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DYNAMIC POWER CONVERTER 
SWITCHING FOR DISPLAYS BASED ON 

PREDICTED POWER USAGE 

BACKGROUND 

[ 0001 ] Display devices may include light emitting ele 
ments that generate light using electrical energy . For 
instance , an organic light emitting diode ( OLED ) display 
device may include a matrix of OLEDs that each generate 
light using electrical energy . The amount of electrical energy 
consumed by a light emitted element may be related to what 
is being displayed by the display . For instance , an OLED 
display may consume more power when displaying a 
brighter image than when displaying a darker image . 

SUMMARY 

computing device at a future time , an amount of power to be 
used by the display at the future time ; selecting , based on the 
estimated power level , a power converter of a plurality of 
power converters of the mobile computing device , each of 
the plurality of power converters optimized for a different 
output power range ; and causing electrical power from the 
selected power converter to be supplied to the display at the 
future time . 
[ 0005 ] In another example , a device includes a display ; a 
plurality of power converters configured to supply electrical 
power to the display , each optimized for a different output 
power range ; and circuitry configured to estimate , based on 
content to be displayed at the display at a future time , an 
amount of power to be used by the display at the future time ; 
select , based on the estimated power level , a power con 
verter of the plurality of power converters ; and cause elec 
trical power from the selected power converter to be sup 
plied to the display at the future time . 
[ 0006 ] In another example , a device includes a plurality of 
power converters configured to supply electrical power to a 
display , each optimized for a different output load current 
range , wherein each power converter of the plurality of 
power converters includes a respective set of ELVDD and 
ELVSS power converters ; means for estimating , based on 
content to be displayed at a display of the device at a future 
time , an amount of power to be used by the display at the 
future time ; means for selecting , based on the estimated 
power level , a power converter of the plurality of power 
converters ; and means for causing electrical power from the 
selected power converter to be supplied to the display at the 
future time . 
[ 0007 ] The details of one or more examples are set forth 
in the accompanying drawings and the description below . 
Other features , objects , and advantages of the disclosure will 
be apparent from the description and drawings , and from the 
claims . 

BRIEF DESCRIPTION OF DRAWINGS 
a 

[ 0002 ] In general , aspects of this disclosure are directed to 
systems that include power converters that supply electrical 
power to a display ( e.g. , to light emitting elements of the 
display ) . A display may consume varying amounts of power 
based on what is being displayed ( e.g. , based on the bright 
ness of what is being displayed ) . Power converters may be 
designed to operate efficiently ( e.g. , output power vs. input 
power ) in certain ranges . For instance , a particular power 
converter may be optimized to supply load currents in a 
range from 60 milliamps ( mA ) to 300 mA . When a display 
supplied by the particular power converter draws an amount 
of current outside the optimized range , the particular power 
converter is still able to supply the required power , but with 
reduced efficiency . A system may include a plurality of 
power converters configured to supply electrical power to a 
display , each optimized for a different output load current 
range . A controller of the system may select a power 
converter of the plurality of power converters to supply 
power to the display . However , selecting the power con 
verter based on amount of power currently used by the 
display may not be desirable . For instance , if the selected 
power converter is not the optimal power converter for the 
amount of power presently being used by the display , the 
controller may switch to the optimal power converter . How 
ever , such mid - frame switching may introduce flickering , 
which may be undesirable . As such , the controller may need 
to select between the non - desirable options of using a 
non - optimal power converter and introducing flickering . 
[ 0003 ] In accordance with one or more techniques of this 
disclosure , a controller of a device may select a power 
converter from a plurality of power converters to supply 
power to a display based on an amount of power predicted 
to be used by the display at a future time . For instance , a 
controller of a device may estimate , based on content of 
frame N , an amount of power to be used by a display of the 
device to output frame N at a future time . The controller may 
select a power converter that matches the estimated amount 
of power and cause electrical power from the selected power 
converter to be supplied to the display at the future time ( i.e. , 
while the display is outputting frame N ) . As such , the power 
converter of the plurality of power converters that can most 
efficiently supply the amount of power used by the display 
will be dynamically used without introducing flickering . In 
this way , the techniques of this disclosure enable a reduction 
in the amount of power used to drive displays . 
[ 0004 ] In one example , a method includes estimating , 
based on content to be displayed at a display of a mobile 

[ 0008 ] FIG . 1 is a block diagram illustrating a device that 
includes a plurality of power converters configured to supply 
electrical power to a display , in accordance with one or more 
aspects of this disclosure . 
[ 0009 ] FIG . 2 is a graph illustrating example efficiencies 
across output load currents for various power converters of 
power converters , in accordance with one or more aspects of 
this disclosure . 
[ 0010 ] FIG . 3 is a block diagram illustrating details of 
another example of the device of FIG . 1 , in accordance with 
one or more aspects of this disclosure . 
[ 0011 ] FIGS . 4A and 4B are conceptual diagrams illus 
trating analog data power , in accordance with one or more 
aspects of this disclosure . 
[ 0012 ] FIG . 5 is a conceptual diagram illustrating compo 
nents of a display , in accordance with one or more aspects 
of this disclosure . 
[ 0013 ] FIG . 6 is a conceptual diagram illustrating a 
machine learning model that predicts emission power of a 
display , in accordance with one or more aspects of this 
disclosure . 
[ 0014 ] FIGS . 7A through 7E are conceptual diagrams 
illustrating aspects of an example machine learned model 
according to example implementations of the present dis 
closure . 
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[ 0015 ] FIG . 8 is a flowchart illustrating example opera 
tions of an example controller configured to dynamically 
select a power converter from a plurality of power convert 
ers , in accordance with one or more aspects of the present 
disclosure . 

DETAILED ABSTRACT OF THE INVENTION 

form pixels of a display . As one example , where display 12 
is an LCD display , display 12 may include one or more light 
emitting elements arranged as a backlight . As another 
example , where display 12 is an OLED display or a 
microLED display , display 12 may include a plurality of 
light emitting elements individually operating as pixels . 
[ 0022 ] An example circuit of a single light emitting ele 
ment of display 12 is shown in box 14 of FIG . 1. For 
simplicity , only a single light emitting element is shown . 
However , it is understood that display 12. includes a plu 
rality of circuits that perform operations similar to the 
example circuit shown in box 14. As shown in box 14 , light 
emitting element 16 ( e.g. , a light emitting diode ( LED ) ) may 
be coupled to an ELVSS node and current source 18. The 
ELVSS node and the ELVDD node may be respectively 
supplied by the ELVSS and ELVDD power signals gener 
ated by power manager 6. The state of current source 18 may 
control the amount of current that flows through light 
emitting element 16. The amount of light emitted by light 
emitting element 16 is a function of an intrinsic factor of 
light emitting element 16 ( e.g. , eta or n ) and the amount of 
current flowing through light emitting element 16 ( e.g. , 
IOLED ) . For instance , the amount of light emitted by light 
emitting element 16 may be given by the following equation 
L = n * IOLED , where L is the amount of light emitted by light 
emitting element 16. As such , the amount of current pro 
vided by current source 18 , IOLED , is a function of several 
parameters such as a display brightness setting ( e.g. , display 
brightness value ( DBV ) ) and content to be displayed ( e.g. , 
a red - green - blue ( RGB ) value ) . In other words , IOLED ~ f 
( DBV , R , G , B ) . 
[ 0023 ] As can be seen from above , the amount of power 
consumed by the light emitting elements of display 12 may 
vary based on the image being formed by display 12. For 
instance , light emitting elements of display 12 may consume 
more power ( e.g. , a higher current level ) when display 12 is 
displaying a brighter image than when display 12 is dis 
playing a darker image . 
[ 0024 ] The total amount of power used by display 12 may 
be a function of emission power , data power , and gate 
driving power . The emission power may be the power 
actually used by light emitting elements . As discussed 
above , the power used by light emitting elements may be a 
function of the display brightness value ( DBV ) and content 
to be displayed . The emission power may be generated using 
the ELVDD and the ELVSS power rails ( e.g. , provided by 
power manager 6 ) . The analog data power may be the power 
used to adjust the output of the light emitting elements ( e.g. , 
used by driver IC 22 ) . As discussed in further detail below , 
the analog data power may be a function of a data line 
capacitance , the DBV , a frame rate , and the content to be 
displayed . The analog data power may be generated using 
the AVDD power rail ( e.g. , provided by power manager 6 ) . 
The gate driving power may be the power used to drive 
various gates of display 12 , such as gates of gate - in - panel 
( GIP ) modules 24A and 24B . The gate driving power may be 
generated using the AVDD power rail ( e.g. , provided by 
power manager 6 ) . As discussed in further detail below , the 
gate driving power may be a function of a data line capaci 
tance , the DBV , the frame rate , and the content to be 
displayed . 
[ 0025 ] As discussed above , power manager 6 may include 
a power converter configured to supply power signals ( e.g. , 
AVDD , ELVDD , and ELVSS ) that may be used to drive light 

[ 0016 ] FIG . 1 is a block diagram illustrating a device that 
includes a plurality of power converters configured to supply 
electrical power to a display , in accordance with one or more 
aspects of this disclosure . As shown in FIG . 1 , device 2 , 
includes , power source 4 , power manager 6 , multiplexer 8 , 
controller 10 , and display 12 . 
[ 0017 ] In the example of FIG . 1 , device 2 can be any 
device that includes a display . Examples of device 2 include , 
but are not limited to , a mobile phone , a camera device , a 
tablet computer , a smart display , a laptop computer , a 
desktop computer , a gaming system , a media player , an 
e - book reader , a television platform , a vehicle infotainment 
system or head unit , or a wearable computing device ( e.g. , 
a computerized watch , a head mounted device such as a 
VR / AR headset , computerized eyewear , a computerized 
glove ) . 
[ 0018 ] Power source 4 may be any component capable of 
supplying electrical power to other components of device 2 . 
Examples of power source 4 include , but are not limited to , 
batteries ( primary cells , secondary cells , or combinations 
thereof ) , photovoltaic panels , mechanical generators , fuel 
cells , or any other device capable of providing electrical 
power . 
[ 0019 ] Power manager 6 may include one or more com 
ponents capable of processing and supplying electrical 
power for use by other components of device 2 , such as 
display 12. In some examples , power manager 6 may be a 
plurality of components separately attached to a board ( e.g. , 
a printed circuit board ) of device 2. In some examples , one 
or more components of power manager 6 may be included 
in an integrated circuit , which may be referred to as a power 
management integrated circuit ( PMIC ) . Power manager 6 
may be capable of concurrently supplying at least two power 
signals ( e.g. , for use by display 12 ) . For instance , where 
display 12 is an organic light emitting diode ( OLED ) dis 
play , power manager 6 may include a power converter 
configured to supply an ELVDD power signal and an ELVSS 
power signal . In some examples , power manager 6 may be 
capable of five power signals . Such power signals may 
include the ELVDD power signal , the ELVSS power signal , 
an AVDD power signal ( e.g. , an analog power signal for 
pixel data drivers and a timing controller ) , VDDI and VCI 
power signals ( e.g. , digital power for peripheral blocks ) . 
[ 0020 ] Display 12 may be capable of rendering data into 
images viewable by a user of device 2. For example , display 
12 may include a matrix of pixels that are individually 
controllable . Examples of display 12 include , but are not 
limited to , liquid crystal displays ( LCD ) , light emitting 
diode ( LED ) displays , organic light - emitting diode ( OLED ) 
displays ( including , for example , active - matrix organic 
light - emitting diode ( AMOLED ) ) , microLED displays , or 
similar monochrome or color displays capable of outputting 
visible information to a user of device 2 . 
[ 0021 ] Display 12 may include one or more light emitting 
elements , operation of which may be controlled via gate in 
plane ( GIP ) 24A and 24B along with driver IC 22. The light 
emitting elements may form a backlight for a display or may 

a 

a 
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emitting elements of display 12 or other components of 
display 12 ( e.g. , driver IC 22 , GIP 24A , and GIP 24B ) . 
Examples of such a power converter include DC / DC con 
verters such as buck , boost , buck - boost , Cuk ( also known as 
a two inductor inverting converter ) , flyback , or any other 
type of DC / DC converter . In one specific example , power 
manager 6 may include a boost converter configured to 
generate the ELVDD power signal and a buck - boost con 
verter configured to generate the ELVSS power signal . By 
their nature , power converters have different efficiencies 
under different operational conditions ( e.g. , efficiency may 
be a function of output current ) . In general , efficiency may 
be considered to be the amount of power provided by a 
power converter relative to the amount of power consumed 
by the power converter . For instance , a power converter that 
consumes 10 watts ( W ) of power while outputting 9 W may 
be considered to be 90 % efficient . Values of components of 
a power converter may influence the efficiency of the power 
converter and may thus be selected to achieve certain 
efficiency targets . For instance , the values of inductors and 
capacitors of the power converter of power manager 6 may 
be selected to provide optimal efficiency at a normal oper 
ating current level of display 12 . 
[ 0026 ] However , in some examples , a display , such as 
display 12 , may be operated such that there is no one normal 
operating current level . For instance , in addition to a normal 
mode in which images are displayed with normal brightness 
and display 12 consumes a normal operating current level 
( e.g. , between approximately 50 mA and 200 mA ) , device 
2 / display 12 may operate in a dark mode in which images 
are altered so as to appear darker ( e.g. , with a lower 
brightness than the normal mode ) and display 12 consumes 
a reduced operating current level ( e.g. , between approxi 
mately 10 mA and 50 mA ) , a lock mode in which limited 
information is displayed ( e.g. , just the time , date , etc. ) , 
and / or any other mode in which the operating current level 
of display 12 is different than the normal operating current 
level . 

[ 0027 ] In order to reduce the total amount of power 
consumed to display images , power manager 6 may include 
a plurality of power converters 20A - 20N ( collectively , 
“ power converters 20 " ) that are each optimized for a dif 
ferent output load current range . For instance , as opposed to 
including only a single set of ELVDD / ELVSS power con 
verters , power converters 20 may each include a respective 
set of ELVDD / ELVSS power converters optimized to supply 
electrical power to display 12 at a different current range . 
[ 0028 ] In operation , controller 10 may dynamically switch 
which power converter of power converters 20 is supplying 
electrical power to display 12. For instance , controller 10 
may measure an amount of power presently being used by 
display 12 ( e.g. , an amount of current used by display 12 ) , 
select , based on the measured power level , a power con 
verter of power converters 20 , and cause electrical power 
from the selected power converter of power converters 20 to 
be supplied to display 12. However , switching power con 
verters based on an amount of power presently being used by 
display 12 may present one or more disadvantages . For 
instance , mid - frame power converter switching may intro 
duce flickering . The amount of power used by display 12 is 
a function of content being displayed at display 12. Different 
frames of content may be drastically different , and as such 
require drastically different amounts of power . As such , if 
the selected power converter of power converters 20 is not 

the optimal power converter for the amount of power 
presently being used by display 12 , controller 10 may switch 
to the optimal power converter of power converters 20. Such 
mid - frame switching may introduce flickering , which may 
be undesirable . 
[ 0029 ] In accordance with one or more techniques of this 
disclosure , controller 10 may select a power converter from 
power converters 20 to supply power to display 12 based on 
an amount of power predicted to be used by display 12 at a 
future time . For instance , controller 10 may estimate , based 
on content of frame N , an amount of power to be used by 
display 12 to output frame N at a future time . Controller 10 
may select a power converter of power converters 20 that 
matches the estimated amount of power and cause electrical 
power from the selected power converter to be supplied to 
display 12 at the future time . For instance , controller 10 may 
cause the selected power converter to supply power to 
display 12 while the display is outputting frame N , as 
opposed to switching to the selected power converter mid 
way through the output of frame N. As such , the power 
converter of power converters 20 that can most efficiently 
supply the amount of power used by display 12 may be 
dynamically used without introducing flickering . In this 
way , the techniques of this disclosure enable a reduction in 
the amount of power used to drive display 12 . 
[ 0030 ] Controller 10 may be any controller or processor 
capable of performing the operations described herein . 
Examples of controller 10 include , but are not limited to , one 
or more digital signal processors ( DSPs ) , general purpose 
microprocessors , application specific integrated circuits 
( ASICs ) , field programmable logic arrays ( FPGAs ) , systems 
on a chip ( SOC ) , or other equivalent integrated or discrete 
logic circuitry . 
[ 0031 ] FIG . 2 is a graph illustrating example efficiencies 
across output load currents for various power converters of 
power converters 20 , in accordance with one or more aspects 
of this disclosure . As shown in FIG . 2 , graph 200 includes 
a horizontal axis representing output load current of a power 
converter , a vertical axis representing efficiency of a power 
converter , and plots 202A and 202B representing example 
relationships between efficiency and output load current for 
various power converters . For instance , plot 202A may 
represent the relationship between efficiency and output load 
current for power converter 20A of FIG . 1 and plot 202B 
may represent the relationship between efficiency and output 
load current for power converter 20B of FIG . 1 . 
[ 0032 ] As can be seen from plots 202A and 202B in FIG . 
2 , power converters 20A and 20B may be optimized for 
efficient operation in different load current ranges . For 
instance , as can be seen from plot 202A , power converter 
20A may be optimized for efficient operation from approxi 
mately 10 mA to approximately 50 mA . Similarly , as can be 
seen from plot 202B , power converter 20B may be opti 
mized for efficient operation from approximately 50 mA to 
approximately 250 mA . 
[ 0033 ] In operation , multiplexer 8 and / or controller 10 
may enable dynamic switching between power converters 
20. For instance , controller 10 may estimate a current level 
to be used by display 12 at a future time . As discussed in 
further detail below , controller 10 may estimate the current 
level based on one or more of a variety of factors such as a 
display brightness setting and content to be displayed by 
display 12. Controller 10 may select , based on the estimated 
current level , a power converter of power converters 20. For 
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PEM = f ( DBV ) . [ ELVDD - ELVSS ) · ( R , G , B ) 
i - 1 -1 

[ 0039 ] In other words , EM power calculator 32 may sum , 
across all pixels of display 12 , a function of the RGB value 
to be displayed at each pixel times a voltage difference 
between ELVDD and ELVSS . EM power calculator 32 may 
multiple this sum by a function of the display brightness 
value ( DBV ) , assuming the same DBV is used for all pixels . 
The theoretical and analytical techniques may differ in their 
approaches to determining f ( DBV ) and f ( R , G , B ) . To deter 
mine f ( DBV ) and / or f ( R , G , B ) using the theoretical tech 
nique , EM power calculator 32 may use models based on 
theoretical parameters of display 12. As one example , EM 
power calculator 32 may use the following theoretical 
equation to determine the function of the display brightness 
value : 

f ( DBV ) = 

Normal Mode LMAX NORM DBV 
4079 

LMAX HBM - LMAX_NORM · ( DBV - 4079 ) + LMAX_NORM 4095 – 4079 
HB Mode 

where LMAX_NORM 

instance , controller 10 may select the power converter of 
power converters 20 that is optimized to supply electrical 
power at the estimated current level . Controller 10 may 
cause electrical power from the selected power converter to 
be supplied to display 12 at the future time . As one example , 
where device 2 includes multiplexer 8 , controller 10 may 
cause multiplexer 8 to route ELVDD and ELVSS power 
signals from the selected power converter to display 12. As 
another example , ( e.g. , where multiplexer 8 is omitted and 
the outputs of all of power converters 20 are connected to 
common ELVSS and ELVSS nodes , such as shown in FIG . 
3 ) , controller 10 may cause the selected power converter of 
power converters 20 to output the power signals and cause 
the other power converters to refrain from outputting the 
power signals . 
[ 0034 ] FIG . 3 is a block diagram illustrating details of 
another example of the device of FIG . 1 , in accordance with 
one or more aspects of this disclosure . As shown in the 
example FIG . 3 as opposed to FIG . 1 , device 2 may omit 
multiplexer 8 and the outputs of power converters 20 may be 
connected to common nodes ( e.g. , an ELVDD node and an 
ELVSS node ) which supply power to display 12. As dis 
cussed above , in such examples , controller 10 may dynami 
cally control which power converter of power converters 20 
supplies power by only operating the desired power con 
verter and shutting down the other power converters . 
[ 0035 ] As discussed above , controller 10 may enable 
dynamic switching between power converters 20. For 
instance , controller 10 may estimate a current level to be 
used by display 12 a future me , select , based on the 
estimated current level , a power converter of power con 
verters 20 , and cause electrical power from the selected 
power converter to be supplied to display 12 at the future 
time . 
[ 0036 ] As shown in FIG . 3 , controller 10 may include data 
path 30 , emission power ( EM ) calculator 32 , data power 
calculator 34 , gate power calculator 36 , and power selector 
38. Controller 10 may receive data from one or more other 
components of device 2. For instance , controller 10 may 
receive content , frame rate , and / or brightness settings from 
a central processing unit ( CPU ) of device 2. The content may 
represent what is to be displayed by display 12. For instance , 
the content may include pixel values ( e.g. , RGB values ) that 
collectively form an image to be displayed by display 12 . 
The brightness settings may indicate a general brightness 
level for operation of display 12. The brightness settings 
may be user controlled ( e.g. , via a slider or some other user 
interface element ) and / or may be automatically controlled 
by device 2 ( e.g. , based on ambient light sensed via a light 
sensor ) . 
[ 0037 ] Data path 30 may perform one or more actions to 
process the content before the content is provided to display 
12. For instance , data path 30 may include one or more 
frame buffers that store frames of image data to be shown at 
display 12 . 
[ 0038 ] EM power calculator 32 may predict an amount of 
power to be used by light emitting elements of display 12 
when outputting a particular frame . EM power calculator 32 
may predict or estimate the EM power using any combina 
tion of theoretical , analytical , and machine learning tech 
niques or models . To utilize the theoretical model or the 
analytical model , EM power calculator 32 may calculate the 
emission power using the following equation : 

is the maximum brightness level of a 
pixel of display 12 in the normal mode , and LMAX HBM is the 
maximum brightness level of a pixel of display 12 in the 
high brightness ( HB ) mode . 
[ 0040 ] As another example , EM power calculator 32 may 
use the following theoretical equation to determine the 
function of the content to be displayed : 

f ( R , G , B ) = GAMMA2.2 
> 

where GAMMA2.2 is the gamma value determined based 
on the R , G , B value . 
[ 0041 ] To determine f ( DBV ) and / or f ( R , G , B ) using the 
analytical technique , EM power calculator 32 may use 
models based on measured parameters of display 12. As one 
example , EM power calculator 32 may use the following 
analytical equation to determine the function of the display 
brightness value : 

f ( DBV ) = { = 
0.10538 DBV + 0.0011724 Normal Mode 

9.217 . DBV - - 36709 HB Mode 

[ 0042 ] As another example , EM power calculator 32 may 
use the following analytical equation to determine the func 
tion of the content to be displayed : 

f ( R , G , B ) = 0.6957e - ' R3 + 0.5471e - R2 – 0.3260e - 5R + 

0.5748e - 3 + 2.147e - 10 Gº + 0.4471e - G2 – 0.2260e - 5 G + 
0.7348e - 4 + 1.4957e - 1083 + 1.3471e - B2 – 0.2220e - 5B + 1.1748e - 4 

Where R is the gray code for the red value of content to be 
displayed at a pixel , G is the gray code for the green value 
of the content , and B is the gray code for the blue value of 
the content . 
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all blue sub - pixels are fully on ( e.g. , have a gray code of 
255 ) . As a result of this , the analog data amount of power 
( e.g. , PData ) may be based on the content displayed . 
[ 0047 ] FIG . 4B illustrates an example timing diagram of 
pixel programming . As shown in FIG . 4B , outputting a 
frame of data may include a pixel programming period and 
an optional blanking period . During the pixel programming 
period , driver IC 22 may output voltage levels that cause 
various sub - pixels to emit light at certain levels . 
[ 0048 ] Based on the above , data power calculator 34 may 
use the following theoretical equation to calculate the data 
line power : 

? R ' 

? R'G'B ' . 
T prog Data Line Power = Cline * V. * swing Froggle T frame 

a Where Cline is the capacitance of a line of sub - pixels ( e.g. , 
CLINE of FIG . 4A ) , Vswing is the swing voltage between 
adjacent sub - pixels , Froggle is the frame rate , Tprog is the 
length of the programming period , and Tframe is the length of 
the whole frame ( E.g. , Tprog plus Tblank ) . 
[ 0049 ] Based on this theoretical equation , data power 
calculator 34 may use the following analytical equation to 

Data calculate P Data : 

N M 

P data = Cline * AVDD * FR * relu [ Vinj + 1 – Vijl 
i = 1 j = 1 

[ 0043 ] EM power calculator 32 may determine the emis 
sion power using machine learning through several tech 
niques . The machine learning techniques may assist EM 
power calculator 32 in accounting for more complex aspects 
of display 12 , such as panel load resistance . In particular , 
panel load resistance may cause the combined sum of the 
emission powers for each color component to not be equal 
to total emission power ( e.g. , Pr + PG + PB PRGB ) . In one 
example , EM power calculator 32 may use a machine 
learning ( ML ) model to determine new gray codes for the 
color components to account for this panel resistance . For 
instance , EM power calculator 32 may utilize a ML model 
to compute new gray codes ( R ' , G ' , B ' ) such that Pri + PG + 
PB = PR This ML model may be trained based on past 
behaviors of display 12. EM power calculator 32 may use 
the ML derived new gray codes to determine the emission 
power . For instance , EM power calculator 32 may use the 
ML derived new gray codes to determine the emission 
power using the analytical or theoretical techniques dis 
cussed above . Additional or alternative techniques for using 
machine learning to determine the emission power are 
discussed below with reference to FIG . 6 . 
[ 0044 ] Data power calculator 34 may predict an amount of 
power to by used for analog data , such as by driver IC 22 
( i.e. , P Data ) . Data power calculator 34 may predict Pp 
based on several parameters , including data line capacitance 
( Cline ) , display brightness value ( DBV ) , frame rate , and 
content ( e.g. , RGB data ) . Further details of one example of 
data power calculator 34 are discussed below with reference 
to FIG . 4 . 
[ 0045 ] Gate power calculator 36 for gate control , such as 
by GIP 24A and GIP 24B ( i.e. , Prip ) . Gate power calculator 
36 may predict PGip . based on several parameters , including 
data line capacitance ( Cline ) , display brightness value 
( DBV ) , frame rate , and content ( e.g. , RGB data ) . Gate 
power calculator 36 may predict Prip . as a combination of 
one or more other power levels , such as a framerate 
dependent scan gate driver power P a pulse - width 
modulation ( PWM ) -dependent emission ( EM ) gate driver 
power PEM2 , and a miscellaneous power P Misc ( e.g. , scan 
clock , VG NGL generation , etc. ) . As such , in some 
examples , gate power calculator may calculate PGip = P Scant 
PEM2 + P Misc 
[ 0046 ] FIGS . 4A and 4B are conceptual diagrams illus 
trating analog data power , in accordance with one or more 
aspects of this disclosure . FIG . 4A illustrates an example 
arrangement of subpixels in rows and columns . In particular , 
FIG . 4A illustrates a so - called RGBG arrangement in which 
each pixel is made up of one red sub - pixel , two green 
sub - pixels , and one blue sub - pixel . The blue and red sub 
pixels are arranged on common columns ( e.g. , odd num 
bered columns ) , while the green sub - pixels are arranged on 
their own columns ( e.g. , even numbered columns ) . Due to 
various properties of the sub - pixels , the voltages needed to 
achieve certain gray codes may be different for different 
colors . For instance , the voltage needed to achieve blue gray 
code 255 may be different than ( e.g. , greater ) the voltage 
needed to achieve red gray code 255. When programming 
sub - pixel output levels , the amount of power consumed may 
be a function of the differences between voltages of adjacent 
pixels . The difference in voltage of one sub - pixel to the next 
sub - pixel may be referred to as the swing voltage or V 
The worst - case scenario ( greatest power usage ) may be 
where all red sub - pixels are off ( e.g. have gray code of C ) and 

. 

Scan ? 

Where Cline is the capacitance of a line of sub - pixels ( e.g. , 
Cline of FIG . 4A ) , AVDD is the voltage level of the AVDD 
rail ( e.g. , produced by a power converter of power convert 
ers 20 of FIG . 1 ) , Vi ; is the voltage needed to program the 
sub - pixel at location inj , and relu [ ] is the rectified linear unit 
function ( e.g. , as swinging from a higher programming 
voltage to a lower programming voltage does not consume 
power whereas swinging from a low programming voltage 
to a high programming voltage does consume power ) . 
[ 0050 ] For completeness , it is again noted that the pro 
gramming voltage of a sub - pixel is a function of both the 
gray code of the sub - pixel and the display brightness value . 
As such , data power calculator 34 may determine P Data 
based on one or more of : content to be displayed , display 
brightness value , frame rate , and dataline capacitance . 
[ 0051 ] FIG . 5 is a conceptual diagram illustrating compo 
nents of a display , in accordance with one or more aspects 
of this disclosure . As discussed above , panel load resistance 
may have an impact on the amount of current used to drive 
light emitting elements ( e.g. , have an impact on IOLED ) . The 
panel load resistance , also referred to as internal resistance 
( IR ) , may be formed of the collective resistances of com 
ponents internal to display 12. For instance , as shown in 
FIG . 5 , each additional row of pixels may introduce an 
additional resistance . The accumulated resistance may be 
relatively small close to driver IC 22 ( e.g. , in rows near the 
“ bottom ” such as y = 1 ) but may be relatively large far away 
from driver IC 22 ( e.g. , in rows near the “ top ” such as y = M ) . 
The result of these changes in IR may cause the amount of 
current used to drive light emitting elements to be a function 
of the distance away ( e.g. , number of rows , or y coordinate 
in FIG . 5 ) from driver IC 22. For instance , LoLED may be a 
function of display brightness value ( DBV ) , red gray code 

2 

a 

Swing 



US 2022/0415256 A1 Dec. 29 , 2022 
6 

TABLE 1 

Current Range Power Converter 

10 mA - 50 mA 
51 mA - 250 mA 

Power converter 20A 
Power converter 20B 

a 

R , green gray code G , blue gray code B , and position y ( e.g. , 
IOLED - f ( DBV , R , G , B , y ) ) . In some example , y may represent 
the distance ( e.g. , in number of pixels ) that the particular 
row is away from driver IC 22 . 
[ 0052 ] This dependence on position y may cause the 
above - described analytical equations for emission power to 
not hold true . In accordance with one or more techniques of 
this disclosure , EM power calculator 32 may use a machine 
learning model to predict the emission power of display 12 . 
For instance , EM power calculator 32 may use a machine 
learning model may be trained based on prior emission 
power consumption of display 12 while displaying various 
patterns at various locations to predict IOLED . As such , the 
machine learning model may account of for the panel load 
resistance . 
[ 0053 ] FIG . 6 is a conceptual diagram illustrating a 
machine learning model that predicts emission power of a 
display , in accordance with one or more aspects of this 
disclosure . As discussed above , EM power calculator 32 
may use a machine learning model to predict the emission 
power of display 12. In some examples , the machine learn 
ing model may be a deep neural network , such as a convo 
lutional neural network ( CNN ) , to predict the emission 
power . Using a CNN to predict the emission power may 
present one or more advantages . For instance , CNNs may 
preserve location information ( e.g. , the row information or 
" y " from FIG . 5 ) . 
[ 0054 ] As shown in FIG . 6 , EM power calculator 32 may 
receive content 602 , which is content to be displayed at 
display 12 at a future time . Content 602 may be in the form 
of an RGB matrix , referred to as an input RGB matrix . EM 
power calculator 32 may executed ML model 604 to process 
content 602 to determine a predicted amount of emission 
power . For instance , EM power calculator 32 may deter 
mine , using ML model 604 and based on content 602 , IOLED : 
[ 0055 ] EM power calculator 32 may determine the total 
emission power based on the determined ToLED . For 
instance , EM power calculator 32 may determine the emis 
sion power using the below analytical equation . 

PDara + P GIP 
EM 

[ 0058 ] As shown above in Table 1 , if the estimated power 
level is between 10 mA and 50 mA , power selector 38 may 
select power converter 20A . Similarly , if the estimated 
power level is between 51 mA and 250 mA , power selector 
38 may select power converter 20B . 
[ 0059 ] In some examples , power selector 38 may select a 
set of power converters from power converters 20. For 
instance , where power converters 20 includes a first set of 
power converters configured to supply a first power rail 
( e.g. , a set of EVLDD and EVLSS converters ) and a second 
set of power converters configured to supply a second power 
rail ( e.g. , a set of AVDD converters ) , power selector 38 may 
select a power converter from the first set and a power 
converter from the second set . As one example , power 
selector 38 may select , based on the emission power , an 
ELVDD / ELVSS converter from a set of ELVDD / ELVSS 
converters and select , based on the gate driving amount of 
power and the data amount of power , an AVDD converter 
from a set of AVDD converters . The selection of power 
converters may be separate or may be joint . For instance , in 
joint selection , power selector 38 may always select the 
same AVDD converter for a particular ELVDD / ELVSS 
converter . In separate selection , power selector 38 may 
select the AVDD converter that is optimized to output 

and select the ELVDD / ELVSS that is optimized 
to output P 
[ 0060 ] Power selector 38 may cause electrical power from 
the selected power converter to be supplied to the display at 
the future time . As one example , as shown in the example of 
FIG . 3 , power selector 38 may cause the selected power 
converter of power converters 20 to supply electrical power 
to display 12 while causing the other power converters of 
power converters 20 to not supply electrical power to 
display 12. As another example , as shown in the example of 
FIG . 1 , power selector 38 may output a signal to multiplexer 
8 that causes power from the selected power converter of 
power converters 20 to be routed to display 12 ( while 
similarly not operating the other power converters of power 
converters 20 ) . 
[ 0061 ] Controller 10 may be configured to periodically 
update the selection of a power converter from power 
converters 20. For instance , controller 10 may be configured 
to update the selection of the power converter from power 
converters 20 based on an occurrence of an event . Example 
events include , but are not limited to , display 12 displaying 
a particular quantity of frames ( e.g. , 1 , 5 , 10 , 20 , 30 , 60 , 120 , 
etc. ) , passage of a particular amount of time ( e.g. , 1 second , 
2 seconds , 5 seconds , 10 seconds , 30 seconds , 1 minute , 
etc. ) , and the like . As one example , controller 10 may 
determine that the event has occurred responsive to deter 
mining that a particular quantity of frames has been dis 
played by display 12 ( e.g. , based on monitoring of a frame 
buffer of , or used by , display 12 ) . As another example , 
controller 10 may determine that the event has occurred 
responsive to determining that a particular amount of time 
has passed . 
[ 0062 ] FIGS . 7A through 7E are conceptual diagrams 
illustrating aspects of an example machine learned model 

N M 

PEM = [ ELVDD - ELVSS ) - Aloled [ i , j ] = 

1-1 j - 1 

EM 

where IOLED [ i , j ] -f ( DBV , R , G , B , y ) . 
[ 0056 ] Referring back to FIG . 3 , power selector 38 may be 
configured to select a power converter of power converters 
20 based on one or more of the estimated power levels . For 
instance , power selector 38 may estimate a total amount of 
power to be used by display 12 based on one or more of the 
estimated emission amount of power P the estimated a 
data amount of power P Data , and / or the estimated gate 
driving amount of power P The total amount of power 
may be expressed as a current level ( e.g. , assuming consis 
tent voltages ) or as a watt level . 
[ 0057 ] In some example , power selector 38 may include a 
look - up table ( LUT ) that maps between current levels and 
power converters . An example LUT is shown below in Table 
1 . 

' 

GIP . 
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according to example implementations of the present dis 
closure . FIGS . 7A through 7E are described below in the 
context of models 604 of FIG . 6. For example , in some 
instances , machine - learned model 300 , as referenced below , 
may be an example of any of model 604 . 
[ 0063 ] FIG . 7A depicts a conceptual diagram of an 
example machine learned model according to example 
implementations of the present disclosure . As illustrated in 
FIG . 7A , in some implementations , machine learned model 
300 is trained to receive input data of one or more types and , 
in response , provide output data of one or more types . Thus , 
FIG . 7A illustrates machine learned model 300 performing 
inference . 
[ 0064 ] The input data may include one or more features 
that are associated with an instance or an example . In some 
implementations , the one or more features associated with 
the instance or example can be organized into a feature 
vector ( e.g. , an RGB matrix ) . In some implementations , the 
output data can include one or more predictions . Predictions 
can also be referred to as inferences . Thus , given features 
associated with a particular instance , machine learned 
model 300 can output a prediction for such instance based on 
the features . 
[ 0065 ] Machine learned model 300 can be or include one 
or more of various different types of machine learned mod 
els . In particular , in some implementations , machine learned 
model 300 can perform classification , regression , clustering , 
anomaly detection , recommendation generation , and / or 
other tasks . 
[ 0066 ] In some implementations , machine learned model 
300 can perform various types of classification based on the 
input data . For example , machine learned model 300 can 
perform binary classification or multiclass classification . In 
binary classification , the output data can include a classifi 
cation of the input data into one of two different classes . In 
multiclass classification , the output data can include a clas 
sification of the input data into one ( or more ) of more than 
two classes . The classifications can be single label or multi 
label . Machine learned model 300 may perform discrete 
categorical classification in which the input data is simply 
classified into one or more classes or categories . 
[ 0067 ] In some implementations , machine - learned model 
300 can perform classification in which machine - learned 
model 300 provides , for each of one or more classes , a 
numerical value descriptive of a degree to which it is 
believed that the input data should be classified into the 
corresponding class . In some instances , the numerical values 
provided by machine - learned model 300 can be referred to 
as “ confidence scores ” that are indicative of a respective 
confidence associated with classification of the input into the 
respective class . In some implementations , the confidence 
scores can be compared to one or more thresholds to render 
a discrete categorical prediction . In some implementations , 
only a certain number of classes ( e.g. , one ) with the rela 
tively largest confidence scores can be selected to render a 
discrete categorical prediction . 
[ 0068 ] Machine learned model 300 may output a proba 
bilistic classification . For example , machine - learned model 
300 may predict , given a sample input , a probability distri 
bution over a set of classes . Thus , rather than outputting only 
the most likely class to which the sample input should 
belong , machine learned model 300 can output , for each 
class , a probability that the sample input belongs to such 
class . In some implementations , the probability distribution 

over all possible classes can sum to one . In some imple 
mentations , a Softmax function , or other type of function or 
layer can be used to squash a set of real values respectively 
associated with the possible classes to a set of real values in 
the range ( 0 , 1 ) that sum to one . 
[ 0069 ] In some examples , the probabilities provided by 
the probability distribution can be compared to one or more 
thresholds to render a discrete categorical prediction . In 
some implementations , only a certain number of classes 
( e.g. , one ) with the relatively largest predicted probability 
can be selected to render a discrete categorical prediction . 
[ 0070 ] In cases in which machine learned model 300 
performs classification , machine learned model 300 may be trained using supervised learning techniques . For example , 
machine - learned model 300 may be trained on a training 
dataset that includes training examples labeled as belonging 
( or not belonging ) to one or more classes . Further details 
regarding supervised training techniques are provided below 
in the descriptions of FIGS . 7B through 7E . 
[ 0071 ] In some implementations , machine learned model 
300 can perform regression to provide output data in the 
form of a continuous numeric value . The continuous 
numeric value can correspond to any number of different 
metrics or numeric representations , including , for example , 
currency values , scores , or other numeric representations . As 
examples , machine learned model 300 can perform linear 
regression , polynomial regression , or nonlinear regression . 
As examples , machine learned model 300 can perform 
simple regression or multiple regression . As described 
above , in some implementations , a Softmax function or 
other function or layer can be used to squash a set of real 
values respectively associated with a two or more possible 
classes to a set of real values in the range ( 0 , 1 ) that sum to 
one . 

a 
[ 0072 ] Machine learned model 300 may perform various 
types of clustering . For example , machine learned model 
300 can identify one or more previously - defined clusters to 
which the input data most likely corresponds . Machine 
learned model 300 may identify one or more clusters within 
the input data . That is , in instances in which the input data 
includes multiple objects , documents , or other entities , 
machine learned model 300 can sort the multiple entities 
included in the input data into a number of clusters . In some 
implementations in which machine learned model 300 per 
forms clustering , machine learned model 300 can be trained 
using unsupervised learning techniques . 
[ 0073 ] Machine learned model 300 may perform anomaly 
detection or outlier detection . For example , machine learned 
model 300 can identify input data that does not conform to 
an expected pattern or other characteristic ( e.g. , as previ 
ously observed from previous input data ) . As examples , the 
anomaly detection can be used for fraud detection or system 
failure detection . 
[ 0074 ] In some implementations , machine learned model 
300 can provide output data in the form of one or more 
recommendations . For example , machine - learned model 
300 can be included in a recommendation system or engine . 
As an example , given input data that describes previous 
outcomes for certain entities ( e.g. , a score , ranking , or rating 
indicative of an amount of success or enjoyment ) , machine 
learned model 300 can output a suggestion or recommen 
dation of one or more additional entities that , based on the 
previous outcomes , are expected to have a desired outcome 
( e.g. , elicit a score , ranking , or rating indicative of success 
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or enjoyment ) . As one example , given input data descriptive 
of content to be output at a display of a computing device , 
such as device 2 of FIG . 1 , a controller , such as controller 10 
of FIG . 1 , can predict an amount of power that will be used 
to output the content . 
[ 0075 ] Machine learned model 300 may , in some cases , 
act as an agent within an environment . For example , 
machine learned model 300 can be trained using reinforce 
ment learning , which will be discussed in further detail 
below . 
[ 0076 ] In some implementations , machine learned model 
300 can be a parametric model while , in other implemen 
tations , machine learned model 300 can be a non - parametric 
model . In some implementations , machine - learned model 
300 can be a linear model while , in other implementations , 
machine learned model 300 can be a non - linear model . 
[ 0077 ] As described above , machine learned model 300 
can be or include one or more of various different types of 
machine - learned models . Examples of such different types 
of machine learned models are provided below for illustra 
tion . One or more of the example models described below 
can be used ( e.g. , combined ) to provide the output data in 
response to the input data . Additional models beyond the 
example models provided below can be used as well . 
[ 0078 ] In some implementations , machine learned model 
300 can be or include one or more classifier models such as , 
for example , linear classification models ; quadratic classi 
fication models ; etc. Machine learned model 300 may be or 
include one or more regression models such as , for example , 
simple linear regression models ; multiple linear regression 
models ; logistic regression models ; stepwise regression 
models ; multivariate adaptive regression splines ; locally 
estimated scatterplot smoothing models ; etc. 
[ 0079 ] In some examples , machine learned model 300 can 
be or include one or more decision tree - based models such 
as , for example , classification and / or regression trees ; itera 
tive dichotomiser 3 decision trees ; C4.5 decision trees ; 
chi - squared automatic interaction detection decision trees ; 
decision stumps ; conditional decision trees ; etc. 
[ 0080 ] Machine learned model 300 may be or include one 

more kernel machines . In some implementations , 
machine learned model 300 can be or include one or more 
support vector machines . Machine learned model 300 may 
be or include one or more instance - based learning models 
such as , for example , learning vector quantization models ; 
self - organizing map models ; locally weighted learning mod 
els ; etc. In some implementations , machine learned model 
300 can be or include one or more nearest neighbor models 
such as , for example , k - nearest neighbor classifications 
models ; k - nearest neighbors regression models ; etc. 
Machine learned model 300 can be or include one or more 
Bayesian models such as , for example , naïve Bayes models ; 
Gaussian naïve Bayes models ; multinomial naïve Bayes 
models ; averaged one - dependence estimators ; Bayesian net 
works ; Bayesian belief networks ; hidden Markov models ; 
etc. 
[ 0081 ] In some implementations , machine learned model 
300 can be or include one or more artificial neural networks 
( also referred to simply as neural networks ) . A neural 
network can include a group of connected nodes , which also 
can be referred to as neurons or perceptrons . A neural 
network can be organized into one or more layers . Neural 
networks that include multiple layers can be referred to as 
“ deep ” networks . A deep network can include an input layer , 

an output layer , and one or more hidden layers positioned 
between the input layer and the output layer ( e.g. , as shown 
in FIG . 6 ) . The nodes of the neural network can be connected 
or non - fully connected . 
[ 0082 ] Machine - learned model 300 can be or include one 
or more feed forward neural networks . In feed forward 
networks , the connections between nodes do not form a 
cycle . For example , each connection can connect a node 
from an earlier layer to a node from a later layer . 
[ 0083 ] In some instances , machine - learned model 300 can 
be or include one or more recurrent neural networks . In 
some instances , at least some of the nodes of a recurrent 
neural network can form a cycle . Recurrent neural networks 
can be especially useful for processing input data that is 
sequential in nature . In particular , in some instances , a 
recurrent neural network can pass or retain information from 
a previous portion of the input data sequence to a subsequent 
portion of the input data sequence through the use of 
recurrent or directed cyclical node connections . 
[ 008 ] In some examples , sequential input data can 
include time - series data ( e.g. , sensor data versus time or 
imagery captured at different times ) . For example , a recur 
rent neural network can analyze sensor data versus time to 
detect or predict a swipe direction , to perform handwriting 
recognition , etc. Sequential input data may include words in 
a sentence ( e.g. , for natural language processing , speech 
detection or processing , etc. ) ; notes in a musical composi 
tion ; sequential actions taken by a user ( e.g. , to detect or 
predict sequential application usage ) ; sequential object 
states ; etc. 
[ 0085 ] Example recurrent neural networks include long 
short - term ( LSTM ) recurrent neural networks ; gated recur 
rent units ; bi - direction recurrent neural networks ; continu 
ous time recurrent neural networks ; neural history compres 
sors ; echo state networks ; Elman networks ; Jordan 
networks ; recursive neural networks ; Hopfield networks ; 
fully recurrent networks ; sequence - to - sequence configura 
tions ; etc. 
[ 0086 ] In some implementations , machine learned model 
300 can be or include one or more convolutional neural 
networks . In some instances , a convolutional neural network 
can include one or more convolutional layers that perform 
convolutions over input data using learned filters . 
[ 0087 ] Filters can also be referred to as kernels . Convo 
lutional neural networks can be especially useful for vision 
problems such as when the input data includes imagery such 
as still images or video . However , convolutional neural 
networks can also be applied for natural language process 
ing . 
[ 0088 ] In some examples , machine learned model 300 can 
be or include one or more generative networks such as , for 
example , generative adversarial networks . Generative net 
works can be used to generate new data such as new images 
or other content . 
[ 0089 ] Machine learned model 300 may be or include an 
autoencoder . In some instances , the aim of an autoencoder is 
to learn a representation ( e.g. , a lower - dimensional encod 
ing ) for a set of data , typically for the purpose of dimen 
sionality reduction . For example , in some instances , an 
autoencoder can seek to encode the input data and the 
provide output data that reconstructs the input data from the 
encoding . Recently , the autoencoder concept has become 
more widely used for learning generative models of data . In 

or 
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a some instances , the autoencoder can include additional 
losses beyond reconstructing the input data . 
[ 0090 ] Machine learned model 300 may be or include one 
or more other forms of artificial neural networks such as , for 
example , deep Boltzmann machines ; deep belief networks ; 
stacked autoencoders ; etc. Any of the neural networks 
described herein can be combined ( e.g. , stacked ) to form 
more complex networks . 
[ 0091 ] One or more neural networks can be used to 
provide an embedding based on the input data . For example , 
the embedding can be a representation of knowledge 
abstracted from the input data into one or more learned 
dimensions . In some instances , embeddings can be a useful 
source for identifying related entities . In some instances , 
embeddings can be extracted from the output of the network , 
while in other instances embeddings can be extracted from 
any hidden node or layer of the network ( e.g. , a close to final 
but not final layer of the network ) . Embeddings can be 
useful for performing auto suggest next video , product 
suggestion , entity or object recognition , etc. In some 
instances , embeddings be useful inputs for downstream 
models . For example , embeddings can be useful to gener 
alize input data ( e.g. , search queries ) for a downstream 
model or processing system . 
[ 0092 ] Machine learned model 300 may include one or 
more clustering models such as , for example , k - means 
clustering models ; k - medians clustering models ; expectation 
maximization models ; hierarchical clustering models , etc. 
[ 0093 ] In some implementations , machine learned model 
300 can perform one or more dimensionality reduction 
techniques such as , for example , principal component analy 
sis ; kernel principal component analysis ; graph - based kernel 
principal component analysis ; principal component regres 
sion ; partial least squares regression ; Sammon mapping ; 
multidimensional scaling ; projection pursuit ; linear dis 
criminant analysis ; mixture discriminant analysis ; quadratic 
discriminant analysis ; generalized discriminant analysis ; 
flexible discriminant analysis ; autoencoding ; etc. 
[ 0094 ] In some implementations , machine learned model 
300 can perform or be subjected to one or more reinforce 
ment learning techniques such as Markov decision pro 
cesses ; dynamic programming ; Q functions or Q - learning ; 
value function approaches ; deep Q - networks ; differentiable 
neural computers ; asynchronous advantage actor - critics ; 
deterministic policy gradient ; etc. 
[ 0095 ] In some implementations , machine learned model 
300 can be an autoregressive model . In some instances , an 
autoregressive model can specify that the output data 
depends linearly on its own previous values and on a 
stochastic term . In some instances , an autoregressive model 
can take the form of a stochastic difference equation . One 
example autoregressive model is WaveNet , which is a gen 
erative model for raw audio . 
[ 0096 ] In some implementations , machine learned model 
300 can include or form part of a multiple model ensemble . 
As one example , bootstrap aggregating can be performed , 
which can also be referred to as “ bagging . ” In bootstrap 
aggregating , a training dataset is split into a number of 
subsets ( e.g. , through random sampling with replacement ) 
and a plurality of models are respectively trained on the 
number of subsets . At inference time , respective outputs of 
the plurality of models can be combined ( e.g. , through 
averaging , voting , or other techniques ) and used as the 
output of the ensemble . 

[ 0097 ] One example ensemble is a random forest , which 
can also be referred to as a random decision forest . Random 
forests are an ensemble learning method for classification , 
regression , and other tasks . Random forests are generated by 
producing a plurality of decision trees at training time . In 
some instances , at inference time , the class that is the mode 
of the classes ( classification ) or the mean prediction ( regres 
sion ) of the individual trees can be used as the output of the 
forest . Random decision forests can correct for decision 
trees ' tendency to overfit their training set . 
[ 0098 ] Another example ensemble technique is stacking , 
which can , in some instances , be referred to as stacked 
generalization . Stacking includes training a combiner model 
to blend or otherwise combine the predictions of several 
other machine learned models . Thus , a plurality of machine 
learned models ( e.g. , of same or different type ) can be 
trained based on training data . In addition , a combiner model 
can be trained to take the predictions from the other 
machine learned models as inputs and , in response , produce 
a final inference or prediction . In some instances , a single 
layer logistic regression model can be used as the combiner 
model . 
[ 0099 ] Another example ensemble technique is boosting . 
Boosting can include incrementally building an ensemble by 
iteratively training weak models and then adding to a final 
strong model . For example , in some instances , each new 
model can be trained to emphasize the training examples 
that previous models misinterpreted ( e.g. , misclassified ) . For 
example , a weight associated with each of such misinter 
preted examples can be increased . One common implemen 
tation of boosting is AdaBoost , which can also be referred to 
as Adaptive Boosting . Other example boosting techniques 
include LPBoost ; TotalBoost ; BrownBoost ; xgboost ; Mada 
Boost , LogitBoost , gradient boosting ; etc. Furthermore , any 
of the models described above ( e.g. , regression models and 
artificial neural networks ) can be combined to form an 
ensemble . As an example , an ensemble can include a top 
level machine learned model or a heuristic function to 
combine and / or weight the outputs of the models that form 
the ensemble . 
[ 0100 ] In some implementations , multiple machine 
learned models ( e.g. , that form an ensemble can be linked 
and trained jointly ( e.g. , through backpropagation of errors 
sequentially through the model ensemble ) . However , in 
some implementations , only a subset ( e.g. , one ) of the 
jointly trained models is used for inference . 
[ 0101 ] In some implementations , machine learned model 
300 can be used to preprocess the input data for subsequent 
input into another model . For example , machine learned 
model 300 can perform dimensionality reduction techniques 
and embeddings ( e.g. , matrix factorization , principal com 
ponents analysis , singular value decomposition , word2vec / 
GLOVE , and / or related approaches ) ; clustering ; and even 
classification and regression for downstream consumption . 
Many of these techniques have been discussed above and 
will be further discussed below . 
[ 0102 ] As discussed above , machine learned model 300 
can be trained or otherwise configured to receive the input 
data and , in response , provide the output data . The input data 
can include different types , forms , or variations of input 
data . As examples , in various implementations , the input 
data can include features that describe the content ( or 
portion of content ) initially selected by the user , e.g. , content 
of user - selected document or image , links pointing to the 
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user selection , links within the user selection relating to 
other files available on device or cloud , metadata of user 
selection , etc. Additionally , with user permission , the input 
data includes the context of user usage , either obtained from 
app itself or from other sources . Examples of usage context 
include breadth of share ( sharing publicly , or with a large 
group , or privately , or a specific person ) , context of share , 
etc. When permitted by the user , additional input data can 
include the state of the device , e.g. , the location of the 
device , the apps running on the device , etc. 
[ 0103 ] In some implementations , machine learned model 
300 can receive and use the input data in its raw form . In 
some implementations , the raw input data can be prepro 
cessed . Thus , in addition or alternatively to the raw input 
data , machine learned model 300 can receive and use the 
preprocessed input data . 
[ 0104 ] In some implementations , preprocessing the input 
data can include extracting one or more additional features 
from the raw input data . For example , feature extraction 
techniques can be applied to the input data to generate one 
or more new , additional features . Example feature extraction 
techniques include edge detection ; corner detection ; blob 
detection ; ridge detection ; scale - invariant feature transform ; 
motion detection ; optical flow ; Hough transform ; etc. 
[ 0105 ] In some implementations , the extracted features 
can include or be derived from transformations of the input 
data into other domains and / or dimensions . As an example , 
the extracted features can include or be derived from trans 
formations of the input data into the frequency domain . For 
example , wavelet transformations and / or fast Fourier trans 
forms can be performed on the input data to generate 
additional features . 
[ 0106 ] In some implementations , the extracted features 
can include statistics calculated from the input data or 
certain portions or dimensions of the input data . Example 
statistics include the mode , mean , maximum , minimum , or 
other metrics of the input data or portions thereof . 
[ 0107 ] In some implementations , as described above , the 
input data can be sequential in nature . In some instances , the 
sequential input data can be generated by sampling or 
otherwise segmenting a stream of input data . As one 
example , frames can be extracted from a video . In some 
implementations , sequential data can be made non - sequen 
tial through summarization . 
[ 0108 ] As another example preprocessing technique , por 
tions of the input data can be imputed . For example , addi 
tional synthetic input data can be generated through inter 
polation and / or extrapolation . 
[ 0109 ] As another example preprocessing technique , some 
or all of the input data can be scaled , standardized , normal 
ized , generalized , and / or regularized . Example regulariza 
tion techniques include ridge regression ; least absolute 
shrinkage and selection operator ( LASSO ) ; elastic net ; least 
angle regression ; cross - validation ; L1 regularization ; L2 
regularization ; etc. As one example , some or all of the input 
data can be normalized by subtracting the mean across a 
given dimension's feature values from each individual fea 
ture value and then dividing by the standard deviation or 
other metric . 
[ 0110 ] As another example preprocessing technique , some 
or all or the input data can be quantized or discretized . In 
some cases , qualitative features or variables included in the 
input data can be converted to quantitative features or 
variables . For example , one hot encoding can be performed . 

[ 0111 ] In some examples , dimensionality reduction tech 
niques can be applied to the input data prior to input into 
machine learned model 300. Several examples of dimen 
sionality reduction techniques are provided above , includ 
ing , for example , principal component analysis ; kernel prin 
cipal component analysis ; graph - based kernel principal 
component analysis ; principal component regression ; partial 
least squares regression ; Sammon mapping ; multidimen 
sional scaling ; projection pursuit ; linear discriminant analy 
sis ; mixture discriminant analysis ; quadratic discriminant 
analysis ; generalized discriminant analysis ; flexible dis 
criminant analysis ; autoencoding ; etc. 
[ 0112 ] In some implementations , during training , the input 
data can be intentionally deformed in any number of ways 
to increase model robustness , generalization , or other quali 
ties . Example techniques to deform the input data include 
adding noise ; changing color , shade , or hue ; magnification ; 
segmentation ; amplification , etc. 
[ 0113 ] In response to receipt of the input data , machine 
learned model 300 can provide the output data . The output 
data can include different types , forms , or variations of 
output data . As examples , in various implementations , the 
output data can include content , either stored locally on the 
user device or in the cloud , that is relevantly shareable along 
with the initial content selection . 
[ 0114 ] As discussed above , in some implementations , the 
output data can include various types of classification data 
( e.g. , binary classification , multiclass classification , single 
label , multi - label , discrete classification , regressive classi 
fication , probabilistic classification , etc. ) or can include 
various types of regressive data ( e.g. , linear regression , 
polynomial regression , nonlinear regression , simple regres 
sion , multiple regression , etc. ) . In other instances , the output 
data can include clustering data , anomaly detection data , 
recommendation data , or any of the other forms of output 
data discussed above . 
[ 0115 ] In some implementations , the output data can influ 
ence downstream processes or decision making . As one 
example , in some implementations , the output data can be 
interpreted and / or acted upon by a rules - based regulator . 
[ 0116 ] The present disclosure provides systems and meth 
ods that include or otherwise leverage one or more machine 
learned models to suggest content , either stored locally on 
the uses device or in the cloud , that is relevantly shareable 
along with the initial content selection based on features of 
the initial content selection . Any of the different types or 
forms of input data described above can be combined with 
any of the different types or forms of machine learned 
models described above to provide any of the different types 
or forms of output data described above . 
[ 0117 ] The systems and methods of the present disclosure 
can be implemented by or otherwise executed on one or 
more computing devices . Example computing devices 
include user computing devices ( e.g. , laptops , desktops , and 
mobile computing devices such as tablets , smartphones , 
wearable computing devices , etc. ) ; embedded computing 
devices ( e.g. , devices embedded within a vehicle , camera , 
image sensor , industrial machine , satellite , gaming console 
or controller , or home appliance such as a refrigerator , 
thermostat , energy meter , home energy manager , smart 
home assistant , etc. ) ; server computing devices ( e.g. , data 
base servers , parameter servers , file servers , mail servers , 
print servers , web servers , game servers , application servers , 
etc. ) ; dedicated , specialized model processing or training 
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devices ; virtual computing devices ; other computing devices 
or computing infrastructure ; or combinations thereof . 
[ 0118 ] FIG . 7B illustrates a conceptual diagram of com 
puting device 310 , which is an example of device 2 of FIG . 
1. Computing device 310 includes processing component 
302 , memory component 304 and machine learned model 
300. Computing device 310 may store and implement 
machine learned model 300 locally ( i.e. , on - device ) . Thus , 
in some implementations , machine learned model 300 can 
be stored at and / or implemented locally by an embedded 
device or a user computing device such as a mobile device . 
Output data obtained through local implementation of 
machine learned model 300 at the embedded device or the 
user computing device can be used to improve performance 
of the embedded device or the user computing device ( e.g. , 
an application implemented by the embedded device or the 
user computing device ) . 
[ 0119 ] FIG . 7C illustrates a conceptual diagram of an 
example client computing device that can communicate over 
a network with an example server computing system that 
includes a machine learned model . FIG . 7C includes client 
device 310A communicating with server device 360 over 
network 330. Client device 310A is an example of device 2 
of FIG . 1. Server device 360 stores and implements 
machine learned model 300. In some instances , output data 
obtained through machine learned model 300 at server 
device 360 can be used to improve other server tasks or can 
be used by other non - user devices to improve services 
performed by or for such other non - user devices . For 
example , the output data can improve other downstream 
processes performed by server device 360 for a computing 
device of a user or embedded computing device . In other 
instances , output data obtained through implementation of 
machine learned model 300 at server device 360 can be sent 
to and used by a user computing device , an embedded 
computing device , or some other client device , such as client 
device 310A . For example , server device 360 can be said to 
perform machine learning as a service . 
[ 0120 ] In yet other implementations , different respective 
portions of machine learned model 300 can be stored at 
and / or implemented by some combination of a user com 
puting device ; an embedded computing device ; a server 
computing device ; etc. In other words , portions of machine 
learned model 300 may be distributed in whole or in part 
amongst client device 310A and server device 360 . 
[ 0121 ] Devices 310A and 360 may perform graph pro 
cessing techniques or other machine learning techniques 
using one or more machine learning platforms , frameworks , 
and / or libraries , such as , for example , TensorFlow , Caffe / 
Caffe2 , Theano , Torch / PyTorch , MXnet , CNTK , etc. 
Devices 310A and 360 may be distributed at different 
physical locations and connected via one or more networks , 
including network 330. If configured as distributed comput 
ing devices , Devices 310A and 360 may operate according 
to sequential computing architectures , parallel computing 
architectures , or combinations thereof . In one example , 
distributed computing devices can be controlled or guided 
through use of a parameter server . 
[ 0122 ] In some implementations , multiple instances of 
machine learned model 300 can be parallelized to provide 
increased processing throughput . For example , the multiple 
instances of machine learned model 300 can be parallelized 

on a single processing device or computing device or 
parallelized across multiple processing devices or comput 
ing devices . 
[ 0123 ] Each computing device that implements machine 
learned model 300 or other aspects of the present disclosure 
can include a number of hardware components that enable 
performance of the techniques described herein . For 
example , each computing device can include one or more 
memory devices that store some or all of machine - learned 
model 300. For example , machine learned model 300 can be 
a structured numerical representation that is stored in 
memory . The one or more memory devices can also include 
instructions for implementing machine learned model 300 
or performing other operations . Example memory devices 
include RAM , ROM , EEPROM , EPROM , flash memory 
devices , magnetic disks , etc. , and combinations thereof . 
[ 0124 ] Each computing device can also include one or 
more processing devices that implement some or all of 
machine learned model 300 and / or perform other related 
operations . Example processing devices include one or more 
of : a central processing unit ( CPU ) ; a visual processing unit 
( VPU ) ; a graphics processing unit ( GPU ) ; a tensor process 
ing unit ( TPU ) ; a neural processing unit ( NPU ) ; a neural 
processing engine ; a core of a CPU , VPU , GPU , TPU , NPU 
or other processing device ; an application specific integrated 
circuit ( ASIC ) ; a field programmable gate array ( FPGA ) ; a 
co - processor ; a controller ; or combinations of the processing 
devices described above . Processing devices can be embed 
ded within other hardware components such as , for example , 
an image sensor , accelerometer , etc. 
[ 0125 ] Hardware components ( e.g. , memory devices and / 
or processing devices ) can be spread across multiple physi 
cally distributed computing devices and / or virtually distrib 
uted computing systems . 
[ 0126 ] FIG . 7D illustrates a conceptual diagram of an 
example computing device in communication with an 
example training computing system that includes a model 
trainer . FIG . 7D includes client device 310B communicating 
with training device 370 over network 330. Client device 
310B is an example of device 2 of FIG . 1. Machine learned 
model 300 described herein can be trained at a training 
computing system , such as training device 370 , and then 
provided for storage and / or implementation at one or more 
computing devices , such as client device 310B . For 
example , model trainer 372 executes locally at training 
device 370. However , in some examples , training device 
370 , including model trainer 372 , can be included in or 
separate from client device 310B or any other computing 
device that implement machine - learned model 300 . 
[ 0127 ] In some implementations , machine learned model 
300 may be trained in an offline fashion or an online fashion . 
In offline training ( also known as batch learning ) , machine 
learned model 300 is trained on the entirety of a static set of 
training data . In online learning , machine learned model 300 
is continuously trained ( or re - trained ) as new training data 
becomes available ( e.g. , while the model is used to perform 
inference ) . 
[ 0128 ] Model trainer 372 may perform centralized train 
ing of machine learned model 300 ( e.g. , based on a centrally 
stored dataset ) . In other implementations , decentralized 
training techniques such as distributed training , federated 
learning , or the like can be used to train , update , or person 
alize machine learned model 300 . 
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[ 0129 ] Machine learned model 300 described herein can 
be trained according to one or more of various different 
training types or techniques . For example , in some imple 
mentations , machine learned model 300 can be trained by 
model trainer 372 using supervised learning , in which 
machine learned model 300 is trained on a training dataset 
that includes instances or examples that have labels . The 
labels can be manually applied by experts , generated 
through crowd - sourcing , or provided by other techniques 
( e.g. , by physics - based or complex mathematical models ) . In 
some implementations , if the user has provided consent , the 
training examples can be provided by the user computing 
device . In some implementations , this process can be 
referred to as personalizing the model . 
[ 0130 ] FIG . 7E illustrates a conceptual diagram of training 
process 390 which is an example training process in which 
machine learned model 300 is trained on training data 391 
that includes example input data 392 that has labels 393 . 
Training processes 390 is one example training process ; 
other training processes may be used as well . 
[ 0131 ] Training data 391 used by training process 390 can 
include , upon user permission for use of such data for 
training , anonymized usage logs of sharing flows , e.g. , 
content items that were shared together , bundled content 
pieces already identified as belonging together , e.g. , from 
entities in a knowledge graph , etc. In some implementations , 
training data 391 can include examples of input data 392 that 
have been assigned labels 393 that correspond to output data 
394 . 
[ 0132 ] In some implementations , machine learned model 
300 can be trained by optimizing an objective function , such 
as objective function 395. For example , in some implemen 
tations , objective function 395 may be or include a loss 
function that compares ( e.g. , determines a difference 
between ) output data generated by the model from the 
training data and labels ( e.g. , ground - truth labels ) associated 
with the training data . For example , the loss function can 
evaluate a sum or mean of squared differences between the 
output data and the labels . In some examples , objective 
function 395 may be or include a cost function that describes 
a cost of a certain outcome or output data . Other examples 
of objective function 395 can include margin - based tech 
niques such as , for example , triplet loss or maximum - margin 
training . 
[ 0133 ] One or more of various optimization techniques 
can be performed to optimize objective function 395. For 
example , the optimization technique ( s ) can minimize or 
maximize objective function 395. Example optimization 
techniques include Hessian - based techniques and gradient 
based techniques , such as , for example , coordinate descent ; 
gradient descent ( e.g. , stochastic gradient descent ) ; subgra 
dient methods ; etc. Other optimization techniques include 
black box optimization techniques and heuristics . 
[ 0134 ] In some implementations , backward propagation 
of errors can be used in conjunction with an optimization 
technique ( e.g. , gradient based techniques ) to train machine 
learned model 300 ( e.g. , when machine learned model is a 
multi - layer model such as an artificial neural network ) . For 
example , an iterative cycle of propagation and model param 
eter ( e.g. , weights ) update can be performed to train 
machine learned model 300. Example backpropagation 
techniques include truncated backpropagation through time , 
Levenberg - Marquardt backpropagation , etc. 

[ 0135 ] In some implementations , machine learned model 
300 described herein can be trained using unsupervised 
learning techniques . Unsupervised learning can include 
inferring a function to describe hidden structure from unla 
beled data . For example , a classification or categorization 
may not be included in the data . Unsupervised learning 
techniques can be used to produce machine - learned models 
capable of performing clustering , anomaly detection , learn 
ing latent variable models , or other tasks . 
[ 0136 ] Machine learned model 300 can be trained using 
semi - supervised techniques which combine aspects of 
supervised learning and unsupervised learning . Mach 
learned model 300 can be trained or otherwise generated 
through evolutionary techniques or genetic algorithms . In 

implementations , machine learned model 300 
described herein can be trained using reinforcement learn 
ing . In reinforcement learning , an agent ( e.g. , model ) can 
take actions in an environment and learn to maximize 
rewards and / or minimize penalties that result from such 
actions . Reinforcement learning can differ from the super 
vised learning problem in that correct input / output pairs are 
not presented , nor sub - optimal actions explicitly corrected . 
[ 0137 ] In some implementations , one or more generaliza 
tion techniques can be performed during training to improve 
the generalization of machine learned model 300. General 
ization techniques can help reduce overfitting of machine 
learned model 300 to the training data . Example general 
ization techniques include dropout techniques ; weight decay 
techniques ; batch normalization ; early stopping ; subset 
selection ; stepwise selection ; etc. 
[ 0138 ] In some implementations , machine learned model 
300 described herein can include or otherwise be impacted 
by a number of hyperparameters , such as , for example , 
learning rate , number of layers , number of nodes in each 
layer , number of leaves in a tree , number of clusters ; etc. 
Hyperparameters can affect model performance . 
[ 0139 ] Hyperparameters can be hand selected or can be 
automatically selected through application of techniques 
such as , for example , grid search ; black box optimization 
techniques ( e.g. , Bayesian optimization , random search , 
etc. ) ; gradient - based optimization ; etc. Example techniques 
and / or tools for performing automatic hyperparameter opti 
mization include Hyperopt ; Auto - WEKA ; Spearmint ; Met 
ric Optimization Engine ( MOE ) ; etc. 
[ 0140 ] In some implementations , various techniques can 
be used to optimize and / or adapt the learning rate when the 
model is trained . Example techniques and / or tools for per 
forming learning rate optimization or adaptation include 
Adagrad ; Adaptive Moment Estimation ( ADAM ) ; Adadelta ; 
RMSprop ; etc. 
[ 0141 ] In some implementations , transfer learning tech 
niques can be used to provide an initial model from which 
to begin training of machine learned model 300 described 
herein . 
[ 0142 ] In some implementations , machine learned model 
300 described herein can be included in different portions of 
computer - readable code on a computing device . In one 
example , machine - learned model 300 can be included in a 
particular application or program and used ( e.g. , exclu 
sively ) by such particular application or program . Thus , in 
one example , a computing device can include a number of 
applications and one or more of such applications can 
contain its own respective machine learning library and 
machine learned model ( s ) . 
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[ 0143 ] In another example , machine learned model 300 
described herein can be included in an operating system of 
a computing device ( e.g. , in a central intelligence layer of an 
operating system ) and can be called or otherwise used by 
one or more applications that interact with the operating 
system . In some implementations , each application can 
communicate with the central intelligence layer ( and model 
( s ) stored therein ) using an application programming inter 
face ( API ) ( e.g. , a common , public API across all applica 
tions ) . 
[ 0144 ] In some implementations , the central intelligence 
layer can communicate with a central device data layer . The 
central device data layer can be a centralized repository of 
data for the computing device . The central device data layer 
can communicate with a number of other components of the 
computing device , such as , for example , one or more sen 
sors , a context manager , a device state component , and / or 
additional components . In some implementations , the cen 
tral device data layer can communicate with each device 
component using an API ( e.g. , a private API ) . 
[ 0145 ] The technology discussed herein makes reference 
to servers , databases , software applications , and other com 
puter - based systems , as well as actions taken and informa 
tion sent to and from such systems . The inherent flexibility 
of computer - based systems allows for a great variety of 
possible configurations , combinations , and divisions of tasks 
and functionality between and among components . For 
instance , processes discussed herein can be implemented 
using a single device or component or multiple devices or 
components working in combination . 
( 0146 ] Databases and applications can be implemented on 
a single system or distributed across multiple systems . 
Distributed components can operate sequentially or in par 
allel . 
[ 0147 ] In addition , the machine learning techniques 
described herein are readily interchangeable and combin 
able . Although certain example techniques have been 
described , many others exist and can be used in conjunction 
with aspects of the present disclosure . 
[ 0148 ] A brief overview of example machine learned 
models and associated techniques has been provided by the 
present disclosure . For additional details , readers should 
review the following references : Machine Learning A Proba 
bilistic Perspective ( Murphy ) ; Rules of Machine Learning : 
Best Practices for ML Engineering ( Zinkevich ) ; Deep 
Learning ( Goodfellow ) ; Reinforcement Learning : An Intro 
duction ( Sutton ) ; and Artificial Intelligence : A Modern 
Approach ( Norvig ) . 
[ 0149 ] Further to the descriptions above , a user may be 
provided with controls allowing the user to make an election 
as to both if and when systems , programs or features 
described herein may enable collection of user information 
( e.g. , information about a user's social network , social 
actions or activities , profession , a user's preferences , or a 
user's current location ) , and if the user is sent content or 
communications from a server . In addition , certain data may 
be treated in one or more ways before it is stored or used , so 
that personally identifiable information is removed . For 
example , a user's identity , or content to be displayed , may 
be treated so that no personally identifiable information can 
be determined for the user , or a user's geographic location 
may be generalized where location information is obtained 
( such as to a city , ZIP code , or state level ) , so that a particular 
location of a user cannot be determined . Thus , the user may 

have control over what information is collected about the 
user , how that information is used , and what information is 
provided to the user . 
[ 0150 ] FIG . 8 is a flowchart illustrating example opera 
tions of an example controller configured to dynamically 
select a power converter from a plurality of power convert 
ers , in accordance with one or more aspects of the present 
disclosure . The operations of controller 10 are described 
within the context of device 2 of FIG . 1 and FIG . 3 . 
[ 0151 ] Controller 10 may estimate a current level of a 
display of a device ( 802 ) . For instance , controller 10 may 
estimate an amount of current to be utilized by display 12 at 
a future time . As discussed above , controller 10 may esti 
mate the current level based on any number of factors 
including one or both of a brightness setting of display 12 
and content to be displayed by display 12 . 
[ 0152 ] Controller 10 may select , based on the estimated 
current level , a power converter from a plurality of power 
converters ( 804 ) . For instance , controller 10 may select a 
power converter of power converters 20 that operates the 
most efficiently ( e.g. , as compared to other power converters 
of power converters 20 ) at the estimated current level . 
[ 0153 ] Controller 10 may cause electrical power from the 
selected power convert to be supplied to the display ( 806 ) . 
For instance , where power converters 20 are switched mode 
power converters , controller 10 may operate the selected 
power converter and not operate the other power converters 
of power converters 20. In examples where device 2 
includes a multiplexer ( e.g. , multiplexer 8 of FIG . 1 ) , 
controller 10 may output a signal that causes the multiplexer 
to route power from the selected power converter to display 
12 . 

[ 0154 ] In some examples , controller 10 may perform one 
or more actions to verify the power estimations . For 
instance , controller 10 may determine an actual amount of 
power used by the display at the future time , and compare 
the actual amount of power with the estimated amount of 
power . The difference between the actual amount of power 
used and the estimated amount of power may be referred to 
as error ( e.g. , Perror = P actual - Pestimated ) . Based on the com 
parison , controller 10 may determine whether to update a 
model of the display . For instance , if the error satisfies a 
threshold ( e.g. , if the error is greater than 10 % of the 
estimated amount of power ) , controller 10 may determine to 
update the model used to generate the estimated amount of 
power . As one example , controller 10 may retrain a machine 
learning model ( e.g. , ML model 604 ) . As another example , 
controller 10 may update coefficients of an analytical model , 
such as the analytical model used to predict emission power . 
In this way , controller 10 may use feedback to improve 
power predictions . 
[ 0155 ] The techniques described in this disclosure may be 
implemented , at least in part , in hardware , software , firm 
ware , or any combination thereof . For example , various 
aspects of the described techniques may be implemented 
within one or more processors , including one or more 
microprocessors , digital signal processors ( DSPs ) , applica 
tion specific integrated circuits ( ASICs ) , field programmable 
gate arrays ( FPGAs ) , or any other equivalent integrated or 
discrete logic circuitry , as well as any combinations of such 
components . The term “ processor ” or “ processing circuitry ” 
may generally refer to any of the foregoing logic circuitry , 
alone or in combination with other logic circuitry , or any 
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other equivalent circuitry . A control unit including hardware 
may also perform one or more of the techniques of this 
disclosure . 
[ 0156 ] Such hardware , software , and firmware may be 
implemented within the same device or within separate 
devices to support the various techniques described in this 
disclosure . In addition , any of the described units , modules 
or components may be implemented together or separately 
as discrete but interoperable logic devices . Depiction of 
different features as modules or units is intended to highlight 
different functional aspects and does not necessarily imply 
that such modules or units must be realized by separate 
hardware , firmware , or software components . Rather , func 
tionality associated with one or more modules or units may 
be performed by separate hardware , firmware , or software 
components , or integrated within common or separate hard 
ware , firmware , or software components . 
[ 0157 ] The techniques described in this disclosure may 
also be embodied or encoded in an article of manufacture 
including a computer - readable storage medium encoded 
with instructions . Instructions embedded or encoded in an 
article of manufacture including a computer - readable stor 
age medium encoded , may cause one or more programmable 
processors , or other processors , to implement one or more of 
the techniques described herein , such as when instructions 
included or encoded in the computer - readable storage 
medium are executed by the one or more processors . Com 
puter readable storage media may include random access 
memory ( RAM ) , read only memory ( ROM ) , programmable 
read only memory ( PROM ) , erasable programmable read 
only memory ( EPROM ) , electronically erasable program 
mable read only memory ( EEPROM ) , flash memory , a hard 
disk , a compact disc ROM ( CD - ROM ) , a floppy disk , a 
cassette , magnetic media , optical media , or other computer 
readable media . In some examples , an article of manufacture 
may include one or more computer - readable storage media . 
[ 0158 ] In some examples , a computer - readable storage 
medium may include a non - transitory medium . The term 
“ non - transitory ” may indicate that the storage medium is not 
embodied in a carrier wave or a propagated signal . In certain 
examples , a non - transitory storage medium may store data 
that can , over time , change ( e.g. , in RAM or cache ) . 
[ 0159 ] Various aspects have been described in this disclo 
sure . These and other aspects are within the scope of the 
following claims . 

1. A method comprising : 
estimating , based on content to be displayed at a display 

of a mobile computing device at a future time , an 
amount of power to be used by the display at the future 
time ; 

selecting , based on the estimated power level , a power 
converter of a plurality of power converters of the 
mobile computing device , each of the plurality of 
power converters optimized for a different output 
power range ; and 

causing electrical power from the selected power con 
verter to be supplied to the display at the future time . 

2. The method of claim 1 , wherein estimating the amount 
of power further comprises estimating the amount of power 
based on a brightness setting of the display . 

3. The method of claim 1 , wherein estimating the amount 
of power comprises : 

estimating an emission amount of power ; 
estimating a data amount of power ; 

estimating a gate driving amount of power ; and 
estimating the amount of power to be used by the display 

at the future time based on the emission amount of 
power , the data amount of power , and the gate driving 
amount of power . 

4. The method of claim 1 , wherein estimating the amount 
of power comprises estimating the emission amount of 
power using a machine learning model . 

5. The method of claim 1 , wherein estimating the amount 
of power comprises estimating the emission amount of 
power using an analytical model . 

6. The method of claim 1 , wherein each power converter 
of the plurality of power converters is optimized for a 
different output power range , and wherein selecting the 
power converter comprises identifying which of the plurality 
of power converters has an output power range that matches 
the estimated amount of power . 

7. The method of claim 1 , wherein estimating the amount 
of power comprises estimating the amount of power based 
on a model of the display , the method further comprising : 

determining an actual amount of power used by the 
display at the future time ; 

comparing the actual amount of power with the estimated 
amount of power ; and 

determining , based on the comparison , whether to update 
the model of the display . 

8. The device of claim 1 , wherein the display comprises 
an organic light emitting diode ( OLED ) display . 

9. A device comprising : 
a display ; 
a plurality of power converters configured to supply 

electrical power to the display , each optimized for a 
different output power range ; and 

circuitry configured to : 
estimate , based on content to be displayed at the display 

at a future time , an amount of power to be used by 
the display at the future time ; 

select , based on the estimated power level , a power 
converter of the plurality of power converters ; and 

cause electrical power from the selected power con 
verter to be supplied to the display at the future time . 

10. A computer - readable storage medium storing instruc 
tions that , when executed , cause one or more processors of 
a device that includes a plurality of power converters to : 

estimate , based on content to be displayed at the display 
at a future time , an amount of power to be used by the 
display at the future time ; 

select , based on the estimated power level , a power 
converter of the plurality of power converters , wherein 
each of the plurality of power converters is optimized 
for a different output power range ; and 

cause electrical power from the selected power converter 
to be supplied to the display at the future time . 

11. ( canceled ) 
12. The device of claim 9 , wherein , to estimate the amount 

of power , the circuitry is configured to estimate the amount 
of power based on a brightness setting of the display . 

13. The device of claim 9 , wherein , to estimate the amount 
of power , the circuitry is configured to : 

estimate an emission amount of power ; 
estimate a data amount of power ; 
estimate a gate driving amount of power ; and 
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estimate the amount of power to be used by the display at 
the future time based on the emission amount of power , 
the data amount of power , and the gate driving amount 
of power . 

18. The device of claim 9 , wherein the display comprises 
an organic light emitting diode ( OLED display . 

19. The computer - readable medium of claim 10 , wherein 
the instructions that cause the one or more processors to 
estimate the amount of power comprise instructions that 
cause the one or more processors to : 

estimate an emission amount of power ; 
estimate a data amount of power ; 
estimate a gate driving amount of 
estimate the amount of power to be used by the display at 

the future time based on the emission amount of power , 
the data amount of power , and the gate driving amount 

power ; and 

of power . 

14. The device of claim 9 , wherein , to estimate the amount 
of power , the circuitry is configured to estimate the emission 
amount of power using a machine learning model . 

15. The device of claim 9 , wherein , to estimate the amount 
of power , the circuitry is configured to estimate the emission 
amount of power using an analytical model . 

16. The device of claim 9 , wherein each power converter 
of the plurality of power converters is optimized for a 
different output power range , and wherein , to select the 
power converter , the circuitry is configured to identify which 
of the plurality of power converters has an output power 
range that matches the estimated amount of power . 

17. The device of claim 9 , wherein , to estimate the amount 
of power , the circuitry is configured to estimate the amount 
of power based on a model of the display , and wherein the 
circuitry is further configured to : 

determine an actual amount of power used by the display 
at the future time ; 

compare the actual amount of power with the estimated 
amount of power ; and 

determine , based on the comparison , whether to update 
the model of the display . 

20. The computer - readable medium of claim 10 , wherein 
the instructions that cause the one or more processors to 
estimate the amount of power comprise instructions that 
cause the one or more processors to to estimate the amount 
of power based on a model of the display , and further 
comprising instructions that cause the one or more proces 
sors to : 

determine an actual amount of power used by the display 
at the future time ; 

compare the actual amount of power with the estimated 
amount of power , and 

determine , based on the comparison , whether to update 
the model of the display . 


