
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0281699 A1

US 20140281 699A1

Kota et al. (43) Pub. Date: Sep. 18, 2014

(54) AVOIDING RESTART ON ERROR IN DATA (52) U.S. Cl.
INTEGRATION CPC G06F 1 1/1471 (2013.01)

USPC .. 714/15
(71) Applicant: INTERNATIONAL BUSINESS

MACHINES CORPORATION
Armonk, NY (US) s (57) ABSTRACT

(72) Inventors: Sastry V. Kota, Hyderabad (IN); According to one embodiment of the present invention, a
Srinivas K. Mittapalli, Hyderabad (IN) system avoids restart on an error in a data integration process.

The system processes data received from a data source in
(73) Assignee: INTERNATIONAL BUSINESS accordance with a parallel processing pipeline and partition

MACHINES CORPORATION, ing scheme and Submits said processed data to a destination.
Armonk, NY (US) In response to an indication of an error, the system pauses

receiving of data and saves unprocessed data received from
(21) Appl. No.: 13/803,442 the source. After correction of the error, the system resumes
(22) Filed: Mar 14, 2013 processing of the received and saved data in an order of the

parallel processing pipeline and partitioning scheme.
Publication Classification Embodiments of the present invention further include a

method and computer program product for avoiding restart on
(51) Int. Cl. an error in a data integration process in Substantially the same

G06F II/4 (2006.01) manners described above.

105

DATASOURCE

DATASOURCE

DATASOURCE

ETL SYSTEM 15

MONITOR
MODULE

Patent Application Publication Sep. 18, 2014 Sheet 1 of 3 US 2014/0281699 A1

d X
re- r r

P
a.
H
Ad
>-
AD
-
H

g ge g

Patent Application Publication Sep. 18, 2014 Sheet 2 of 3 US 2014/0281699 A1

H

co
g
H.
O
H

2

S S

go
s
9

is a C5
9 as 273

Patent Application Publication Sep. 18, 2014 Sheet 3 of 3 US 2014/0281699 A1

310
MONITORMODULE RECEIVES

ERROR FROMASTAGE

MONITORMODULESIGNAL(S)
STAGESTOHIBERNATE

STAGES) PAUSE
PROCESSING OF DATA

STAGE(S) STOPREADING DATA
FROMINPUT STREAM, BUFFER
UNPROCESSEDDATAN PIPELINE

330

340

ERROR
RECTIFIED

370

MONITORMODULESIGNALS STAGE(S) TO
RESUMEREADING AND PROCESSING DATA

FIG.3

US 2014/0281 699 A1

AVOIDING RESTART ONERROR N DATA
INTEGRATION

BACKGROUND

0001 1. Technical Field
0002 Present invention embodiments relate to informa
tion integration, and more specifically, to avoiding restart of
an Extract, Transform, and Load (ETL) process in response to
a O.

0003 2. Discussion of the Related Art
0004. Many organizations have adopted distributed data
warehouse systems that can store data on a large number of
machines and accommodate large amounts of information.
Every day, millions of Extract, Transform, and Load (ETL)
jobs send data to these data warehouses.
0005. An ETL job may include multiple stages and pro
cesses running on many machines. Typically, an ETL job uses
a combination of pipeline and partition parallelism, in which
data is partitioned and moved through different pipelines in
order to improve performance.
0006. Some ETL jobs fail and need to be restarted or
resubmitted. For example, the target database within a ware
house may fail to accept a set of records in the middle of a job
because a capacity limit is reached or a hardware failure
occurs. This may cause the entire job to abort. The user may
have to resubmit the job after correcting the failure in order
for the data to be successfully processed and submitted to the
destination database.

BRIEF SUMMARY

0007 According to one embodiment of the present inven
tion, a system avoids restart on an error in a data integration
process. The system processes data received from a data
Source in accordance with a parallel processing pipeline and
partitioning scheme and Submits said processed data to a
destination. In response to an indication of an error, the sys
tem pauses receiving of data and saves unprocessed data
received from the source. After correction of the error, the
system resumes processing of the received and saved data in
an order of the parallel processing pipeline and partitioning
scheme. Embodiments of the present invention further
include a method and computer program product for avoiding
restart on an error in a data integration process in Substantially
the same manners described above.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0008 Generally, like reference numerals in the various
figures are utilized to designate like components.
0009 FIG. 1 is a diagrammatic illustration of a computing
environment for an embodiment of the present invention.
0010 FIG. 2 is a diagrammatic illustration of stages of an
Extract, Transform, and Load (ETL) process according to an
embodiment of the present invention.
0011 FIG. 3 is a procedural flow chart illustrating an
example manner of responding to an error in an ETL process
in order to avoid restart.

DETAILED DESCRIPTION

0012 Present invention embodiments relate to informa
tion integration, and more specifically, to avoiding restart
(e.g., resubmission) of an Extract, Transform, and Load
(ETL) process in response to an error. If an error occurs—for

Sep. 18, 2014

example, a stage of an ETL job throws an exception, Such as
an RDBMS code or process error code due to an error in an
input record or an error writing to a target database—the job
may be aborted. Restarting the ETL job in response to the
error can be costly.
0013 For some ETL jobs, a checkpoint mechanism can be
used to restart the job from the point at which it failed and
thereby avoid having to re-read the job from the beginning. A
data checkpoint saves information related to the data read so
far by a stage. This generally involves storing details of the
current state of a process as a checkpoint record so that a
process may use the stored information to be restarted from
that state. A checkpoint record may include various types of
information Such as process values, information about Suc
cessfully processed records and other details relevant to the
current execution phase of process. For example, databases
Support checkpointing which records the number of rows
inserted before a failure occurred. The restart procedure uses
the checkpoint information in order to resubmit the job from
the point where the original job failed (i.e., the next row
following the previous checkpoint). However, the restarted
job may not yield correct or expected results when used with
parallel pipelines since checkpoints do not guarantee that a
data stream will flow through the same pipeline after restart,
even when the same partitioning mechanism is used. This is
because some of the different mechanisms and methods for
partitioning data do not necessarily deliver the same records
to the same partition each time they are used. An example is
partitioning on a key, where records with a commonkey pass
through one node and records with a different common key
pass through a different node. After a failure, the checkpoint
mechanism provides information about the number of
records processed on a node, but the checkpoint does not
know about the partition process. When the job is restarted,
the partitioning, and therefore the results, may change (absent
manual intervention before reading of data begins again). For
example, consider a job processing data with two sets of
records identified by the names “Tom’ and “Jon'. Since the
records are partitioned by name, records for Tom are pro
cessed on a first node and those for Jon on a second node.
After processing twenty records, twelve for Tom and eight for
Jon, the job fails. The saved checkpoint information indicates
that twelve records were processed on the first node one and
eight on the second node. On restart, the first node will begin
with the thirteenth record, and the second node will begin
with the ninth. But it is not guaranteed that the records for
Tom will again be processed on node one.
0014 Thus, a user may have to switch to a single pipeline
in order to be able to restart a job using checkpoint informa
tion. This may impede performance and/or scalability. Alter
natively, a user may have to restart the job from the beginning
in order for processing to occur correctly. This may incur a
high resource cost. In either case, the resources consumed
reading or performing operations on data in the pipeline go to
waste. Furthermore, a restart may encounter difficulties
because processes, databases, or other resources may be in
use by other jobs or otherwise unavailable.
0015. An embodiment of the present invention avoids
restarting a job in response to an error by stopping reading of
input when an error occurs, buffering data in the pipeline, and
causing the job to hibernate while the problem is controlled or
rectified. One aspect of an embodiment of the present inven
tion is to respond to an errorina way that saves time and other

US 2014/0281 699 A1

resources by avoiding a restart of the job. Another aspect is to
Support pipeline and partition parallelism.
0016. An example computing environment for a present
invention embodiment is illustrated in FIG. 1. Specifically,
the environment includes one or more data sources 105, a data
integration or Extract, Transform, and Load (ETL) system
110, and one or more target systems 115.
0017 ETL system 110 performs an ETL process to extract
data from data sources 105 and provide the extracted data to
target systems 115. ETL system 110 may send commands to
one or more of the data sources 105 such that the data source
provides data to ETL system 110. Since the data received may
be in multiple formats with varying metadata, the data inte
gration system 110 may reconfigure the received data Such
that it can be combined for integrated processing. ETL system
110 comprises a monitoring module 150 to respond to errors
in the ETL process.
0018 Data sources 105 and target systems 115 may
include a wide variety of data systems (e.g., computer sys
tems, database systems, applications, files, etc.) from a wide
variety of physical locations. For example, data source 105
and target system 115 may include conventional or other
database systems, other application programs, flat files, FTP
files, or other systems or sources that provide data and receive
data respectively. The target systems 115 are preferably in the
form of computer systems, and may include databases (such
as a data warehouse).
0019. The data sources 105, ETL system 110, and target
systems 115 may be implemented by any conventional or
other computer systems preferably equipped with a display or
monitor, a base (e.g., including at least one processor, memo
ries and/or internal or external communications devices (e.g.,
modem, network cards, etc.)), optional input devices (e.g., a
keyboard, mouse or other input device), and any commer
cially available and/or custom software (e.g., ETL software,
monitoring module software, communications Software,
database server Software, database client Software, etc.).
0020 Data sources 105, ETL system 110, and target sys
tems 115 may communicate over a network. The network
may be implemented by any number of any suitable commu
nications media (e.g., wide area network (WAN), local area
network (LAN), Internet, intranet, etc.). Alternatively, data
sources 105, ETL system 110, and target systems 115 may be
local to each other and/or and communicate via any appro
priate local communication medium (e.g., local area network
(LAN), hardwire, wireless link, intranet, etc.).
0021 Monitoring module 150 may include one or more
modules or units to perform the various functions of present
invention embodiments described below (e.g., receiving error
messages, handling exceptions, signaling nodes and ETL
processes, buffering data, etc.), may be implemented by any
combination of any quantity of Software and/or hardware
modules or units, and may reside within memory of a com
puter system of ETL system 110, data source 105, and/or
target system 115 for execution by one or more processors.
0022. Example stages of an ETL System according to an
embodiment of the present invention are illustrated in FIG. 2.
The ETL system may comprise a reader stage 210, parallel
stages. A 220 and B230, and a connector stage 240. Reader
stage 210 receives records from data sources 105 and may
pre-process and/or partition the records for distribution to
stages A and B. Stages A and B receive records from the
reader stage, process the records, and send the results to the
connector stage. The connector stage may perform post-pro

Sep. 18, 2014

cessing and consolidation of the results. The connector stage
sends the results to target system(s) 115 (e.g., Submits the
results to a destination database). The ETL stages may be
implemented by any combination of software and/or hard
ware modules or units. In an example configuration, the
monitoring module and connector stage reside within
memory of a common hardware system.
0023. A manner of responding to an error in order to avoid
restart (e.g., via monitor module 150 and ETL system 110)
according to an embodiment of the present invention is illus
trated in FIG. 3. At step 310, the monitor module receives an
indication of an error from a stage. For example, the connec
tor stage may raise an exception because of a fault while
writing to the destination database.
0024. Initially, the job is not signaled to abort (i.e., termi
nate) in response to the indication of an error. Rather, at Step
320, in response to the indication of an error, the monitor
module signals the reader stage (first stage) to stop reading
data records from its inputStream, and may signal all stages to
hibernate. Each signaled Stage pauses processing of data
records at step 330 (e.g., threads that process data records
may be suspended) and stops reading data records from its
input stream at Step 340. Each stage buffers unprocessed data
records read in the pipeline after the error occurred. The job
thereby reaches a state of hibernation or temporary Suspen
sion from which it can resume after the error is rectified. The
monitor module may wait a predetermined time interval at
step 350 and then check to determine whether the error has
been cleared (e.g., the monitor module can poll the stage that
raised an error). If the error has been cleared, the monitor
module signals each stage to resume reading and processing
data at step 370. If the error has not been cleared, the proce
dure returns to step 350 and again waits before checking to
determine whether the error has been cleared. Optionally,
after a pre-configured number of iterations waiting and deter
mining that the error has not been cleared, the monitoring
module may take additional and/or alternative action (e.g.,
aborting the job, raising an alarm, etc.). Alternatively, the job
may automatically attempt to resume processing after a pre
determined interval.

0025 Since each stage can buffer data (e.g., in memory)
and the job sleeps rather than terminates in response to an
error, the job can resume processing from the point at which
it left off once the error is rectified. This avoids wasting
resources spent processing data in the pipeline(s) and avoids
restarting the job and having to serialize the pipelines or
manually intervene to guarantee consistent coordination of
parallel pipelines and partitions.
0026. In an example case, an ETL process having more
than twenty-five stages and about ten million records to pro
cess and deliver to a data warehouse (ultimately writing to a
table in a high capacity database system) consumes about
seventy minutes and processes about six million records
before a NO ROOM in database message is thrown by the
stage that writes to the database.
0027. According to current methods, a user checks the
availability of resources for restarting/resubmitting the data
and schedules a restart of the job. The restart begins process
ing the job from record N+1, where the checkpoint informa
tion indicates that the previous job processed through record
N. But the next iteration is not guaranteed to process the same
set of rows because of pipeline and partition parallelism, and

US 2014/0281 699 A1

therefore may change the behavior of the job. Hence the user
may have to use a single node configuration, which sacrifices
performance.
0028. According to an embodiment of the present inven

tion, the monitoring module within the connector stage,
which writes the data into target table in database, notifies the
stages to pause reading data in their input streams once it
catches the database management system error code (NO
ROOM in database). Data contained in the parallel pipelines
(i.e., including unprocessed data and data which is just read
after the exception occurred and before the signal from the
monitor module to pause is caught) is saved/buffered. The
monitor module polls after a user-defined time interval and
queries the database for its current status. Polling continues
until the problem is rectified (e.g., the user increases the spool
space). The monitor module notifies the first stage to resume
reading the data and processes the buffered data. In the
example case, this can save up to about ninety minutes of
production time when a job encounters an error. Further, the
parallel pipelining and partitioning for the data are main
tained (relative to those in the job prior to the suspension) for
the data to ensure accurate results.
0029. It will be appreciated that the embodiments
described above and illustrated in the drawings represent only
a few of the many ways of implementing embodiments for
avoiding restart on error in a data integration process.
0030 The topology or environment of the present inven
tion embodiments may include any number of computer or
other processing Systems (e.g., data Sources, ETL Systems,
ETL stages, target systems, client or end-user systems, etc.)
databases, or other repositories arranged in any desired fash
ion, where the present invention embodiments may be applied
to any desired type of computing environment (e.g., cloud
computing, client-server, network computing, mainframe,
stand-alone systems, etc.). The computer or other processing
systems employed by the present invention embodiments
may be implemented by any number of any personal or other
type of computer or processing system (e.g., desktop, laptop,
PDA, mobile devices, etc.), and may include any commer
cially available operating system and any commercially avail
able or custom Software (e.g., ETL management Software,
ETL stage software, monitor module software, database soft
ware, communications Software, etc.). These systems may
include any types of monitors and input devices (e.g., key
board, mouse, Voice recognition, touch screen, etc.) to enter
and/or view information.

0031. It is to be understood that the software (e.g., ETL
management software, ETL Stage software, monitor module
Software, database software, communications Software, etc.)
of the present invention embodiments may be implemented in
any desired computer language and could be developed by
one of ordinary skill in the computer arts based on the func
tional descriptions contained in the specification and flow
charts illustrated in the drawings. Further, any references
herein of software performing various functions generally
refer to computer systems or processors performing those
functions under Software control. The computer systems of
the present invention embodiments may alternatively be
implemented by any type of hardware and/or other processing
circuitry.
0032. The various functions of the computer or other pro
cessing systems may be distributed in any manner among any
number of software and/or hardware modules or units, pro
cessing or computer systems and/or circuitry, where the com

Sep. 18, 2014

puter or processing systems may be disposed locally or
remotely of each other and communicate via any Suitable
communications medium (e.g., LAN, WAN, Intranet, Inter
net, hardwire, modem connection, wireless, etc.). For
example, the functions of the present invention embodiments
may be distributed in any manner among the various data
Source systems, ETL Systems, target systems, ETL stages,
end-user/client and/or any other intermediary processing
devices including third party client/server processing
devices. The software and/or algorithms described above and
illustrated in the flow charts may be modified in any manner
that accomplishes the functions described herein. In addition,
the functions in the flow charts or description may be per
formed in any order that accomplishes a desired operation.
0033. The monitor module may use any manner of signal
ing to notify a stage to pause reading and/or processing of data
records. For example, stages may be implemented using a
base class that contains a serialized status object that provides
the signal. The status object may be transmitted via the data
stream. Alternatively, the monitor module may communicate
with stages via Socket/pipe/circular queue. Data in a pipeline
may be buffered in any manner (e.g., by Supporting buffering
in a read routine common to stages, custom buffering for a
stage, etc.) in any type of buffer (e.g., RAM, flat file, database,
etc.).
0034. The communication network may be implemented
by any number of any types of communications network (e.g.,
LAN, WAN, Internet, Intranet, VPN, etc.). The computer or
other processing systems of the present invention embodi
ments may include any conventional or other communica
tions devices to communicate over the network via any con
ventional or other protocols. The computer or other
processing systems may utilize any type of connection (e.g.,
wired, wireless, etc.) for access to the network. Local com
munication media may be implemented by any suitable com
munication media (e.g., local area network (LAN), hardwire,
wireless link, Intranet, etc.).
0035. The system may employ any number of any conven
tional or other data storage systems (e.g., databases, files,
arrays, data structures, etc.) to store information (e.g., Source
data, metadata, configuration data, data records in an ETL
pipeline, etc.). The database systems may be implemented by
any number of any conventional or other databases, data
stores or storage structures (e.g., files, databases, data struc
tures, data or other repositories, etc.) to store information (e.g.,
data from the data sources, data for target systems, data
records in an ETL pipeline, metadata, configuration data,
etc.). Data sources 105 and target systems 115, may be
included within or coupled to the ETL system, the ETL
stages, and/or client systems.
0036 Present invention embodiments may be used to
avoid restart in integration of data of any type (e.g., integer
data, floating point data, categorical data, text, etc.) stored in
any format or system (e.g., database, text files, binary files,
web pages, etc.) representing any type of information (e.g.,
commercial data, Scientific data, reference materials, etc.).
The data integration may be performed by any Suitable inte
gration process (e.g., ETL, etc.).
0037. The present invention embodiments may employ
any number of any type of user interface (e.g., Graphical User
Interface (GUI), command-line, prompt, etc.) for obtaining or
providing information (e.g., configuring ETL or monitoring
module parameters, Scheduling jobs, correcting faults, etc.),
where the interface may include any information arranged in

US 2014/0281 699 A1

any fashion. The interface may include any number of any
types of input or actuation mechanisms (e.g., buttons, icons,
fields, boxes, links, etc.) disposed at any locations to enter/
display information and initiate desired actions via any Suit
able input devices (e.g., mouse, keyboard, etc.).
0038. The present invention embodiments are not limited
to the specific tasks, algorithms, or network/environment
described above, but may be utilized for avoiding restart in
integration of any type of any data following an error of any
type by any stage of the data integration.
0039. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises'.
“comprising”, “includes”, “including”, “has”, “have”, “hav
ing”, “with and the like, when used in this specification,
specify the presence of stated features, integers, steps, opera
tions, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.
0040. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
0041 As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident Software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0042 Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory

Sep. 18, 2014

(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

0043. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0044 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0045 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0046 Aspects of the present invention are described with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

0047. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

US 2014/0281 699 A1

0048. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0049. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
What is claimed is:
1. A computer-implemented method of avoiding restart on

an error in a data integration process comprising:
processing data received from a data source in accordance

with a parallel processing pipeline and partitioning
Scheme and Submitting said processed data to a destina
tion;

in response to an indication of an error, pausing said receiv
ing of data and saving unprocessed data received from
said source; and

after correction of said error, resuming processing of said
received and saved data in an order of said parallel
processing pipeline and partitioning scheme.

2. The computer-implemented method of claim 1, wherein
said processing comprises a plurality of stages.

3. The computer-implemented method of claim 2, wherein
said processing comprises partitioning said received data.

4. The computer-implemented method of claim3, wherein
said plurality of stages comprises at least two parallel stages.

5. The computer-implemented method of claim 2, wherein
each stage saves data received by that stage and unprocessed
by that stage in response to said indication of an error.

6. The computer-implemented method of claim 5, further
comprising Suspending each stage of processing in response
to said indication of an error.

7. The computer-implemented method of claim 2, further
comprising polling said stages to determine whether said
error has been corrected.

8. A system for avoiding restart on an error in a data
integration process comprising:

at least one processor configured to:

Sep. 18, 2014

process data received from a data source in accordance
with a parallel processing pipeline and partitioning
scheme and Submit said processed data to a destina
tion;

in response to an indication of an error, pause said
receiving of data and save unprocessed data received
from said source; and

after correction of said error, resume processing of said
received and saved data in an order of said parallel
processing pipeline and partitioning scheme.

9. The system of claim 8, wherein said processing com
prises a plurality of stages.

10. The system of claim 9, wherein said processing com
prises partitioning said received data.

11. The system of claim 10, wherein said plurality of stages
comprises at least two parallel stages.

12. The system of claim 9, wherein each stage saves data
received by that stage and unprocessed by that stage in
response to said indication of an error.

13. The system of claim 12, wherein said at least one
processor is further configured to Suspend each stage of pro
cessing in response to said indication of an error.

14. The system of claim 9, wherein said at least one pro
cessor is further configured to poll said stages to determine
whether said error has been corrected.

15. A computer program product for avoiding restart on an
error in a data integration process comprising:

a computer readable storage medium having computer
readable program code embodied therewith for execu
tion on a first processing system, the computer readable
program code comprising computer readable program
code configured to:
process data received from a data source in accordance

with a parallel processing pipeline and partitioning
scheme and Submit said processed data to a destina
tion;

in response to an indication of an error, pause said
receiving of data and save unprocessed data received
from said source; and

after correction of said error, resume processing of said
received and saved data in an order of said parallel
processing pipeline and partitioning scheme.

16. The computer program product of claim 15, wherein
said processing comprises a plurality of stages.

17. The computer program product of claim 16, wherein
said processing comprises partitioning said received data.

18. The computer program product of claim 17, wherein
said plurality of stages comprises at least two parallel stages.

19. The computer program product of claim 16, wherein
each stage saves data received by that stage and unprocessed
by that stage in response to said indication of an error.

20. The computer program product of claim 19, wherein
said computer readable program code is further configured to
Suspend each stage of processing in response to said indica
tion of an error.

21. The computer program product of claim 16, wherein
said computer readable program code is further configured to
poll said stages to determine whether said error has been
corrected.

