecture or configuration for training by a user or
the system based on a pre-determined criterion, to determine
a kind of data to be used, input, and outputs: (i) when the
model is a segmentation or classification model, the input is
an individual angio image frame, and the output is a corre-
sponding segmented, labeled, or masked image; (ii) when
the model is a segmentation or classification model, the
input is an individual angio image frame, and the output is
a corresponding segmented, labeled, or masked image,
where foreground pixels demarcating a marker area have
positive values and background pixels have zero values; (iii)
when the model is an object detection or regression model,
the input is an individual angio image frame, and the output
is a corresponding set of spatial coordinate(s) defining the
marker location(s) or the target marker; and (iv) when the
model performs a combination of segmentation (pixel clas-
sification) and/or object detection (spatial coordinate point
regression), the input includes a combination of individual
angio frames, and the output includes a combination of one
or more of the following: a segmented or masked image, a
segmented or masked image where foreground pixels
demarcating a marker area have positive values and back-
ground pixels have zero values, and coordinate(s) of the
marker location(s) or a coordinate of the target marker. In
one or more embodiments, the segmentation model may use
post-processing after obtaining the segmented or masked
image to determine coordinate points of the marker location.

[0018] One or more embodiments may include or have
one or more of the following: (i) the parameters include one
or more hyper-parameters; (ii) the saved, trained model is
used as a created detector for identifying or detecting a
marker(s) or radiopaque marker(s) in angiography image
data; (iii) the model is one or a combination of the following:
a segmentation model, a segmentation model with post-
processing, a model with pre-processing, a model with
post-processing, a segmentation model with pre-processing,
a deep learning or machine learning model, a semantic
segmentation model or classification model, an object detec-
tion or regression model, an object detection or regression
model, a combination of a semantic segmentation model and
an object detection or regression model, a model using
repeated segmentation model technique(s), a model using
feature pyramid(s), and a model using repeated object detec-
tion or regression model technique(s); (iv) the ground truth
includes one or more of the following: locations of two
endpoints of a major axis of a target marker in each
angiography frame, locations of two endpoints of a major
axis of a target marker in each angiography frame captured
during Optical Coherence Tomography (OCT) pullback, a
mask including a line that connects the two endpoint loca-
tions with a certain width as a positive area for the segmen-
tation model, all of the markers included in an the acquired
or received angiography image data, a centroid of two edge
locations, a centroid of two edge locations for the regression
or object detection model, and two marker locations in each
frame of the acquired or received angiography image data
graphically annoted by a user or an expert of the apparatus;
(v) the one or more processors further operate to use one or
more neural networks, convolutional neural networks, or
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recurrent neural networks to detect the marker(s) or
radiopaque marker(s); (vi) the one or more processors
further operate to estimate a generalization error of the
trained model with data in the test set or group; and (vii) the
one or more processors further operate to estimate a gener-
alization error of multiple trained models (ensemble) with
data in the test set or group, and to select one model based
on its performance on the validation set or group.

[0019] In one or more embodiments, an artificial intelli-
gence detection apparatus may include: one or more pro-
cessors that operate to: acquire or receive angiography
image data; receive a trained model or load a trained model
from a memory; apply the trained model to the acquired or
received angiography image data; select one angiography
frame; detect a marker location on the selected angiography
frame with the trained model, the detected marker location
defining detected results; check whether the marker location
is correct or accurate; in an event that the marker location is
not correct or accurate, then modify the detected results or
the detected marker location, and repeat the check as to
whether the marker location is correct or accurate, or in an
event that the marker location is correct or accurate, then
check whether all of the angiography frames have been
checked for correctness or accuracy; and in an event that all
of the angiography frames have not been checked for
correctness or accuracy, then select another angiography
frame and repeat the detection of a marker location and the
check of whether the marker location is correct or accurate
or not for the another angiography frame.

[0020] In one or more embodiments of a detection appa-
ratus, the one or more processors may further operate to one
or more of the following: (i) in an event that all of the
angiography frames have been checked for correctness or
accuracy, then perform coregistration based on the detected
marker location; (ii) display the detected marker location on
a display; (iii) display the detected marker location on the
display such that the detected marker location is overlayed
on angiography data; (iv) display the modified detected
results and/or the modified marker location on the display;
(v) insert an intravascular imaging catheter that has a marker
or radiopaque marker into an object or sample; and (vi)
acquire or receive the angiography image data during a
pullback operation of the intravascular imaging catheter.
[0021] The one or more processors may further operate to
use one or more neural networks, convolutional neural
networks, and/or recurrent neural networks to one or more
of: load the trained model, select a set of angiography
frames, detect the marker location for each frame, determine
whether the detected marker location is appropriate with
respect to given prior knowledge, for example, vessel loca-
tion and pullback direction, modify the detected results or
the detected marker location for each frame, display the
detected marker location on the display, perform the coreg-
istration, insert the intravascular image, and acquire or
receive the angiography image data during the pullback
operation.

[0022] In one or more embodiments, the object or sample
may include one or more of the following: a vessel, a target
specimen or object, and a patient.

[0023] The one or more processors may further operate to
perform the coregistration by co-registering the acquired or
received angiography image and an obtained one or more
Optical Coherence Tomography (OCT) or Intravascular
Ultrasound (IVUS) images or frames.
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[0024] In one or more embodiments, a loaded, trained
model may be one or a combination of the following: a
segmentation (classification) model, a segmentation model
with pre-processing, a segmentation model with post-pro-
cessing, an object detection (regression) model, an object
detection model with pre-processing, an object detection
model with post-processing, a combination of a segmenta-
tion (classification) model and an object detection (regres-
sion) model, a deep convolutional neural network model, a
recurrent neural network model with long short-term
memory that can take temporal relationships across images
or frames into account, a model using feature pyramid(s)
that can take different image resolutions into account, and/or
a model using residual learning technique(s).

[0025] In one or more embodiments, the one or more
processors may further operate to one or more of the
following: (i) display the angiography data along with an
image for each of one or more imaging modalities on the
display, wherein the one or more imaging modalities include
one or more of the following: a tomography image; an
Optical Coherence Tomography (OCT) image; a fluores-
cence image; a near-infrared fluorescence (NIRAF) image;
a near-infrared fluorescence (NIRAF) in a predetermined
view, a carpet view, and/or an indicator view; a three-
dimensional (3D) rendering; a 3D rendering of a vessel; a
3D rendering of a vessel in a half-pipe view or display; a 3D
rendering of the object; a lumen profile; a lumen diameter
display; a longitudinal view; computer tomography (CT);
Magnetic Resonance Imaging (MRI); Intravascular Ultra-
sound (IVUS); an X-ray image or view; and an angiography
view; and (ii) change or update the displays for the angiog-
raphy data along with each of the one or more imaging
modalities based on the modified detection results and/or the
modified marker location.

[0026] One or more embodiments of a method for training
a model using artificial intelligence may include: acquiring
or receiving angiography image data; establishing ground
truth for all the acquired angiography image data; collecting
image data annotations; splitting the acquired angiography
image data into training, validation, and test sets or groups;
choosing hyper-parameters for model training, including the
model architecture, the learning rate, and initialization of
parameter values; iteratively training a model using data in
the training set or group and evaluate the model using data
in the validation set or group over the course of multiple
iterations; stop the training and evaluation iterations using
one or more predefined or dynamically determined stopping
criteria, and save the trained model to memory. One or more
embodiments may repeat the selection, training, and evalu-
ation procedure, for a variety of model configurations (e.g.,
hyper-parameter values) and finally select one or more
models with the highest performance defined by one or more
predefined evaluation metrics.

[0027] One or more embodiments of training methods
may include or have one or more of the following condi-
tions: (i) the parameters include one or more hyper-param-
eters; (i) the saved, trained model is used as a created
detection system for identifying or detecting a marker(s) or
radiopaque marker(s) in angiography image data; (iii) the
model is one or a combination of the following: a segmen-
tation (classification) model, a segmentation model with
pre-processing, a segmentation model with post-processing,
an object detection (regression) model, an object detection
model with pre-processing, an object detection model with
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post-processing, a combination of a segmentation (classifi-
cation) model and an object detection (regression) model, a
deep convolutional neural network model, a recurrent neural
network model with long short-term memory that can take
temporal relationships across images or frames into account,
a model using feature pyramid(s) that can take different
image resolutions into account, and/or a model using
residual learning technique(s); (iv) the ground truth includes
one or more of the following: locations of two endpoints of
a major axis of a target marker in each angiography frame,
locations of two endpoints of a major axis of a target marker
in each angiography frame captured during Optical Coher-
ence Tomography (OCT) pullback, a mask including a line
that connects the two endpoint locations with a certain width
as a positive area for the segmentation model, all of the
markers included in an the acquired or received angiography
image data, a centroid of two edge locations, a centroid of
two edge locations for the regression or object detection
model, and two marker locations in each frame of the
acquired or received angiography image data graphically
annoted by a user or an expert of the apparatus; (v) the one
or more processors further operate to use one or more neural
networks or convolutional neural networks to one or more
of: train the model, estimate the generalization error, deter-
mine whether the performance of the trained model is
sufficient or not, and/or to detect the marker(s) or radiopaque
marker(s); (vi) the method further comprises estimating a
generalization error of the trained model with data in the test
set or group; and (vii) the method further comprises esti-
mating a generalization error of multiple trained models
with data in the test set or group, and selects one model
based on its performance on the validation set or group.

[0028] One or more embodiments of a non-transitory
computer-readable storage medium storing at least one
program for causing a computer to execute a method for
training a model using artificial intelligence may be used
with any method(s) discussed in the present disclosure,
including but not limited to, a method including: acquiring
or receiving angiography image data; establishing ground
truth for all the acquired angiography image data; splitting
the acquired angiography image data into training, valida-
tion, and test sets or groups; choosing or sampling hyper-
parameter values for model training, including model archi-
tecture, learning rate, and the initialization of parameter
values; training a model with data in the training set or group
and evaluate the model with data in the validation set or
group; determining whether the performance of the trained
model is sufficient; and in the event that the trained model
is not sufficient, then repeating the choosing/sampling, the
training, and the determining/evaluation, or, in the event that
the trained model is sufficient, saving the trained model to a
memory.

[0029] One or more embodiments of a method for detect-
ing a marker or a radiopaque marker in angiography image
data and/or for performing coregistration may include
acquiring or receiving angiography image data; receiving a
trained model or loading a trained model from a memory;
applying the trained model to the acquired or received
angiography image data; selecting one angiography frame;
detecting a marker location on the selected angiography
frame with the trained model, the detected marker location
defining detected results; checking whether the marker loca-
tion is correct or accurate; in an event that the marker
location is not correct or accurate, then modifying the
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detected results or the detected marker location, and repeat-
ing the check as to whether the marker location is correct or
accurate, or in an event that the marker location is correct or
accurate, then checking whether all of the angiography
frames have been checked for correctness or accuracy; and
in an event that all of the angiography frames have not been
checked for correctness or accuracy, then selecting another
angiography frame and repeating the detection of a marker
location and the check of whether the marker location is
correct or accurate or not for the another angiography frame.
The method may include one or more of the following: (i)
in an event that all of the angiography frames have been
checked for correctness or accuracy, performing coregistra-
tion based on the detected marker location; (ii) displaying
the detected marker location on a display; (iii) displaying the
detected marker location on the display such that the
detected marker location is overlayed on angiography data;
(iv) displaying the modified detected results and/or the
modified marker location on the display; (v) inserting an
intravascular imaging catheter that has a marker or
radiopaque marker into an object or sample; and (vi) acquir-
ing or receiving the angiography image data during a
pullback operation of the intravascular imaging catheter.
[0030] One or more embodiments of any method dis-
cussed herein (e.g., training method(s), detecting method(s),
imaging or visualization method(s), artificial intelligence
method(s), etc.) may be used with any feature or features of
the apparatuses, systems, other methods, storage mediums
or other structures discussed herein.

[0031] One or more embodiments of a non-transitory
computer-readable storage medium storing at least one
program for causing a computer to execute a method for
detecting a marker using artificial intelligence and/or per-
forming coregistration using artificial intelligence may be
used with any method(s) discussed in the present disclosure,
including but not limited to, a method including: acquiring
or receiving angiography image data; receiving a trained
model or loading a trained model from a memory; applying
the trained model to the acquired or received angiography
image data; selecting one angiography frame; detecting a
marker location on the selected angiography frame with the
trained model, the detected marker location defining
detected results; checking whether the marker location is
correct or accurate; in an event that the marker location is
not correct or accurate, then modifying the detected results
or the detected marker location, and repeating the check as
to whether the marker location is correct or accurate, or in
an event that the marker location is correct or accurate, then
checking whether all of the angiography frames have been
checked for correctness or accuracy; and in an event that all
of the angiography frames have not been checked for
correctness or accuracy, then selecting another angiography
frame and repeating the detection of a marker location and
the check of whether the marker location is correct or
accurate or not for the another angiography frame.

[0032] One or more embodiments of a method for detect-
ing a marker or a radiopaque marker in angiography image
data and/or for performing coregistration may include one or
more of the following: (i) in an event that all of the
angiography frames have been checked for correctness or
accuracy, performing coregistration based on the detected
marker location; (ii) displaying the detected marker location
on a display; (iii) displaying the detected marker location on
the display such that the detected marker location is over-
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layed on angiography data; (iv) displaying the modified
detected results and/or the modified marker location on the
display; (v) inserting an intravascular imaging catheter that
has a marker or radiopaque marker into an object or sample;
and (vi) acquiring or receiving the angiography image data
during a pullback operation of the intravascular imaging
catheter.

[0033] One or more of the artificial intelligence features
discussed herein that may be used in one or more embodi-
ments of the present disclosure, includes but is not limited
to, using one or more of deep learning, a computer vision
task, keypoint detection, a unique architecture of a model or
models, a unique training process or algorithm, a unique
optimization process or algorithm, input data preparation
techniques, input mapping to the model, post-processing,
and/or interpretation of the output data as substantially
described herein or as shown in any one of the accompa-
nying drawings.

[0034] In one or more embodiments, a radiopaque marker
may be detected and tracked using an algorithm, such as, but
not limited to, the Viterbi algorithm.

[0035] One or more embodiments may automate charac-
terization of stenosis in angiography images using convo-
Iutional neural networks, any other types of neural network
(s), and may fully automate frame detection on
angiographies using training (e.g., offline training) and using
applications (e.g., online application(s)) to extract and pro-
cess frames via deep learning.

[0036] One or more embodiments of the present disclosure
may track and/or calculate a radiopaque marker detection
success rate.

[0037] The following paragraphs describe certain explana-
tory embodiments. Other embodiments may include alter-
natives, equivalents, and modifications. Additionally, the
explanatory embodiments may include several novel fea-
tures, and a particular feature may not be essential to some
embodiments of the devices, systems, and methods that are
described herein.

[0038] According to other aspects of the present disclo-
sure, one or more additional devices, one or more systems,
one or more methods and one or more storage mediums
using OCT and/or other imaging modality technique(s) to
detect marker(s) and to perform coregistration using artifi-
cial intelligence, including, but not limited to, deep or
machine learning, using results of the marker detection for
performing coregistration, etc., are discussed herein. Further
features of the present disclosure will in part be understand-
able and will in part be apparent from the following descrip-
tion and with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] For the purposes of illustrating various aspects of
the disclosure, wherein like numerals indicate like elements,
there are shown in the drawings simplified forms that may
be employed, it being understood, however, that the disclo-
sure is not limited by or to the precise arrangements and
instrumentalities shown. To assist those of ordinary skill in
the relevant art in making and using the subject matter
hereof, reference is made to the appended drawings and
figures, wherein:

[0040] FIG. 1A is a schematic diagram showing at least
one embodiment of a system that may be used for perform-
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ing one or multiple imaging modality viewing and control in
accordance with one or more aspects of the present disclo-
sure;

[0041] FIG. 1B is a schematic diagram illustrating an
imaging system for executing one or more steps to process
image data in accordance with one or more aspects of the
present disclosure;

[0042] FIG. 2 is a flowchart of at least one embodiment of
a method for creating an identifier or detector using trained
deep learning that may be used in accordance with one or
more aspects of the present disclosure;

[0043] FIG. 3 is a flowchart of at least one embodiment of
a method for using an identifier or detector to detect a
radiopaque marker that may be used in accordance with one
or more aspects of the present disclosure;

[0044] FIG. 4 is a diagram of at least one embodiment of
a catheter that may be used with one or more embodiments
for detecting a marker and/or performing coregistration in
accordance with one or more aspects of the present disclo-
sure;

[0045] FIG. 5 is a diagram showing several examples of
measuring marker detection success rate in accordance with
one or more aspects of the present disclosure;

[0046] FIGS. 6A-6B are an example ground truth for at
least one embodiment of a segmentation model and an input
through an output of at least one embodiment of a segmen-
tation model method, respectively, in accordance with one or
more aspects of the present disclosure;

[0047] FIG. 7 is an example of at least one embodiment of
post-processing, after applying a segmentation model
embodiment, that may be used to identity final coordinate(s)
in accordance with one or more aspects of the present
disclosure;

[0048] FIG. 8 is a diagram showing several examples of
measuring marker detection success rate, including at least
one embodiment example of a segmentation model with
post-processing, in accordance with one or more aspects of
the present disclosure;

[0049] FIG. 9A is a diagram of at least one embodiment
example of an object detection model architecture using
regression in accordance with one or more aspects of the
present disclosure;

[0050] FIG. 9B is a diagram of at least one embodiment
example of an object detection model architecture using
regression with residual learning in accordance with one or
more aspects of the present disclosure;

[0051] FIG. 10 includes several examples of training data,
validation data, and test data along with a measure of
success rate in accordance with one or more aspects of the
present disclosure;

[0052] FIG. 11 includes several examples of test and
validation data along with root mean squared error calcula-
tions for one or more embodiments of an object detection
model in accordance with one or more aspects of the present
disclosure;

[0053] FIG. 12A shows at least one embodiment of an
OCT apparatus or system for utilizing one or more imaging
modalities and artificial intelligence for detecting marker(s)
and/or performing coregistration in accordance with one or
more aspects of the present disclosure;

[0054] FIG. 12B shows at least another embodiment of an
OCT apparatus or system for utilizing one or more imaging
modalities and artificial intelligence for detecting marker(s)
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and/or performing coregistration in accordance with one or
more aspects of the present disclosure;

[0055] FIG.12C shows at least a further embodiment of an
OCT and NIRAF apparatus or system for utilizing one or
more imaging modalities and artificial intelligence for
detecting marker(s) and/or performing coregistration in
accordance with one or more aspects of the present disclo-
sure;

[0056] FIG. 13 is a flow diagram showing a method of
performing an imaging feature, function or technique in
accordance with one or more aspects of the present disclo-
sure;

[0057] FIG. 14 shows a schematic diagram of an embodi-
ment of a computer that may be used with one or more
embodiments of an apparatus or system or one or more
methods discussed herein in accordance with one or more
aspects of the present disclosure;

[0058] FIG. 15 shows a schematic diagram of another
embodiment of a computer that may be used with one or
more embodiments of an imaging apparatus or system or
methods discussed herein in accordance with one or more
aspects of the present disclosure;

[0059] FIG. 16 shows a schematic diagram of at least an
embodiment of a system using a computer or processor, a
memory, a database, and input and output devices in accor-
dance with one or more aspects of the present disclosure;
[0060] FIG. 17 shows an example input image (left) and
the corresponding output image (right) for one or more
machine-learning applications in accordance with one or
more aspects of the present disclosure;

[0061] FIG. 18 shows an example input image (left) and
the corresponding output image (right) after updating seg-
mentation in accordance with one or more aspects of the
present disclosure;

[0062] FIG. 19 shows original angio image frames with
respective prediction results in accordance with one or more
aspects of the present disclosure;

[0063] FIG. 20 shows an example input image (left) and
the corresponding output image (right) in accordance with
one or more aspects of the present disclosure;

[0064] FIG. 21 shows example prediction results with
different trained models in accordance with one or more
aspects of the present disclosure;

[0065] FIG. 22 shows example prediction results with four
different models in accordance with one or more aspects of
the present disclosure;

[0066] FIG. 23 shows an example input image (left) and
the corresponding output image (right) for segmentation
model(s) in accordance with one or more aspects of the
present disclosure;

[0067] FIGS. 24 (a)-(f) show respective example figures
of prediction results in accordance with one or more aspects
of the present disclosure;

[0068] FIG. 25 shows an example input image (left) and
the corresponding output image (right) for regression model
(s) in accordance with one or more aspects of the present
disclosure;

[0069] FIG. 26 shows a created architecture of or for a
regression model(s) in accordance with one or more aspects
of the present disclosure;

[0070] FIG. 27 shows at least one embodiment example of
model selection (e.g., showing a plot of loss values of
models with different hyper-parameter configurations on the
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training and validation sets at different time points during
model training) in accordance with one or more aspects of
the present disclosure;

[0071] FIG. 28 shows a convolutional neural network
architecture in accordance with one or more aspects of the
present disclosure;

[0072] FIG. 29 shows an example input image (left) and
the corresponding output image (right) for regression model
(s) in accordance with one or more aspects of the present
disclosure;

[0073] FIG. 30 shows a created architecture of or for a
regression model(s) in accordance with one or more aspects
of the present disclosure;

[0074] FIG. 31 shows training and validation result(s)
over iterations in accordance with one or more aspects of the
present disclosure; and

[0075] FIG. 32 shows total marker detection success rate
with different distance threshold(s) between prediction and
ground truth in accordance with one or more aspects of the
present disclosure.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

[0076] One or more devices, systems, methods and storage
mediums for characterizing tissue, or an object, using one or
more imaging techniques or modalities (such as, but not
limited to, OCT, fluorescence, NIRAF, etc.), and using
artificial intelligence for detecting a marker(s) and/or per-
forming coregistration are disclosed herein. Several embodi-
ments of the present disclosure, which may be carried out by
the one or more embodiments of an apparatus, system,
method and/or computer-readable storage medium of the
present disclosure are described diagrammatically and visu-
ally in at least FIGS. 1A through 31 and other tables and
figures included herein below.

[0077] Turning now to the details of the figures, imaging
modalities may be displayed in one or more ways as
discussed herein. One or more displays discussed herein
may allow a user of the one or more displays to use, control
and/or emphasize multiple imaging techniques or modali-
ties, such as, but not limited to, OCT, NIRAF, etc., and may
allow the user to use, control, and/or emphasize the multiple
imaging techniques or modalities synchronously.

[0078] As shown diagrammatically in FIG. 1A, one or
more embodiments for visualizing, emphasizing and/or con-
trolling one or more imaging modalities and artificial intel-
ligence (such as, but not limited to, machine and/or deep
learning, residual learning, using results of marker detection
to perform coregistration, etc.) for detecting marker(s) and/
or performing coregistration of the present disclosure may
be involved with one or more predetermined or desired
procedures, such as, but not limited to, medical procedure
planning and performance (e.g., PCI as aforementioned).
For example, the system 2 may communicate with the image
scanner 5 (e.g., a CT scanner, an X-ray machine, etc.) to
request information for use in the medical procedure (e.g.,
PCI) planning and/or performance, such as, but not limited
to, bed positions, and the image scanner 5 may send the
requested information along with the images to the system
2 once a clinician uses the image scanner 5 to obtain the
information via scans of the patient. In some embodiments,
one or more angiograms 3 taken concurrently or from an
earlier session are provided for further planning and visu-
alization. The system 2 may further communicate with a
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workstation such as a Picture Archiving and Communication
System (PACS) 4 to send and receive images of a patient to
facilitate and aid in the medical procedure planning and/or
performance. Once the plan is formed, a clinician may use
the system 2 along with a medical procedure/imaging device
1 (e.g., an imaging device, an OCT device, an IVUS device,
a PCI device, an ablation device, a 3D structure construction
or reconstruction device, etc.) to consult a medical proce-
dure chart or plan to understand the shape and/or size of the
targeted biological object to undergo the imaging and/or
medical procedure. Each of the medical procedure/imaging
device 1, the system 2, the locator device 3, the PACS 4 and
the scanning device 5 may communicate in any way known
to those skilled in the art, including, but not limited to,
directly (via a communication network) or indirectly (via
one or more of the other devices such as 1 or 5, or additional
flush and/or contrast delivery devices; via one or more of the
PACS 4 and the system 2; via clinician interaction; etc.).
[0079] In medical procedures, improvement or optimiza-
tion of physiological assessment is preferable to decide a
course of treatment for a particular patient. By way of at
least one example, physiological assessment is very useful
for deciding treatment for cardiovascular disease patients. In
a catheterization lab, for example, physiological assessment
may be used as a decision-making tool—e.g., whether a
patient should undergo a PCI procedure, whether a PCI
procedure is successful, etc. While the concept of using
physiological assessment is theoretically sound, physiologi-
cal assessment still waits for more adaption and improve-
ment for use in the clinical setting(s). This situation may be
because physiological assessment may involve adding
another device and medication to be prepared, and/or
because a measurement result may vary between physicians
due to technical difficulties. Such approaches add complexi-
ties and lack consistency. Therefore, one or more embodi-
ments of the present disclosure may employ CFD-based
physiological assessment that may be performed from imag-
ing data to eliminate or minimize technical difficulties,
complexities and inconsistencies during the measurement
procedure. To obtain accurate physiological assessment, an
accurate 3D structure of the vessel may be reconstructed
from the imaging data as disclosed in U.S. Provisional Pat.
App. No. 62/901,472, filed on Sep. 17, 2019, the disclosure
of which is incorporated by reference herein in its entirety.
[0080] In at least one embodiment of the present disclo-
sure, a method may be used to provide more accurate 3D
structure(s) compared to using only one imaging modality.
In one or more embodiments, a combination of multiple
imaging modalities may be used, marker(s) may be detected,
and coregistration may be processed/performed using arti-
ficial intelligence.

[0081] One or more embodiments of the present disclosure
may apply machine learning, especially deep learning, to
detect a marker in an angiography image frame without user
input(s) that define an area where intravascular imaging
pullback occurs. Using artificial intelligence, for example,
deep learning, one or more embodiments of the present
disclosure may achieve a better or maximum success rate of
marker detection from angiography data without (or with
less) user interactions, and may reduce processing and/or
prediction time to display coregistration result(s) based on
the marker detection result(s).

[0082] One or more embodiments of the present disclosure
may achieve the efficient marker detection and/or efficient
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coregistration result(s) by creating a detector to identify and
localize a radiopaque marker on intravascular imaging cath-
eter from angiography image. In one or more embodiments,
the angiography data may be acquired during intravascular
imaging pullback using a catheter having a radiopaque
marker that may be visualized in an angiography image. In
one or more embodiments, a ground truth identifies a
location of the radiopaque marker. In one or more embodi-
ments, a model has enough resolution to predict the marker
location in a given image with sufficient accuracy depending
on the application or procedure being performed. The per-
formance of the model may be further improved by adding
more training data. For example, additional training data
may include image annotations, where a user labels or
corrects the radiopaque marker in each image. One or more
embodiments may use the detector to identify and localize
the radiopaque marker(s).

[0083] In one or more embodiments, a radiopaque marker
may be detected and tracked using an algorithm, such as, but
not limited to, the Viterbi algorithm.

[0084] One or more embodiments may automate charac-
terization of stenosis in angiography images using convo-
Iutional neural networks, and may fully automate frame
detection on angiographies using training (e.g., offline train-
ing) and using applications (e.g., online application(s)) to
extract and process frames via deep learning.

[0085] One or more embodiments of the present disclosure
may track and/or calculate a radiopaque marker detection
success rate.

[0086] In at least one further embodiment example, a
method of 3D reconstruction without adding any imaging
requirements or conditions may be employed. One or more
methods of the present disclosure may use intravascular
imaging, e.g., IVUS, OCT, etc., and one (1) view of angiog-
raphy. In the description below, while intravascular imaging
of the present disclosure is not limited to OCT, OCT is used
as a representative of intravascular imaging for describing
one or more features herein.

[0087] Referring now to FIG. 1B, shown is a schematic
diagram of at least one embodiment of an imaging system 20
for generating an imaging catheter path based on either a
directly detected location of a radiopaque marker on the
imaging catheter or a regression line representing the imag-
ing catheter path by using an angiography image frame that
is simultaneously acquired during intravascular imaging
pullback. The embodiment of FIG. 1B may be used with one
or more of the artificial intelligence feature(s) discussed
herein. The imaging system 20 may include an angiography
system 30, an intravascular imaging system 40, an image
processor 50, a display or monitor 1209, and an electrocar-
diography (ECG) device 60. The angiography system 30
includes an X-ray imaging device such as a C-arm 22 that is
connected to an angiography system controller 24 and an
angiography image processor 26 for acquiring angiography
image frames of an object or patient 106.

[0088] The intravascular imaging system 40 of the imag-
ing system 20 may include a console 32, a catheter 120 and
a patient interface unit or PIU no that connects between the
catheter 120 and the console 32 for acquiring intravascular
image frames. The catheter 120 may be inserted into a blood
vessel of the patient 106. The catheter 120 may function as
a light irradiator and a data collection probe that is disposed
in the lumen of a particular blood vessel, such as, for
example, a coronary artery. The catheter 120 may include a



US 2022/0346885 Al

probe tip, one or more radiopaque markers, an optical fiber,
and a torque wire. The probe tip may include one or more
data collection systems. The catheter 120 may be threaded in
an artery of the patient 106 to obtain images of the coronary
artery. The patient interface unit no may include a motor M
inside to enable pullback of imaging optics during the
acquisition of intravascular image frames. The imaging
pullback procedure may obtain images of the blood vessel.
The imaging pullback path may represent the co-registration
path, which may be a region of interest or a targeted region
of the vessel.

[0089] The console 32 may include a light source(s) 101
and a computer 1200. The computer 1200 may include
features as discussed herein and below (see e.g., FIG. 14,
FIG. 16, etc.), or alternatively may be a computer 1200' (see
e.g., FIG. 15, FIG. 16, etc.) or any other computer or
processor discussed herein. In one or more embodiments,
the computer 1200 may include an intravascular system
controller 35 and an intravascular image processor 36. The
intravascular system controller 35 and/or the intravascular
image processor 36 may operate to control the motor M in
the patient interface unit 110. The intravascular image
processor 36 may also perform various steps for image
processing and control the information to be displayed.
[0090] Various types of intravascular imaging systems
may be used within the imaging system 20. The intravas-
cular imaging system 40 is merely one example of an
intravascular imaging system that may be used within the
imaging system 20. Various types of intravascular imaging
systems may be used, including, but not limited to, an OCT
system, a multi-modality OCT system or an IVUS system,
by way of example.

[0091] The imaging system 20 may also connect to an
electrocardiography (ECG) device 60 for recording the
electrical activity of the heart over a period of time using
electrodes placed on the skin of the patient 106. The imaging
system 20 may also include an image processor 40 for
receiving angiography data, intravascular imaging data, and
data from the ECG device 60 to execute various image-
processing steps to transmit to a display 1209 for displaying
an angiography image frame with a co-registration path.
Although the image processor 40 associated with the imag-
ing system 20 appears external to both the angiography
system 20 and the intravascular imaging system 30 in FIG.
1B, the image processor 40 may be included within the
angiography system 30, the intravascular imaging system
40, the display 1209 or a stand-alone device. Alternatively,
the image processor 40 may not be required if the various
image processing steps are executed using one or more of
the angiography image processor 26, the intravascular image
processor 36 of the imaging system 20, or any other pro-
cessor discussed herein (e.g., computer 1200, computer
1200', computer or processor 2, etc.).

[0092] FIG. 2 shows at least one embodiment of a method
for creating an identifier or detector using trained deep
learning that may be used in accordance with one or more
aspects of the present disclosure.

[0093] FIG. 3 shows at least one embodiment of a method
for using an identifier or detector to detect a radiopaque
marker that may be used in accordance with one or more
aspects of the present disclosure.

[0094] Embodiments of a method or methods for creating
an identifier or detector and embodiments of using an
identifier or detector to detect a marker may be used inde-
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pendently or in combination. While not limited to the
discussed combination or arrangement, one or more steps
may be involved in both of the workflows or processes in
one or more embodiments of the present disclosure, for
example, as shown in FIG. 2 and/or FIG. 3 and as discussed
below.

[0095] One or more embodiments of the present disclosure
improve or maximize a marker detection success rate by, for
example, improving the method/algorithm for selecting
points among or from candidate points, improving the
detection method/algorithm that may utilize features that are
difficult to capture via other image processing techniques
(e.g., via the use of artificial intelligence, via the application
of machine or deep learning, via the use of artificial intel-
ligence results to perform coregistration, etc.), etc. In one or
more embodiments, at least one artificial intelligence, com-
puter-implemented task may be co-registration of images
between images acquired by one or more imaging modali-
ties, where one image is an angiography image that is
acquired during intravascular imaging of a sample or object,
such as, but not limited to, the coronary arteries, using an
OCT probe (pullback of OCT probe upon contrast agent
application, for example), and where the other intravascular
imaging may be, but is not limited to, IVUS. In one or more
embodiments, at least another artificial intelligence, com-
puter-implemented task may be a specific machine learning
task: keypoint detection, where the keypoint is a radiopaque
marker that has been “introduced” into angiography images
to facilitate detection.

[0096] Returning to the details of FIG. 2, one or more
methods or processes of the present disclosure may include
one or more of the following steps (starting at step S101 in
FIG. 2): (i) acquiring angiography image data (see step S102
in FIG. 2); (ii) establishing a ground truth for the marker
location in acquired angiography data/images (see step S103
in FIG. 2); (iii) splitting the acquired angiography data/
image set (examples of images and/or corresponding ground
truths) into training, validation, and test groups or sets (see
step S104 in FIG. 2); (iv) choosing the hyper-parameters for
model training, including, but not limited to, the model
architecture, the learning rate, and the initialization of
parameter values (see step S105 in FIG. 2); (v) training a
model with data in the training group or training set and
evaluating it with data in the validation group or validation
set (see step S106 in FIG. 2); (vi) determining whether the
performance of the trained model is good or sufficient (see
step S107 in FIG. 2); (vii) in the event that step S107 results
in a “No”, then return to before step S105 and repeat steps
S105-S106, or in the event that step S107 results in a “Yes”,
then proceed to step S108; (viii) estimating a generalization
error of the trained model with data in the test group or test
set (see step S108 in FIG. 2); and (ix) saving the trained
model to a memory (see step S109 in FIG. 2) (and then
ending the process at step S110 in FIG. 2). The steps shown
in FIG. 2 may be performed in any logical sequence and may
be omitted in parts in one or more embodiments. In one or
more embodiments, step S109 may involve saving the
trained model to the memory or a disk, and may automati-
cally save the trained model or may prompt a user (one or
more times) to save the trained model. In one or more
embodiments, a model may be selected based on its perfor-
mance on the validation set, and the generalization error may
be estimated on the test using the selected model. In one or
more embodiments, an apparatus, system, method, or stor-
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age medium may have multiple models to be saved, which
have already been trained previously, and the apparatus,
system, method, or storage medium may select a model for
further training based on a previous or prior success rate. In
one or more embodiments, any trained model works for any
angio apparatus or system with a same or similar success
rate; in a situation where more data exists from different
angio apparatuses or systems, one model may work better
for a certain angio apparatus or system whereas another
model may work better for a different angio apparatus or
system. In this scenario, one or more embodiments may
create test or validation data set(s) for specific angio appa-
ratus(es) or system(s), and may identify which model works
best for a specific angio apparatus(es) or system(s) with the
test set(s) and/or validation set(s).

[0097] While an intravascular image and an angiography
image may be acquired simultaneously in one or more
embodiments, such image acquisition may be performed at
different times (or not being simultaneously acquired) in one
or more other embodiments, such as, but not limited to,
embodiment(s) as discussed in U.S. Pat. App. No. 62/798,
885, filed on Jan. 30, 2019, the application of which is
incorporated by reference herein in its entirety. Indeed,
co-registration may be performed under either scenario. In
one or more embodiments where an angiography image is
acquired simultaneously with an intravascular image, the
one or more such embodiments may increase the accuracy of
the co-registration because a radiopaque marker location,
which is the acquisition location of an intravascular (e.g.,
OCT) image, may be detected. In one or more embodiments,
OCT/IVUS and angiography modalities are available when
using images that are acquired during a procedure (e.g., a
PCI procedure). In one or more embodiments, where a CT
image is acquired prior to the PCI procedure, co-registration
between CT and angiography, and/or between CT and OCT/
IVUS, may be performed. Using CT and OCT/IVUS is
further discussed in U.S. Pat. Pub. No. 2018/0271614, which
publication is incorporated by reference herein in its entirety.
While one or more PCI procedures discussed herein dis-
cusses stent implantation, balloon angioplasty or other pro-
cedures in coronary arteries and other arteries (e.g., arteries
located in one or more legs or other body parts), PCT
procedures are not limited thereto. For example, in addition
to uses for coronary procedures, OCT/IVUS may be used in
other region(s) of vasculature. In one or more embodiments,
the angiography image(s) obtained in step S102 may be used
for an initial analysis of a patent or the case, and/or may be
used for co-registration. The angiography image(s) may be
obtained during OCT pullback to achieve more accurate
co-registration, or may be received from a memory or
database as further discussed below.

[0098] In step S103 discussed above, establishing ground
truth may be performed in one or more ways for one or more
architectural models for the artificial intelligence methods or
algorithms discussed herein. In one or more embodiments, a
ground truth may be locations of two endpoints of the major
axis of the target marker in each angiography frame captured
during OCT pullback. While architectural models discussed
herein focus on a segmentation model, an object model (also
referred to as a “regression model”, a regression model with
residual learning, and a model that combines one or more
features of the segmentation model and the regression
model, the architectural models are not limited thereto. For
the segmentation model, ground truth may involve a mask
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image that contains the line that connects these two locations
with a certain width as a positive area (see e.g., FIG. 6A
discussed further below). In one or more embodiments were
a target marker may not be distinguishable yet from other
markers, all of the markers may be marked as ground truth.
In one or more embodiments where more data exists for
training and/or a time series of frames (e.g., a video
sequence) is utilized, a model may be improved to train a
model with ground truth that includes only the target marker
being masked. In one or more embodiments for a regression
model or object model, a centroid of two edge locations may
be considered as the ground truth location of a target marker
in each image. In one or more embodiments, ground truth
may be established, for example, by an expert graphically
annotating the two marker locations in each frame of an
angiographic image.

[0099] In step S104, splitting the acquired angiography
data set (examples of images and/or corresponding ground
truths) into training, validation, and test sets or groups may
occur in one or more ways for the artificial intelligence
methods or algorithms discussed herein. While several
examples of splitting data are discussed herein, the methods
and algorithms are not limited thereto. By way of at least one
embodiment example, input data may be split into training
(70%), validation (15%), and test (15%) data sets or groups.
The data splitting may be performed randomly (e.g., on a
pullback-basis, on a frame-basis, etc.). In one or more
embodiments, the data set may be split such that the training,
validation, and test sets or groups are maximally de-corre-
lated and the examples in each set or group may be sampled
from different image acquisition procedure(s). For example,
in one or more embodiments where a final application may
process or seek to process a new pullback example, all
images in the validation and test sets or groups may be
sampled from pullbacks that have not been part of the
training set or group and not been used for model training.
Different kinds of data may be used for the data split. In
situations where there were limited availability of data from
clinical studies for model training, data from animal studies
may be included in the training set or group. In at least one
embodiment, the training set or group may be primarily
composed of examples obtained as part of an animal study
or animal studies, whereas the validation and test sets or
groups may be primarily or only composed of examples
obtained during clinical studies. In one or more embodi-
ments, different combinations of data from animal studies
and/or clinical studies may be used for one or more of the
following: the training set(s) or group(s), the validation
set(s) or group(s), and/or the test set(s) or group(s). Usage of
animal data in training may enable adding the data that is
acquired in rare clinical situation(s), and, in one or more
embodiments, may, therefore, be applicable in clinical set-
ting(s). Once more clinical data is available, one or more
embodiments may use the clinical data (e.g., without animal
data) for all data subsets. One or more embodiments may
employ potential additional training data. For example, if a
radiopaque marker in angio images that are acquired during
a stent or balloon catheter delivery 100ks similar to the
marker in an OCT catheter, one or more embodiments may
include examples of stent or balloon catheter angio data/
images and corresponding ground truths in form of user-
annotated radiopaque marker locations into the training
set(s) and use these examples to train a model to detect the
marker in an OCT catheter. Similarly, in one or more
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embodiments, any other angio images of a catheter/probe
with a radiopaque marker that looks similar to that on or of
an OCT catheter may be used as additional training data.
Preferably, one or more embodiments employs data quality
control. For example, selection of training samples may be
performed manually in one or more embodiments. If a
human may identify the radiopaque marker (the target for
detection) by eye, such a sample may be a good data point
for training. For testing, any angio image that is captured
during OCT pullback may be used as long as a ground truth
may be established by a human expert reader or clinician.
One or more embodiments may involve image pre-process-
ing. Since a range of image contrast is different between
frames/pullbacks, normalization of image pixel values or
other image transformations may be performed as a pre-
processing step. Normalization may be performed for each
individual angio frame before training starts or for each
batch of angio frames that are passed to the model for each
training iteration.

[0100] In step S105, choosing the hyper-parameters for
model training, including the model architecture, the learn-
ing rate, and initialization of parameter values may vary
depending on a predetermined or desired objective and/or
application(s). For example, the choice of a model architec-
ture may depend on a success rate of coregistration (which
may be affected by a marker detection success rate) in the
setting of a final application on validation and/or test data
set(s). Such consideration(s) may be balanced with time
(e.g., a predetermined time period, a desired time period, an
available time period, a target time period, etc.) for process-
ing/predicting and user interaction. In one or more embodi-
ments, a success rate or rates of coregistration and/or marker
detection is/are evaluated with a pre-determined metric,
such as, but not limited to, a root mean squared error
between the prediction and the actual location. In one or
more embodiments, a model architecture may be selected
depending on an input and an output. For example, in the
segmentation or semantic segmentation model (also referred
to as the classification model), an input may be an individual
angio frame, and the output may be a segmented/masked
image, for example, where foreground pixels demarcating a
marker area have positive values and background pixels
have zero values. The segmentation (classification) model
may apply post-processing after obtaining the segmented/
masked image to determine coordinate points of the marker
location, which may affect the success rate of the marker
detection and ultimately may affect the success rate of the
coregistration. By way of another example, in the object
detection (regression) model, an input may be an individual
angio frame, and an output may be a coordinate of the
marker location (e.g., only the target marker). By way of a
further example, a combined architectural model may use a
combination of the aforementioned inputs and outputs.

[0101] While not limited to this process or steps thereof,
using a detector to detect (or identify and localize) a
radiopaque marker may be performed, for example, as
shown in FIG. 3. For example, one or more methods or
processes of the present disclosure may include one or more
of the following steps (starting at step S201 in FIG. 3): (i)
inserting (e.g., into a vessel, a target specimen or object, into
a patient, etc.) an intravascular imaging catheter that has a
radiopaque marker (see step S202 in FIG. 3); (ii) acquiring
angiography data during intravascular pullback (see step
S203 in FIG. 3); (iii) loading a trained model from a memory
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(which, for example, may be one or more of the memories
discussed herein) (see step S204 in FIG. 3); (iv) applying the
trained model to the acquired angiography data (see step
S205 in FIG. 3); (v) selecting one angiography frame (see
step S206 in FIG. 3); (vi) detecting marker location on the
selected angiography frame with the trained model (see step
S207 in FIG. 3); (vii) displaying the detected marker loca-
tion (e.g., overlay the detected marker location on angiog-
raphy data) (see step S208 in FIG. 3); (viii) check whether
the marker location is correct or accurate (see step S209 in
FIG. 3); (ix) in the event that step S209 results in a “No”,
then modifying the detected results, displaying the modified
results (see step S210 in FIG. 3) and returning to step S209
to determine whether the marker location is correct (e.g., in
the modified results), or in the event that step S209 results
in a “Yes”, then check whether all frames have been checked
(see step S211 in FIG. 3); and (x) in the event that step S211
results in a “No”, then returning to before step S206 and
repeat steps S206 through S211 (e.g., for each additional
frame in the set of frames, for each additional frame that
remain to be checked, for an additional frame that has not
been checked yet, etc.), or, in the event that step S211 results
in a “Yes”, then end the process (see step S212 in FIG. 3).
The steps shown in FIG. 3 may be performed in any logical
sequence and may be omitted in parts in one or more
embodiments.

[0102] FIG. 4 shows at least one embodiment of a catheter
120 that may be used in one or more embodiments of the
present disclosure for obtaining images; for using and/or
controlling multiple imaging modalities, that apply machine
learning, especially deep learning, to identify a marker in an
angiography image frame with greater or maximum success;
and for using the results to perform coregistration more
efficiently or with maximum efficiency. FIG. 4 shows an
embodiment of the catheter 120 including a sheath 121, a
coil 122, a protector 123 and an optical probe 124. As shown
schematically in FIGS. 12A-12C (discussed further below),
the catheter 120 may be connected to a patient interface unit
(PIU) 110 to spin the coil 122 with pullback (e.g., at least
one embodiment of the PIU 110 operates to spin the coil 122
with pullback). The coil 122 delivers torque from a proximal
end to a distal end thereof (e.g., via or by a rotational motor
in the PIU 110). In one or more embodiments, the coil 122
is fixed with/to the optical probe 124 so that a distal tip of
the optical probe 124 also spins to see an omnidirectional
view of the object (e.g., a biological organ, sample or
material being evaluated, such as, but not limited to, hollow
organs such as vessels, a heart, a coronary artery, etc.). For
example, fiber optic catheters and endoscopes may reside in
the sample arm (such as the sample arm 103 as shown in one
or more of FIGS. 12A-12C discussed below) of an OCT
interferometer in order to provide access to internal organs,
such as intravascular images, gastro-intestinal tract or any
other narrow area, that are difficult to access. As the beam of
light through the optical probe 124 inside of the catheter 120
or endoscope is rotated across the surface of interest, cross-
sectional images of one or more objects are obtained. In
order to acquire imaging data or three-dimensional data, the
optical probe 124 is simultaneously translated longitudinally
during the rotational spin resulting in a helical scanning
pattern. This translation is most commonly performed by
pulling the tip of the probe 124 back towards the proximal
end and therefore referred to as a pullback.
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[0103] The catheter 120, which, in one or more embodi-
ments, comprises the sheath 121, the coil 122, the protector
123 and the optical probe 124 as aforementioned (and as
shown in FIG. 4), may be connected to the PIU 110. In one
or more embodiments, the optical probe 124 may comprise
an optical fiber connector, an optical fiber and a distal lens.
The optical fiber connector may be used to engage with the
PIU 110. The optical fiber may operate to deliver light to the
distal lens. The distal lens may operate to shape the optical
beam and to illuminate light to the object (e.g., the object
106 (e.g., a vessel) discussed herein), and to collect light
from the sample (e.g., the object 106 (e.g., a vessel) dis-
cussed herein) efficiently.

[0104] As aforementioned, in one or more embodiments,
the coil 122 delivers torque from a proximal end to a distal
end thereof (e.g., via or by a rotational motor in the PIU no).
There may be a mirror at the distal end so that the light beam
is deflected outward. In one or more embodiments, the coil
122 is fixed with/to the optical probe 124 so that a distal tip
of the optical probe 124 also spins to see an omnidirectional
view of an object (e.g., a biological organ, sample or
material being evaluated, such as, but not limited to, hollow
organs such as vessels, a heart, a coronary artery, etc.). In
one or more embodiments, the optical probe 124 may
include a fiber connector at a proximal end, a double clad
fiber and a lens at distal end. The fiber connector operates to
be connected with the PIU 110. The double clad fiber may
operate to transmit & collect OCT light through the core and,
in one or more embodiments, to collect Raman and/or
fluorescence from an object (e.g., the object 106 (e.g., a
vessel) discussed herein, an object and/or a patient (e.g., a
vessel in the patient), etc.) through the clad. The lens may be
used for focusing and collecting light to and/or from the
object (e.g., the object 106 (e.g., a vessel) discussed herein).
In one or more embodiments, the scattered light through the
clad is relatively higher than that through the core because
the size of the core is much smaller than the size of the clad.

[0105] As discussed above, selecting a model (segmenta-
tion model (classification model), object or keypoint detec-
tion model (regression model), or a combination thereof)
may depend on a success rate of coregistration, which may
be affected by a marker detection success rate, in the setting
of a final application on validation and/or test data set(s).
Such consideration(s) may be balanced with time (e.g., a
predetermined time period, a desired time period, an avail-
able time period, a target time period, etc.) for processing/
predicting and user interaction. Because there are many
factors to consider when choosing a model, such as, but not
limited to, the marker detection success rate and/or coreg-
istration success rate, etc., and because success rates may
vary from method to method depending on the conditions
for such methods, examples of different marker detection
success rate are shown in FIG. 5. While marker detection
success rate may be calculate in various ways, one example
of a marker detection success rate is to calculate the number
of frames for which the predicted and the true radiopaque
marker locations are considered the same (e.g., when the
distance between predicted and true marker positions is
within a certain tolerance or below a pre-defined distance
threshold, which is defined by a user or pre-defined in the
system (e.g., the distance threshold may be set at 1.0 mm);
etc.) divided by the total number of frames obtained,
received, or imaged during the OCT pullback. According to
a first method where a user specifies a pullback region on
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one frame, according to a second method where a user points
out marker location on several or multiple frames, and
according to a third method where a user specifies a pullback
region on multiple frames, several success rates are shown
for three categories of data in FIG. 5 to highlight success rate
variation(s). Additionally, coregistration success rates
(based on user interviews) may be successful in 80% of
cases or higher. Experiments revealed that candidate points
(predicted segments) intersect with the true marker location
in at least 80-90% of total clinical angiography images using
one or more features of the present disclosure. By applying
machine or deep learning as discussed herein, marker detec-
tion success rates and coregistration success rates may be
improved or maximized. The success rate of marker detec-
tion (and consequently the success rate of coregistration)
may depend on how good the prediction of a marker location
is across all frames. As such, by improving estimation of the
marker location, the success rate of the marker detection
may be improved and likewise the success rate of coregis-
tration may be improved.

[0106] For the segmentation model (also referred to as
classification model or a semantic segmentation model)
architecture, one or more certain area(s) of an image are
predicted to belong to one or more classes in one or more
embodiments. There are many different segmentation model
architectures or ways to formulate or frame the image
segmentation task or issue. By way of at least one example,
a segmentation may involve classifying a given area or
region within an image into one of two classes (foreground
and background). By way of a non-limiting, non-exhaustive
embodiment example, the two classes may indicate whether
a target (e.g., a pixel, an area of an image, a target object in
an image, etc.) represents a radiopaque marker (first class,
foreground, etc.) or does not represent a marker (second
class, background, etc.). In one or more output examples,
each pixel may be classified into either representing a
marker or not representing a marker. One or more embodi-
ments of a semantic segmentation model may be performed
using the One-Hundred Layers Tiramisu method discussed
in “The One Hundred Layers Tiramisu: Fully Convolutional
DenseNets for Semantic Segmentation” to Simon Jégou, et
al., Montreal Institute for Learning Algorithms, published
Oct. 31, 2017 (https://arxiv.org/pdf/1611.09326.pdf), which
is incorporated by reference herein in its entirety. Convolu-
tional Neural Networks (CNNs) may be used for one or
more features of the present invention, including, but not
limited to, artificial intelligence feature(s), detecting one or
more markers, using the marker detection results to perform
coregistration, image classification, semantic image seg-
mentation, etc. For example, while other architectures may
be employed, one or more embodiments may combine
U-net, ResNet, and DenseNet architectural components to
perform segmentation. U-net is a popular convolutional
neural network architecture for image segmentation, ResNet
improves training deep convolutional neural network mod-
els due to its skip connections, and DenseNet has reliable
and good feature extractors because of its compact internal
representations and reduced feature redundancy. In one or
more embodiments, a network may be trained by slicing the
training data set, and not down-sampling the data (in other
words, image resolution may be preserved or maintained).
As aforementioned, FIG. 6 A shows an example ground truth
for a segmentation model, which may be an output in one or
more embodiments of a semantic segmentation model. Turn-
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ing to the details of FIG. 6B, at least one embodiment may
utilize an input 600 as shown to obtain an output 605 (e.g.,
as shown in FIG. 6A, FIG. 6B, etc.) of at least one embodi-
ment of a segmentation model method. For example, by
applying the One-Hundred Layers Tiramisu method(s) as
aforementioned, one or more features, such as, but not
limited to, convolution 601, concatenation 603, transition up
605, transition down 604, dense block 602, etc., may be
employed by slicing the training data set. While not limited
to only or by only these embodiment examples, in one or
more embodiments, a slicing size may be one or more of the
following: 100x100, 224x224, 512x512, and, in one or more
of the experiments performed, a slicing size of 224x224
performed the best. A batch size (of images in a batch) may
be one or more of the following: 2, 4, 8, 16, and, from the
one or more experiments performed, a bigger batch size
typically performs better (e.g., with greater accuracy). In one
or more embodiments, 16 images/batch may be used. The
optimization of all of these hyper-parameters depends on the
size of the available data set as well as the available
computer/computing resources; thus, once more data is
available, different hyper-parameter values may be chosen.
Additionally, in one or more embodiments, steps/epoch may
be 100, and the epochs may be greater than (>) 1000. In one
or more embodiments, an evaluation term may be categori-
cal_crossentropy. In one or more embodiments, a convolu-
tional autoencoder (CAE) may be used.

[0107] In addition to detection of the marker location, a
segmentation model may be used to demarcate regions of
interest in an image representing a blood vessel. Since we
know that the marker is located inside a vessel (intravascular
OCT imaging probe), demarcation of vessels can be used to
improve the accuracy and precision of marker detection.
Vessel and marker regions may be simultaneously predicted
by a segmentation model, which predicts at least three
classes: 1) vessel, 2) marker and 3) non-vessel, non-marker.
Alternatively, a segmentation model may be used to predict
at least two classes: 1) vessel and 2) non-vessel. Additional
classes may be used to distinguish between different vessel
branches. The predictions of a segmentation model (labeled
or masked images) that demarcates vessels may be used to
improve training or evaluation of an object/keypoint detec-
tion model that predicts the marker location by incorporating
the segmentation results into the loss function or evaluation
function used to train or evaluate the object detection model,
respectively. In this case, segmentation and object detection
model may be trained jointly or separately. In addition,
segmentation may only be performed for a subset of frames
and may only be performed during training and evaluation
of the object detection model, but not necessarily upon
model inference.

[0108] FIG. 7 shows at least one embodiment of post-
processing, after applying a segmentation model embodi-
ment, that may be used to identify final coordinate(s) in
accordance with one or more aspects of the present disclo-
sure. For example, a post-processing algorithm or method
may include one or more of the following (best seen in FIG.
7): getting user inputs; based on the user inputs, define a
region of interest (ROI); estimate a marker location based on
the user inputs; determine, establish or set a threshold within
the ROI; get centroid coordinates for each thresholded
components; and selecting a centroid coordinate from the
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centroid coordinates, the selected centroid coordinate being
closest to the estimation of the marker location based on the
user inputs.

[0109] FIG. 8 is a diagram showing several examples of
measuring marker detection success rate, including at least
one embodiment example of a segmentation model with
post-processing, in accordance with one or more aspects of
the present disclosure. As shown on the left side of FIG. 8,
a segmentation model being used with post-processing may
increase the success rate substantially compared with other
image processing methods in one or more embodiments. For
example, the success rate for the segmentation model with
post-processing in FIG. 8 was obtained using segmentation
model training with only animal data (20 pullbacks, ~60
frames/pullback). Batch size used was 16, training image
size used was 224 pixelx224 pixel, steps/iteration used was
200, and iteration used was 5000. In one or more embodi-
ments, the iterations may be limited based on memory size
resources available or processing preferences (e.g., a pre-
ferred timeline for completed processing, a success rate
threshold, etc.). For example, while the iterations used was
set to 5000, the success rate obtained with post-processing
used training that was terminated at the 4,923’7 iteration.
Test data for all three methods shown in FIG. 8 was all
clinical data (45 pullbacks, ~30 frames/pullback).

[0110] In one or more embodiments, the segmentation
model with post-processing may be used with one or more
features from “The One Hundred Layers Tiramisu: Fully
Convolutional DenseNets for Semantic Segmentation” to
Simon Jégou, et al., Montreal Institute for Learning Algo-
rithms, published Oct. 31, 2017 (https://arxiv.org/pdf/1611.
09326.pdf), which is incorporated by reference herein in its
entirety.

[0111] For the object detection model (also referred to as
the regression model or keypoint detection model as afore-
mentioned) architecture, one or more embodiments may use
an angio image or images as an input and may predict the
marker location in a form of a spatial coordinate. This
approach/architecture has advantages over semantic seg-
mentation because the object detection model predicts the
marker location directly, and may avoid post-processing in
one or more embodiments. The object detection model
architecture may be created or built by using or combining
convolutional layers, max-pooling layers, fully-connected
dense layers, and/or multi-scale image or feature pyramids.
Different combinations may be used to determine the best
performance test result. The performance test result(s) may
be compared with other model architecture test results to
determine which architecture to use for a given application
or applications.

[0112] One or more embodiments of architecture model(s)
discussed herein may be used with one or more of: a neural
network(s), a convolutional neural network(s), and a random
forest.

[0113] While experiments were conducted using the fol-
lowing two example architectures, the subject examples are
not limiting, and other architectures may be employed (other
methods are being tested as well). The first example archi-
tecture used is discussed in “Focal Loss for Dense Object
Detection” to Tsung-Yi Lin, et al., Facebook Al Research
(FAIR), February 2018 (https://arxiv.org/pdf/1708.02002.
pdf), which is incorporated by reference herein in its
entirety. The second example architecture used is discussed
in “Mask R-CNN” to Kaiming He, et al., Facebook Al
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Research (FAIR), Jan. 24, 2018 (https://arxiv.org/pdf/1703.
06870.pdf), which is incorporated by reference herein in its
entirety. One or more features from either of the “Focal Loss
for Dense Object Detection” to Tsung-Yi Lin, et al. reference
or the “Mask R-CNN” to Kaiming He, et al. reference may
be used with any other architecture model discussed herein
(e.g., semantic segmentation, a combination of semantic
segmentation and object detection/regression, regression
with residual learning, etc.).

[0114] Turning now to the details of FIG. 9A, at least one
embodiment example of an object detection model archi-
tecture using regression is shown in accordance with one or
more aspects of the present disclosure. In at least the
embodiment of FIG. 9A, the regression model uses a com-
bination of one or more convolution layers 900, one or more
max-pooling layers 901, and one or more fully connected
dense layers 902. While not limited to the Kernel size,
Width/Number of filters (output size), and Stride sizes
shown for each layer (e.g., in the left convolution layer of
FIG. 9A, the Kernel size is ‘“3x3”, the Width/# of filters
(output size) is “64”, and the Stride size is “2”). Conducted
experiments involved a depth (or total number) of about
4-20 convolutional layers. In one or more embodiments, an
object detection model may be used with 10 or less than 10
convolution layers. In at least one embodiment, and while
not limited to this example, preferably less than 10 convo-
Iution layers are used. The optimal number of layers also
depends on the size of the available data sets; thus, if more
data is available, larger number of layers may be optimal in
one or more embodiments. Conducted experiments involved
a batch size of about 4-16. In one or more embodiments, a
batch size of 12 may be used (while not limited to this
example, preferably a batch size of 12 may be used in one
or more embodiments depending on the processing, imag-
ing, application(s), etc. involved). The Stride controls how a
filter convolves around an input or input volume. For
example, a filter may convolve around an input volume by
shifting a unit at a time. Stride size defines an amount by
which the filter shifts. In a case, for example, where Stride
size is “2”, a filter may convolve around an input volume by
shifting two units at a time. Conducted experiments
involved a width (number of filters in each image) of one of:
16, 32, 64, and 128. In one or more embodiments, a width
of 64 may be used (while not limited to this example,
preferably a width of 64 may be used in one or more
embodiments depending on the processing, imaging, appli-
cation(s), etc. involved). Conducted experiments involved a
learning rate in the range of 107*-107%. In one or more
embodiments, a learning rate of 10~> may be used (while not
limited to this example, preferably a learning rate of 107>
may be used in one or more embodiments depending on the
processing, imaging, application(s), etc. involved). Con-
ducted experiments involved a dropout value in the range of
107'-107>. In one or more embodiments, a dropout value on
the order of 10> may be used (while not limited to this
example, preferably a dropout value of 107> may be used in
one or more embodiments depending on the processing,
imaging, application(s), etc. involved). In one or more
embodiments, an optimizer, such as, but not limited to,
Stochastic Gradient Descent (SGD), Adaptive Moment Esti-
mation (Adam), etc., may be used. One or more evaluation
term(s) may be used, such as, but not limited to, Root Mean
Square Error (RMSE) (see e.g., FIGS. 10-11 discussed

Nov. 3, 2022

below). Steps/epoch may be 10, and the number of epochs
may be >500 in one or more embodiments.

[0115] One or more embodiments may use convolutional
neural network architectures with residual connections as
discussed in “Deep Residual Learning for Image Recogni-
tion” by Kaiming He, et al., Microsoft Research, Dec. 10,
2015 (https://arxiv.org/pdf/1512.03385.pdf), which is incor-
porated by reference herein in its entirety.

[0116] In one or more embodiments, a different neural
network architecture may be used, for example, and may be
very different from the architecture shown in FIG. 9A. For
example, one or more embodiment examples of a neural
network architecture may use feature pyramids as described
in “Feature Pyramid Networks for Object Detection” by
Tsung-Yi Lin, et al., Facebook Al Research (FAIR), Apr. 19,
2017 (https://arxiv.org/abs/1612.03144). Again, the machine
learning algorithm or model architecture is not limited to the
structures or details discussed herein.

[0117] Turning now to the details of FIG. 9B, at least one
embodiment example of an object detection model archi-
tecture using regression with residual learning is shown in
accordance with one or more aspects of the present disclo-
sure. Residual learning is a method that introduces skip
connections to learn from one or more features that is/are
created at the layers before the previous layer and to
facilitate backpropagation of errors during model training.
While not limited to this configuration, in a current setting,
skip connections between blocks of convolution layer(s) are
introduced as shown in FIG. 9B. As shown in at least the
embodiment example of FIG. 9B, a depth (total number of
convolutional layers) is 34 (smaller/bigger depths may be
used, but, in one or more embodiments, a depth of 34 may
be preferred), batch size is 12, a width (number of filters in
each image) is 6 4 (in one or more embodiments, a smaller
width may be used, and in one or more embodiments, a
smaller width may be preferred), and a learning rate is 10~
As aforementioned, in one or more embodiments, a convo-
Iutional autoencoder (CAE) may be used.

[0118] One or more embodiments may use a recurrent
convolutional neural network object detection model with
long short-term memory (see e.g., “long short-term
memory” as discussed in “Long Short-Term Memory” by
Hochreiter, et al., Neural Computation, Volume 9, Issue 8,
November 1997 (https://dl.acm.org/doi/10.1162/neco0.1997.
9.81735); as discussed in “Fundamentals of Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory (LSTM)
Network” by Alex Sherstinsky, Elsevier Journal “Physica D:
Nonlinear Phenomena”, Volume 404, March 2020 (https://
arxiv.org/abs/1808.03314); as discussed in “Sequence to
Sequence Learning with Neural Networks”, by Sutskeyer, et
al.,, December 2014 (https://papers.nips.cc/paper/5346-se-
quence-to-sequence-learning-with-neural-networks.pdf);
etc.) that enables consideration of spatial and temporal
information for predicting maker locations. Since a
radiopaque marker moves a certain direction during the
pullback, utilizing that information may improve success
rate of marker detection. In this case, model input is a
sequence of multiple frames, and model output is a sequence
of spatial coordinates for marker locations in each of the
given images.

[0119] One or more embodiments may use a neural net-
work model that is created by transfer learning. Transfer
learning is a method of using a model with pre-trained
(instead of randomly initialized) parameters, that have been
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optimized for the same or a different objective (e.g., to solve
a different image recognition or computer vision issue) on a
different data set with a potentially different underlying data
distribution. The model architecture may be adapted or used
to solve new objective(s) or issue(s), for example, by adding,
removing, or replacing one or more layers of the neural
network, and the potentially modified model is then further
trained (fine-tuned) on the new data set. Under the assump-
tion that lower-level features, such as edge detector(s), are
transferrable from one objective or issue domain to another,
this learning approach may help improve the performance of
the model, especially when the size of the available data set
is small. In this specific application, by using pre-trained
model with residual learning, the success rate improves
about 30%.

[0120] Inone or more embodiments of an object detection
model, the root mean square error (RMSE) between the
actual location and the predicted location may be used as an
evaluation metric for model evaluation. In one or more
embodiments, a success rate may be computed by applying
a threshold criterion and calculating the number of frame
examples in each pullback for which the RMSE value is
smaller than a predetermined or set threshold value (see e.g.,
details of FIG. 10). The success rate may additionally be
computed at different threshold values, for example, in the
range from 0.1 mm to 10 mm with a step size of 0.1 mm.
RMSE or the derived success rate may be used, individually
or combined, for model evaluation. In experiments con-
ducted, at least one reason why success rate was used here
is to see how much improvement may be achieved with
different threshold(s) and to link that information in a
clinical setting or settings. For example, the success rate
improves 10% with 0.1 mm bigger threshold value, and a 0.1
mm difference in an angio image may least likely affect a
physician’s plan of procedure such that use of a bigger
threshold value may be chosen or selected.

[0121] Inone or more embodiments of an object detection
model, evaluation may be performed by assessing both root
mean square error and difference of pullback paths between
ground truth and prediction. Considering the movement of
the marker from one frame to one after as a vector, the
difference of pullback paths can be evaluated in terms of the
differences of the magnitude (i.e., length) of the vectors (in
ground truth and in prediction) and the angle differences of
the vectors. Root mean square error helps understand the
averaged frame-by-frame performance of entire pullback,
while difference of pullback paths enables understanding the
performance per pullback, i.e., whether the model can
predict a movement of marker correctly or not.

[0122] Inone or more embodiments of an object detection
model, evaluation may be performed by assessing the move-
ment of the detected/predicted marker location over a certain
period of time. Since the marker should move in a certain
direction, which can be defined by a user and/or with a given
prior knowledge of anatomy of the vessel (from distal to
proximal of the vessel), if the detected/predicted marker
location does not move the appropriate direction, a model
can be penalized. For example, if frame-by-frame prediction
is performed, the movement of the detected/predicted
marker location can be assessed by comparing the detected/
predicted location in a certain number of frames prior to the
frame that is currently used for training. If a model that uses
a sequence of frames as input, the movement can be evalu-
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ated by comparing the detected/predicted marker locations
at the first and the last frames of the sequence.

[0123] Since the data set is split into training, validation,
and test sets or groups, success rate was evaluated for each
subset in one or more embodiments as shown in FIG. 10.
“Longer training time” indicates more iteration(s) of train-
ing: 500 iterations (1000), 3500 iterations (1001), and 6500
iterations (1002), for example. In a case where the data is
split frame-basis, all three data sets show the similar success
rate results (see FIG. 10). However, in a case where the data
is split pullback-basis, and in a case where a system encoun-
ters to the data that is less correlated (or handles or processes
data that is less correlated), the respective success rate on the
validation data set and the test data set is significantly lower
when compared to the success rate on the training data set
(see FIG. 10). The success rate difference indicates that the
system is overfitting to the current data, which indicates that
more data would be useful to train a model that can
generalize better to unseen data.

[0124] FIG. 11 includes several examples of test and
validation data along with root mean squared error calcula-
tions for one or more embodiments of an object detection
model in accordance with one or more aspects of the present
disclosure. Here, root mean squared error is used to evaluate
the model performance. Smaller root mean squared error
indicates better model structure. Although an increase of
learning iterations over the full training data set (i.e., epochs)
may help to improve performance on the validation set, it
may not help to improve performance on the test set, which
would be an indication that the model starts to overfit to the
validation set. The difference between the two models of
FIG. 11 may be due to the difference in the model architec-
ture and/or due to other hyper-parameter settings.

[0125] Several non-limiting examples of differences
between using a segmentation model and an object detection
model are discussed herein. As discussed above, an object
detection model may not have enough resolution for accu-
rate prediction of the marker location. That said, in one or
more embodiments, a sufficiently optimized object detection
model may achieve better or maximized performance. On
the other hand, while a segmentation model may provide
better resolution than at least one embodiment of an object
detection model, as aforementioned, at least one embodi-
ment of a segmentation model may use post-processing to
obtain a coordinate of predicted marker location (which may
lead to a lower marker detection success rate in one or more
embodiments).

[0126] As discussed further herein, there are multiple
options that may be used to improve or address the above
differences between segmentation and object detection mod-
els. By way of a couple of non-limiting, non-exhaustive
examples: (i) a combination model may be employed,
which, for example, involves running a semantic segmen-
tation model and then applying an object detection model to
an area with higher probability from the segmentation model
(one or more features of such combined approaches may be
used in one or more embodiments of the present disclosure,
one or more features, including, but not limited to, those as
discussed in “Mask R-CNN” to Kaiming He, et al., Face-
book Al Research (FAIR), Jan. 24, 2018 (https://arxiv.org/
pdf/1703.06870.pdf), which is incorporated by reference
herein in its entirety); and/or (ii) running an object detection
model with a bigger normalized range, applying the object
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detection model, and then applying the object detection
model again with a higher probability area from the first
object detection model.

[0127] After making improvements to one or more archi-
tecture models as discussed herein, specific advantages may
include, but are not limited to, one or more of the following:
higher resolution leading to a more accurate prediction
result; lower computational memory and/or processing may
be utilized (less resource(s) used, faster processing achieved,
etc.); and no user interaction is needed (while one or more
embodiments may involve user interaction).

[0128] The method of FIG. 3 involves such considerations
in selecting a model to be used, and to use an identifier or
detector to predict marker location. For example, step S204
of FIG. 3 regarding loading a trained model from a memory
may involve one or more of the aforementioned to determine
which model to load. Experiments have been and are con-
tinuing to be conducted to train multiple models and to
gather information as to which models perform more effi-
ciently or optimally than other models. For one or more
embodiments of final implementation, a trained model may
be selected from the models having the better or best
performance on the validation data set, and the test set may
be used to estimate the generalization error. However, it is
possible to have multiple trained models and compare
performances between such models to pick the “possibly”
better or best one for a given application or applications in
one or more embodiments. This selection may be done by a
user, or may be done automatically with certain evaluation
metrics. Evaluation metrics may be driven based on input
image quality and/or any other error metric(s) that is/are
used during prediction of the model. By way of a further
example, the choice of the model may be made based on
input image quality. There may be a possibility that a certain
combination of input image quality and model has higher
performance than another combination or combinations.
[0129] By way of another example, step S210 of FIG. 3
regarding displaying a result or modified result(s) may be
done, but is not limited to, using one or more features as
discussed in U.S. Pat. Pub. No. 2018/0271614, the disclo-
sure of which is incorporated by reference herein in its
entirety; as discussed in U.S. Pat. Pub. No. 2019/0029624,
the disclosure of which is incorporated by reference herein
in its entirety; as discussed in U.S. Pat. Pub. No. 2019/
0029623, the disclosure of which is incorporated by refer-
ence herein in its entirety; and as discussed in U.S. Provi-
sional Pat. App. No. 62/798,885, filed on Jan. 30, 2019, the
disclosure of which is incorporated by reference herein in its
entirety.

[0130] Additionally, in one or more embodiments, training
data may be obtained using other imaging data and/or user
feedback. For example, angio images that are acquired
during balloon catheter and/or stent catheter delivery or
other intravascular imaging (e.g., IVUS pullback) may
potentially also be used as training data and may help in
learning models that generalize better. Additionally or alter-
natively, as an example of user feedback, data may be
captured by a graphical user interface (GUI) that is used to
present model predictions to a user, and that captured data
may allow the user to evaluate predicted marker locations
and correct marker locations (if needed/useful). Validated
and corrected samples may be used as additional training
data to update (and further improve) the model in one or
more embodiments.
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[0131] In view of the above, and in view of other artificial
intelligence details/features discussed below, one or more
embodiments of the present disclosure may incorporate or
use application of machine learning for automated detection
of markers (e.g., radiodense markers, radiopaque markers,
etc.) in one or more angiography images (e.g., in one or
more embodiments, little or no user interaction may be a
benefit/outcome). One or more embodiments may employ
an object/keypoint detection model with higher resolution,
and may result in a benefit/outcome of being able to predict
object/keypoint coordinates at subpixel spatial resolution
(e.g., in millimeter unit(s) in a patient coordinate system).
One or more embodiments may employ introduction (e.g.,
intentional introduction) of a marker (e.g., radiodense
marker, radiopaque marker, etc.) into angiography images to
simplify computer vision task(s), and may result in a benefit/
outcome of facilitating marker (object/keypoint) detection
using machine learning. One or more embodiments may
incorporate an ability to use additional, widely available
images, in which a similar marker (the size and/or material
may be different between markers) is introduced for model
training (transfer learning).

[0132] Visualization, PCI procedure planning, and physi-
ological assessment may be combined to perform complete
PCI planning beforehand, and to perform complete assess-
ment after the procedure. Once a 3D structure is constructed
or reconstructed and a user specifies an interventional
device, e.g., a stent, that is planned to be used, virtual PCI
may be performed in a computer simulation (e.g., by one or
more of the computers discussed herein, such as, but not
limited to, the computer 2, the processor computer 1200, the
processor or computer 1200', any other processor discussed
herein, etc.). Then, another physiological assessment may be
performed based on the result of the virtual PCI. This
approach allows a user to find the best device (e.g., inter-
ventional device, implant, stent, etc.) for each patient before
or during the procedure.

[0133] While a few examples of GUIs have been dis-
cussed herein and shown in one or more of the figures of the
present disclosure, other GUI features, imaging modality
features, or other imaging features, may be used in one or
more embodiments of the present disclosure, such as the
GUI feature(s), imaging feature(s), and/or imaging modality
feature(s) disclosed in U.S. patent Ser. No. 16/401,390, filed
May 2, 2019, and disclosed in U.S. Pat. Pub. No. 2019/
0029624 and WO 2019/023375, which application(s) and
publication(s) are incorporated by reference herein in their
entireties.

[0134] One or more methods or algorithms for calculating
stent expansion/underexpansion or apposition/malapposi-
tion may be used in one or more embodiments of the present
disclosure, including, but not limited to, the expansion/
underexpansion and apposition/malapposition methods or
algorithms discussed in U.S. Pat. Pub. Nos. 2019/0102906
and 2019/0099080, which publications are incorporated by
reference herein in their entireties.

[0135] One or more methods or algorithms for calculating
or evaluating cardiac motion using an angiography image
and/or for displaying anatomical imaging may be used in
one or more embodiments of the present disclosure, includ-
ing, but not limited to, the methods or algorithms discussed
in U.S. Pat. Pub. No. 2019/0029623 and U.S. Pat. Pub. No.
2018/0271614 and WO 2019/023382, which publications
are incorporated by reference herein in their entireties.
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[0136] One or more methods or algorithms for performing
co-registration and/or imaging may be used in one or more
embodiments of the present disclosure, including, but not
limited to, the methods or algorithms discussed in U.S. Pat.
App. No. 62/798,885, filed on Jan. 30, 2019, and discussed
in U.S. Pat. Pub. No. 2019/0029624, which application(s)
and publication(s) are incorporated by reference herein in
their entireties.

[0137] Such information and other features discussed
herein may be applied to other applications, such as, but not
limited to, co-registration, other modalities, etc. Indeed, the
useful applications of the features of the present disclosure
and of the aforementioned applications and patent publica-
tions are not limited to the discussed modalities, images, or
medical procedures. Additionally, depending on the
involved modalities, images, or medical procedures, one or
more control bars may be contoured, curved, or have any
other configuration desired or set by a user. For example, in
an embodiment using a touch screen as discussed herein, a
user may define or create the size and shape of a control bar
based on a user moving a pointer, a finger, a stylus, another
tool, etc. on the touch screen (or alternatively by moving a
mouse or other input tool or device regardless of whether a
touch screen is used or not).

[0138] One or more embodiments of the present disclosure
may include taking multiple views (e.g., OCT image, ring
view, tomo view, anatomical view, etc.), and one or more
embodiments may highlight or emphasize NIRAF. In one or
more embodiments, two handles may operate as endpoints
that may bound the color extremes of the NIRAF data in or
more embodiments. In addition to the standard tomographic
view, the user may select to display multiple longitudinal
views. When connected to an angiography system, the
Graphical User Interface (GUI) may also display angiogra-
phy images.

[0139] In accordance with one or more aspects of the
present disclosure, the aforementioned features are not lim-
ited to being displayed or controlled using any particular
GUI. In general, the aforementioned imaging modalities
may be used in various ways, including with or without one
or more features of aforementioned embodiments of a GUI
or GUIs. For example, a GUI may show an OCT image with
atool or marker to change the image view as aforementioned
even if not presented with a GUI (or with one or more other
components of a GUI; in one or more embodiments, the
display may be simplified for a user to display set or desired
information).

[0140] The procedure to select the region of interest and
the position of a marker, an angle, a plane, etc., for example,
using a touch screen, a GUI (or one or more components of
a GUIL in one or more embodiments, the display may be
simplified for a user to display the set or desired informa-
tion), a processor (e.g., processor or computer 2, 1200,
1200', or any other processor discussed herein) may involve,
in one or more embodiments, a single press with a finger and
dragging on the area to make the selection or modification.
The new orientation and updates to the view may be
calculated upon release of a finger, or a pointer.

[0141] For one or more embodiments using a touch
screen, two simultaneous touch points may be used to make
a selection or modification, and may update the view based
on calculations upon release.

[0142] One or more functions may be controlled with one
of the imaging modalities, such as the angiography image
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view or the OCT image view, to centralize user attention,
maintain focus, and allow the user to see all relevant
information in a single moment in time.

[0143] In one or more embodiments, one imaging modal-
ity may be displayed or multiple imaging modalities may be
displayed.

[0144] One or more procedures may be used in one or
more embodiments to select a region of choice or a region
of interest for a view. For example, after a single touch is
made on a selected area (e.g., by using a touch screen, by
using a mouse or other input device to make a selection,
etc.), the semi-circle (or other geometric shape used for the
designated area) may automatically adjust to the selected
region of choice or interest. Two (2) single touch points may
operate to connect/draw the region of choice or interest. A
single touch on a tomo or tomographic view (e.g., the OCT
view 403 or 603) may operate to sweep around the tomo
view, and may connect to form the region of choice or
interest.

[0145] FIG. 12A shows an OCT system 100 (as referred to
herein as “system 100 or “the system 100”) which may be
used for one or more imaging modalities, such as, but not
limited to, angiography, Optical Coherence Tomography
(OCT), Multi-modality OCT (MM-OCT), near-infrared
fluorescence (NIRAF), OCT-NIRAF, etc., and/or for
employing one or more additional features discussed herein,
including, but not limited to, artificial intelligence processes
(e.g., machine or deep learning, residual learning, artificial
intelligence (“Al”) co-registration, marker detection, etc.) in
accordance with one or more aspects of the present disclo-
sure. The system 100 comprises a light source 101, a
reference arm 102, a sample arm 103, a deflected or deflect-
ing section 108, a reference mirror (also referred to as a
“reference reflection”, “reference reflector”, “partially
reflecting mirror” and a “partial reflector”) 105, and one or
more detectors 107 (which may be connected to a computer
1200). In one or more embodiments, the system 100 may
include a patient interface device or unit (“PIU”) no and a
catheter 120 (see e.g., embodiment examples of a PIU and
a catheter as shown in FIGS. 1A-1B, FIG. 4 and/or FIGS.
12A-12C), and the system 100 may interact with an object
106, a patient (e.g., a blood vessel of a patient) 106, etc.
(e.g., via the catheter 120 and/or the PIU 110). In one or
more embodiments, the system 100 includes an interferom-
eter or an interferometer is defined by one or more compo-
nents of the system 100, such as, but not limited to, at least
the light source 101, the reference arm 102, the sample arm
103, the deflecting section 108 and the reference mirror 105.
[0146] In accordance with one or more further aspects of
the present disclosure, bench top systems may be utilized for
one or more imaging modalities, such as, but not limited to,
angiography, Optical Coherence Tomography (OCT), Multi-
modality OCT (MM-OCT), near-infrared fluorescence (NI-
RAF), OCT-NIRAF, etc., and/or for employing one or more
additional features discussed herein, including, but not lim-
ited to, artificial intelligence processes (e.g., machine or
deep learning, residual learning, artificial intelligence (“AI”)
co-registration, marker detection, etc.) in accordance with
one or more aspects of the present disclosure. FIG. 12B
shows an example of a system that can utilize the one or
more imaging modalities, such as, but not limited to, angiog-
raphy, Optical Coherence Tomography (OCT), Multi-mo-
dality OCT (MM-OCT), near-infrared fluorescence (NI-
RAF), OCT-NIRAF, etc., and/or for employing one or more
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additional features discussed herein, including, but not lim-
ited to, artificial intelligence processes (e.g., machine or
deep learning, residual learning, artificial intelligence (“AI”)
co-registration, marker detection, etc.) in accordance with
one or more aspects of the present disclosure discussed
herein for a bench-top such as for ophthalmic applications.
A light from a light source 101 delivers and splits into a
reference arm 102 and a sample arm 103 with a deflecting
section 108. A reference beam goes through a length adjust-
ment section 904 and is reflected from a reference mirror
(such as or similar to the reference mirror or reference
reflection 105 shown in FIG. 12A) in the reference arm 102
while a sample beam is reflected or scattered from an object,
a patient (e.g., blood vessel of a patient), etc. 106 in the
sample arm 103 (e.g., via the PIU no and the catheter 120).
In one embodiment, both beams combine at the deflecting
section 108 and generate interference patterns. In one or
more embodiments, the beams go to the combiner 903, and
the combiner 903 combines both beams via the circulator
901 and the deflecting section 108, and the combined beams
are delivered to one or more detectors (such as the one or
more detectors 107). The output of the interferometer is
continuously acquired with one or more detectors, such as
the one or more detectors 107. The electrical analog signals
are converted to the digital signals to analyze them with a
computer, such as, but not limited to, the computer 1200 (see
FIGS. 12A-12C; also shown in FIG. 14 discussed further
below), the computer 1200' (see e.g., FIG. 15 discussed
further below), the computer 2 (see FIG. 1A), the processors
26, 36, 50 (see FIG. 1B), any other computer or processor
discussed herein, etc. Additionally or alternatively, one or
more of the computers, CPUs, processors, etc. discussed
herein may be used to process, control, update, emphasize,
and/or change one or more of imaging modalities, and/or
process the related techniques, functions or methods, or may
process the electrical signals as discussed above.

[0147] The electrical analog signals may be converted to
the digital signals to analyze them with a computer, such as,
but not limited to, the computer 1200 (see FIGS. 1B and
12A-12C; also shown in FIG. 14 discussed further below),
the computer 1200' (see e.g., FIG. 15 discussed further
below), the computer 2 (see FIG. 1A), any other processor
or computer discussed herein, etc. Additionally or alterna-
tively, one or more of the computers, CPUs, processors, etc.
discussed herein may be used to process, control, update,
emphasize, and/or change one or more imaging modalities,
and/or process the related techniques, functions or methods,
or may process the electrical signals as discussed above. In
one or more embodiments (see e.g., FIG. 12B), the sample
arm 103 includes the PIU no and the catheter 120 so that the
sample beam is reflected or scattered from the object, patient
(e.g., blood vessel of a patient), etc. 106 as discussed herein.
In one or more embodiments, the PIU no may include one
or more motors to control the pullback operation of the
catheter 120 (or one or more components thereof) and/or to
control the rotation or spin of the catheter 120 (or one or
more components thereof) (see e.g., the motor M of FIG.
1B). For example, as best seen in FIG. 12B, the PIU no may
include a pullback motor (PM) and a spin motor (SM),
and/or may include a motion control unit 112 that operates
to perform the pullback and/or rotation features using the
pullback motor PM and/or the spin motor SM. As discussed
herein, the PIU no may include a rotary junction (e.g., rotary
junction RJ as shown in FIGS. 12B and 12C). The rotary
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junction RJ may be connected to the spin motor SM so that
the catheter 120 may obtain one or more views or images of
the object, patient (e.g., blood vessel of a patient), etc. 106.
The computer 1200 (or the computer 1200', computer 2, any
other computer or processor discussed herein, etc.) may be
used to control one or more of the pullback motor PM, the
spin motor SM and/or the motion control unit 112. An OCT
system may include one or more of a computer (e.g., the
computer 1200, the computer 1200', computer 2, any other
computer or processor discussed herein, etc.), the PIU no,
the catheter 120, a monitor (such as the display 1209), etc.
One or more embodiments of an OCT system may interact
with one or more external systems, such as, but not limited
to, an angio system, external displays, one or more hospital
networks, external storage media, a power supply, a bedside
controller (e.g., which may be connected to the OCT system
using Bluetooth technology or other methods known for
wireless communication), etc.

[0148] In one or more embodiments including the deflect-
ing or deflected section 108 (best seen in FIGS. 12A-12C),
the deflected section 108 may operate to deflect the light
from the light source 101 to the reference arm 102 and/or the
sample arm 103, and then send light received from the
reference arm 102 and/or the sample arm 103 towards the at
least one detector 107 (e.g., a spectrometer, one or more
components of the spectrometer, another type of detector,
etc.). In one or more embodiments, the deflected section
(e.g., the deflected section 108 of the system 100, 100', 100",
any other system discussed herein, etc.) may include or may
comprise one or more interferometers or optical interference
systems that operate as described herein, including, but not
limited to, a circulator, a beam splitter, an isolator, a coupler
(e.g., fusion fiber coupler), a partially severed mirror with
holes therein, a partially severed mirror with a tap, etc. In
one or more embodiments, the interferometer or the optical
interference system may include one or more components of
the system 100 (or any other system discussed herein) such
as, but not limited to, one or more of the light source 101,
the deflected section 108, the rotary junction RJ, a PIU no,
a catheter 120, etc. One or more features of the aforemen-
tioned configurations of at least FIGS. 1-12B may be incor-
porated into one or more of the systems, including, but not
limited to, the system 100, 100", 100", discussed herein.

[0149] In accordance with one or more further aspects of
the present disclosure, one or more other systems may be
utilized with one or more of the multiple imaging modalities
and related method(s) as disclosed herein. FIG. 12C shows
an example of a system 100" that may utilize the one or more
multiple imaging modalities, such as, but not limited to,
angiography, Optical Coherence Tomography (OCT), Multi-
modality OCT (MM-OCT), near-infrared fluorescence (NI-
RAF), OCT-NIRAF, etc., and/or for employing one or more
additional features discussed herein, including, but not lim-
ited to, artificial intelligence processes (e.g., machine or
deep learning, residual learning, artificial intelligence (“AI”)
co-registration, marker detection, etc.) and/or related tech-
nique(s) or method(s) such as for ophthalmic applications in
accordance with one or more aspects of the present disclo-
sure. FIG. 12C shows an exemplary schematic of an OCT-
fluorescence imaging system 100", according to one or more
embodiments of the present disclosure. An OCT light source
101 (e.g., with a 1.3 um) is delivered and split into a
reference arm 102 and a sample arm 103 with a deflector or
deflected section (e.g., a splitter) 108, creating a reference
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beam and sample beam, respectively. The reference beam
from the OCT light source 101 is reflected by a reference
mirror 105 while a sample beam is reflected or scattered
from an object (e.g., an object to be examined, an object, a
patient, etc.) 106 through a circulator 901, a rotary junction
90 (“RJ”) and a catheter 120. In one or more embodiments,
the fiber between the circulator 901 and the reference mirror
or reference reflection 105 may be coiled to adjust the length
of the reference arm 102 (best seen in FIG. 12C). Optical
fibers in the sample arm 103 may be made of double clad
fiber (“DCF”). Excitation light for the fluorescence may be
directed to the RJ 90 and the catheter 120, and illuminate the
object (e.g., an object to be examined, an object, a patient,
etc.) 106. The light from the OCT light source 101 may be
delivered through the core of DCF while the fluorescence
light emitted from the object (e.g., an object to be examined,
an object, a patient, etc.) 106 may be collected through the
cladding of the DCF. For pullback imaging, the RJ 90 may
be moved with a linear stage to achieve helical scanning of
the object (e.g., an object to be examined, an object, a
patient, etc.) 106. In one or more embodiments, the RJ 90
may include any one or more features of an RJ as discussed
herein. Dichroic filters DF1, DF2 may be used to separate
excitation light and the rest of fluorescence and OCT lights.
For example (and while not limited to this example), in one
or more embodiments, DF1 may be a long pass dichroic
filter with a cutoff wavelength of ~1000 nm, and the OCT
light, which may be longer than a cutoff wavelength of DF1,
may go through the DF1 while fluorescence excitation and
emission, which are a shorter wavelength than the cut off,
reflect at DF1. In one or more embodiments, for example
(and while not limited to this example), DF2 may be a short
pass dichroic filter; the excitation wavelength may be shorter
than fluorescence emission light such that the excitation
light, which has a wavelength shorter than a cutoff wave-
length of DF2, may pass through the DF2, and the fluores-
cence emission light reflect with DF2. In one embodiment,
both beams combine at the deflecting section 108 and
generate interference patterns. In one or more embodiments,
the beams go to the coupler or combiner 903, and the coupler
or combiner 903 combines both beams via the circulator 901
and the deflecting section 108, and the combined beams are
delivered to one or more detectors (such as the one or more
detectors 107; see e.g., the first detector 107 connected to the
coupler or combiner 903 in FIG. 12C).

[0150] In one or more embodiments, the optical fiber in
the catheter 120 operates to rotate inside the catheter 120,
and the OCT light and excitation light may be emitted from
a side angle of a tip of the catheter 120. After interacting
with the object or patient 106, the OCT light may be
delivered back to an OCT interferometer (e.g., via the
circulator 901 of the sample arm 103), which may include
the coupler or combiner 903, and combined with the refer-
ence beam (e.g., via the coupler or combiner 903) to
generate interference patterns. The output of the interferom-
eter is detected with a first detector 107, wherein the first
detector 107 may be photodiodes or multi-array cameras,
and then may be recorded to a computer (e.g., to the
computer 2, the computer 1200 as shown in FIG. 12C, the
computer 1200, or any other computer discussed herein)
through a first data-acquisition unit or board (“DAQ1”).

[0151] Simultaneously or at a different time, the fluores-
cence intensity may be recorded through a second detector
107 (e.g., a photomultiplier) through a second data-acqui-
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sition unit or board (“DAQ2”). The OCT signal and fluo-
rescence signal may be then processed by the computer (e.g.,
to the computer 2, the computer 1200 as shown in FIG. 12C,
the computer 1200, or any other computer discussed herein)
to generate an OCT-fluorescence data set 140, which
includes or is made of multiple frames of helically scanned
data. Each set of frames includes or is made of multiple data
elements of co-registered OCT and fluorescence data, which
correspond to the rotational angle and pullback position.
[0152] Detected fluorescence or auto-fluorescence signals
may be processed or further processed as discussed in U.S.
Pat. App. No. 62/861,888, filed on Jun. 14, 2019, the
disclosure of which is incorporated herein by reference in its
entirety, and/or as discussed in U.S. patent application Ser.
No. 16/368,510, filed Mar. 28, 2019, the disclosure of which
is incorporated herein by reference herein in its entirety.
[0153] While not limited to such arrangements, configu-
rations, devices or systems, one or more embodiments of the
devices, apparatuses, systems, methods, storage mediums,
GUT’s, etc. discussed herein may be used with an apparatus
or system as aforementioned, such as, but not limited to, for
example, the system 100, the system 100', the system 100",
the devices, apparatuses, or systems of FIGS. 1A-1B and
12A-16, any other device, apparatus or system discussed
herein, etc. In one or more embodiments, one user may
perform the method(s) discussed herein. In one or more
embodiments, one or more users may perform the method(s)
discussed herein. In one or more embodiments, one or more
of the computers, CPUs, processors, etc. discussed herein
may be used to process, control, update, emphasize, and/or
change one or more of the imaging modalities, and/or
process the related techniques, functions or methods, or may
process the electrical signals as discussed above.

[0154] The light source 101 may include a plurality of
light sources or may be a single light source. The light
source 101 may be a broadband lightsource, and may
include one or more of a laser, an organic light emitting
diode (OLED), a light emitting diode (LED), a halogen
lamp, an incandescent lamp, supercontinuum light source
pumped by a laser, and/or a fluorescent lamp. The light
source 101 may be any light source that provides light which
may then be dispersed to provide light which is then used for
imaging, performing control, viewing, changing, emphasiz-
ing methods for imaging modalities, constructing or recon-
structing 3D structure(s), and/or any other method discussed
herein. The light source 101 may be fiber coupled or may be
free space coupled to the other components of the apparatus
and/or system 100, 100", 100", the devices, apparatuses or
systems of FIGS. 1A-1B and 12A-16, or any other embodi-
ment discussed herein. As aforementioned, the light source
101 may be a swept-source (SS) light source.

[0155] Additionally or alternatively, the one or more
detectors 107 may be a linear array, a charge-coupled device
(CCD), a plurality of photodiodes or some other method of
converting the light into an electrical signal. The detector(s)
107 may include an analog to digital converter (ADC). The
one or more detectors may be detectors having structure as
shown in one or more of FIGS. 1A-1B and 12A-16 and as
discussed herein.

[0156] In accordance with one or more aspects of the
present disclosure, one or more methods for performing
imaging are provided herein. FIG. 13 illustrates a flow chart
of at least one embodiment of a method for performing
imaging. The method(s) may include one or more of the
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following: (i) splitting or dividing light into a first light and
a second reference light (see step S4000 in FIG. 13); (ii)
receiving reflected or scattered light of the first light after the
first light travels along a sample arm and irradiates an object
(see step S4001 in FIG. 13); (iii) receiving the second
reference light after the second reference light travels along
a reference arm and reflects off of a reference reflection (see
step S4002 in FIG. 13); and (iv) generating interference light
by causing the reflected or scattered light of the first light
and the reflected second reference light to interfere with
each other (for example, by combining or recombining and
then interfering, by interfering, etc.), the interference light
generating one or more interference patterns (see step S4003
in FIG. 13). One or more methods may further include using
low frequency monitors to update or control high frequency
content to improve image quality. For example, one or more
embodiments may use multiple imaging modalities, related
methods or techniques for same, etc. to achieve improved
image quality. In one or more embodiments, an imaging
probe may be connected to one or more systems (e.g., the
system 100, the system 100, the system 100", the devices,
apparatuses or systems of FIGS. 1A-1B and 12A-16, any
other system or apparatus discussed herein, etc.) with a
connection member or interface module. For example, when
the connection member or interface module is a rotary
junction for an imaging probe, the rotary junction may be at
least one of: a contact rotary junction, a lenseless rotary
junction, a lens-based rotary junction, or other rotary junc-
tion known to those skilled in the art. The rotary junction
may be a one channel rotary junction or a two channel rotary
junction. In one or more embodiments, the illumination
portion of the imaging probe may be separate from the
detection portion of the imaging probe. For example, in one
or more applications, a probe may refer to the illumination
assembly, which includes an illumination fiber (e.g., single
mode fiber, a GRIN lens, a spacer and the grating on the
polished surface of the spacer, etc.). In one or more embodi-
ments, a scope may refer to the illumination portion which,
for example, may be enclosed and protected by a drive cable,
a sheath, and detection fibers (e.g., multimode fibers
(MMFs)) around the sheath. Grating coverage is optional on
the detection fibers (e.g., MMFs) for one or more applica-
tions. The illumination portion may be connected to a rotary
joint and may be rotating continuously at video rate. In one
or more embodiments, the detection portion may include
one or more of: a detection fiber, a detector (e.g., the one or
more detectors 107, a spectrometer, etc.), the computer
1200, the computer 1200', the computer 2, any other com-
puter or processor discussed herein, etc. The detection fibers
may surround the illumination fiber, and the detection fibers
may or may not be covered by a grating, a spacer, a lens, an
end of a probe or catheter, etc.

[0157] The one or more detectors 107 may transmit the
digital or analog signals to a processor or a computer such
as, but not limited to, an image processor, a processor or
computer 1200, 1200' (see e.g., FIGS. 12A-12C and 14-15),
a computer 2 (see e.g., FIG. 1A), any other processor or
computer discussed herein, a combination thereof, etc. The
image processor may be a dedicated image processor or a
general purpose processor that is configured to process
images. In at least one embodiment, the computer 1200,
1200', 2 or any other processor or computer discussed herein
may be used in place of, or in addition to, the image
processor. In an alternative embodiment, the image proces-
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sor may include an ADC and receive analog signals from the
one or more detectors 107. The image processor may include
one or more of a CPU, DSP, FPGA, ASIC, or some other
processing circuitry. The image processor may include
memory for storing image, data, and instructions. The image
processor may generate one or more images based on the
information provided by the one or more detectors 107. A
computer or processor discussed herein, such as, but not
limited to, a processor of the devices, apparatuses or systems
of FIGS. 1-12C, the computer 1200, the computer 1200', the
computer 2, the image processor, may also include one or
more components further discussed herein below (see e.g.,
FIGS. 14-15).

[0158] In at least one embodiment, a console or computer
1200, 1200', a computer 2, any other computer or processor
discussed herein, etc. operates to control motions of the RJ
via the motion control unit (MCU) 112 or a motor M,
acquires intensity data from the detector(s) in the one or
more detectors 107, and displays the scanned image (e.g., on
a monitor or screen such as a display, screen or monitor 1209
as shown in the console or computer 1200 of any of FIGS.
12A-12C and FIG. 14 and/or the console 1200' of FIG. 15
as further discussed below; the computer 2 of FIG. 1A; any
other computer or processor discussed herein; etc.). In one
or more embodiments, the MCU 112 or the motor M
operates to change a speed of a motor of the RJ and/or of the
RJ. The motor may be a stepping or a DC servo motor to
control the speed and increase position accuracy (e.g.,
compared to when not using a motor, compared to when not
using an automated or controlled speed and/or position
change device, compared to a manual control, etc.).

[0159] The output of the one or more components of any
of the systems discussed herein may be acquired with the at
least one detector 107, e.g., such as, but not limited to,
photodiodes, Photomultiplier tube(s) (PMTs), line scan cam-
era(s), or multi-array camera(s). Electrical analog signals
obtained from the output of the system 100, 100', 100",
and/or the detector(s) 107 thereof, and/or from the devices,
apparatuses, or systems of FIGS. 1-12C, are converted to
digital signals to be analyzed with a computer, such as, but
not limited to, the computer 1200, 1200'. In one or more
embodiments, the light source 101 may be a radiation source
or a broadband light source that radiates in a broad band of
wavelengths. In one or more embodiments, a Fourier ana-
lyzer including software and electronics may be used to
convert the electrical analog signals into an optical spec-
trum

[0160] Unless otherwise discussed herein, like numerals
indicate like elements. For example, while variations or
differences exist between the systems, such as, but not
limited to, the system 100, the system 100', the system 100",
or any other device, apparatus or system discussed herein,
one or more features thereof may be the same or similar to
each other, such as, but not limited to, the light source 101
or other component(s) thereof (e.g., the console 1200, the
console 1200', etc.). Those skilled in the art will appreciate
that the light source 101, the motor or MCU 112, the R, the
at least one detector 107, and/or one or more other elements
of'the system 100 may operate in the same or similar fashion
to those like-numbered eclements of one or more other
systems, such as, but not limited to, the devices, apparatuses
or systems of FIGS. 1-12C, the system 100, the system
100", or any other system discussed herein. Those skilled in
the art will appreciate that alternative embodiments of the
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devices, apparatuses or systems of FIGS. 1-12C, the system
100, the system 100", any other device, apparatus or system
discussed herein, etc., and/or one or more like-numbered
elements of one of such systems, while having other varia-
tions as discussed herein, may operate in the same or similar
fashion to the like-numbered elements of any of the other
systems (or components thereof) discussed herein. Indeed,
while certain differences exist between the system 100 of
FIG. 12A and one or more embodiments shown in any of
FIGS. 1-11 and 12B-12C, for example, as discussed herein,
there are similarities. Likewise, while the console or com-
puter 1200 may be used in one or more systems (e.g., the
system 100, the system 100, the system 100", the devices,
apparatuses or systems of any of FIGS. 1-16, or any other
system discussed herein, etc.), one or more other consoles or
computers, such as the console or computer 1200, any other
computer or processor discussed herein, etc., may be used
additionally or alternatively.

[0161] There are many ways to compute intensity, viscos-
ity, resolution (including increasing resolution of one or
more images), etc., to use one or more imaging modalities,
to construct or reconstruct 3D structure(s), and/or related
methods for same, discussed herein, digital as well as
analog. In at least one embodiment, a computer, such as the
console or computer 1200, 1200', may be dedicated to
control and monitor the imaging (e.g., OCT, single mode
OCT, multimodal OCT, multiple imaging modalities, etc.)

devices, systems, methods and/or storage mediums
described herein.
[0162] The electric signals used for imaging may be sent

to one or more processors, such as, but not limited to, a
computer or processor 2 (see e.g., FIG. 1A), a computer
1200 (see e.g., FIGS. 12A-12B, 14 and 16), a computer
1200' (see e.g., FIGS. 15 and 16), etc. as discussed further
below, via cable(s) or wire(s), such as, but not limited to, the
cable(s) or wire(s) 113 (see FIG. 14). Additionally or alter-
natively, the electric signals, as aforementioned, may be
processed in one or more embodiments as discussed above
by any other computer or processor or components thereof.
The computer or processor 2 as shown in FIG. 1A may be
used instead of any other computer or processor discussed
herein (e.g., computer or processors 1200, 1200', etc.),
and/or the computer or processor 1200, 1200' may be used
instead of any other computer or processor discussed herein
(e.g., computer or processor 2). In other words, the com-
puters or processors discussed herein are interchangeable,
and may operate to perform any of the multiple imaging
modalities feature(s) and method(s) discussed herein,
including using, controlling, and changing a GUT or multiple
GUT’s.

[0163] Various components of a computer system 1200 are
provided in FIG. 14. A computer system 1200 may include
a central processing unit (“CPU”) 1201, a ROM 1202, a
RAM 1203, a communication interface 1205, a hard disk
(and/or other storage device) 1204, a screen (or monitor
interface) 1209, a keyboard (or input interface; may also
include a mouse or other input device in addition to the
keyboard) 1210 and a BUS (or “Bus”) or other connection
lines (e.g., connection line 1213) between one or more of the
aforementioned components (e.g., including but not limited
to, being connected to the console, the probe, the imaging
apparatus or system, any motor discussed herein, a light
source, etc.). In addition, the computer system 1200 may
comprise one or more of the aforementioned components.
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For example, a computer system 1200 may include a CPU
1201, a RAM 1203, an input/output (I/O) interface (such as
the communication interface 1205) and a bus (which may
include one or more lines 1213 as a communication system
between components of the computer system 1200; in one or
more embodiments, the computer system 1200 and at least
the CPU 1201 thereof may communicate with the one or
more aforementioned components of a device or system,
such as, but not limited to, an apparatus or system using one
or more imaging modalities and related method(s) as dis-
cussed herein), and one or more other computer systems
1200 may include one or more combinations of the other
aforementioned components (e.g., the one or more lines
1213 of the computer 1200 may connect to other compo-
nents via line 113). The CPU 1201 is configured to read and
perform computer-executable instructions stored in a storage
medium. The computer-executable instructions may include
those for the performance of the methods and/or calculations
described herein. The system 1200 may include one or more
additional processors in addition to CPU 1201, and such
processors, including the CPU 1201, may be used for tissue
or object characterization, diagnosis, evaluation, imaging
and/or construction or reconstruction. The system 1200 may
further include one or more processors connected via a
network connection (e.g., via network 1206). The CPU 1201
and any additional processor being used by the system 1200
may be located in the same telecom network or in different
telecom networks (e.g., performing feature(s), function(s),
technique(s), method(s), etc. discussed herein may be con-
trolled remotely).

[0164] The I/O or communication interface 1205 provides
communication interfaces to input and output devices,
which may include a light source, a spectrometer, a micro-
phone, a communication cable and a network (either wired
or wireless), a keyboard 1210, a mouse (see e.g., the mouse
1211 as shown in FIG. 15), a touch screen or screen 1209,
a light pen and so on. The communication interface of the
computer 1200 may connect to other components discussed
herein via line 113 (as diagrammatically shown in FIG. 14).
The Monitor interface or screen 1209 provides communi-
cation interfaces thereto.

[0165] Any methods and/or data of the present disclosure,
such as the methods for performing tissue or object charac-
terization, diagnosis, examination, imaging (including, but
not limited to, increasing image resolution, performing
imaging using one or more imaging modalities, viewing or
changing one or more imaging modalities and related meth-
ods (and/or option(s) or feature(s)), etc.), and/or construc-
tion or reconstruction, for example, as discussed herein, may
be stored on a computer-readable storage medium. A com-
puter-readable and/or writable storage medium used com-
monly, such as, but not limited to, one or more of a hard disk
(e.g., the hard disk 1204, a magnetic disk, etc.), a flash
memory, a CD, an optical disc (e.g., a compact disc (“CD”)
a digital versatile disc (“DVD”), a Blu-ray™ disc, etc.), a
magneto-optical disk, a random-access memory (“RAM”)
(such as the RAM 1203), a DRAM, a read only memory
(“ROM”), a storage of distributed computing systems, a
memory card, or the like (e.g., other semiconductor memory,
such as, but not limited to, a non-volatile memory card, a
solid state drive (SSD) (see SSD 1207 in FIG. 15), SRAM,
etc.), an optional combination thereof; a server/database, etc.
may be used to cause a processor, such as, the processor or
CPU 1201 of the aforementioned computer system 1200 to
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perform the steps of the methods disclosed herein. The
computer-readable storage medium may be a non-transitory
computer-readable medium, and/or the computer-readable
medium may comprise all computer-readable media, with
the sole exception being a transitory, propagating signal in
one or more embodiments. The computer-readable storage
medium may include media that store information for pre-
determined, limited, or short period(s) of time and/or only in
the presence of power, such as, but not limited to Random
Access Memory (RAM), register memory, processor cache
(s), etc. Embodiment(s) of the present disclosure may also
be realized by a computer of a system or apparatus that reads
out and executes computer executable instructions (e.g., one
or more programs) recorded on a storage medium (which
may also be referred to more fully as a “non-transitory
computer-readable storage medium”) to perform the func-
tions of one or more of the above-described embodiment(s)
and/or that includes one or more circuits (e.g., application
specific integrated circuit (ASIC)) for performing the func-
tions of one or more of the above-described embodiment(s),
and by a method performed by the computer of the system
or apparatus by, for example, reading out and executing the
computer executable instructions from the storage medium
to perform the functions of one or more of the above-
described embodiment(s) and/or controlling the one or more
circuits to perform the functions of one or more of the
above-described embodiment(s).

[0166] In accordance with at least one aspect of the
present disclosure, the methods, systems, and computer-
readable storage mediums related to the processors, such as,
but not limited to, the processor of the aforementioned
computer 1200, etc., as described above may be achieved
utilizing suitable hardware, such as that illustrated in the
figures. Functionality of one or more aspects of the present
disclosure may be achieved utilizing suitable hardware, such
as that illustrated in FIG. 14. Such hardware may be imple-
mented utilizing any of the known technologies, such as
standard digital circuitry, any of the known processors that
are operable to execute software and/or firmware programs,
one or more programmable digital devices or systems, such
as programmable read only memories (PROMs), program-
mable array logic devices (PALs), etc. The CPU 1201 (as
shown in FIG. 14), the processor or computer 2 (as shown
in FIG. 1A) and/or the computer or processor 1200' (as
shown in FIG. 15) may also include and/or be made of one
Or more mMICroprocessors, Nanoprocessors, one or more
graphics processing units (“GPUs”; also called a visual
processing unit (“VPU”)), one or more Field Programmable
Gate Arrays (“FPGAs”), or other types of processing com-
ponents (e.g., application specific integrated circuit(s)
(ASIC)). Still further, the various aspects of the present
disclosure may be implemented by way of software and/or
firmware program(s) that may be stored on suitable storage
medium (e.g., computer-readable storage medium, hard
drive, etc.) or media (such as floppy disk(s), memory chip
(s), etc.) for transportability and/or distribution. The com-
puter may include a network of separate computers or
separate processors to read out and execute the computer
executable instructions. The computer executable instruc-
tions may be provided to the computer, for example, from a
network or the storage medium. The computers or proces-
sors (e.g., 2, 1200, 1200', etc.) may include the aforemen-
tioned CPU structure, or may be connected to such CPU
structure for communication therewith.
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[0167] As aforementioned, hardware structure of an alter-
native embodiment of a computer or console 1200' is shown
in FIG. 15. The computer 1200' includes a central processing
unit (CPU) 1201, a graphical processing unit (GPU) 1215, a
random access memory (RAM) 1203, a network interface
device 1212, an operation interface 1214 such as a universal
serial bus (USB) and a memory such as a hard disk drive or
a solid state drive (SSD) 1207. The computer or console
1200' may include a display 1209. The computer 1200' may
connect with a motor, a console, or any other component of
the device(s) or system(s) discussed herein via the operation
interface 1214 or the network interface 1212 (e.g., via a
cable or fiber, such as the cable or fiber 113 as similarly
shown in FIG. 14). A computer, such as the computer 1200,
may include a motor or motion control unit (MCU) in one
or more embodiments. The operation interface 1214 is
connected with an operation unit such as a mouse device
1211, a keyboard 1210 or a touch panel device. The com-
puter 1200' may include two or more of each component.

[0168] At least one computer program is stored in the SSD
1207, and the CPU 1201 loads the at least one program onto
the RAM 1203, and executes the instructions in the at least
one program to perform one or more processes described
herein, as well as the basic input, output, calculation,
memory writing and memory reading processes.

[0169] The computer, such as the computer 2, the com-
puter 1200, 1200', (or other component(s) such as, but not
limited to, the PCU, etc.), etc. may communicate with an
MCU, an interferometer, a spectrometer, a detector, etc. to
perform imaging, and reconstructs an image from the
acquired intensity data. The monitor or display 1209 dis-
plays the reconstructed image, and may display other infor-
mation about the imaging condition or about an object to be
imaged. The monitor 1209 also provides a graphical user
interface for a user to operate any system discussed herein.
An operation signal is input from the operation unit (e.g.,
such as, but not limited to, a mouse device 1211, a keyboard
1210, a touch panel device, etc.) into the operation interface
1214 in the computer 1200', and corresponding to the
operation signal the computer 1200' instructs any system
discussed herein to set or change the imaging condition (e.g.,
improving resolution of an image or images), and to start or
end the imaging. A light or laser source and a spectrometer
and/or detector may have interfaces to communicate with
the computers 1200, 1200' to send and receive the status
information and the control signals.

[0170] As shown in FIG. 16, one or more processors or
computers 1200, 1200' (or any other processor discussed
herein) may be part of a system in which the one or more
processors or computers 1200, 1200' (or any other processor
discussed herein) communicate with other devices (e.g., a
database 1603, a memory 1602 (which may be used with or
replaced by any other type of memory discussed herein or
known to those skilled in the art), an input device 1600, an
output device 1601, etc.). In one or more embodiments, one
or more models may have been trained previously and stored
in one or more locations, such as, but not limited to, the
memory 1602, the database 1603, etc. In one or more
embodiments, it is possible that one or more models and/or
data discussed herein (e.g., training data, testing data, vali-
dation data, imaging data, etc.) may be input or loaded via
a device, such as the input device 1600. In one or more
embodiments, a user may employ an input device 1600
(which may be a separate computer or processor, a keyboard
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such as the keyboard 1210, a mouse such as the mouse 1211,
a microphone, a screen or display 1209 (e.g., a touch screen
or display), or any other input device known to those skilled
in the art). In one or more system embodiments, an input
device 1600 may not be used (e.g., where user interaction is
eliminated by one or more artificial intelligence features
discussed herein). In one or more system embodiments, the
output device 1601 may receive one or more outputs dis-
cussed herein to perform the marker detection, the coregis-
tration, and/or any other process discussed herein. In one or
more system embodiments, the database 1603 and/or the
memory 1602 may have outputted information (e.g., trained
model(s), detected marker information, image data, test data,
validation data, training data, coregistration result(s), seg-
mentation model information, object detection/regression
model information, combination model information, etc.)
stored therein. That said, one or more embodiments may
include several types of data stores, memory, storage media,
etc. as discussed above, and such storage media, memory,
data stores, etc. may be stored locally or remotely.

[0171] Additionally, unless otherwise specified, the term
“subset” of a corresponding set does not necessarily repre-
sent a proper subset and may be equal to the corresponding
set.

[0172] While one or more embodiments of the present
disclosure include various details regarding a neural network
model architecture and optimization approach, in one or
more embodiments, any other model architecture, machine
learning algorithm, or optimization approach may be
employed. One or more embodiments may utilize hyper-
parameter combination(s). One or more embodiments may
employ data capture, selection, annotation as well as model
evaluation (e.g., computation of loss and validation metrics)
since data may be domain and application specific. In one or
more embodiments, the model architecture may be modified
and optimized to address a variety of computer visions
issues (discussed below).

[0173] One or more embodiments of the present disclosure
may automatically detect (predict a spatial location of) a
radiodense OCT marker in a time series of X-ray images to
co-register the X-ray images with the corresponding OCT
images (at least one example of a reference point of two
different coordinate systems). One or more embodiments
may use deep (recurrent) convolutional neural network(s),
which may improve marker detection and image co-regis-
tration significantly. One or more embodiments may employ
segmentation and/or object/keypoint detection architectures
to solve one or more computer vision issues in other domain
areas in one or more applications. One or more embodiments
employ several novel materials and methods to solve one or
more computer vision or other issues (e.g., radiodense OCT
marker detection in time series of X-ray images, for
instance).

[0174] One or more embodiments employ data capture
and selection. In one or more embodiments, the data is what
makes such an application unique and distinguishes this
application from other applications. For example, images
may include a radiodense marker that is specifically used in
one or more procedures (e.g., added to the OCT capsule,
used in catheters/probes with a similar marker to that of an
OCT marker, used in catheters/probes with a similar or same
marker even in a case where the catheters/probes use an
imaging modality different from OCT, etc.) to facilitate
computational detection of the marker in one or more
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images (e.g., X-ray images). One or more embodiments
couple a software device or features (model) to hardware
(e.g., an OCT probe, a probe/catheter using an imaging
modality different from OCT while using a marker that is the
same as or similar to the marker of an OCT probe/catheter,
etc.). One or more embodiments may utilize animal data in
addition to patient data. Training deep learning may use a
large amount of data, which may be difficult to obtain from
clinical studies. Inclusion of image data from pre-clinical
studies in animals into a training set may improve model
performance. Training and evaluation of a model may be
highly data dependent (e.g., a way in which frames are
selected (e.g., pullback only), split into training/validation/
test sets, and grouped into batches as well as the order in
which the frames, sets, and/or batches are presented to the
model, any other data discussed herein, etc.). In one or more
embodiments, such parameters may be more important or
significant than some of the model hyper-parameters (e.g.,
batch size, number of convolution layers, any other hyper-
parameter discussed herein, etc.). One or more embodiments
may use a collection or collections of user annotations after
introduction of a device/apparatus, system, and/or method(s)
into a market, and may use post market surveillance, retrain-
ing of a model or models with new data collected (e.g., in
clinical use), and/or a continuously adaptive algorithm/
method(s).

[0175] One or more embodiments employ data annotation.
For example, one or more embodiments may label pixel(s)
representing a marker as well as pixels representing a blood
vessel(s) at different phase(s) of a procedure/method (e.g.,
different levels of contrast due to intravascular contrast
agent) of frame(s) acquired during pullback.

[0176] One or more embodiments employ incorporation
of prior knowledge. For example, in one or more embodi-
ments, a marker location may be known inside a vessel. As
such, simultaneous localization of the vessel and marker
may be used to improve marker detection. In one or more
embodiments, a marker may move during a pullback inside
a vessel, and such prior knowledge may be incorporated into
the machine learning algorithm or the loss function.
[0177] One or more embodiments employ loss (cost) and
evaluation function(s)/metric(s). For example, use of tem-
poral information for model training and evaluation may be
used in one or more embodiments. One or more embodi-
ments may evaluate a distance between prediction and
ground truth per frame as well as consider a trajectory of
predictions across multiple frames of a time series.

[0178] Additional features that may be used in one or
more embodiments of the present disclosure are discussed
below:

[0179] Experiment #1

[0180] At least one embodiment of an overall process of
machine learning is shown below:

[0181] 1. Create a dataset that contains both input and
output;

[0182] 1ii. Split the dataset into a training set and a testing
set;

[0183] 1iii. Select a model architecture and other hyper-
parameters;

[0184] iv. Train the model with the training set;

[0185] v. Evaluate the trained model with the testing set;
and

[0186] vi. Repeat iv and v with new dataset(s).
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[0187] Based on the testing results, steps i and iii may be
revisited in one or more embodiments.

[0188] Step i: Create a Dataset that Contains Both Input
and Output
[0189] To apply machine learning to marker detection or

radiopaque marker detection in an angio image, input may
be an original angio data, and output may be a marker-
segmented image in one or more embodiments as aforemen-
tioned. In conducted experiments, segmentation was first
performed by focusing only on the targeted radiopaque
marker (i.e., the marker that is located or disposed at the
distal optics) (see FIG. 17 showing an example input image
on the left of FIG. 17 and a corresponding output image on
the right of FIG. 17).

[0190] However, since one or more embodiments of a
machine/device, system, method, storage medium, etc. may
not be able to distinguish one marker from other markers
(e.g., the marker on the catheter tip and/or the additional
markers on the drive cable), the image in which all the
markers in the frame were segmented was used as an output
in experiment(s) (see FIG. 18 showing an example input
image on the left of FIG. 18 and a corresponding output
image after updating the segmentation on the right of FIG.
18).

[0191] Step ii: Split the Dataset into a Training Set and a
Testing Set
[0192] To make this step easier, the frames in only one

pullback were first segmented and used as the training set in
at least one experiment. The frames from another pullback
were used as the testing set in the experiment(s). While one
or more embodiments may split the datasets in this way, one
or more embodiments are not limited to this configuration.

[0193] Step iii: Select a network architecture and/or archi-
tecture model
[0194] At first, a U-net architecture, which may be used

for image segmentation in a 2D image, was selected as a
network architecture. One or more embodiments may incor-
porate or utilize a U-net architecture as discussed in “U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion” to Olaf Ronnenberger, et al., Computer Science
Department and BIOSS Centre for Biological Signalling
Studies, In: Navab N., Hornegger J., Wells W., Frangi A.
(eds) Medical Image Computing and Computer-Assisted
Intervention, MICCAI 2015, Lecture Notes in Computer
Science, vol 9351, Springer, Cham, published May 18, 2015
(https://arxiv.org/pdf/1505.04597pdf), which is incorporated
by reference herein in its entirety. However, in one or more
experiments, the input and the output image size was down-
sized from 1024 pixelx1024 pixel to 512 pixelx512 pixel,
and the trained network did not segment any markers in the
testing data. However, while such experiment(s) were per-
formed in such a fashion, one or more embodiments of the
present disclosure are not limited to this configuration.

[0195] Then, another architecture “one hundred layers
tiramisu” was selected as discussed above and as discussed
in “The One Hundred Layers Tiramisu: Fully Convolutional
DenseNets for Semantic Segmentation” to Simon Jégou, et
al., Montreal Institute for Learning Algorithms, IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), Honolulu, Hi., pp. 1175-1183, published
Oct. 31, 2017 (https:/arxiv.org/pdf/1611.09326.pdf; doi:
10.1109/CVPRW.2017.156), which is incorporated by ref-
erence herein in its entirety. One of the advantages of this
architecture in one or more embodiments is that it may be
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trained on a smaller region (224 pixelx224 pixel) and may
be applied onto a bigger size when testing.

[0196] Step iv: Train the Network with the Training Set &
Step v: Evaluate the Trained Network with the Testing Set
[0197] First, the tiramisu network was trained with the
training set, of which example is shown in FIG. 17.
Although the trained network detected the markers, it
detected the marker at the catheter tip with higher probabil-
ity than the targeted markers in an experiment (FIG. 19,
second column, where FIG. 19 shows original angio image
frames with respective prediction results). As discussed
above, since a machine, device, system, storage medium,
method, etc. may not distinguish the different markers in the
images, the network was re-trained with the training set, of
which example is shown in FIG. 18. The trained network
detected the markers better with less detection of back-
ground noise, but it still detected the marker at the catheter
tip with higher probability than the targeted markers (FIG.
19, third column).

[0198] To improve the network, variations were added to
the training set. As the variations used, vertical flip, hori-
zontal flip, and image contrast adjustment were performed to
the training set. In addition to this, the number of iterations
was increased. An improvement was observed: the re-
trained network detected the targeted marker with similar
probability as the one for the marker at the catheter tip (FIG.
19, fourth column). While the network detected other mark-
ers (the additional markers on the drive cable), the network
also detected the guidewire and/or the dense contrast media
location with relatively-high probability. Therefore, it would
be useful to include these images more in the training set in
one or more embodiments.

[0199] Experiment #2

[0200] At least one embodiment of an overall process of
machine learning is shown below:

[0201] 1. Create a dataset that contains both input and
output;

[0202] 1ii. Split the dataset into a training set and a testing
set;

[0203] iii. Select a model architecture and other hyper-
parameters;

[0204] iv. Train the model with the training set;

[0205] v. Evaluate the trained model with the testing set;
and

[0206] vi. Repeat iv and v with new dataset(s).

[0207] Based on the testing results, steps i and iii may be

revisited in one or more embodiments.
[0208] Observations and details regarding additional
experiments conducted are discussed below.

[0209] Step i: Create a Dataset that Contains Both Input
and Output
[0210] To apply machine learning to radiopaque marker

detection in the angio image, input may be an original angio
data, and output may be the marker-segmented image as
aforementioned. The image that all the markers in the frame
were segmented was used as an output (FIG. 20 showing at
least one embodiment example of an input image on the left
side of FIG. 20 and the corresponding output image on the
right side of FIG. 20).

[0211] Step ii: Split the Dataset into a Training Set and a
Testing Set
[0212] First, the frames in three pullbacks (different C-arm

setting, different vessel) were used as training data. Then,
the frames in all 20 pullbacks were used as training data.
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[0213] Step iii: Select a Network Architecture and/or an
Architecture Model
[0214] Architecture “one hundred layers tiramisu” was
selected as discussed in “The One Hundred Layers Tiramisu:
Fully Convolutional DenseNets for Semantic Segmentation”
to Simon Jégou, et al., Montreal Institute for Learning
Algorithms, IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Honolulu, Hi.,
pp. 1175-1183, published Oct. 31, 2017 (https://arxiv.org/
pdf/1611.09326.pdf; doi:  10.1109/CVPRW.2017.156),
which is incorporated by reference herein in its entirety. One
of'the advantages of this architecture in one or more embodi-
ments is that it may be trained on a smaller region (224
pixelx224 pixel) and may be applied onto a bigger size when
testing.
[0215] Step iv: Train the Network with the Training Set &
Step v: Evaluate the Trained Network or Trained Model with
the Testing Set
[0216] <3 Pullbacks Data>
[0217] Different parameters were used for training:
[0218] Batch size: 16 or 4
[0219] Training image size: 224 pixelx224 pixel (see
e.g., “The One Hundred Layers Tiramisu: Fully Con-
volutional DenseNets for Semantic Segmentation” to
Simon Jégou, et al.), 128 pixelx128 pixel, 448 pixelx
448 pixel
[0220] Steps/epoch (iteration): 100
[0221] Epochs (iterations): 1000
[0222] FIG. 21 shows examples of prediction result(s)
with different training models. When the batch size was
decreased, the model appeared to have reduced prediction
accuracy. To improve the prediction with a smaller batch
size, the model may be trained longer (e.g., increase the
number of steps/epoch and the number of epochs). On the
other hand, when the training image size was changed, the
prediction result had less noise, but may have missed the
targeted marker (the marker at the distal optics) more often
than the original training image size. Therefore, for further
training, the batch size and the training image size was set
as 16 and 224 pixelx224 pixel.
[0223] <20 Pullbacks Data>
[0224] When a model was started training with 20 pull-
backs data, its estimated time was >2 weeks. Therefore, the
training was performed by splitting the input data into 3-4
pullbacks data and by training the same model over and over
with different input data for 6 rounds. Table 1 below shows
which pullback data was used for which round of training.
Each round of training needed about 12-15 hours in the
experiments conducted.

TABLE 1

Information of pullbacks that are assigned for each training

Pullback

Animal # name Angle Training round
49263 RCAO8 LAO 20, CRAO 2
49263 RCA09 LAO 20, CRAO 3
49263 RCA10 LAO 20, CRAO 4
49263 RCAI12 LAO 20, CRAO 5
49263 RCAl6 LAO 20, CRAO 2
49263 RCA21 LAO 20, CRAO 6
49263 RCA27 LAO 20, CRAO 5
49263 RCA30 LAO 20, CRAO 6
49263 RCA31 LAO 20, CRAO 3
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TABLE 1-continued

Information of pullbacks that are assigned for each training

Pullback
Animal # name Angle Training round
49263 RCA36 LAO 20, CRA O 4
49263 RCA40 RAO 1, CAU 34
49263 RCA41 LAO 22, CRA O

49263 LCX43
49263 LCX44

RAO 60, CAU 0
LAO 48, CRA 25

49263 LCX45 RAO 54, CRA 10 3

49263 LCX46 LAO 52, CRA 24 4

49263 LCX47 LAO 52, CRA 24 5
49263 LCX54 RAO 62, CRAO 6
49263 LCX55 RAO 62, CRAO 2

49263 LCX57 LAO 52, CRA 25 2

[0225] FIG. 22 shows at least one embodiment example of
prediction results with four different models. Top row of
FIG. 22 shows the example prediction results with the
models trained with 3 pullbacks data and with 20 pullbacks
data. As shown here, the prediction result with the model
with 20 pullbacks data predicted the marker with less
accuracy. This may be because of overfitting. As summa-
rized in Table 1, out of 20 pullbacks, 12 pullbacks were
performed in right coronary artery (RCA) with same C-arm
setting for ii pullbacks. Out of 8 pullbacks in a left circum-
flex branch (LCX), half of them were acquired in the same
C-arm setting and the other half were acquired in another
C-arm setting. To understand the influence of this, the
prediction was performed using the models after round 1 and
round 2. The example prediction results are shown in the
bottom row of FIG. 22. These images in FIG. 22 suggest the
possibility of overfitting of the model with a lot of data that
contains quite similar images.

[0226] Experiment #3

[0227] At least one embodiment of an overall process of
machine learning is shown below:

[0228] 1. Create a dataset that contains both input and
output;

[0229] ii. Split the dataset into a training set and a testing
set;

[0230] 1iii. Select a model architecture and other hyper-
parameters;

[0231] iv. Train the model with the training set;

[0232] v. Evaluate the trained model with the testing set;
and

[0233] vi. Repeat iv and v with new dataset(s).

[0234] Based on the testing results, steps i and iii may be

revisited in one or more embodiments.
[0235] Observations and details regarding additional
experiments conducted are discussed below.

[0236] [Segmentation Model] Example

[0237] Step i: Create a Dataset that Contains Both Input
and Output

[0238] For segmentation model(s), input is an original

angio data, and output is the marker-segmented image. The
image that all the markers in the frame were segmented was
used as an output (FIG. 23 shows at least one embodiment
example of an input image on the left side of FIG. 23 and a
corresponding output image on the right side of FIG. 23).

[0239] Step ii: Split the Dataset into Training Set and
Testing Set
[0240] The frames in all 20 pullbacks from animal study

#1 were used as training data.
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[0241] Step iii: Select a Network Architecture and/or
Architecture Model
[0242] Architecture “one hundred layers tiramisu” was
selected as discussed in “The One Hundred Layers Tiramisu:
Fully Convolutional DenseNets for Semantic Segmentation”
to Simon Jegou, et al., Montreal Institute for Learning
Algorithms, IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Honolulu, Hi.,
pp. 1175-1183, published Oct. 31, 2017 (https://arxiv.org/
pdf/1611.09326.pdf; doi:  10.1109/CVPRW.2017.156),
which is incorporated by reference herein in its entirety. One
of'the advantages of this architecture in one or more embodi-
ments is that it may be trained on a smaller region (224
pixelx224 pixel) and may be applied onto a bigger size when
testing.
[0243] Step iv: Train the Network with the Training Set &
Step v: Evaluate the Trained Network or Trained Model with
the Testing Set
[0244] <20 Pullbacks Data from Animal Study #1>
[0245] Different parameters were used for training:
[0246] Batch size: 16
[0247] Training image size: 224 pixelx224 pixel (see
e.g., “The One Hundred Layers Tiramisu: Fully Con-
volutional DenseNets for Semantic Segmentation” to
Simon Jégou, et al.)
[0248] Steps/iteration: 200
[0249] TIterations: 5000 (Iterations may be limited based
on memory size resources available or processing pref-
erences (e.g., a preferred timeline for completed pro-
cessing, a success rate threshold, etc.). For example,
while the iterations used was set to 5000, the success
rate obtained used training that was terminated at the
4,923 iteration.)
[0250] Example prediction results are shown in FIGS.
24(a)-(f). As shown in FIGS. 24(a)-(f), better prediction with
less noise may be obtained with longer training time. Similar
result(s) was/were observed when testing with angio data
from animal study #2. FIGS. 24 (a) and (d) show Original
images (Image contrast has been adjusted to show markers
better). FIGS. 24 (b) and (e) show Predicted result(s) (i.e.,
probability map(s)) with the model trained 1000 iterations.
FIGS. 24 (¢) and (f) show Predicted result(s) (i.e., probabil-
ity map(s)) with the model trained over 4500 iterations. At
least one circle “0” in FIG. 24 represents a stationary marker
at the catheter tip (where this O is the low right circles in
FIGS. 24 (d)-(f), and the left circles in FIGS. 24 (a)-(c)). At
least one circle “O” in FI1G. 24 represents a targeted marker
at the distal optics (where this O is the top left circles in
FIGS. 24 (d)-(f), and the right circles in FIGS. (a)-(c)).

[0251] [Regression Model] Example

[0252] Step i: Create a Dataset that Contains Both Input
and Output

[0253] For one or more regression model embodiments,

input may be the original angio data (1024 pixelx1024
pixel), and the output may be the centroid coordinates of two
markers (target marker and stationary marker) (FIG. 25
showing an example input image on the left side of FIG. 25
and showing a corresponding output image on the right side
of FIG. 25).

[0254] Step ii: Split the Dataset into a Training Set, a
Validation Set, and a Testing Set

[0255] Since there is a limited number of data available in
one or more embodiments, all the data may be used either as
a training set or a validation set. To evaluate the efficiency

Nov. 3, 2022

of'each model that has different parameters, the separation of
the training set from the validation set was performed before
training any model, and was used for all the models to be
trained.

[0256] Step iii: Select a Network Architecture

[0257] Architecture was originally created by the inventor
(s) based on Residual Network (ResNet) architecture (see
e.g., “The One Hundred Layers Tiramisu: Fully Convolu-
tional DenseNets for Semantic Segmentation” to Simon
Jégou, et al., which is incorporated by reference herein in its
entirety). The model itself has/included hyper-parameters
(i.e., parameters of the model architecture) to be tested at
Step iv. The created architecture of a regression model is
shown in FIG. 26 (see also, FIG. 9A and aforementioned
discussion of FIG. 9A).

[0258] Step iv: Train the Network with the Training Set &
Step v: Evaluate the Trained Network or Model with the
Testing Set

[0259] <31 Pullbacks Data for Training, 7 Pullbacks for
Validation; from Animal Studies #1 and/or #2>

[0260] Hyper-parameters:
[0261] Depth (i.e., # of layers)
[0262] Width (i.e., # of filters): Fixed in one or more

embodiments
[0263] Batch size (i.e., # of training images/step): In
one or more embodiments, may be >4
[0264] Learning rate (i.e., a hyper-parameter that con-
trols how fast the weights of a neural network (the
coefficients of regression model) are adjusted with
respect the loss gradient)
[0265] Dropout (i.e., % of neurons (filters) that are
dropped at each layer)
[0266] Optimizer: for example, Adam optimizer or Sto-
chastic gradient descent (SGD) optimizer
[0267] Other fixed hyper-parameters (constants):
[0268] Input size: 1024 pixelx1024 pixel (Original
image size)
[0269] Epochs: 500
[0270] Number of models trained with different hyper-
parameter configurations: 10
[0271] FIG. 27 shows the results of at least one hyper-
parameter search. Model ao4 shows the decrease both in
training loss and validation loss. By comparing the hyper-
parameters (Table 2 shown below), Model ao4 and Model
ao5, both of which have lower training loss and validation
loss than others, used a similar value for dropout and used
the same optimizer (SGD optimizer). Therefore, it may be
concluded that this regression model should use an SGD
optimizer with dropout feature. The line for am is slightly
above the line for a03 in the training loss graph on the left
side of FIG. 27. Also, ao7-a09 are overlapping each other in
the graph on the right side of FIG. 27. As a next step, another
hyper-parameter search with a fixed optimizer and with a
different width may be performed. A model architecture for
this scenario is shown in FIG. 28.

TABLE 2

List of hyper-parameters that are used for each model

Model Depth Width Dropout Learning
D dl d2 d3 (fixed) Yes/No %  Optimizer rate

a0l 1 5 2 64 Yes 42.4 ‘adam’ 0.0410
a02 5 5 3 64 No wa ‘adam’ 0.9023
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TABLE 2-continued

List of hyper-parameters that are used for each model

Model Depth Width Dropout Learning
D dl d2 d3 (fixed) Yes/No %  Optimizer rate
a03 3 0 0 64 No n/a ‘adam’ 0.1201
a04 1 0 3 64  Yes 60.9 ‘sgd’ 0.7303
a05 4 2 4 64  Yes 60.2 ‘sgd’ 0.9252
a06 3 3 4 64 No n/a ‘adam’ 0.1244
a07 4 1 1 64 No n/a ‘adam’ 0.9662
a08 2 1 5 64 No n/a ‘adam’ 0.0680
a09 3 4 4 64 No n/a ‘adam’ 0.4356
alo 2 5 2 64  Yes 94.6 ‘sgd’ 0.4084
[0272] One or more embodiments may use one or more

features for a regression model as discussed in “Deep
Residual Learning for Image Recognition” to Kaiming He,
et al., Microsoft Research, Dec. 10, 2015 (https://arxiv.org/
pdf/1512.03385.pdf), which is incorporated by reference
herein in its entirety.

[0273] Experiment #4

[0274] Coregistration

[0275] Available Dataset

[0276] The following tables 3A and 3B show the data set

that was used for this experiment:

# of frames
during pullback

# of frames

# of pullbacks with contrast

ANIMAL

TOTAL 38 4496 2265
RCA 17 (44.7%) 2109 (46.9%) 1033 (45.6%)
LCX 11 (28.9%) 1309 (29.1%) 657 (29.0%)
LAD 5 (13.2%) 599 (13.3%) 313 (13.8%)
Left subclavian 5 (13.2%) 479 (10.7%) 262 (11.6%)
CLINICAL

TOTAL 45 2470 2531

RCA 12 (26.7%) 502 (20.3%) 657 (26.0%)
LCX 4 (8.9%) 151 (6.1%) 108 (4.3%)
LAD 29 (64.4%) 1817 (73.6%) 1766 (69.8%)
[0277] 1. An Image Processing-Based Algorithm with a

User-Specified Pullback Region

[0278] An image processing-based algorithm where a user
specifies a pullback region on one (i) frame was tested on the
clinical data. The marker detection success rate was com-
pared to that of animal study data. The marker detection
success rate on clinical data was not as high as that on animal
study data (see Method 1 of FIG. 5). The observation
revealed that at least one of the candidate points was located
close enough to the actual location in 70-80% of the frames
in each pullback; therefore, the subject image processing-
based algorithm needs to be improved to select the best point
from the candidate points.

[0279] As aforementioned, examples of different marker
detection success rate are shown in FIG. 5. While marker
detection success rate may be calculate in various ways, one
example of a marker detection success rate is to calculate a
number of frames that the detected and the actual radiopaque
marker locations are the same divided by the number of total
frames obtained, received, or imaged during the OCT pull-
back. According to a first method where a user specifies a
pullback region on one frame, according to a second method
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where a user points out marker location on several or
multiple frames, and according to a third method where a
user specifies a pullback region on multiple frames, several
success rates are shown for three categories of data in FIG.
5 to highlight success rate variation(s). Additionally, coreg-
istration success rates (based on user interviews) may be
successful in 80% of cases or higher. From experiments,
candidate points include the actual marker location in at
least 80-90% of total clinical angiography images using one
or more features of the present disclosure. Indeed, by
applying machine or deep learning as discussed herein,
marker detection success rates and coregistration success
rates may be improved or maximized. The success rate of
marker detection (and leading to success rate of coregistra-
tion) may depend on how good the estimation of a marker
location is. As such, by improving estimation of the marker
location, the success rate of the marker detection may be
improved and likewise the success rate of coregistration may
be improved.

[0280] Application of Machine Learning

[0281] At least one embodiment of an overall process of
machine learning is shown below:

[0282] 1. Create a dataset that contains both images and
corresponding ground truth labels;

[0283] 1ii. Split the dataset into a training set and a testing
set;

[0284] iii. Select a model architecture and other hyper-
parameters;

[0285] iv. Train the model with the training set;

[0286] v. Evaluate the trained model with the validation
set; and

[0287] vi. Repeat iv and v with new dataset(s).

[0288] Based on the testing results, steps i and iii may be

revisited in one or more embodiments.

[0289] Observations and details regarding additional
experiments conducted are discussed below.

[0290] [2A. Segmentation Model]

[0291] Since the output from this model, in one or more
embodiments, is a “probability” of each pixel that may be
categorized as a marker or not, post-processing after pre-
diction via the trained segmentation model may be devel-
oped to better define, determine, or locate the final coordi-
nate of marker location.

[0292] After predicting the probability on clinical data
using the previously trained segmentation model (the train-
ing was performed using all animal study data), the post-
processing algorithm shown in FIG. 7 and as discussed
above was applied to the predicted probability result. In this
post-processing algorithm, a user is asked to define where in
the vessel OCT pullback was performed in a manner similar
to the aforementioned Method 1 for the image processing-
based algorithm, where a user specifies a pullback region on
one (i) frame was tested on the clinical data.

[0293] One or more embodiments of a semantic segmen-
tation model may be performed using the One-Hundred
Layers Tiramisu method discussed in “The One Hundred
Layers Tiramisu: Fully Convolutional DenseNets for
Semantic Segmentation” to Simon Jégou, et al., Montreal
Institute for Learning Algorithms, published Oct. 31, 2017
(https://arxiv.org/pdf/1611.09326.pdf), which is incorpo-
rated by reference herein in its entirety.

[0294] The marker detection success rate was assessed
after post-processing in a manner similar to the aforemen-
tioned Method 1 for the image processing-based algorithm,
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where a user specifies a pullback region on one (i) frame was
tested on the clinical data. As shown in FIG. 8 (which
compares marker detection success rates on clinical data
between machine learning-based algorithm (segmentation
model) and other image processing-based algorithms not
using machine learning), the marker detection success rate
was increased about 16% on average of or for all the
pullbacks. For each pullback, the marker detection success
rate was increased in 40 out of 45 pullbacks (88.9%)
compared with Method 1 and in 39 out of 45 pullbacks
(86.7%) compared with Method 3 (see FIG. 8).

[0295] Although the post-processing algorithm may be
refined or further refined and the segmentation model may
be trained to include clinical data, this result shows that the
critical improvement of a marker detection success rate(s)
may be achieved using machine learning/deep learning in
accordance with one or more features of the present disclo-
sure.

[0296] [2B. Regression Model]

[0297] Step i: Create a Dataset that Contains Both Input
and Output

[0298] For regression model(s), the input may be the

entire angiography image frame, and the output may be the
centroid coordinates of radiopaque markers (target marker
and stationary marker, if necessary/desired) (FIG. 29 shows
an example of an input image on the left side of FIG. 29 and
a corresponding output image on the right side of FIG. 29).
[0299] Step ii: Split the Dataset into a Training Set, a
Validation Set, and a Testing Set
[0300] Since there is a limited number of data available in
one or more embodiments, all the data may be used either as
part of a training set or a validation set (For this experiment,
only animal study data was used, so test data set was not set
apart). To evaluate the efficiency of each model that has
different parameters, the separation of the training set from
the validation set was performed before training any model,
and the same separation was used for all the models to be
trained.
[0301] Step iii: Select a Network Architecture
[0302] Architecture was originally created by the inventor
(s) based on Residual Network (ResNet) architecture (see
e.g., “The One Hundred Layers Tiramisu: Fully Convolu-
tional DenseNets for Semantic Segmentation” to Simon
Jégou, et al., which is incorporated by reference herein in its
entirety). The model itself has/included hyper-parameters
(i.e., parameters of the model architecture) to be tested at
Step iv. The created architecture of the regression model is
shown in FIG. 30 (see also, aforementioned discussion of
FIG. 9A and FIG. 9A).
[0303] Step iv: Train the Network and/or Model with the
Training Set
[0304] Data Split

[0305] Training: 30 pullbacks of animal study, 37 pull-

backs of clinical data
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[0306] Validation: 400 frames from 8 pullbacks of ani-
mal study and 8 pullbacks of clinical data

[0307] Hyper-parameters:

[0308] Depth (i.e., # of layers)
[0309] Width (i.e., # of filters)
[0310] Batch size (i.e., # of training images/step): May

be >4 in one or more embodiments

[0311] Learning rate (i.e., a hyper-parameter that con-
trols how fast the weights of a neural network (the
coefficients of regression model) are adjusted with
respect the loss gradient)

[0312] Dropout (i.e., % of neurons (filters) that are
dropped at each layer)

[0313] Optimizer: for example, Adam optimizer or Sto-
chastic gradient descent (SGD) optimizer

[0314] Other fixed hyper-parameters (constants):

[0315] Input size: 1024 pixelx1024 pixel or 512 pixelx
512 pixel
[0316] Epochs: 500 (for additional training, iteration

was set as 3000)

[0317] Number of models trained with different hyper-
parameter configurations: 10

[0318] Since the image sizes are different between animal
study data (1024 pixelx1024 pixel) and clinical data (512
pixelx512 pixel), the input image may be upsampled (for
clinical data) or downsampled (for animal data) to match all
the input image size to include clinical data as part of
training and validation.

[0319] Step v: Evaluate the Trained Network or Model
with the Testing Set

[0320] (1) Influence of Upsampling and Downsampling

[0321] As shown in Table 3, FIG. 31, and FIG. 32, no
significant difference was observed between upsampling and
downsampling in the conducted experiment(s). Since down-
sampling is similar to max-pooling (one of image processing
methods that is often used in machine learning model
architecture; gray layer(s) 901 in FIG. 30), further training
may be performed with downsampling, e.g., the input image
size may be 512 pixelx512 pixel. FIG. 31 shows training and
validation result(s) over iterations in experiments performed
(see run_ho54 results 3100, see run_ho54_add results 3101,
see run_h_dso54 results 3102, and see run_h_dso54_add
results 3103 in FIG. 31). FIG. 32 shows total marker
detection success rate with a different distance threshold
between prediction and ground truth (see ho54, animal data
3200; ho54_add, animal data 3201; h_dso54, animal data
3202; h_dso54_add, animal data 3203; ho54, clinical data
3204; ho54_add, clinical data 3205; h_dso54, clinical data
3206; and h_dso54_add, clinical data 3207).

TABLE 4

Training result of h054, h054_add (upsampling), h _ds054, h_ds054__add (downsampling)

Total
Data # of Validation
Model for conv Dropout Learning Batch Loss loss Validation
D training D1 D2 D3 layers Width  value Optimizer rate size (MSE) RMSE (MSE) RMSE
ho34 animal + 4 0 0 8 64 0.071 Adam 771E-05 12 0.0071 0.0826  0.0158 0.1240
Upsample clinical
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TABLE 4-continued
Training result of h054, h054 add (upsampling), h ds054, h ds054 add (downsampling)
Total
Data # of Validation
Model for conv Dropout Learning Batch Loss loss Validation
D training D1 D2 D3 layers Width  value Optimizer rate size (MSE) RMSE (MSE) RMSE
h034__add animal + 4 0 0 8 64 0.071 Adam 771E-05 12 8.0E-04 0.0272  0.0150 0.1211
Upsample clinical
h__ds054 animal + 4 0 na 8 64 0.071 Adam 771E-05 12 0.0081 0.0886  0.0170 0.1290
Downsample clinical
h__ds054_add animal + 4 0 na 8 64 0.071 Adam 771E-05 12 0.0018  0.0409  0.0169 0.1279

Downsample clinical

[0322] Other Parameters:
[0323] [Next Steps| As aforementioned, next steps may
include, but are not limited to, the following:
[0324] For Segmentation model(s): Train a model with
clinical data
[0325] For Regression model(s): Split the dataset into

training, validation, and test, and assess to which extent

the model may/can generalize to unseen data.
[0326] One or more features discussed herein may be
determined using a convolutional auto-encoder, Gaussian
filters, Haralick features, and/or thickness or shape of the
sample or object.
[0327] One or more embodiments of the present disclosure
may use machine learning to determine marker location, to
perform coregistration and/or to perform any other feature
discussed herein. Machine learning is a field of computer
science that gives processors the ability to learn, via artificial
intelligence. Machine learning may involve one or more
algorithms that allow processors or computers to learn from
examples and to make predictions for new unseen data
points. In one or more embodiments, such one or more
algorithms may be stored as software or one or more
programs in at least one memory or storage medium, and the
software or one or more programs allow a processor or
computer to carry out operation(s) of the processes
described in the present disclosure.
[0328] Similarly, the present disclosure and/or one or
more components of devices, systems and storage mediums,
and/or methods, thereof also may be used in conjunction
with optical coherence tomography probes. Such probes
include, but are not limited to, the OCT imaging systems
disclosed in U.S. Pat. Nos. 6,763,261, 7,366,376, 7,843,572,
7,872,759; 8,289,522; 8,676,013; 8,928,889; 9,087,368;
9,557,154; and U.S. Pat. Pub. Nos. 2014/0276011 and
2017/0135584; and WO 2016/015052 to Tearney et al. and
arrangements and methods of facilitating photolumines-
cence imaging, such as those disclosed in U.S. Pat. No.
7,889,348 to Tearney et al., as well as the disclosures
directed to multimodality imaging disclosed in U.S. Pat. No.
9,332,942, and U.S. Patent Publication Nos. 2010/0092389,
2011/0292400, 2012/0101374, and 2016/0228097, and WO
2016/144878, each of which patents and patent publications
are incorporated by reference herein in their entireties.
[0329] Although the disclosure herein has been described
with reference to particular embodiments, it is to be under-
stood that these embodiments are merely illustrative of the
principles and applications of the present disclosure (and are
not limited thereto), and the invention is not limited to the
disclosed embodiments. It is therefore to be understood that
numerous modifications may be made to the illustrative

embodiments and that other arrangements may be devised
without departing from the spirit and scope of the present
disclosure. The scope of the following claims is to be
accorded the broadest interpretation so as to encompass all
such modifications and equivalent structures and functions.

1-9. (canceled)

10. An artificial intelligence detection apparatus compris-

ing:

one or more processors that operate to:

acquire or receive angiography image data;

receive a trained model or load a trained model from a
memory;

apply the trained model to the acquired or received
angiography image data;

select one angiography frame;

detect a marker location on the selected angiography
frame with the trained model, the detected marker
location defining detected results;

check whether the marker location is correct or accurate;

in an event that the marker location is not correct or
accurate, then modify the detected results or the
detected marker location, and repeat the check as to
whether the marker location is correct or accurate, or in
an event that the marker location is correct or accurate,
then check whether all of the angiography frames have
been checked for correctness or accuracy; and

in an event that all of the angiography frames have not
been checked for correctness or accuracy, then select
another angiography frame and repeat the detection of
a marker location and the check of whether the marker
location is correct or accurate or not for the another
angiography frame.

11. The apparatus of claim 10, wherein the one or more

processors further operate to one or more of the following:

(1) in an event that all of the angiography frames have
been checked for correctness or accuracy, then perform
coregistration based on the detected marker location;

(ii) display the detected marker location on a display;

(iii) display the detected marker location on the display
such that the detected marker location is overlayed on
angiography data;

(iv) display the modified detected results and/or the
modified marker location on the display;

(v) insert an intravascular imaging catheter that has a
marker or radiopaque marker into an object or sample;
and/or

(vi) acquire or receive the angiography image data during
a pullback operation of the intravascular imaging cath-
eter.
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12. The apparatus of claim 11, wherein the object or
sample includes one or more of the following: a vessel, a
target specimen or object, and/or a patient.

13. The apparatus of claim 11, wherein the one or more
processors further operate to use one or more neural net-
works or convolutional neural networks to one or more of:
load the trained model, select the angiography frame, detect
the marker location for each frame, determine whether the
detected marker location is accurate or correct, modify the
detected results or the detected marker location for each
frame, display the detected marker location on the display,
perform the coregistration, insert the intravascular image,
and/or acquire or receive the angiography image data during
the pullback operation.

14. The apparatus of claim 11, wherein the one or more
processors further operate to perform the coregistration by
co-registering the acquired or received angiography image
and an obtained one or more Optical Coherence Tomogra-
phy (OCT) or Intravascular Ultrasound (IVUS) images or
frames or an obtained one or more images or frames of
another imaging modality.

15. The apparatus of claim 11, wherein the loaded, trained
model is one or a combination of the following: a segmen-
tation model, a segmentation model with post-processing, a
model with pre-processing, a model with post-processing, a
segmentation model with pre-processing, a deep learning or
machine learning model, a semantic segmentation model or
classification model, an object detection or regression
model, an object detection or regression model with pre-
processing or post-processing, a combination of a semantic
segmentation model and an object detection or regression
model, a model using repeated segmentation model tech-
nique(s), a model using feature pyramid(s), a model using
repeated object detection or regression model technique(s),
a deep convolutional neural network model, a recurrent
neural network model with long short-term memory that can
take temporal relationships across images or frames into
account, a model that can take temporal relationships across
images or frames into account, a model that can take
temporal relationships into account including marker move-
ment(s) or location(s) during pullback in a vessel, a model
that can use prior knowledge about the procedure and
incorporate the prior knowledge into the machine learning
algorithm or loss function, a model using feature pyramid(s)
that can take different image resolutions into account, and/or
a model using residual learning technique(s).

16. The apparatus of claim 11, wherein the one or more
processors further operate to one or more of the following:

(1) display the angiography data along with an image for

each of one or more imaging modalities on the display,
wherein the one or more imaging modalities include
one or more of the following: a tomography image; an
Optical Coherence Tomography (OCT) image; a fluo-
rescence image; a near-infrared fluorescence (NIRAF)
image; a near-infrared fluorescence (NIRAF) in a pre-
determined view, a carpet view, and/or an indicator
view; a three-dimensional (3D) rendering; a 3D ren-
dering of a vessel; a 3D rendering of a vessel in a
half-pipe view or display; a 3D rendering of the object;
a lumen profile; a lumen diameter display; a longitu-
dinal view; computer tomography (CT); Magnetic
Resonance Imaging (MRI); Intravascular Ultrasound
(IVUS); an X-ray image or view; and an angiography
view; and/or
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(i1) change or update the displays for the angiography data
along with each of the one or more imaging modalities
based on the modified detection results and/or the
modified marker location.

17. A method for training a model using artificial intelli-

gence, the method comprising:

acquiring or receiving angiography image data;

establishing ground truth for the acquired angiography
image data;

splitting the acquired angiography image data into train-
ing, validation, and test sets or groups;

choosing one or more hyper-parameter values for model
training, the one or more hyper-parameter values
including at least one or more of the following: model
architecture, learning rate, and initialization of param-
eter values;

training a model with data in the training set or group and
evaluate the model with data in the validation set or
group;

determining whether the performance of the trained
model is sufficient; and

in the event that the performance of the trained model is
not sufficient, then repeating the procedures for choos-
ing one or more hyper-parameter values, model train-
ing and evaluating, and determining, or, in the event
that the performance of the trained model is sufficient,
selecting the trained model and saving the trained
model to a memory.

18. The method of claim 17, wherein one or more of the

following:

(1) the parameters include one or more hyper-parameters;

(i1) the saved, trained model is used as a created identifier
or detector for identifying or detecting a marker(s) or
radiopaque marker(s) in angiography image data;

(iii1) the model is one or a combination of the following:
a segmentation model, a segmentation model with
post-processing, a model with pre-processing, a model
with post-processing, a segmentation model with pre-
processing, a deep learning or machine learning model,
a semantic segmentation model or classification model,
an object detection or regression model, an object
detection or regression model with pre-processing or
post-processing, a combination of a semantic segmen-
tation model and an object detection or regression
model, a model using repeated segmentation model
technique(s), a model using feature pyramid(s), a
model using repeated object detection or regression
model technique(s), a deep convolutional neural net-
work model, a recurrent neural network model with
long short-term memory that can take temporal rela-
tionships across images or frames into account, a model
that can take temporal relationships across images or
frames into account, a model that can take temporal
relationships into account including marker movement
(s) or location(s) during pullback in a vessel, a model
that can use prior knowledge about the procedure and
incorporate the prior knowledge into the machine learn-
ing algorithm or loss function, a model using feature
pyramid(s) that can take different image resolutions
into account, and/or a model using residual learning
technique(s);

(iv) the ground truth includes one or more of the follow-
ing: locations of two endpoints of a major axis of a
target marker in each angiography frame, locations of
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two endpoints of a major axis of a target marker in each
angiography frame captured during Optical Coherence
Tomography (OCT) pullback, a mask including a line
that connects the two endpoint locations with a certain
width as a positive area for the segmentation model, all
of the markers included in an the acquired or received
angiography image data, a centroid of two edge loca-
tions, a centroid of two edge locations for the regres-
sion or object detection model, and two marker loca-
tions in each frame of the acquired or received
angiography image data graphically annoted by a user
or an expert of the apparatus;
(v) the one or more processors further operate to use one
or more neural networks or convolutional neural net-
works to one or more of: train a model, evaluate a
model, determine whether the performance of the
trained model is sufficient or not, and/or to detect the
marker(s) or radiopaque marker(s), select a model, and
estimate the generalization error of the model;
(vi) the method further comprises estimating a general-
ization error of the trained model with data in the test
set or group; and/or
(vil) the method further comprises estimating a general-
ization error of multiple trained models with data in the
test set or group, and selects one model based on its
performance on the validation set or group.
19. The method of claim 17, further including or using:
(1) an artificial intelligence training apparatus comprising:
a memory;
one or more processors in communication with the
memory, the one or more processors operating to:

acquire or receive angiography image data;

establish ground truth for all the acquired angiography
image data;

split the acquired angiography image data into training,
validation, and test sets or groups;

choose one or more hyper-parameter values for model
training, the one or more hyper-parameter values
including at least one or more of: model architecture,
learning rate, and initialization of parameter values;

train a model with data in the training set or group and
evaluate the model with data in the validation set or
group;

determine whether the performance of the trained
model is sufficient; and

in the event that the performance of the trained model
is not sufficient, then repeat the procedure of choos-
ing one or more hyper-parameter values, model
training and evaluating, and determining, or, in the
event that the performance of the trained model is
sufficient, select the trained model and save the
trained model to the memory; or
(ii) an artificial intelligence detection apparatus compris-
ing:
one or more processors that operate to:
acquire or receive angiography image data;
receive a trained model or load a trained model from a
memory;

apply the trained model to the acquired or received
angiography image data;

select one angiography frame;

detect a marker location on the selected angiography
frame with the trained model, the detected marker
location defining detected results;
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check whether the marker location is correct or accu-
rate;

in an event that the marker location is not correct or
accurate, then modify the detected results or the
detected marker location, and repeat the check as to
whether the marker location is correct or accurate, or
in an event that the marker location is correct or
accurate, then check whether all of the angiography
frames have been checked for correctness or accu-
racy; and

in an event that all of the angiography frames have not
been checked for correctness or accuracy, then select
another angiography frame and repeat the detection
of a marker location and the check of whether the
marker location is correct or accurate or not for the
another angiography frame.

20. (canceled)

21. A method for detecting a marker or a radiopaque
marker in angiography image data and/or for performing
coregistration, the method comprising:

acquiring or receiving angiography image data;

receiving a trained model or loading a trained model from
a memory;

applying the trained model to the acquired or received
angiography image data;

selecting one angiography frame;

detecting a marker location on the selected angiography
frame with the trained model, the detected marker
location defining detected results;

checking whether the marker location is correct or accu-
rate;

in an event that the marker location is not correct or
accurate, then modifying the detected results or the
detected marker location, and repeating the check as to
whether the marker location is correct or accurate, or in
an event that the marker location is correct or accurate,
then checking whether all of the angiography frames
have been checked for correctness or accuracy; and

in an event that all of the angiography frames have not
been checked for correctness or accuracy, then select-
ing another angiography frame and repeating the detec-
tion of a marker location and the check of whether the
marker location is correct or accurate or not for the
another angiography frame.

22. The method of claim 21, further comprising one or

more of the following:

(1) in an event that all of the angiography frames have
been checked for correctness or accuracy, performing
coregistration based on the detected marker location;

(ii) displaying the detected marker location on a display;

(ii1) displaying the detected marker location on the display
such that the detected marker location is overlayed on
angiography data;

(iv) displaying the modified detected results and/or the
modified marker location on the display;

(v) inserting an intravascular imaging catheter that has a
marker or radiopaque marker into an object or sample;
and/or

(vi) acquiring or receiving the angiography image data
during a pullback operation of the intravascular imag-
ing catheter.
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23. The method of claim 21, further including or using

one or more of the following:

(1) an artificial intelligence training apparatus comprising:
a memory;
one or more processors in communication with the
memory, the one or more processors operating to:
acquire or receive angiography image data;
establish ground truth for all the acquired angiography
image data;
split the acquired angiography image data into training,
validation, and test sets or groups;
choose one or more hyper-parameter values for model
training, the one or more hyper-parameter values
including at least one or more of: model architecture,
learning rate, and initialization of parameter values;
train a model with data in the training set or group and
evaluate the model with data in the validation set or
group;
determine whether the performance of the trained
model is sufficient; and
in the event that the performance of the trained model
is not sufficient, then repeat the procedure of choos-
ing one or more hyper-parameter values, model
training and evaluating, and determining, or, in the
event that the performance of the trained model is
sufficient, select the trained model and save the
trained model to the memory;
(ii) an artificial intelligence detection apparatus compris-
ing:
one or more processors that operate to:
acquire or receive angiography image data;
receive a trained model or load a trained model from a
memory;
apply the trained model to the acquired or received
angiography image data;
select one angiography frame;
detect a marker location on the selected angiography
frame with the trained model, the detected marker
location defining detected results;
check whether the marker location is correct or accu-
rate;
in an event that the marker location is not correct or
accurate, then modify the detected results or the
detected marker location, and repeat the check as to
whether the marker location is correct or accurate, or
in an event that the marker location is correct or
accurate, then check whether all of the angiography
frames have been checked for correctness or accu-
racy; and
in an event that all of the angiography frames have not
been checked for correctness or accuracy, then select
another angiography frame and repeat the detection of
a marker location and the check of whether the marker
location is correct or accurate or not for the another
angiography frame;
(iii) additional method steps comprising:
acquiring or receiving angiography image data;
establishing ground truth for the acquired angiography
image data;
splitting the acquired angiography image data into
training, validation, and test sets or groups;
choosing one or more hyper-parameter values for
model training, the one or more hyper-parameter
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values including at least one or more of the follow-
ing: model architecture, learning rate, and initializa-
tion of parameter values;
training a model with data in the training set or group
and evaluate the model with data in the validation set
or group;
determining whether the performance of the trained
model is sufficient; and
in the event that the performance of the trained model
is not sufficient, then repeating the procedures for
choosing one or more hyper-parameter values,
model training and evaluating, and determining, or,
in the event that the performance of the trained
model is sufficient, selecting the trained model and
saving the trained model to a memory; or
(iv) a non-transitory computer-readable storage medium
storing at least one program for causing a computer to
execute a method for training a model using artificial
intelligence, the method comprising:
acquiring or receiving angiography image data;
establishing ground truth for the acquired angiography
image data;
splitting the acquired angiography image data into
training, validation, and test sets or groups;
choosing one or more hyper-parameters for model
training, the one or more hyper-parameters including
at least one or more of: model architecture, learning
rate, and initialization of parameter values;
training a model with data in the training set or group
and evaluate the model with data in the validation set
or group;
determining whether the performance of the trained
model is sufficient; and
in the event that the performance of the trained model
is not sufficient, then repeating the procedures for
choosing one or more hyper-parameter values, train-
ing the model, evaluating the model, and the deter-
mining, or, in the event that the performance of the
trained model is sufficient, selecting the trained
model and saving the trained model to a memory.
24. A non-transitory computer-readable storage medium
storing at least one program for causing a computer to
execute a method for detecting a marker or a radiopaque
marker in angiography image data and/or for performing
coregistration, the method comprising:
acquiring or receiving angiography image data;
receiving a trained model or loading a trained model from
a memory;
applying the trained model to the acquired or received
angiography image data;
selecting one angiography frame;
detecting a marker location on the selected angiography
frame with the trained model, the detected marker
location defining detected results;
checking whether the marker location is correct or accu-
rate;
in an event that the marker location is not correct or
accurate, then modifying the detected results or the
detected marker location, and repeating the check as to
whether the marker location is correct or accurate, or in
an event that the marker location is correct or accurate,
then checking whether all of the angiography frames
have been checked for correctness or accuracy; and
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in an event that all of the angiography frames have not
been checked for correctness or accuracy, then select-
ing another angiography frame and repeating the detec-
tion of a marker location and the check of whether the
marker location is correct or accurate or not for the
another angiography frame.

25. The storage medium of claim 24, wherein the method

further comprises one or more of the following:

(1) in an event that all of the angiography frames have
been checked for correctness or accuracy, performing
coregistration based on the detected marker location;

(ii) displaying the detected marker location on a display;

(ii1) displaying the detected marker location on the display
such that the detected marker location is overlayed on
angiography data;

(iv) displaying the modified detected results and/or the
modified marker location on the display;

(v) inserting an intravascular imaging catheter that has a
marker or radiopaque marker into an object or sample;
and/or

(vi) acquiring or receiving the angiography image data
during a pullback operation of the intravascular imag-
ing catheter.



