
US 20220353786A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0353786 A1

UHLING et al . (43) Pub . Date : Nov. 3 , 2022

(54) NETWORK PROTOCOL FOR BATTERY
POWERED DEVICES WITHIN A WIRELESS
NETWORK

(52) U.S. CI .
CPC H04W 40/246 (2013.01) ; H04W 24/02

(2013.01)

(71) Applicant : ITRON , INC . , Liberty Lake , WA (US)

(72) Inventors : Thomas F. UHLING , Spokane Valley ,
WA (US) ; Keith Wayne BARNES ,
Waseca , MN (US) ; Howard Neal
BRACE , Waseca , MN (US) ; Imad
JAMIL , Beynes (FR) ; Fabrice
MONIER , Bry sur Marne (FR)

(57) ABSTRACT

A network system includes a main network implementing a
conventional network protocol and a BPD subtree imple
menting a custom network protocol . The main network
comprises a plurality of MPD nodes , the conventional
network protocol being configured for MPD nodes . The
BPD subtree comprises a plurality of BPD nodes , the custom
network protocol being configured for BPD nodes . The
custom network protocol defines smaller and simpler sub
trees relative to the conventional network protocol . As a
result , the custom network protocol defines less complex
functions relative to the conventional network protocol ,
including functions for discovery , messaging , and loop
management . A root node of the BPD subtree is connected
with an MPD node of the main network and one or more
descendant nodes of the BPD subtree . The root node imple
ments the conventional network protocol and the custom
network protocol .

(21) Appl . No .: 17 / 245,420

(22) Filed : Apr. 30 , 2021

Publication Classification

(51) Int . Cl .
H04W 40/24
H04W 24/02

(2006.01)
(2006.01)

100

1 Main Network 110

Control Center
130 }

1
}

} 120B 120C

120A
}

-

1 DC
160A

EC
160B

EC
160C

1

BPD Subtree 150 1
1

Patent Application Publication Nov. 3 , 2022 Sheet 1 of 14 US 2022/0353786 A1

100

...
1

Main Network 110

1 Control Center
130

1

1

1
1

120B
120C

120A

1
L |

DC
160A

EC
160B

EC
160C

1

BPD Subtree 150

would www.de

Figure 1

280

160

Computing Device 210

Processor 220

1/0 Devices 230

Patent Application Publication

Memory 240

290

Conventional Network Protocol Stack 245

Database 260

Conventional Subtree Parameters 246

Nov. 3 , 2022 Sheet 2 of 14

Routing Table 261

Custom Network Protocol Stack 250

Address Lists 262

Custom Subtree Parameters 251

MAC Addresses 263

US 2022/0353786 A1

Figure 2 .

Patent Application Publication Nov. 3 , 2022 Sheet 3 of 14 US 2022/0353786 A1

Main Network 110 150

DC
360A 160A 360B

EC
160D

EC
160B

360C

EC
160E

EC
160C EC

160G

EC
160F

EC
160H

Figure 3

261

Row 405

MAC Address 410

Parent MAC Address 415

Timestamp 420

Patent Application Publication

401A

1

B

?

2526

401B

2

?

B

2555

401C

3

D

A

2546

401D

4

E

B

2221

Nov. 3 , 2022 Sheet 4 of 14

401E

5

F

C

2290

401F

6

G

D

2518

401G

7

H

F

2441

US 2022/0353786 A1

Figure 4

Patent Application Publication Nov. 3 , 2022 Sheet 5 of 14 US 2022/0353786 A1

500

510

Discovering node initiates discovery process by
transmitting discovery request messages during a

discovery window

520

One or more potential parent nodes receives a
discovery request message and responds to
discovering node with response message

530

Discovering node receives response message and links
to each of the one or more potential parent nodes

540

Discovering node selects a single parent node to attach
as a child node

550

Discovering node initiates affiliation process with DC
node by sending an affiliation request to the DC node

To step 560

Figure 5A

Patent Application Publication Nov. 3 , 2022 Sheet 6 of 14 US 2022/0353786 A1

500

From step 550

565 580
560

Y N Discovering node
permitted to join ?

DC node sends
affiliation response

that discovering node
is permitted to join
and generates entry

in routing table

DC node sends
affiliation response
that discovering

node is not
permitted to join

585
570

Discovering node
joins the subtree

Selected parent node
receives affiliation

response and sends
connection message
to discovering node to

not connect

575

590
Discovering node
periodically re

affiliates with DC
node Discovering node

restarts discovery
process

To step 510

Figure 5B

Patent Application Publication Nov. 3 , 2022 Sheet 7 of 14 US 2022/0353786 A1

600

. 610

DC node receives incoming message packaged in the
conventional network protocol that specifies MAC

address of a destination node

620

DC node generates a downstream message packaged
in the custom network protocol that specifies a node
path through the subtree to the destination node

630

Downstream message is routed through the subtree
according to the node path until the downstream

message is transmitted to the last node in the node
path

640

The last node receives the downstream message and
determines it is the intended destination node for the

downstream message

Figure 6

Patent Application Publication Nov. 3 , 2022 Sheet 8 of 14 US 2022/0353786 A1

700

710

Source EC node generates an upstream message that
includes an upstream message indicator and specifies

intended destination EC node

720

The upstream message is routed upstream through
zero or more EC nodes , each EC node transmitting the

upstream message to its single parent , until the
upstream message is transmitted to the destination EC

node

Figure 7
800

810

Source EC node generates an upstream message that
includes an upstream message indicator and specifies

destination MPD node , device or system

820

Upstream message is routed upstream through zero or
more EC nodes , each EC node transmitting the
upstream message to its single parent , until the
upstream message is transmitted to DC node

830

DC node repackages upstream message in the
conventional network protocol of the main network to

produce an outgoing message

840

DC node transmits outgoing message to connecting
MPD node , which implements the conventional network
protocol to route the outgoing message to destination

MPD node , device , or system

Figure 8

Patent Application Publication Nov. 3 , 2022 Sheet 9 of 14 US 2022/0353786 A1

Main Network 110 150

DC
160A

EC
160D

EC
160B

EC
160E

EC
160G

950
7

1

EC
160C

EC
160H

EC
160F 1

1
I

-

Figure 9

Patent Application Publication Nov. 3 , 2022 Sheet 10 of 14 US 2022/0353786 A1

Main Network 110 150

262A
DC
160A

A

A EC
160D

EC
160B 262B

262D

A
B EC

160E A

262E B
?.
D

EC
160C EC

160G 262C

262G

A
B
C EC

160F
262F

CC G D ?

A
B
? 7 EC 160H

262H

Figure 10

Patent Application Publication Nov. 3 , 2022 Sheet 11 of 14 US 2022/0353786 A1

Main Network 110
150

DC
160A

A EC
160D

262D
A

EC
160B 262B

EC
160G EC

160E
A
B EC

160C
262C

A el ? EC
160F

262F

EC
160H

Figure 11

Patent Application Publication Nov. 3 , 2022 Sheet 12 of 14 US 2022/0353786 A1

Main Network 110 150

DC
160A

? EC
160D

262D A
D

EC
160B 262B

A
D EC

160G
262G

EC
160E ?

D
B

A
D
B

EC
160C

2620
262E

A
D
B
?

EC
160F el Ta A 262F

To w UD B
?
F

EC
160H

262H

Figure 12

Patent Application Publication Nov. 3 , 2022 Sheet 13 of 14 US 2022/0353786 A1

1310 1300

Each node in the subtree generates and stores an
address list

1320

Root node of migrating group loses connection with
parent node

1330

Root node (discovering node) transmits discovery
request messages

1340

Each potential parent node receives discovery request
message and determines if a node loop would be

created based on address list

1350

Each potential parent node that determined a node loop
would not be created transmits a response message to

discovering node
1360

Discovering node receives a response message from
potential parent nodes and selects a single potential

parent node
1370

Discovering node successfully performs an affiliation
process with the DC node based on the selected parent

node

1375
Discovering node connects to the selected parent node
and joins the subtree and migrating group moves along

with the discovering node
1380

Address lists of the EC nodes in the subtree are updated
1385

Each EC node reperforms the affiliation process with the
DC node

Figure 13

Patent Application Publication Nov. 3 , 2022 Sheet 14 of 14 US 2022/0353786 A1

1400

1410

Periodic time interval expires and EC node
transmits address list to each child node and
receives parent address list from parent node

1430

1420

Y N
EC node forces a

disconnection with the
parent node to
destroy the loop

Node included in a loop ?

1440

EC node performs a
discovery process to
search for a new

parent node

Figure 14

US 2022/0353786 A1 Nov. 3 , 2022
1

NETWORK PROTOCOL FOR BATTERY
POWERED DEVICES WITHIN A WIRELESS

NETWORK

BACKGROUND

Field of the Various Embodiments

[0001] Various embodiments of the present disclosure
relate generally to wireless network communications and ,
more specifically , to a network protocol for battery powered
devices within a wireless network .

[0005] Second , because conventional network protocols
permit large and complex subtrees of nodes within wireless
networks , conventional network protocols often times also
define many complex functions that require significant
amounts of power to execute . For example , a conventional
network protocol typically defines complex functions for
managing a given subtree , adding a node to a subtree ,
routing messages within a subtree , and loop management
within a subtree . While an MPD node may execute such
complex functions without issue , a BPD node can expend a
significant amount of a limited battery power supply execut
ing such complex functions .
[0006] In summary , conventional network protocols
implemented in heterogeneous wireless networks are typi
cally configured and optimized for execution by the MPD
nodes within those networks . By contrast , conventional
network protocols are not typically configured and opti
mized for the BPD nodes within those networks . Conse
quently , BPD nodes can consume excessive amounts of
power when executing conventional network protocols ,
which can shorten the operating lifetimes of BPD node and
result in expensive repair and / or replacement costs .
[0007] As the foregoing illustrates , what is needed in the
art are more effective techniques for defining and managing
the functions of battery powered devices within wireless
networks .

Description of the Related Art

SUMMARY

a

a

[0002] A conventional wireless network includes a plural
ity of nodes configured to communicate with one another . In
certain types of heterogeneous wireless networks , different
types of nodes communicate and interact with one another
within the network , including mains powered device (MPD)
nodes and battery powered device (BPD) nodes . MPD nodes
typically are coupled to a power grid and have continuous
access to power (except during power outages) , which
allows MPD nodes to receive and transmit data more or less
continuously . On the other hand , BPD nodes are powered by
batteries and therefore have only a finite supply of power . To
manage the finite supply of power , BPD nodes normally
remain in a powered - down state and power on only at
intermittent intervals .
[0003] A conventional network protocol is implemented in
a heterogeneous wireless network to define and manage the
various functions of the nodes . Because conventional net
work protocols are usually configured and optimized for
managing the functions of mains powered nodes , those
protocols typically define and manage the various functions
of nodes without accounting for any battery life require
ments the nodes may have . Accordingly , using conventional
network protocols to define and manage the functions of
BPD nodes , which have a finite supply of power and limited
battery life , has several drawbacks .
[0004] First , conventional network protocols typically
enable large and complex subtrees of nodes within a given
wireless network . In particular , conventional network pro
tocols normally allow a relatively high maximum number of
nodes and a relatively high maximum number of hops within
a given subtree . In addition , conventional network protocols
normally permit a node within a given subtree to have
multiple parent nodes . Because MPD nodes have continuous
access to power , an MPD node usually can function properly
as the root node of a large and complex subtree within a
wireless network and effectively manage the subtree via a
conventional network protocol . By contrast , a BPD node
usually cannot function properly as the root node of a large
and complex subtree within a wireless network because the
limited amount of battery power available to the BPD node
can be depleted quickly when managing the subtree , as well
as routing messages to and from the subtree via a conven
tional network protocol . Thus , one drawback of implement
ing conventional network protocols in heterogeneous wire
less networks is that conventional network protocols enable
large and complex subtrees of nodes within wireless net
works that cannot be effectively managed by BPD nodes
without depleting the limited amounts of battery power
available to the BPD nodes .

a

[0008] Some embodiments include a computer - imple
mented method for performing node - based operations
within a wireless network , including connecting a root
battery powered device (BPD) node to a main powered
device (MPD) node that resides within a main network of the
wireless network , wherein the main network implements a
first network protocol , connecting the root BPD node to one
or more descendant BPD nodes , wherein the root BPD node
and the one or more descendant BPD nodes comprise a BPD
subtree within the wireless network , and performing one or
more operations at the root BPD node based on a second
network protocol that is different than the first network
protocol .
[0009] Some embodiments include a computer - imple
mented method for performing node - based operations
within a wireless network , including identifying a network
address that is associated with a first battery powered device
(BPD) node included in a subtree of BPD nodes within the
wireless network , identifying an address list that is associ
ated with a second BPD node included in the subtree of BPD
nodes , wherein the address list includes a node path between
the second BPD node and a root node of the subtree of BPD
nodes , and determining whether the first BPD node and the
second BPD node are included in a potential node loop or a
formed node loop based on the network address associated
with the first BPD node and the address list associated with
the second BPD node .
[0010] At least one technical advantage of the disclosed
techniques relative to the prior art is that , with the disclosed
techniques , a custom network protocol configured and opti
mized for BPD nodes can be implemented within a wireless
network . Among other things , the custom network protocol
permits smaller and simpler subtrees of nodes to be set up
within the wireless network relative to what is permitted by
conventional network protocols . As a result , BPD nodes can
function properly as the root nodes of the subtrees formed

US 2022/0353786 A1 Nov. 3 , 2022
2

DETAILED DESCRIPTION within the wireless network and can manage and route
messages to and from the subtrees using less power than
required under conventional network protocols . Another
technical advantage of the disclosed techniques is that ,
because the custom network protocol permits smaller and
simpler subtrees of BPD nodes within the wireless network ,
the custom network protocol also defines node functions ,
such as discovery , messaging , and loop management func
tions , that are less complex than those defined under con
ventional network protocols . As a result , the BPD nodes of
a given subtree can execute those functions using less power
than required under conventional network protocols . These
technical advantages represent one or more technological
improvements over prior art approaches .

?

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] In the following description , numerous specific
details are set forth to provide a more thorough understand
ing of the various embodiments . However , it will be appar
ent to one of skilled in the art that the inventive concepts can
be practiced without one or more of these specific details .
[0027] The disclosed techniques apply to any system of
networked devices / nodes , where at least some devices / nodes
are battery powered . Such systems include a wireless net
work of utility meter devices , Internet of things (IoT)
devices , and / or the like . As noted above , conventional
network protocols implemented by a conventional wireless
network suffers from numerous inefficiencies . Among other
things , conventional network protocols permit large and
complex subtrees that are difficult to manage by root BPD
nodes due to the substantial power requirements needed to
manage such large and complex subtrees . In addition , con
ventional network protocols define complex functions that
expend a significant amount of energy when executed by the
BPD nodes . As a sult , BPD nodes consume excessive
energy when executing the conventional network protocols ,
which shortens the operational lifetime of BPD nodes ,
leading to leading to expensive repair and / or replacement
costs .
[0028] To address these issues , various embodiments
include a custom network protocol that is configured and
optimized for BPD nodes and BPD subtrees within a wire
less network . In particular , the custom network protocol
permits only smaller and simpler subtrees relative to the
larger and more complex subtrees permitted in conventional
network protocols . As a result , the custom network protocol
can also define various functions that are less complex
relative to the corresponding functions defined in conven
tional network protocols . For example , the various functions
defined by the custom network protocol can include man
agement of the subtree , adding a node to the subtree , routing
messages within the subtree , and loop management within
the subtree . Each BPD node can conserve energy when
executing these simplified functions defined by the custom
network protocol , relative to executing the corresponding
complex functions that are defined by conventional network
protocols . An overview of the system according to the
present disclosure is now described .

a

a

[0011] So that the manner in which the above recited
features of the various embodiments can be understood in
detail , a more particular description of the inventive con
cepts , briefly summarized above , can be had by reference to
various embodiments , some of which are illustrated in the
appended drawings . It is to be noted , however , that the
appended drawings illustrate only typical embodiments of
the inventive concepts and are therefore not to be considered
limiting of scope in any way , and that there are other equally
effective embodiments .
[0012] FIG . 1 illustrates a network system configured to
implement one or more aspects of the various embodiments ;
[0013] FIG . 2 illustrates a BPD node configured to operate
within the network system of FIG . 1 , according to various
embodiments ;
[0014] FIG . 3 illustrates a BPD subtree configured to
operate within the network system of FIG . 1 , according to
various embodiments ;
[0015] FIG . 4 is a conceptual diagram of a routing table
generated for the BPD subtree of FIG . 3 , according to
various embodiments ;
[0016] FIGS . 5A - 5B set forth a flow diagram of method
steps for adding a node to a BPD subtree , according to
various embodiments ;
[0017] FIG . 6 sets forth a flow diagram of method steps for
downstream message routing within a BPD subtree , accord
ing to various embodiments ;
[0018] FIG . 7 sets forth a flow diagram of method steps for
upstream message routing to a node within a BPD subtree ,
according to various embodiments ;
[0019] FIG . 8 sets forth a flow diagram of method steps for
upstream message routing to an MPD node within a main
network , according to various embodiments ;
[0020] FIG . 9 illustrates a node loop created within a BPD
subtree , according to various embodiments ;
[0021] FIG . 10 illustrates a set of address lists associated
with a BPD subtree , according to various embodiments ;
[0022] FIG . 11 illustrates a node migration process within
a BPD subtree , according to various embodiments ;
[0023] FIG . 12 illustrates a successful node migration
within a BPD subtree , according to various embodiments ;
[0024] FIG . 13 sets forth a flow diagram of method steps
for loop avoidance during node migration within a BPD
subtree , according to various embodiments ; and
[0025] FIG . 14 sets forth a flow diagram of method steps
for loop detection during normal operations within a BPD
subtree , according to various embodiments .

2

System Overview

a a

a

[0029] FIG . 1 illustrates a network system configured to
implement one or more aspects of the various embodiments .
The network system 100 can comprise any type of network ,
such as a wide area network (WAN) , field area network
(FAN) , personal area network (PAN) , the Internet , and the
like . The network system 100 can be organized according to
any network topology , including a mesh network topology ,
a star network topology , a ring network topology , and / or the
like . Further , the network system 100 can be organized
according to a hybrid network topology based on any
technically feasible combination of a mesh network topol
ogy , a star network topology , a ring network topology ,
and / or the like . As shown , the network system 100 includes
a main network 110 and a BPD subtree 150 .
[0030] The main network 110 includes a plurality of
interconnected mains powered device (MPD) nodes 120 ,
such as 120A , 120B , 120C , etc. The BPD subtree 150
includes a plurality of interconnected battery powered

a

US 2022/0353786 A1 Nov. 3 , 2022
3

device (BPD) nodes 160 , such as 160A , 160B , 160C , etc.
MPD nodes 120 draw power from an external power source ,
such as mains electricity or a power grid . As such , MPD
nodes 120 can be considered continuously - powered nodes
and non - limited energy devices . MPD nodes 120 typically
operate on a continuous basis without powering down for
extended periods of time . In contrast , BPD nodes 160 draw
power from an internal power source , such as a battery . BPD
nodes 160 typically operate intermittently and power down
for extended periods of time in order to conserve battery
power . As such , BPD nodes 160 can be considered low
energy / power nodes or limited energy devices . MPD nodes
120 and BPD nodes 160 are configured to gather sensor data ,
process the sensor data , and communicate data processing
results and other information to a control center 130 in the
main network 110. The MPD nodes 120 and BPD nodes 160
are configured to communicate directly with one or more
adjacent nodes via bi - directional communication links (as
represented by interconnecting lines between the nodes) .
The communication links can be wired or wireless links that
allow data exchange , such as wireless radio frequency (RF)
communications , wireless (Wi - Fi) network , Bluetooth ,
Wireless USB , among others .
[0031] Control center 130 includes one or more server
machines (not shown) configured to operate as sources for ,
or destinations of , data packets that traverse within network
system 100. The server machines can query nodes within
network system 100 to obtain various data , including raw or
processed sensor data , energy consumption data , node /
network throughput data , status information , and so forth .
The server machines can also transmit commands and / or
program instructions to any node within network system 100
to cause those nodes to perform various operations . In one
embodiment , each server machine is a computing device
configured to execute , via a processor , a software application
stored in a memory to perform various network management
operations .
[0032] The main network 110 implements a conventional
network protocol that is configured and optimized for mains
powered devices . Conventional network protocols are typi
cally not designed for battery powered devices and the
limited amount of power available to the battery powered
devices . Conventional network protocols typically allow
large and complex subtrees , and as a result , define complex
functions for managing and operating the subtrees . In a
conventional network system , the underlying conventional
network protocol implemented in the main network 110 is
also implemented in the BPD subtree 150. However , imple
menting a conventional network protocol in a BPD subtree
150 can quickly deplete the power reserves of the BPD
nodes 160 in the subtree 150. To address these drawbacks of
conventional network protocols , a novel custom network
protocol is implemented within the BPD subtree 150 , as
discussed in the embodiments herein .

[0033] The BPD subtree 150 comprises a subtree of a
plurality of BPD nodes within the network system 100. The
BPD subtree 150 can be represented as a sub - destination
oriented directed acyclic graph (DODAGG) of the network
system 100. The BPD subtree 150 is attached to at least one
MPD node of the main network 110. As shown , the BPD
subtree 150 includes a single root BPD node 160A and one
or more descendant BPD nodes of the root BPD node 160A ,
such as 160B , 160C , etc.

[0034] The root BPD node 160A is directly connected to
the main network 110 via at least one main network com
ponent 120A (such as an MPD node , cellular tower , or
eNodeB) within the main network 110. In some embodi
ments , the root BPD node 160A is directly connected to the
main network 110 via at least one main network component
comprising an MPD node within the main network 110 , such
as MPD node 120A (referred to herein as a connecting MPD
node) . In other embodiments , the main network 110 com
prises a cellular network that includes a main network
component 120A comprising a cellular tower and / or eNo
deB . In these embodiments , the root BPD node 160A
includes a cellular modem for connecting with the cellular
tower and / or eNodeB within the cellular network . In this
manner , the root BPD node 160A is directly connected to the
cellular network (main network 110) via at least one main
network component 120A comprising a cellular tower or
eNodeB within the cellular network (main network 110) .
[0035] The root BPD node 160A of the BPD subtree 150
is referred to herein as the direct connected (DC) node 160A .
Each descendant BPD node is connected to the DC node
160A , or to another descendant BPD node within the subtree
150. Therefore , a descendant BPD node can comprise a child
of the DC node 160A , grandchild of the DC node 160A ,
great - grandchild of the DC node 160A , and so forth . A
descendant BPD node of the DC node 160A is referred to
herein as an extended child (EC) node of the DC node .
[0036] Each BPD node 160 includes computing device
hardware configured to perform processing operations and
execute program code . FIG . 2 illustrates a BPD node 160
configured to operate within the network system 100 of FIG .
1 , according to various embodiments . As shown , a BPD
node 160 includes a computing device 210 coupled to a
transceiver 280 and an oscillator 290. Computing device 210
coordinates the operations of the BPD node 160. Transceiver
280 is configured to transmit and receive message data
packets across network system 100 using a range of chan
nels and power levels . Oscillator 290 provides one or more
oscillation signals according to which the transmission and
reception of message data packets can be scheduled . Each
BPD node 160 can further include various analog - to - digital
and digital - to - analog converters , digital signal processors
(DSPs) , harmonic oscillators , transceivers , and any other
components generally associated with RF - based communi
cation hardware (not shown) .
[0037] Computing device 210 includes a processor 220 ,
input / output (I / O) devices 230 , and memory 240 , coupled
together . Processor 220 can include any hardware config
ured to process data and execute software applications . In
general , processor 220 retrieves and executes programming
instructions stored in memory 240. Processor 220 can be any
technically feasible form of processing device configured to
process data and execute program instructions . Processor
220 could be , for example , one or more central processing
units (CPUs) , digital signal processors (DSPs) , graphics
processing units (GPUs) , application - specific integrated cir
cuits (ASICs) , field - programmable gate arrays (FPGAs) ,
and / or the like . Processor 220 stores and retrieves applica
tion data residing in the memory 240. Processor 220 is
included to be representative of a single processor , multiple
processors , a single processor having multiple processing
cores , and the like . In operation , processor 220 is the master
processor of BPD node 160 , controlling and coordinating
operations of other system components . Memory 240 stores

US 2022/0353786 A1 Nov. 3 , 2022
4

a

software applications and data for use by processor 220 .
Processor 220 executes software applications and programs ,
stored within memory 240 and optionally an operating
system . In particular , processor 220 executes software
instructions and then performs one or more of the functions
and operations set forth in the present application .
[0038] Processor 220 can include a real - time clock (RTC)
(not shown) according to which processor 220 maintains an
estimate of the current time . I / O devices 230 include devices
configured to receive input , devices configured to provide
output , and devices configured to both receive input and
provide output . Memory 240 can be implemented by any
technically feasible storage medium .
[0039] Memory 240 stores software programs including ,
without limitation , a conventional network protocol stack
245 , a custom network protocol stack 250 , and a database
260. The conventional network protocol stack 245 and
custom network protocol stack 250 each include program
instructions that , when executed by processor 220 , performs
any one or more of the computer - based techniques described
herein . The conventional network protocol stack 245 and / or
custom network protocol stack 250 can interface with trans
ceiver 280 to coordinate the transmission and reception of
message data packets across network system 100 based on
timing signals generated by oscillator 290. Database 260 can
include various data and data structures retrieved by and / or
stored by the conventional network protocol stack 245 and
the custom network protocol stack 250. For example , the
database 260 can include a routing table 261 , one or more
address lists 262 (such as the parent address list of the parent
node and the address list of the node) , and various media
access control (MAC) addresses 263 (such as the MAC
address of the node , the MAC address of the parent node , the
MAC address of each child node , etc.) .
[0040] The conventional network protocol stack 245 pro
vides a conventional network protocol that is implemented
in the main network 110. Examples of the conventional
network protocol stack 245 include layer 2 protocol stacks ,
a cellular protocol stack , and the like . In some embodiments ,
the memory 240 includes two or more different conventional
network protocol stacks 245. The conventional network
protocol stack 245 provides a set of conventional subtree
parameters 246 for managing subtrees of nodes within the
main network 110. The set of conventional subtree param
eters 246 define a structure of a subtree in the main network
100. For example , the conventional subtree parameters 246
can specify a maximum number of nodes permitted within
each subtree , a maximum number of node hops permitted
within each subtree , and a maximum number of parent nodes
permitted for each node in the subtree . The conventional
network protocol and conventional subtree parameters 246
are configured and designed for MPD nodes and are not
designed specifically for power efficiency .
[0041] The custom network protocol stack 250 provides a
custom network protocol that is implemented in the BPD
subtree 150. For example , the custom network protocol
stack 250 can be executed by one or more of the BPD nodes
160 to manage the BPD subtree 150 , communicate between
the BPD nodes 160 , and perform various functions . The
custom network protocol stack 250 provides a set of custom
subtree parameters 251 for managing subtrees of nodes
within the main network 110. The set of custom subtree
parameters 251 define a structure of the BPD subtree 150 ,
and are different than the set of conventional subtree param

eters 246. The custom network protocol and custom subtree
parameters 251 are configured and optimized for BPD nodes
and take into consideration the limited amount of power
available to the BPD nodes . In particular , the custom subtree
parameters 251 can be determined and set by an engineer /
user based on the battery power characteristics of the BPD
nodes . For example , the custom subtree parameters 251 can
be determined based on the battery capacity and / or predicted
battery life of a battery power source (not shown) of the
BPD node 160 .
[0042] Advantageously , the custom subtree parameters
251 permit BPD subtrees that are considerably smaller and
less complex than the subtrees permitted by conventional
subtree parameters 246. For example , the conventional
subtree parameters 246 can specify a first maximum number
of nodes (such as 500 , 1000 , or 1500) permitted within each
subtree and the custom subtree parameters 251 can specify
a second maximum number of nodes (such as 10 , 15 , or 20)
permitted within each subtree , wherein the second maxi
mum number of nodes is less than the first maximum
number of nodes . Also , the conventional subtree parameters
246 can specify a first maximum number of node hops (such
as 10 , 20 , or 25) permitted within each subtree and the
custom subtree parameters 251 can specify a second maxi
mum number of node hops (such as 3 , 4 , or 5) permitted
within each subtree , wherein the second maximum number
of node hops is less than the first maximum number of node
hops . Further , the conventional subtree parameters 246 can
specify that each node in the subtree can have a plurality of
different parent nodes (such as 3 , 4 , or 5) , whereas the
custom subtree parameters 251 can specify that each node in
the subtree can only have a single parent node (referred to
herein as the single parent requirement) .
[0043] By only permitting smaller and simpler BPD sub
trees , the custom network protocol stack 250 can thereby
define various functions of the custom network protocol that
are considerably less complex than the corresponding func
tions of the conventional network protocol . For example , the
custom network protocol stack 250 can define functions for
managing a BPD subtree , discovery within the BPD subtree ,
adding a node to the BPD subtree , routing messages within
the BPD subtree , and loop management within the BPD
subtree that are considerably less complex than the corre
sponding functions of the conventional network protocol .
[0044] The DC node 160A of the subtree 150 can store and
execute both the conventional network protocol stack 245
and the custom network protocol stack 250 to connect and
communicate with both the main network 110 and the BPD
subtree 150. For example , the DC node 160A of the subtree
150 can execute the conventional network protocol stack
245 based on the conventional subtree parameters 246 to
connect and communicate with an MPD node 120A of the
main network 110. The DC node 160A (discovering node)
can perform a discovery process / function with the MPD
node 120A (potential parent node) to discover and connect
with the MPD node 120A . Each of the DC node 160A and
the MPD node 120A execute the conventional network
protocol stack 245 based on the conventional subtree param
eters 246 to implement the discovery process / function ,
which is defined by the conventional network protocol . The
DC node 160A also executes the custom network protocol
stack 250 based on the custom subtree parameters 251 to
manage and communicate with the various BPD nodes 160
of the BPD subtree 150 in accordance with the custom

a

US 2022/0353786 A1 Nov. 3 , 2022
5

least one main network component comprising a cellular
tower or eNodeB . The DC node 160A includes a cellular
modem (not shown) for connecting with the cellular tower
and / or eNodeB within the cellular network . In this manner ,
the DC node 160A can communicate with the cellular
network (main network 110) as well as the BPD subtree 150 .

?

network protocol . In some embodiments , the DC node 160A
also produces and maintains a routing table 261 in the
database 260 to assist in the managing of the subtree 150 , as
discussed below in in relation to FIG . 4 .
[0045] In this manner , the DC node 160A can connect and
communicate with both the main network 110 and the BPD
subtree 150 , and act as the interface between the main
network 110 and the BPD subtree 150. The DC node 160A
can connect and communicate with any type of main net
work 110 by storing and executing the conventional network
protocol stack 245 implemented by the main network 110 .
The custom network protocol that is also executed by the DC
node 160A is configured to operate independently from the
conventional network protocol implemented by the main
network 110. In this regard , the custom network protocol is
agnostic to the conventional network protocol implemented
by the main network 110 , and does not need to be modified
for different types of conventional network protocols .
[0046] A BPD node 160 comprising an EC node (such as
160B and 160C) of the subtree 150 can store and execute the
custom network protocol stack 250 to connect and commu
nicate with other BPD nodes within the BPD subtree 150
and perform various functions defined by the custom net
work protocol . Each EC node produces and maintains one or
more address lists 262 in the database 260 to assist in
performing some of the functions defined by custom net
work protocol , as discussed below in in relation to FIG . 10 .
In some embodiments , an EC node can become a DC node
for a new BPD subtree 150 in particular situations . For
example , an EC node can lose connection with a DC node
160A and then migrate to connect to an MPD node 120 of
the main network 110. In these embodiments , each EC node
can also store the conventional network protocol stack 245
in case the EC node becomes a DC node for a new BPD
subtree 150 and needs to interface with an MPD node 120
of the main network 110 .
[0047] An MPD node 120 of the main network 110 stores
and executes the conventional network protocol stack 245 to
connect and communicate with other MPD nodes 120 of the
main network 110 and possibly the DC node 160A of the
BPD subtree 150. In these embodiments , an MPD node 120
of the main network 110 does not include the custom
network protocol stack 250. Each MPD node 120 can
include similar hardware components depicted for a BPD
node 160 in FIG . 2 , such as the computing device 210
coupled to the transceiver 280 and the oscillator 290 .
[0048] In some embodiments , the custom network proto
col stack 250 comprises a layer 2 protocol stack of the Open
Systems Interconnection (OSI) model and the routing table
261 comprises a layer 2 routing table . In other embodiments ,
the custom network protocol stack 250 comprises a layer 3
protocol stack of the OSI model . Advantageously , imple
menting the custom network protocol stack 250 as a layer 2
protocol stack allows the custom network protocol to be
agnostic to the conventional network protocol of the main
network 110. In this regard , implementing the custom net
work protocol as a layer 2 protocol allows the custom
network protocol to operate and be compatible with any type
of layer 2 or layer 3 conventional network protocol .
[0049] In some embodiments , the conventional network
protocol stack 245 comprises a cellular protocol stack for
providing a cellular protocol to connect and communicate
with a cellular network . In these embodiments , the main
network 110 comprises a cellular network that includes at

Managing a BPD Subtree
[0050] In operation , the DC node 160A manages the BPD
subtree 150 in accordance with the custom network protocol
and custom subtree parameters 251. In particular , the DC
node 160A ensures that the BPD subtree 150 complies with
the maximum number of nodes for a subtree , the maximum
number of node hops for a subtree , and the single parent
requirement specified in the custom subtree parameters 251 .
In addition , the DC node 160A performs various functions
as specified by the custom network protocol , such as a
discovery process / function , a message routing process / func
tion , and the like . The DC node 160A can generate and
maintain a routing table 261 in the database 260 to assist in
the managing of the BPD subtree 150 and the performance
of the various functions .
[0051] FIG . 3 illustrates a BPD subtree 150 configured to
operate within the network system 100 of FIG . 1 , according
to various embodiments . As shown , the BPD subtree 150
includes a plurality of BPD nodes 160 (such as 160A , 160B ,
160C) . The BPD nodes 160 are configured to communicate
directly with one or more adjacent nodes via bi - directional
communication links 360 (such as 360A , 360B , 360C) that
operate in accordance with the custom network protocol .
The communication links 360 can be wired or wireless links .
The BPD subtree 150 includes only a single root node (DC
node 160A) and one or more EC nodes (such as 160B , 160C ,
160D) . In other embodiments , multiple DC BPD nodes can
be connected to a MPD node .
[0052] The DC node 160A manages the BPD subtree 150
using a routing table 261. FIG . 4 is a conceptual diagram of
a routing table 261 generated for the BPD subtree 150 of
FIG . 3 , according to various embodiments . The routing table
261 can be stored to the database 260 of the DC node 160A .
The routing table 261 includes a plurality of entries 401
(such as 401A , 401B , 401C , etc.) , each entry 401 corre
sponding to and representing a particular EC node (such as
160B , 160C , 160D) in the BPD subtree 150. Each entry 401
can include different data fields for a row number 405 , a
MAC address 410 , a parent MAC address 415 , and a
timestamp 420 .
[0053] The row number 405 of a particular entry 401
indicates the number of the row within the routing table 261
that includes the particular entry 401. The row number 405
can be used by the DC node 160A to determine the total
number of EC nodes currently in the subtree 150. The MAC
address 410 in a particular entry 401 specifies the MAC
address of the EC node that is represented by the particular
entry 401. The parent MAC address 415 in a particular entry
401 specifies the MAC address of the parent node of the EC
node that is represented by the particular entry 401. The
timestamp 420 in a particular entry 401 specifies a time that
the information in the particular entry 401 was last vali
dated / verified through an affiliation process .
[0054] For illustrative purposes , the MAC addresses in the
routing table 261 of FIG . 4 are represented as letters , such
as “ A , ” “ B ” “ C , ” etc. In addition , a reference to a particular
node herein , such as EC node 160C , can indicate a reference

US 2022/0353786 A1 Nov. 3 , 2022
6

to the MAC address of the particular node . The MAC
addresses of the various nodes can be implemented in the
various embodiments described herein . In other embodi
ments , however , any other type of network identifier or
network address other than a MAC address can be is used to
uniquely identify the nodes across a network .
[0055] In the example of FIG . 4 , the DC node 160A
generates and maintains the routing table 261 for the BPD
subtree 150 of FIG . 3. As shown , the total number of rows
of the routing table 261 equals 7 , which also indicates the
total number of EC nodes currently in the BPD subtree 150 .
The first entry 401A of the routing table 261 represents a first
EC node 160B having a MAC address “ B ” 410 and a parent
MAC address “ A ” 415 (corresponding to the DC node
160A) . The second entry 401B of the routing table 261
represents a second EC node 160C having a MAC address
“ C ” 410 and a parent MAC address “ B ” 415 (corresponding
to the EC node 160B) . The third entry 401C of the routing
table 261 represents a third EC node 160D having a MAC
address “ D ” 410 and a parent MAC address “ A ” 415
(corresponding to the DC node 160A) . The fourth entry
401D of the routing table 261 represents a fourth EC node
160E having a MAC address “ E ” 410 and a parent MAC
address “ B ” 415 (corresponding to the EC node 160B) , and
so forth . The seventh entry 4016 of the routing table 261
represents a seventh EC node 160H having a MAC address
“ H ” 410 and a parent MAC address “ F ” 415 (corresponding
to the EC node 160F) .

Adding a Node to a BPD Subtree
[0056] In operation , the DC node 160A generates and
stores an entry 401 to the routing table 261 for an EC node
when the EC node is added to the BPD subtree 150. For
example , the DC node 160A generated and stored the
seventh entry 401G of the routing table 261 when the
seventh EC node 160H was added to the BPD subtree 150 .
In some embodiments , the custom network protocol defines
a node adding process / function performed between the DC
node 160A and one or more EC nodes to add a new EC node
to the BPD subtree 150. As dis sed above , since he
custom network protocol only permits smaller and simpler
BPD subtrees relative to conventional network protocols ,
the custom network protocol can define less complex func
tions for execution by the BPD nodes 160 , such as the node
adding process / function , relative to conventional network
protocols . The simpler node adding process defined by the
custom network protocol allows the BPD nodes 160 to
expend less energy / battery power when executing the sim
pler node adding process , as compared to executing the more
complex node adding process defined by a conventional
network protocol .
[0057] To add a new BPD node to the subtree 150 , a
discovery process defined by the custom network protocol is
performed by the new BPD node (referred to as the discov
ering node) and one or more current BPD nodes 160 of the
subtree 150. The discovery process is performed to connect /
link the discovering node with a single parent node in the
subtree 150 that then allows the discovering node to transmit
and receive messages from other nodes in the network
system 100. The discovery process includes an affiliation
process that is also defined by the custom network protocol .
The affiliation process can be performed between the dis
covering node and the root DC node 160A to affiliate the
discovering node with the root DC node 160A .

[0058] During the discovery process , the discovering node
attempts to attach / connect to a current BPD node 160 of the
subtree 150. In this regard , discovering node transmits
discovery request messages during a discovery window . For
example , due to the limited power of the BPD nodes , the
discovery windows can be configured to occur only once or
twice a day . Each discovery request message specifies the
MAC address of the discovering node and a response
window for a current BPD node 160 that receives the
discovery request message to respond back to the discover
ing node . During a discovery window , each current BPD
node 160 of the subtree 150 will " listen ” for discovery
request messages , for example , for a few seconds during the
discovery window .
[0059] A current BPD node 160 that “ hears ” (successfully
receives) a discovery request message from the discovering
node comprises a potential parent node of the discovering
node . Each potential parent node responds to the discovering
node with a response message during the response window .
A response message specifies a MAC address of the poten
tial parent node , a number of node hops away the potential
parent node is from the DC node 160A , and / or other
information associated with the potential parent node . The
discovering node receives a response message during the
response window from each of one or more potential parent
nodes . In response , the discovering node initiates a time
synching procedure with each of the one or more potential
parent nodes to link / synch with each of the one or more
potential parent nodes .
[0060] As defined by the custom network protocol , each
BPD node 160 in the subtree 150 can be attached to only a
single parent node in the subtree 150 and cannot have
multiple parent nodes . The single parent requirement is
enforced by each BPD node that executes the custom
network protocol . As such , if the discovering node is linked /
synched with multiple potential parent nodes , the discover
ing node selects only a single potential parent node from
among the multiple potential parent nodes for which to
attach as a child node . The potential parent node that is
selected by the discovering node is referred to as the selected
parent node . If there is only one potential parent node , the
selected parent node comprises the one potential parent
node .
[0061] After the discovering node determines the selected
parent node , an affiliation process is performed between the
discovering node and the DC node 160A . The affiliation
process is defined by the custom network protocol , and
ensures that the size and complexity of the subtree 150
complies with the custom subtree parameters 251 defined by
the custom network protocol . In particular , during the affili
ation process , the DC node 160A verifies that adding the
discovering node to the subtree 150 does not exceed / violate
the maximum number of nodes permitted for a subtree 150
and also does not exceed / violate the maximum number of
node hops permitted for a subtree 150 , as specified by the
custom subtree parameters 251. In some embodiments , that
each EC node in the BPD subtree 150 ensures that the
maximum number of node hops permitted for a subtree 150
is not exceeded , and the DC node 160A verifies (double
checks) that the maximum number of node hops permitted
for a subtree 150 is not exceeded . Therefore , the discovering
node must successfully complete the affiliation process with
the DC node 160A to become attached to the selected parent
node and join the subtree 150 .

a

a

US 2022/0353786 A1 Nov. 3 , 2022
7

[0062] The discovering node initiates the affiliation pro
cess by sending an affiliation request / message to the DC
node 160A . The affiliation request / message specifies a MAC
address of the discovering node and a MAC address of the
selected parent node . The affiliation request is routed
upstream through zero or more EC nodes to the DC node
160A . For example , if the discovering node comprises EC
node 160H , EC node 160H sends the affiliation request to
selected parent EC node 160F , which sends the affiliation
request to parent EC node 160C , which sends the affiliation
request to parent EC node 160B , which sends the affiliation
request to parent DC node 160A . Upstream message routing
is discussed below in relation to FIGS . 7-8 .
[0063] The DC node 160A receives the affiliation request
and determines whether to allow the discovering node to
attach to the selected parent node and join the subtree 150
based on the information in the affiliation request , the
custom subtree parameters 251 , and the routing table 261. In
particular , the DC node 160A permits the discovering node
to join the subtree 150 if doing so would not violate / exceed
the maximum number of nodes permitted for a BPD subtree
150 and also would not violate / exceed the maximum num
ber of node hops permitted for a BPD subtree 150 .
[0064] The DC node 160A determines if adding the dis
covering node would exceed the maximum number of nodes
permitted in the BPD subtree 150. To do so , the DC node
160A can determine the current number of BPD nodes in the
BPD subtree 150 by determining the total number of rows in
the routing table 261. For example , the DC node 160A can
determine the row number 405 specified in the last row entry
401 of the routing table 261 , which indicates the current
number of BPD nodes in the BPD subtree 150. In some
embodiments , the current number of BPD nodes in the BPD
subtree 150 does not include the DC node 160A . In these
embodiments , the row number 405 specified in the last row
entry 401 of the routing table 261 indicates the current
number of BPD nodes in the BPD subtree 150. In other
embodiments , the current number of BPD nodes in the BPD
subtree 150 includes the DC node 160A . In these embodi
ments , the row number 405 specified in the last row try
401 of the routing table 261 can be incremented by one to
determine the current number of BPD nodes in the BPD
subtree 150 .
[0065] The DC node 160A can then determine the maxi
mum number of nodes permitted in the BPD subtree 150 as
specified in the custom subtree parameters 251. If adding the
discovering node to the subtree 150 would cause the total
number of nodes in the subtree 150 to exceed the maximum
number of nodes permitted in the BPD subtree 150 , the DC
node 160A determines that the discovering node is not
permitted to join the subtree 150. If adding the discovering
node to the subtree 150 would not exceed the maximum
number of nodes permitted in the BPD subtree 150 , the DC
node 160A determines that adding the discovering node
would not violate / exceed the permitted maximum number of
nodes . In other words , if adding the discovering node to the
subtree 150 would cause the total number of nodes in the
subtree 150 to be less than or equal to the maximum number
of nodes permitted in the BPD subtree 150 , the DC node
160A determines that adding the discovering node would not
violate / exceed the permitted maximum number of nodes .
For example , if the maximum number of nodes permitted for
a subtree 150 equals 10 , and adding the discovering node
would create a subtree 150 with a total of 7 nodes , the DC

node 160A determines that adding the discovering node
would not violate / exceed the permitted maximum number of
nodes (the resulting total number of nodes is less than or
equal to the permitted maximum number of nodes) .
[0066] The DC node 160A also determines if adding the
discovering node to the subtree 150 by attaching the dis
covering node to the selected parent node would exceed the
maximum number of node hops permitted in the subtree
150. To do so , the DC node 160A can determine the number
of node hops associated with the selected parent node by
analyzing the routing table 261. As discussed above , the
affiliation request contains the MAC address of the selected
parent node . Using the MAC address of the selected parent
node , the DC node 160A can determine the number of node
hops the selected parent node is from the DC node 160A . For
example , if the selected parent node is EC node 160F , the
DC node 160A determines that entry 401E of the routing
table 261 represents EC node 160F , which indicates that EC
node 160C is the parent node of EC node 160F , which
signifies one node hop . The DC node 160A then determines
that entry 401B of the routing table 261 represents EC node
160C , which indicates that EC node 160B is the parent node
of EC node 160C , which signifies a second node hop . The
DC node 160A then determines that entry 401A of the
routing table 261 represents EC node 160B , which indicates
that DC node 160A is the parent node of EC node 160B ,
which signifies a third node hop . Therefore , the DC node
160A determines that the selected parent node is three node
hops away from the DC node 160A . The DC node 160A also
determines that attaching the discovering node (such as EC
node 160H) to the selected parent node (EC node 160F)
means that the discovering node would be four node hops
away from the DC node 160A .
[0067] The DC node 160A can then determine the maxi
mum number of node hops permitted in the BPD subtree 150
as specified in the custom subtree parameters 251. If attach
ing the discovering node to the selected parent node would
exceed the maximum number of node hops permitted in the
subtree 150 , the DC node 160A determines that the discov
ering node is not permitted to join the subtree 150. If
attaching the discovering node to the selected parent node
would not exceed the maximum number of node hops
permitted in the subtree 150 , the DC node 160A determines
that adding the discovering node would not violate / exceed
the permitted maximum number of node hops . In other
words , if attaching the discovering node to the selected
parent node would cause the number of node hops from the
discovering node to the DC node 160A to be less than or
equal to the maximum number of node hops permitted in the
BPD subtree 150 , the DC node 160A determines that adding
the discovering node would not violate / exceed the permitted
maximum number of node hops . For example , if the maxi
mum number of node hops permitted for a subtree 150
equals 5 , the DC node 160A determines that adding the
discovering node would not violate / exceed the permitted
maximum number of node hops (the resulting number of
node hops from the discovering node to the DC node 160A
would be less than or equal to the permitted maximum
number of node hops) .
[0068] Note that the DC node 160A permits the discov
ering node to join the subtree 150 if doing so does not
violate / exceed the permitted maximum number of nodes and
also does not violate / exceed the permitted maximum num
ber of node hops . In this manner , the DC node 160A enforces

US 2022/0353786 A1 Nov. 3 , 2022
8

a

a

the maximum number of nodes and the number of node hops
specified by the custom network protocol to ensure a smaller
and less complex subtree 150 than permitted by conven
tional network protocols .
[0069] If the DC node 160A determines that the discov
ering node is permitted to join the subtree 150 , the DC node
160A generates a new entry 401 for the discovering node in
the routing table 261. The DC node 160A also uses the MAC
address of the discovering node and the MAC address of the
selected parent node specified in the affiliation request to fill
in the data fields for the MAC address 410 , and the parent
MAC address 415 , respectively . The DC node 160A then
fills in the data field for the timestamp 420 based on the
current time that the new entry 401 is generated for the
discovering node .
[0070] After determining whether or not to allow the
discovering node to attach to the selected parent node and
join the subtree 150 , the DC node 160A sends an affiliation
response / message downstream to the selected parent node .
The affiliation response specifies a specific node route / path
to the selected parent node and whether or not the discov
ering node is permitted to join the subtree 150. Downstream
message routing is discussed below in relation to FIG . 6 .
[0071] The selected parent node then receives the affilia
tion response . If the affiliation response indicates that the
discovering node is permitted to join the subtree 150 , the
selected parent node sends a connection message to the
discovering node to connect to the selected parent node . In
response , the discovering node connects / attaches to the
selected parent node by sending an association message to
the selected parent node to create a secure link with the
selected parent node . The discovering node is then con
nected to the selected parent node and is part of the BPD
subtree 150. If the affiliation response indicates that the
discovering node is not permitted to join the subtree 150 , the
selected parent node sends a connection message to the
discovering node to not connect to the selected parent node .
In response , the discovering node does not connect to the
selected parent node and starts the discovery process over
again to attach to another current node of the current subtree
150 or another subtree 150 , or to an MPD node of the main
network 110. Note that each EC node in the subtree 150
depicted in FIG . 3 can be added to the subtree 150 using the
above discovery process .
[0072] After being added to the subtree 150 , each EC node
is configured by the custom network protocol to periodically
re - affiliate with the DC node 160A . For example , each EC
node can be configured to re - affiliate with the DC node 160A
every day , or every 2 days . Each EC node can re - affiliate
with the DC node 160A by sending a re - affiliation message
specifying the MAC address of the EC node to the DC node
160A . When the DC node 160A receives the re - affiliation
message from a particular EC node , the DC node 160A
updates the timestamp 420 in the entry 401 of the routing
table 261 corresponding to the particular EC node . The
updated timestamp 420 indicates a current time that the DC
node 160A received the re - affiliation message from the
particular EC node . In this manner , the integrity of the data
in the routing table 261 is maintained and kept current . In
some embodiments , if the DC node 160A does not receive
a re - affiliation message within a predetermined time period
from the last updated timestamp from a particular EC node ,
the DC node 160A determines that the particular EC node
has lost connectivity with the subtree 150 and removes the

entry 401 corresponding to the particular EC node from the
routing table 261. For example , if the DC node 160A does
not receive a re - affiliation message within e.g. , 3 days from 3
the last updated timestamp from a particular EC node , the
DC node 160A removes the entry 401 corresponding to the
particular EC node from the routing table 261 .
[0073] FIGS . 5A - 5B set forth a flow diagram of method
steps for adding a node to a BPD subtree , according to
various embodiments . Although the method steps are
described in conjunction with the systems of FIGS . 1-4 ,
persons skilled in the art will understand that any system can
be configured to perform the method steps in any order .
[0074] As shown , a method 500 begins at step 510 , when
a new BPD node (discovering node) to be added to the BPD
subtree 150 initiates a discovery process with one or more
current BPD nodes 160 of the subtree 150. The discovery
process is defined by the custom network protocol to con
nect / link a node with a single parent node in the BPD subtree
150. The discovery process includes an affiliation process
that is also defined by the custom network protocol . The
discovering node initiates the discovery process (at step 510)
by transmitting discovery request messages during a discov
ery window . Each discovery request message contains infor
mation that specifies a response window for responding back
to the discovering node .
[0075] At step 520 , during the discovery window , each
current BPD node 160 of the subtree 150 “ listens ” for
discovery request messages , wherein one or more current
BPD nodes 160 (one or more potential parent nodes) suc
cessfully receives a discovery request message from the
discovering node . In response , each potential parent node
responds to the discovering node with a discovery response
message during the response window specified in the dis
covery request message . A discovery response message
specifies a MAC address of the potential parent node , a
number of node hops between the potential parent node and
the DC node 160A , a maximum number of node hops
allowed , and / or other information associated with the poten
tial parent node .
[0076] At step 530 , the discovering node receives a dis
covery response message during the response window from
each of the one or more potential parent nodes . In response ,
the discovering node links / synchs with each of the one or
more potential parent nodes . At step 540 , the discovering
node selects only a single potential parent node from the one
or more potential parent nodes to which to attach as a child
node .
[0077] After the discovering node determines the selected
parent node , an affiliation process is performed between the
discovering node and the DC node 160A so that the DC node
160A can verify that adding the discovering node to the
subtree 150 does not exceed / violate the maximum number
of nodes permitted for a subtree 150 and also does not
exceed / violate the maximum number of node hops permitted
for a subtree 150 , as specified by the custom subtree
parameters 251. The affiliation process is performed in steps
550-590 .
[0078] At step 550 , the discovering node initiates the
affiliation process by sending an affiliation request / message
to the DC node 160A . The affiliation request / message speci
fies a MAC address of the discovering node and a MAC
address of the selected parent node . The affiliation request is
routed upstream through zero or more EC nodes to the DC
node 160A using an upstream message routing process .

US 2022/0353786 A1 Nov. 3 , 2022
9

node and starts the discovery process over again at step 510
to attach to another node of the subtree 150 or another
subtree 150 .

[0079] At step 560 , the DC node 160A receives the
affiliation request and , in response , determines whether or
not to allow the discovering node to attach to the selected
parent node and join the subtree 150 based on the informa
tion in the affiliation request , the custom subtree parameters
251 , and the routing table 261. In particular , the DC node
160A makes a first determination that if adding the discov
ering node to the subtree 150 would produce a total number
of nodes in the subtree 150 to be less than or equal to the
maximum number of nodes permitted for a BPD subtree
150 , as specified by the custom network protocol . The DC
node 160A also makes a second determination that if attach
ing the discovering node to the selected parent node in the
subtree 150 would produce a total number of node hops from
the discovering node to the DC node 160A to be less than or
equal to the maximum number of node hops permitted in a
BPD subtree 150 , as specified by the custom network
protocol .
[0080] In step 560 , if the DC node 160A determines that
both the first determination and the second determination are
true , the DC node 160A determines that adding the discov
ering node to the subtree 150 would not exceed the maxi
mum number of nodes and would not exceed the maximum
number of node hops permitted for a BPD subtree 150 , as
specified by the custom network protocol . Therefore , the DC
node 160A determines that the discovering node is permitted
to attach to the selected parent node and join the subtree 150 ,
and the method 500 proceeds to step 565 .
[0081] At step 565 , the DC node 160A sends an affiliation
response downstream to the selected parent node . The
affiliation response specifies that the discovering node is
permitted to join the subtree 150. The DC node 160A also
generates and fills in a new entry 401 for the discovering
node in the routing table 261. At step 570 , the selected parent
node then receives the affiliation response , and sends a
connection message to the discovering node to connect to
the selected parent node . In response , the discovering node
connects / attaches to the selected parent node and joins the
BPD subtree 150. At step 575 , after being added to the
subtree 150 , the added node periodically re - affiliates with
the DC node 160A by periodically sending a re - affiliation
message to the DC node 160A . When the DC node 160A
receives the re - affiliation message from the added node , the
DC node 160A updates the timestamp 420 in the entry 401
of the routing table 261 corresponding to the added node .
[0082] However , in step 560 , if the DC node 160A deter
mines that either the first determination or the second
determination are false , the DC node 160A determines that
adding the discovering node to the subtree 150 would
exceed either the maximum number of nodes or the maxi
mum number of node hops permitted for a BPD subtree 150 ,
as specified by the custom network protocol . Therefore , the
DC node 160A determines that the discovering node is not
permitted to attach to the selected parent node and join the
subtree 150 , and the method 500 proceeds to step 580 .
[0083] At step 580 , the DC node 160A sends an affiliation
response downstream to the selected parent node . The
affiliation response specifies that the discovering node is not
permitted to join the subtree 150. At step 585 , the selected
parent node then receives the affiliation response , and sends
a connection message to the discovering node to not connect
to the selected parent node . In response , at step 590 , the
discovering node does not connect to the selected parent

Message Routing within a BPD Subtree
[0084] In some embodiments , the custom network proto
col defines message routing (messaging) processes within
the BPD subtree 150. As discussed above , since the custom
network protocol only permits smaller and simpler BPD
subtrees relative to conventional network protocols , the
custom network protocol can define less complex messaging
functions for execution by the BPD nodes 160 relative to
conventional network protocols . The simpler messaging
processes defined by the custom network protocol allows the
BPD nodes 160 to expend less energy / battery power when
executing the simpler messaging processes , as compared to
executing the more complex messaging processes defined by
a conventional network protocol . In message routing , any of
the BPD nodes can operate as a source node , an intermediate
node , or a destination node for the transmission of messages
(data packets) . A given source node generates a message and
transmits the message to a destination node via any number
of intermediate nodes .
[0085] The custom network protocol defines a down
stream messaging process and an upstream messaging pro
cess . Downstream messaging routes messages in a direction
from the DC node 160A towards the EC nodes of the BPD
subtree 150. In contrast , upstream messaging routes mes
sages in a direction from an EC node to the DC node 160A
of the BPD subtree 150. The messaging processes can be
used to route various messages described herein , such as
data messages , and the like .
[0086] In downstream messaging , the DC node 160A
receives an incoming message from the connecting MPD
node 120A within the main network 110. The incoming
message originates from an MPD node 120 within the main
network 110 or from a device routed over the main network
110 and traverses one or more MPD nodes 120 within the
main network 110 in accordance with the conventional
network protocol to reach the DC node 160A . Therefore , the
incoming message is routed through the main network 110
in accordance with the conventional network protocol . As
such , the incoming message is encapsulated / packaged in
accordance with the underlying conventional network pro
tocol of the particular main network 110. The incoming
message specifies the MAC address of the DC node 160A
and the MAC address of the intended destination node that
is to receive the message . The incoming message is routed
to the DC node 160A using the MAC address of the DC node
160A and the conventional network protocol . The incoming
message is then routed to the destination node within the
subtree 150 using the MAC address of the destination node
and the custom network protocol . Note that regardless of
which type of conventional network protocol is used in the
main network 110 , once the incoming message is received at
the DC node 160A , the custom network protocol is used to
route the incoming message to the destination node within
the subtree 150. As such , the downstream messaging func
tion / process of the custom network protocol is agnostic to
the type of conventional network protocol used in the main
network 110 .
[0087] In response to receiving the incoming message , the
DC node 160A repackages the incoming message in accor
dance with the custom network protocol . In particular , the

a

a

US 2022/0353786 A1 Nov. 3. 2022
10

DC node 160A generates a repackaged incoming message
(referred to herein as a downstream message) based on the
information contained in the incoming message , the routing
table 261 , and the custom network protocol . The down
stream message includes a downstream message indicator
and specifies a node path / route from the DC node 160A to
the destination node . The node path specifies a particular
sequence of one or more EC nodes that connect the DC node
160A to the destination node , wherein the last EC node in the
node path comprises the destination node that is to receive
the downstream message . In particular , the node path speci
fies a particular sequence of MAC addresses corresponding
to the one or more EC nodes that connect the DC node 160A
to the destination node . In some embodiments , due to the
single parent restriction , there is only a single node path
from the DC node 160A to the destination node within the
subtree 150. The downstream message indicator in the
downstream message notifies each EC node to route the
message downstream using the specified node path .
[0088] The DC node 160A determines the node path based
on the MAC address of the destination node (specified in the
incoming message) and the routing table 261. In particular ,
the DC node 160A identifies a particular entry 401 in the
routing table 261 that corresponds to the destination node by
analyzing the MAC address fields 410 in the routing table
261. The DC node 160A determines that a first entry 401
having a MAC address field 410 that matches the MAC
address of the destination node is the entry 401 that corre
sponds to the destination node . The DC node 160A then
determines the MAC address of the parent node (first
intermediate node) for the destination node specified in the
parent MAC address field 415 of the first entry 401. The DC
node 160A then determines a second entry 401 correspond
ing to the first intermediate node , and determines the MAC
address of the parent node (second intermediate node) in the
parent MAC address field 415 in the second entry 401. The
DC node 160A then determines a third entry 401 corre
sponding to the second intermediate node , and determines
the MAC address of the parent node (third intermediate
node) in the parent MAC address field 415 in the third entry
401 , and so forth .
[0089] The DC node 160A performs the above process
until reaching an entry 401 having a parent MAC address
field 415 that specifies the DC node 160A itself . The DC
node 160A then generates the node path by specifying a
sequence of MAC addresses of nodes starting from the DC
node 160A and ending with the destination node . For
example , node path can specify in sequence the MAC
addresses for : the DC node 160A , the third intermediate
node , the second intermediate node , the first intermediate
node , and the destination node . Therefore , the node path
specifies a unique path / route within the subtree 150 from the
DC node 160A to the destination node .
[0090] For example , in FIG . 3 , assume that the destination
node comprises EC node 160H . The DC node 160A deter
mines that entry 4016 of the routing table 261 represents EC
node 160H (destination node) , which indicates that EC node
160F (first intermediate node) is the parent node of EC node
160H . The DC node 160A then determines that entry 401E
of the routing table 261 represents EC node 160F , which
indicates that EC node 160C (second intermediate node) is
the parent node of EC node 160F . The DC node 160A then
determines that entry 401B of the routing table 261 repre
sents EC node 160C , which indicates that EC node 160B

(third intermediate node) is the parent node of EC node
160C . The DC node 160A then determines that entry 401A
of the routing table 261 represents EC node 160B , which
indicates that DC node 160A is the parent node of EC node
160B . The DC node 160A then generates the node path by
specifying a sequence of MAC addresses of nodes starting
from the DC node 160A and ending with the destination
node EC node 160H . In this example , the node path can
specify in sequence the MAC addresses for : the DC node
160A , EC node 160B , EC node 160C , EC node 160F , and
EC node 160H (destination node) .
[0091] The DC node 160A then transmits the downstream
message to a particular child node , and the downstream
message traverses one or more EC nodes within the subtree
150 in accordance with the custom network protocol to
reach the destination node . Therefore , the downstream mes
sage is routed through the subtree 150 in accordance with the
custom network protocol . In particular , the DC node 160A
transmits the downstream message containing the node path
to the first EC node specified in the node path using the
MAC address of the first EC node . The DC node 160A can
determine the MAC address of the first EC node by identi
fying the MAC address of EC node that immediately follows
the MAC address of the DC node 160A in the node path . The
first EC node then receives the downstream message and
transmits the downstream message to the second EC node
specified in the node path using the MAC address of the
second EC node . The first EC node determines the MAC
address of the second EC node by identifying the MAC
address of EC node that immediately follows the MAC
address of the first EC node in the node path . The second EC
node then receives the downstream message and transmits
the downstream message to the third EC node specified in
the node path using the MAC address of the third EC node .
The second EC node determines the MAC address of the
third EC node by identifying the MAC address of EC node
that immediately follows the MAC address of the second EC
node in the node path , and so forth .
[0092] Note that the downstream message indicator in the
downstream message notifies each EC node to route the
message downstream using the node path . The downstream
routing of the downstream message continues in this manner
from the DC node 160A to each EC node in the node path
in sequence until the downstream message reaches the
destination node . When the last EC node in the node path
receives the downstream message , the last EC node can
determine that it is the destination node by matching the
MAC address of last EC node to the last MAC address
specified in the node path .
[0093] For example , in FIG . 3 , assume that the destination
node comprises EC node 160H and the downstream message
includes a node path that specifies the sequence the MAC
addresses : the DC node 160A , EC node 160B , EC node
160C , EC node 160F , and EC node 160H (destination node) .
The DC node 160A determines that EC node 160B imme
diately follows DC node 160A in the node path , and in
response , transmits the downstream message to EC node
160B . EC node 160B receives the downstream message ,
determines that EC node 160C immediately follows EC
node 160B in the node path , and in response , transmits the
downstream message to EC node 160C . EC node 160C
receives the downstream message , determines that EC node
160F immediately follows EC node 160C in the node path ,
and in response , transmits the downstream message to EC

>

US 2022/0353786 A1 Nov. 3 , 2022
11

a

a

a

a

a

node 160F . EC node 160F receives the downstream mes
sage , determines that EC node 160H immediately follows
EC node 160F in the node path , and in response , transmits
the downstream message to EC node 160H . EC node 160H
receives the downstream message and determines that it is
the intended destination node for the downstream message .
[0094] FIG . 6 sets forth a flow diagram of method steps for
downstream message routing within a BPD subtree , accord
ing to various embodiments . Although the method steps are
described in conjunction with the systems of FIGS . 1-4 ,
persons skilled in the art will understand that any system can
be configured to perform the method steps in any order .
[0095] As shown , a method 600 begins at step 610 , when
the DC node 160A receives an incoming message from the
connecting MPD node 120A within the main network 110 .
The incoming message specifies the MAC address of the DC
node 160A and the MAC address of the intended destination
node that is to receive the message . The incoming message
is encapsulated / packaged in accordance with the conven
tional network protocol of the main network 110. In
response , at step 620 , the DC node 160A generates a
downstream message based on the information contained in
the incoming message , the routing table 261 , and the custom
network protocol . The downstream message includes a
downstream message indicator and specifies a node path /
route through the subtree 150 to the destination node . The
downstream message is repackaged in accordance with the
custom network protocol of the subtree 150 .
[0096] At step 630 , the downstream message is routed
through the subtree 150 according to the node path specified
in the downstream message until the downstream message is
transmitted to the last node in the node path . At step 640 , the
last node receives the downstream message and determines
it is the intended destination node for the downstream
message by determining that it is the last node specified in
the node path . The method 600 then ends .
[0097] In upstream messaging , an EC node (source node)
in the subtree 150 generates an upstream message intended
for an upstream destination node in the subtree 150 or the
main network 110. The upstream message includes an
upstream message indicator and specifies the MAC address
of the destination node . The upstream message is packaged
in the custom network protocol . The upstream message
indicator in the upstream message notifies each EC node to
simply route the message to its single parent node unless the
EC node is the destination node . In this regard , each EC
node in the subtree 150 is configured by the custom network
protocol to transmit a message including the upstream
message indicator to its single parent node . This simplified
upstream messaging process whereby each EC node trans
mits the upstream message to the parent node is enabled by
the single parent restriction of the custom network protocol .
In this manner , the upstream message is routed upstream
through the subtree 150 from the source EC node through
zero or more other EC nodes until it reaches a destination EC
node or the DC node 160A .
[0098] The destination node can comprise an upstream
node within the subtree 150. For example , in FIG . 3 , assume
the source node comprises EC node 160H and the destina
tion node is EC node 160B . EC node 160H generates the
upstream message that includes the upstream message indi
cator and specifies the destination node as EC node 160B
(specifies the MAC address of EC node 160B) . EC node
160H transmits the upstream message to parent EC node

160F . EC node 160F receives the upstream message and
determines it is not the destination node and the message
includes the upstream message indicator . In response , EC
node 160F transmits the upstream message to parent EC
node 160C . EC node 160C receives the upstream message
and determines it is not the destination node and the message
includes the upstream message indicator . In response , EC
node 160C transmits the upstream message to parent EC
node 160B . EC node 160C receives the upstream message
and determines that it is the destination node .
[0099] FIG . 7 sets forth a flow diagram of method steps for
upstream message routing to a node within a BPD subtree ,
according to various embodiments . Although the method
steps are described in conjunction with the systems of FIGS .
1-4 , persons skilled in the art will understand that any
system can be configured to perform the method steps in any
order .
[0100] As shown , a method 700 begins at step 710 , when
a source EC node generates an upstream message that
includes an upstream message indicator and specifies the
MAC address of a destination node within the subtree 150
to receive the upstream message . The upstream message is
packaged in the custom network protocol . At step 720 , the
upstream message is routed upstream through zero or more
EC nodes of the subtree 150 , each EC node transmitting the
upstream message to its single parent , until the upstream
message is transmitted to the destination node . The method
700 then ends .
[0101] In other embodiments , the destination node can
comprise an MPD node within the main network 110. In
these embodiments , the upstream message is routed through
the subtree 150 until it reaches the DC node 160A . When the
DC node 160A receives upstream message (packaged in the
custom network protocol) and determines it is not the
destination node . In response , the DC node 160 A repackages
the upstream message in the conventional network protocol
of the main network 110 to produce an outgoing message .
The outgoing message specifies the MAC address of the
destination MPD node in the main network 110. The DC
node 160A then transmits the outgoing message to connect
ing MPD node 120A , which executes the conventional
network protocol of the main network 110 to route the
outgoing message to the destination MPD node . In other
embodiments , the destination of the outgoing message can
be any device or system to which the main network 110 can
route a message , such as a main network access point (AP) ,
a back - office system , and the like .
[0102] For example , in FIGS . 1 and 3 , assume the source
EC node comprises EC node 160B and the destination node
is MPD node 120B within the main network 110. EC node
160B generates the upstream message packaged in the
custom network protocol that includes the upstream message
indicator and specifies the destination node as MPD node
120B (specifies the MAC address of MPD node 120B) . EC
node 160B transmits the upstream message to parent DC
node 160A . DC node 160A receives the upstream message
and determines it is not the destination node and the message
includes the upstream message indicator . In response , DC
node 160A repackages the upstream message in the conven
tional network protocol of the main network 110 to produce
an outgoing message . The outgoing message specifies the
MAC address of destination MPD node 120B . The DC node
160A then transmits the outgoing message to connecting
MPD node 120A , which executes the conventional network

US 2022/0353786 A1 Nov. 3 , 2022
12

a

a

a

protocol of the main network 110 to route the outgoing
message to the destination MPD node 120B .
[0103] FIG . 8 sets forth a flow diagram of method steps for
upstream message routing to an MPD node within a main
network , according to various embodiments . Although the
method steps are described in conjunction with the systems
of FIGS . 1-4 , persons skilled in the art will understand that
any system can be configured to perform the method steps
in any order .
[0104] As shown , a method 800 begins at step 810 , when
a source EC node generates an upstream message that
includes an upstream message indicator and specifies the
MAC address of an intended destination MPD node (or
destination device or system) within the main network 110
to receive the upstream message . The upstream message is
packaged in the custom network protocol . At step 820 , the
upstream message is routed upstream through zero or more
EC nodes of the subtree 150 , each EC node transmitting the
upstream message to its single parent , until the upstream
message is transmitted to the DC node 160A .
[0105] At step 830 , DC node 160A receives the upstream
message and determines it is not the destination node . In
response , the DC node 160A repackages the upstream mes
sage in the conventional network protocol of the main
network 110 to produce an outgoing message . The outgoing
message specifies the MAC address of the destination MPD
node in the main network 110. In other embodiments , the
destination of the outgoing message can be any device or
system to which the main network 110 can route a message ,
such as a main network access point (AP) , a back - office
system , and the like . At step 840 , the DC node 160A
transmits the outgoing message to connecting MPD node
120A , which executes the conventional network protocol of
the main network 110 to route the outgoing message to the
destination MPD node , or other destination device or sys
tem . The method 800 then ends .

950 is both a descendant and ascendant of every other node
in the loop . For example , EC node 160C is both a descendant
child of EC node 160H and an ascendant grandparent of EC
node 160H . EC node 160C is also a descendant grandchild
of EC node 160F and an ascendant parent of EC node 160F .
As another example , EC node 160F is both a descendant
child of EC node 160C and an ascendant grandparent of EC
node 160C . EC node 160F is also a descendant grandchild
of EC node 160H and an ascendant parent of EC node 160H .
Therefore , a message that enters the loop or originates from
a node in the loop will route from a first node in the loop and
return back to the first node . For example , in FIG . 9 , assume
that source EC node 160F generates a message intended for
DC node 160A . Source EC node 160F transmits the message
to EC node 160H , which transmits the message to EC node
160C , which transmits the message back to EC node 160F .
The message loop can continue in this manner without ever
reaching the destination node .
[0108] Conventional network protocols define loop man
agement functions that avoid and / or detect node loops .
However , because conventional network protocols also per
mit relatively large and complex subtrees , whereby a child
node can have multiple parents , the loop management func
tions defined by conventional network protocols are typi
cally complex and require a significant amount of energy for
a node to execute . While MPD nodes can execute the
complex loop management functions of conventional net
work protocols , BPD nodes are at risk of depleting limited
available battery power when executing the complex loop
management functions .
[0109] To address these issues , the custom network pro
tocol defines loop management functions / processes within
the subtree 150 that are configured for the low power
characteristics of the BPD nodes . First , the custom network
protocol only permits smaller and simpler BPD subtrees
relative to conventional network protocols . For example ,
custom network protocol permits each node in the subtree
150 to have only a single parent node , and does not permit
multiple parent nodes . Therefore , the custom network pro
tocol can define less complex loop management functions
for execution by the BPD nodes 160 relative to conventional
network protocols . The simpler loop management processes
defined by the custom network protocol allows the BPD
nodes 160 to expend less energy / battery power when execut
ing the simpler loop management processes , as compared to
executing the more complex loop management processes
defined by a conventional network protocol .
[0110] In particular , since each EC node in the subtree can
have only a single parent node under the custom network
protocol , there is only a single node path from each EC node
to the DC node 160A in the subtree 150. The single node
path from an EC node to the DC node 160A is also referred
to herein as an address list . In these embodiments , an address
list is determined for each EC node during an address list
process , and the custom network protocol leverages the
address lists to define less complex loop management func
tions .
[0111] FIG . 10 illustrates a set of address lists associated
with a BPD subtree 150 , according to various embodiments .
Each BPD node in the subtree 150 generates and stores an
associated address list 1010 (such as 262A , 262B , 262C)
during an address list process . The address list 262A for DC
node 160A comprises a null list . The address list associated
with a particular EC node specifies a particular sequence of

a

Loop Management within a BPD Subtree
[0106] In a subtree 150 with multiple EC nodes , there is a
potential for the inadvertent creati of node loops within
the subtree 150. A node loop comprises a plurality of
connected nodes that form a closed ring , whereby a first
node in a node loop is both a descendant node and an
ascendant node of a second node in the loop . In other words ,
the first node is a descendant of the second node , such as a
child of the second node , a grandchild of the second node ,
a great - grandchild of the second node , and so forth . The first
node is also an ascendant of the second node , such as a
parent of the second node , a grandparent of the second node ,
a great - grandparent of the second node , and so forth . When
a node loop is created , a message in the loop will route from
the first node in the loop and return back to the first node .
The message can enter the loop from an external source node
outside of the loop , or the message can originate from a
source node within the loop . A message in the loop may not
reach the destination node , and may be continually routed
through the loop . Node loops can be inadvertently created in
a subtree 150 during migration of a set of nodes , or during
regular operation of the subtree 150 .
[0107] FIG . 9 illustrates a node loop 950 created within a
BPD subtree 150 , according to various embodiments . As
shown , the node loop 950 includes a plurality of BPD nodes
160 including EC node 160C , EC node 160F , and EC node
160H , which form a closed ring . Each node in the node loop a

US 2022/0353786 A1 Nov. 3 , 2022
13

processes for loop avoidance during node migration and
processes for loop detection during normal operations of the
BPD subtree 150 .

one or more BPD nodes that connect the DC node 160 A to
the parent node of the EC node . The first node in the address
list comprises the DC node 160A and the last node in the
address list comprises the parent node of the EC node . In
some embodiments , due to the single parent restriction , there
is a single node path from the DC node 160A to the parent
node of the EC node within the subtree 150. In particular , the
address list for a particular EC node specifies a sequence of
MAC addresses corresponding to the one or more nodes that
connect the DC node 160A to the parent node of the
particular EC node . The address list for a particular EC node
specifies a sequence of MAC addresses starting from the DC
node 160A and ends with the parent node of the particular
EC node . Therefore , the address list for a particular EC node
specifies only ascendant nodes (parents , grandparents , etc.)
of the particular EC node and does not include any descen
dant nodes (children , grandchildren , etc.) of the particular
EC node . In some embodiments , the address list for a
particular EC node does not include the MAC address of the
particular EC node itself . In other embodiments , the address
list for a particular EC node does include the MAC address
of the particular EC node itself .
[0112] To generate the address lists , an address list process
is performed whereby each BPD node in the subtree 150 is
configured by the custom network protocol to periodically
transmit (e.g. , every 5 minutes) its address list to each child
node . In response to receiving the parent address list from
the parent node , each child node is triggered to generate its
own address list using the parent address list of the parent
node and transmit its address list to each child node . In
particular , each child node receives the parent address list
from the parent node , and in response , adds the MAC
address of the parent node to the end of the parent address
list to generate its own address list . Therefore , the address
list of MAC addresses increases by one MAC address at
each node hop away from the DC node 160A .
[0113] For example , in FIG . 10 , the DC node 160A
transmits its address list (null list) to each child node (EC
node 160B and EC node 160D) . EC node 160B receives the
parent address list (null list) and adds the MAC address “ A ”
of the parent node (DC node 160A) to the end of the parent
address list to produce its own address list (“ A ”) . EC node
160B then transmits its address list to each child node (EC
node 160C and EC node 160E) . EC node 160C receives the
parent address list (“ A ”) and adds the MAC address “ B ” of
the parent node (EC node 160B) to the end of the parent
address list to produce its own address list (“ A , ” “ B ”) . EC
node 160C then transmits its address list to each child node
(EC node 160F) . EC node 160F receives the parent address
list (“ A , ” “ B ”) and adds the MAC address “ C ” of the parent
node (EC node 160C) to the end of the parent address list to
produce its own address list (“ A , ” “ B ” “ C ”) . EC node 160F
then transmits its address list to each child node (EC node
160H) . EC node 160H receives the parent address list (“ A , "
“ B ” “ C ”) and adds the MAC address “ F ” of the parent node
(EC node 160F) to the end of the parent address list to
produce its own address list (“ A , ” “ B , ” “ C , ” “ F ”) . A similar
process is performed at each node in the subtree 150 so that
each node generates and stores an associated address list
262 .

[0114] The custom network protocol utilizes the address
lists 262 of the EC nodes in various loop management
functions / processes that are executed by the EC nodes of the
BPD subtree 150. The loop management processes include

Loop Avoidance During Node Migration
[0115] In node migration , a sub - portion of the subtree 150
moves to different locations within the subtree 150 or to
another subtree 150. In particular , a migrating group of two
or more nodes changes position within a current subtree 150
or moves to another subtree 150. The migrating group of
nodes includes a root node for the migrating group and one
or more descendant nodes of the root node . When migrating ,
the root node of the migrating group moves from a previous
parent node to a new parent node . In other words , the root
node of the migrating group loses connection with a previ
ous parent node and connects to a new parent node . The new
parent node can be included in the previous subtree 150 or
included in a new subtree 150. The descendant nodes of the
root node can also migrate with the root node as a migrating
group to new positions within the previous subtree 150 or a
new subtree 150. In these embodiments , the node structure
of the migrating group is retained when the migrating group
moves from the previous parent node to the new parent
node .
[0116] Node migration can be triggered unintentionally or
intentionally . In unintentional node migration , the root node
of the migrating group inadvertently loses connection with
the parent node in the subtree 150 and performs a discovery
process to search for a new parent node for which to attach .
The lost connection can be caused by various factors , such
as weak signal strength , hardware malfunctions , software
errors , and the like . In intentional node migration , the root
node of the migrating group intentionally loses connection
with the parent node in the subtree 150 to make a connection
with a new parent node . For example , each BPD node can
be configured to periodically scan / search for a better con
nection to a new parent node than a current connection to a
current parent node . If the BPD node finds a better connec
tion to a new parent node , the EC node can intentionally lose
connection with the current parent node to initiate the
migration process .
[0117] The migration process is triggered by the root node
of the migrating group after a connection to the parent node
is lost (unintentionally or intentionally) . In response to
losing the connection to the parent node , the root node of the
migrating node initiates a discovery process to search for
and connect to a new parent node . In these embodiments , the
custom network protocol defines a loop avoidance process /
function that is performed by one or more BPD nodes during
the migration and discovery processes to prevent a node
loop from being created during the migration and discovery
processes .
[0118] FIG . 11 illustrates a node migration process within
a BPD subtree 150 , according to various embodiments . As
shown , EC node 160B loses connection with parent DC
node 160A , which triggers the EC node 160B (the discov
ering node) to initiate a discovery process . During the
discovery process , the discovering node attempts to search
for and connect to a BPD node 160 of the current subtree 150
or another subtree 150. The discovery process is discussed
above in relation to FIGS . 5A - B and is not discussed in
detail here .
[0119] To initiate the discovery process , the discovering
node (EC node 160B) transmits discovery request messages

a

a

US 2022/0353786 A1 Nov. 3 , 2022
14

a

during a discovery window , each discovery request message
including the MAC address of the discovering node . In the
example of FIG . 11 , three nodes successfully receive a
discovery request message from the discovering node , as
indicated by the dashed arrow lines . The three nodes that
successfully receive the discovery request message com
prise EC node 160C , EC node 160D , and EC node 160F .
Each of the three nodes comprises a potential parent node of
the discovering node (EC node 160B) . In response to
receiving the discovery request message , each potential
parent node of the discovering node then determines if a
node loop would be created if the discovering node attaches
to the potential parent node as a child node .
[0120] A potential parent node determines if a node loop
would be created based on the MAC address of the discov
ering node (as specified in the discovery request message)
and the address list 262 associated with the potential parent
node . If the potential parent node determines that the MAC
address of the discovering node is included in the address list
262 for the potential parent node , then the potential parent
node determines that a node loop would be created if the
discovering node attaches to the potential parent node as a
child node (determines that the discovering node and the
potential parent node are included in a potential node loop) .
Note that the address list for a potential parent node includes
only ascendant nodes (parents , grandparents , etc.) of the
potential parent node and does not include any descendant
nodes (children , grandchildren , etc.) of the potential parent
node . If the discovering node is included in the address list
for the potential parent node , the address list indicates that
the discovering node comprises an ascendant node of the
potential parent node . However , if the discovering node
attaches to the potential parent node as a child node , then the
discovering node would also become a descendant node of
the potential parent node . If the discovering node becomes
both an ascendant node and a descendant node of the
potential parent node , a node loop would be created if the
discovering node attaches to the potential parent node as a
child node .
[0121] Therefore , if the MAC address of the discovering
node is included in the address list 262 for the potential
parent node , then the potential parent node determines that
a node loop would be created if the discovering node
attaches to the potential parent node as a child node (deter
mines that the discovering node and the potential parent
node are included in a potential node loop) . Note that a
potential parent node that receives a discovery request
message from a discovering node is typically configured to
respond to the discovering node with a response message .
However , in response to determining that a node loop would
be created , the potential parent node does not respond to the
discovering node with a response message . In this manner ,
a node loop is prevented from being created within the
subtree 150 .
[0122] However , if a potential parent node determines that
the MAC address of the discovering node is not included in
the address list 262 for the potential parent node , then the
potential parent node determines that a node loop would not
be created if the discovering node attaches to the potential
parent node as a child node (determines that the discovering
node and the potential parent node are not included in a
potential node loop) . Since the address list does not include
the discovering node , the address list indicates that the
discovering node is not an ascendant node of the potential

parent node . Therefore , if the discovering node attaches to
the potential parent node as a child node , then the discov
ering node would only become a descendant node of the
potential parent node , which does not create a node loop . In
response to the determination , the potential parent node
responds to the discovering node with a response message .
Note that the potential parent node responds to the discov
ering node with a response message only after the potential
parent node has analyzed its address list and made a deter
mination that no loop would be created based on the analysis
of the address list .
[0123] For example , in FIG . 11 , potential parent EC node
160C receives the discovery request message from the
discovering node (EC node 160B) and , in response , deter
mines that the MAC address of the discovering node (“ B ”)
is included in the address list 262C for EC node 160C .
Therefore , EC node 160C determines that if the discovering
node attaches to EC node 160C as a child node , a node loop
would be created that includes the discovering node and the
potential parent node . In response , EC node 160C does not
respond to the discovering node with a response message ,
which prevents the node loop from being created . Similarly ,
potential parent EC node 160F receives the discovery
request message from the discovering node (EC node 160B)
and , in response , determines that the MAC address of the
discovering node (“ B ”) is included in the address list 262F
for EC node 160F . Therefore , EC node 160F determines that
if the discovering node attaches to EC node 160F as a child
node , a loop would be created that includes the discovering
node and the potential parent node . In response , EC node
160F also does not respond to the discovering node with a
response message , which prevents the loop from being
created . Lastly , potential parent EC node 160D receives the
discovery request message from the discovering node (EC
node 160B) and , in response , determines that the MAC
address of the discovering node (“ B ”) is not included in the
address list 262D for EC node 160D . Therefore , EC node
160D determines that if the discovering node attaches to EC
node 160D as a child node , a loop would not be created that
includes the discovering node and the potential parent node .
In response , EC node 160D responds to the discovering node
with a response message .
[0124] After a potential parent node responds to the dis
covering node with a response message , the discovering
node receives the response message and links with the
potential parent node . The response message specifies a
MAC address of the potential parent node , and a number of
node hops away the potential parent node is from the DC
node 160A . If the discovering node receives a response
message from multiple potential parent nodes , the discov
ering node selects a single parent node . The discovering
node then initiates an affiliation process between the dis
covering node and the DC node 160A of the subtree 150
based on the information included in the response message
of the selected parent node . The affiliation process dis
cussed above in relation to FIGS . 5A - B and is not discussed
in detail here .
[0125] An affiliation process is performed between the
discovering node and the DC node 160A so that the DC node
160A can verify that attaching the discovering node to the
selected parent node and adding the discovering node to the
subtree 150 does not exceed / violate the maximum number
of nodes permitted for a subtree 150 and also does not
exceed / violate the maximum number of node hops permitted

a

a

US 2022/0353786 A1 Nov. 3 , 2022
15

a

a

for a subtree 150 , as specified by the custom subtree
parameters 251. If the affiliation process is not successful
(the DC node 160A does not permit the discovering node to
attach to the selected parent node and join the subtree 150) ,
the discovering node restarts the discovery process to search
for another parent node .
[0126] If the affiliation process is successful (the DC node
160A permits the discovering node to attach to the selected
parent node and join the subtree 150) , the discovering node
attaches to the selected parent node and joins the subtree
150. In addition , if the affiliation process is successful and
the discovering node has joined the subtree 150 , the DC
node 160A triggers the address list process that causes the
address lists of the EC nodes in the subtree 150 to be
updated . The DC node 160A can do so by transmitting the
address list 262 A associated with the DC node 160 A to each
child node , which triggers each child node to update its
address list and transmit the updated address list to each
child node , and so forth , until each EC node in the subtree
150 has updated its address list . The address list process is
described in relation to FIG . 10 and is not discussed in detail
here .

[0127] FIG . 12 illustrates a successful node migration
within a BPD subtree 150 , according to various embodi
ments . As shown , the discovering node (EC node 160B) ,
which is the root node of the migrating group , has success
fully connected to new parent node EC 160D and joined the
subtree 150. As a result , the DC node 160A has triggered the
address list process that causes the address lists of the EC
nodes in the subtree 150 to be updated to reflect the
successful node migration and the new node structure of the
subtree 150. For example , EC node 160B modifies its
address list 262B from “ A ” to " A , " “ D ” which indicates that
EC node 160D is the new parent node of EC node 160B ,
which causes each of the descendant nodes of EC node 160B
to modify the respective address list to include the new
parent node of EC node 160B . For example , EC node 160F
modifies it address list 262F from " A , " " B , " " C " to " A , "
“ D , ” “ B , ” “ C ” to include the new parent node of EC node
160B . In this manner , the address lists of the nodes in the
migrating group can be updated to reflect the successful
migration to the new parent node .
[0128] In addition , each EC node can be triggered to
reperform the affiliation process with the DC node 160A
when its address list is modified / updated to ensure the new
node structure of the subtree 150 caused by the node
migration complies with the maximum number of nodes
permitted for a subtree 150 and the maximum number of
node hops permitted for a subtree 150 , as specified by the
custom subtree parameters 251. In particular , each EC node
in the subtree 150 can be triggered to independently reper
form the affiliation process with the DC node 160A to ensure
the new position of the EC node within the subtree 150
caused by the node migration complies with the maximum
number of nodes permitted for a subtree 150 and the
maximum number of node hops permitted for a subtree 150 .
For example , each EC node can be triggered to reperform
the affiliation process in response to receiving the address
list from the parent node , or in response to receiving a
modified address list from the parent node .
[0129] If the EC node successfully performs the affiliation
process with the DC node 160A , the EC node remains joined
to the subtree 150. However , if the EC node does not
successfully perform the affiliation process with the DC

node 160A , the EC node disconnects with its parent node
and performs a discovery process to search for a new parent
node . For example , due to the node migration , EC node
160H is now one further hop from DC node 160A , which
can cause the EC node 160H to fail the affiliation process
with the DC node 160A if the EC node 160H now exceeds
the maximum number of node hops permitted for a subtree
150. If so , the EC node 160H performs a discovery process
to attach to a new parent node without exceeding the
permitted maximum number of node hops , such as EC node
160G .

[0130] As discussed above , the migrating group of nodes
includes a root node for the migrating group and one or more
descendant nodes of the root node . For example , in FIG . 11 ,
the migrating group includes the root node EC 160B and all
descendant node of the root node , which includes EC node
160C , EC node 160E , EC node 160F , and EC node 160H .
The migrating group and the subtree 150 in general has a
particular node structure in terms of the parent - child rela
tionships and node connections that exist within the migrat
ing group and subtree 150. In some embodiments , the root
node is configured to keep / maintain a connection with each
child node for a predetermined period of time after losing
connection with the parent node . In these embodiments , the
root node is configured to not automatically lose connection
with each child node immediately after losing connection
with the parent node . In this manner , the node structure of
the migrating group and the subtree 150 can be maintained
as much of possible during migration to avoid a significant
re - structuring of the subtree 150 which can be computation
ally expensive . In particular , if each descendant node of the
root node loses connection with its parent node during
migration , each descendant node must perform a discovery
process to search for a new parent node , which is compu
tationally expensive and expends the limited battery power
of each descendant node . As shown in the example of FIG .
11 , the node structure of the migrating group is kept intact
when the root node EC 160B of the migrating group
migrates to new parent node EC 160D .
[0131] However , if the root node of the migrating group
does not connect to a new parent node within the predeter
mined period of time after losing connection with the
previous parent node , the root node can abandon / lose con
nection with the descendant nodes . To do so , the root node
transmits a reconnection message to each child node to
connect with another parent node , which causes each child
node to force a disconnection with the root node and
transmit a reconnection message to each of its child nodes to
connect with another parent node , which in turn causes those
child nodes to force a disconnection with the parent node
and transmit a reconnection message to each of its child
nodes to connect with another parent node , and so forth . In
this manner , each descendant node of the root node of the
migrating group forces a disconnection with the respective
parent node , which causes each descendant node to initiate
a discovery process to search for a new parent node .
[0132] FIG . 13 sets forth a flow diagram of method steps
for loop avoidance during node migration within a BPD
subtree , according to various embodiments . Although the
method steps are described in conjunction with the systems
of FIGS . 1-4 and 9-12 , persons skilled in the art will
understand that any system can be configured to perform the
method steps in any order .

a

a

US 2022/0353786 A1 Nov. 3 , 2022
16

[0133] As shown , a method 1300 begins at step 1310 ,
when each BPD node in the subtree 150 generates and stores
an address list 262 during an address list process . To do so ,
the DC node 160 A transmits its address list 262 to each child
node , which triggers each child node to generate its address
list based on the parent address list and transmit the gener
ated address list to each child node , and so forth . An address
list associated with a particular EC node specifies a sequence
of MAC address starting from the DC node 160A and ending
with the parent node of the particular EC node . Therefore ,
the address list for a particular EC node specifies only
ascendant nodes of the particular EC node and does not
include any descendant nodes of the particular EC node .
[0134] At step 1320 , a root node of a migrating group
loses connection (unintentionally or intentionally) with its
parent node included in the subtree 150. The migrating
group includes the root node and one or more descendant
nodes of the root node . In response to losing connection with
the parent node , the root node maintains a connection with
each child node for a predetermined time period to allow the
root node to connect to a new parent node . In this manner ,
the node structure of the migrating group is kept intact for
the predetermined time period . At step 1330 , in response to
losing the connection to the parent node , the root node of the
migrating node (discovering node) initiates a discovery
process by transmitting discovery request messages during a
discovery window . Each discovery request message includes
the MAC address of the discovering node .
[0135] At step 1340 , one or more potential parent nodes in
the current subtree 150 or another subtree successfully
receives a discovery request message from the discovering
node . In response , each potential parent node determines if
a node loop would be created if the discovering node
attaches as a child node based on the MAC address of the
discovering node and the address list 262 for the potential
parent node . In particular , if the potential parent node
determines that the MAC address of the discovering node is
included in the address list 262 for the potential parent node ,
then the potential parent node determines that a node loop
would be created (determines that the discovering node and
the potential parent node are included in a potential node
loop) . If a potential parent node determines that the MAC
address of the discovering node is not included in the
address list 262 for the potential parent node , then the
potential parent node determines that a node loop would not
be created (determines that the discovering node and the
potential parent node are not included in a potential node
loop) .
[0136] At step 1350 , each of the one or more potential
parent nodes that determined that a node loop would not be
created transmits a response message to the discovering
node . Note that a potential parent node responds to the
discovering node with a response message only after the
potential parent node has analyzed its address list and made
a determination that no loop would be created based on the
analysis of the address list . Each of the one or more potential
parent nodes that determined that a node loop would be
created does not transmit a response message to the discov
ering node at step 1350 .
[0137] At step 1360 , the discovering node receives a
response message from one or more potential parent nodes
and links to each of the one or more potential parent nodes
that transmitted the response message . If multiple potential
parent nodes transmitted the response message , the discov

ering node selects a single potential parent node for which
to attach as a child node . The response message of the
selected parent node specifies a MAC address of the selected
parent node , and a number of node hops away the selected
parent node is from the DC node 160A .
[0138] At step 1370 , the discovering node initiates and
successfully performs an affiliation process with the DC
node 160A based on the information included in the
response message of the selected parent node . A successful
affiliation process indicates that the DC node 160A permits
the discovering node to attach to the selected parent node
and join the subtree 150. At step 1375 , the discovering node
connects to the selected parent node and joins the subtree
150 to complete a successful node migration . Note that the
entire migrating group moves along with the discovering
node (root node of the migrating group) and the node
structure of the migrating group is preserved / retained during
the migration . In this manner , as the root node of the
migrating group moves to a new position within the subtree
150 , the entire migrating group also moves to corresponding
new positions within the subtree 150 .
[0139] At step 1380 , the DC node 160A triggers the
address list process that causes the address lists of the EC
nodes in the subtree 150 to be updated based on the
successful node migration of the discovering node and the
new positions of the root node and the migrating group
within the subtree 150. At step 1385 , each EC node in the
subtree 150 reperforms the affiliation process with the DC
node 160A . For example , each EC node can be triggered to
reperform the affiliation process in response to receiving the
parent address list from the parent node , or in response to
receiving a modified parent address list from the parent
node . The method 1300 then ends .

Loop Detection During Normal Operations
[0140] The loop management processes also include pro
cesses for loop detection during normal operations of the
BPD subtree 150 , outside of a node migration process . A
node loop can be inadvertently created in the subtree 150
due to various reasons , such as ha ware malfunctions ,
software errors , and the like . Each node in the subtree 150
can be configured by the custom network protocol to peri
odically check for node loops , and if found , to terminate /
destroy the detected node loop . Therefore , while loop avoid
ance processes attempt to prevent / avoid the initial formation
of node loops , the loop detection process detects and
destroys any node loops that have been formed in the subtree
150 .
[0141] As discussed above in relation to the address list
process , each BPD node is configured by the custom net
work protocol to periodically transmit (e.g. , every 5 min
utes) its address list to each child node . In these embodi
ments , each EC node is configured to initiate a loop
detection process in response to receiving the parent address
list from the parent node . An EC node can determine
whether the EC node is included in a node loop based on the
MAC address of the EC node and the received parent
address list . In particular , if the MAC address of the EC node
is included in the received parent address list , the EC node
determines that a node loop has been formed that includes
the EC node and the parent node . If the MAC address of the
EC node is not included in the received parent address list ,
the EC node determines that a node loop has not been
formed that includes the EC node and the parent node .

a

US 2022/0353786 A1 Nov. 3 , 2022
17

a

a

[0142] When a loop has not been formed , the parent
address list received from a parent node only includes
ascendant nodes of the parent node and does not include any
descendant nodes of the parent node . A child node that
receives the parent address list is a descendant node of the
parent node . Therefore , if the child node that receives the
parent address list is included in the parent address list , the
child node is both an ascendant node of the parent node (as
indicated by the parent address list) and a descendant node
of the parent node , which indicates that a loop has been
formed that includes the child node and the parent node . If
so , the child node is configured to force a disconnection with
the parent node , which effectively destroys the node loop .
The child node then performs a discovery process to search
for a new parent node .
[0143] FIG . 14 sets forth a flow diagram of method steps
for loop detection during normal operations within a BPD
subtree , according to various embodiments . Although the
method steps are described in conjunction with the systems
of FIGS . 1-4 and 9-12 , persons skilled in the art will
understand that any system can be configured to perform the
method steps in any order .
[0144] A method 1400 begins at step 1410 , when a peri
odic time interval expires (such as 5 minutes) , and an EC
node in the subtree 150 is triggered / initiated to transmit its
address list to each child node and to receive a parent
address list from the parent node . At step 1420 , the EC node
determines whether or not the EC node is included in a node
loop based on the MAC address of the EC node and the
received parent address list . If the MAC address of the EC
node is not included in the parent address list , the EC node
determines that a node loop has not been formed , and the
method 1400 proceeds to step 1410. If the MAC address of
the EC node is included in the parent address list , the EC
node determines that a node loop has been formed that
includes the EC node and the parent node , and the method
1400 proceeds to step 1430. In response , at step 1430 , the
EC node forces a disconnection with the parent node , which
terminates / destroys the node loop . At step 1440 , the EC
node performs a discovery process to search for a new parent
node . The method 1400 then ends . Each EC node in the
subtree 150 is configured to periodically perform the method
1400 of FIG . 14 .
[0145] In sum , the disclosed techniques apply to a system
of networked devices / nodes , where at least some devices /
nodes are BPD nodes . Conventional network protocols
implemented by a conventional wireless network are con
figured for MPD nodes . Among other things , conventional
network protocols permit large and complex subtrees that
are difficult to manage by a root BPD node , as well as define
complex functions that expend a significant amount of
energy when executed by BPD nodes . To address these
issues , various embodiments include a custom network
protocol that is configured and optimized for BPD nodes and
BPD subtrees within a wireless network . In particular , the
custom network protocol permits only smaller and simpler
subtrees relative to conventional network protocols . As a
result , the custom network protocol can also define various
functions that are less complex relative to the corresponding
functions defined in conventional network protocols . For
example , the simplified functions defined by the custom
network protocol can include management of the subtree ,
adding a node to the subtree , routing messages within the
subtree , and loop management within the subtree .

[0146] At least one technical advantage of the disclosed
techniques relative to the prior art is that , with the disclosed
techniques , a custom network protocol configured and opti
mized for BPD nodes can be implemented within a wireless
network . Among other things , the custom network protocol
permits smaller and simpler subtrees of nodes to be set up
within the wireless network relative to what is permitted by
conventional network protocols . As a result , BPD nodes can
function properly as the root nodes of the subtrees formed
within the wireless network and can manage and route
messages to and from the subtrees using less power than
required under conventional network protocols . Another
technical advantage of the disclosed techniques is that ,
because the custom network protocol permits smaller and
simpler subtrees of BPD nodes within the wireless network ,
the custom network protocol also defines node functions ,
such as discovery , messaging and loop management func
tions , that are less complex than those defined under con
ventional network protocols . As a result , the BPD nodes of
a given subtree can execute those functions using less power
than required under conventional network protocols . These
technical advantages represent one or more technological
improvements over prior art approaches .
[0147] Aspects of the subject matter described herein are
set out in the following numbered clauses .
[0148] 1. In some embodiments , a computer - implemented
method for performing node loop operations within a wire
less network , the method comprising : identifying a network
address that is associated with a first battery powered device
(BPD) node included in a subtree of BPD nodes within the
wireless network ; identifying an address list that is associ
ated with a second BPD node included in the subtree of BPD
nodes , wherein the address list includes a node path between
the second BPD node and a root node of the subtree of BPD
nodes ; and determining whether the first BPD node and the
second BPD node are included in a potential node loop or a
formed node loop based on the network address associated
with the first BPD node and the address list associated with
the second BPD node .

[0149] 2. The computer - implemented method of clause 1 ,
wherein : the first BPD node comprises a discovering node ;
and the second BPD node comprises a potential parent node
that receives a discovery request message from the first BPD
node .
[0150] 3. The computer - implemented method of any of
clauses 1-2 , wherein determining whether the first BPD
node and the second BPD node are included in the potential
node loop or the formed node loop comprises determining
that the first BPD node and the second BPD node are
included in the potential node loop upon determining that
the address list associated with the second BPD node
includes the network address associated with the first BPD
node .
[0151] 4. The computer - implemented method of any of
clauses 1-3 , further comprising , in response to determining
that the address list associated with the second BPD node
includes the network address associated with the first BPD
node , preventing the potential node loop from being formed .
[0152] 5. The computer - implemented method of any of
clauses 1-4 , wherein preventing the potential node loop from
being formed comprises causing the second BPD node to not
respond to the discovery request message received from the
first BPD node .

a

>

2

US 2022/0353786 A1 Nov. 3 , 2022
18

2

a

[0153] 6. The computer - implemented method of any of
clauses 1-5 , wherein determining whether the first BPD
node and the second BPD node are included in the potential
node loop or the formed node loop comprises determining
that the first BPD node and the second BPD node are not
included in the potential node loop or the formed node loop
upon determining that the address list associated with the
second BPD node does not include the network address
associated with the first BPD node .
[0154] 7. The computer - implemented method of any of
clauses 1-6 , further comprising , in response to determining
that the address list associated with the second BPD node
does not include the network address associated with the
first BPD node , causing the second BPD node to respond to
the discovery request message received from the first BPD
node .
[0155] 8. The computer - implemented method of any of
clauses 1-7 , wherein the first BPD node comprises a child
node of the second BPD node .
[0156] 9. The computer - implemented method of any of
clauses 1-8 , wherein determining whether the first BPD
node and the second BPD node are included in the potential
node loop or the formed node loop comprises determining
that the first BPD node and the second BPD node are
included in the formed node loop upon determining that the
address list associated with the second BPD node includes
the network address associated with the first BPD node .

[0157] 10. In some embodiments , one or more non - tran
sitory computer - readable media storing program instruc
tions that , when executed by one or more processors , cause
the one or more processors to perform node - based opera
tions by performing the steps of : identifying a network
address that is associated with a first battery powered device
(BPD) node included in a subtree of BPD nodes within the
wireless network ; identifying an address list that is associ
ated with a second BPD node included in the subtree of BPD
nodes , wherein the address list includes a node path between
the second BPD node and a root node of the subtree of BPD
nodes ; and determining whether the first BPD node and the
second BPD node are included in a potential node loop or a
formed node loop based on the network address associated
with the first BPD node and the address list associated with
the second BPD node .
[0158] 11. The one or more non - transitory computer
readable media of clause 10 , wherein : the first BPD node
comprises a discovering node ; and the second BPD node
comprises a potential parent node that receives a discovery
request message from the first BPD node .
[0159] 12. The one or more non - transitory computer
readable media of any of clauses 10-11 , wherein determin
ing whether the first BPD node and the second BPD node are
included in the potential node loop or the formed node loop
comprises determining that the first BPD node and the
second BPD node are included in the potential node loop
upon determining that the address list associated with the
second BPD node includes the network address associated
with the first BPD node .
[0160] 13. The one or more non - transitory computer
readable media of any of clauses 10-12 , further comprising ,
in response to determining that the address list associated
with the second BPD node includes the network address
associated with the first BPD node , preventing the potential
node loop from being formed by causing the second BPD

node to not respond to the discovery request message
received from the first BPD node .
[0161] 14. The one or more non - transitory computer
readable media of any of clauses 10-13 , wherein the first
BPD node comprises a child node of the second BPD node
that periodically transmits the address list to the first BPD
node .
[0162] 15. The one or more non - transitory computer
readable media of any of clauses 10-14 , wherein determin
ing whether the first BPD node and the second BPD node are
included in the potential node loop or the formed node loop
comprises determining that the first BPD node and the
second BPD node are included in the formed node loop upon
determining that the address list associated with the second
BPD node includes the network address associated with the
first BPD node .
[0163] 16. The one or more non - transitory computer
readable media of any of clauses 10-15 , further comprising ,
in response to determining that the address list associated
with the second BPD node includes the network address
associated with the first BPD node , disconnecting the first
BPD node from the second BPD node .
[0164] 17. The one or more non - transitory computer
readable media of any of clauses 10-16 , wherein ; the net
work address associated with the first BPD node comprises
a media access control (MAC) of the first BPD node ; and the
address list associated with the second BPD node comprises
a sequence of MAC addresses corresponding to a sequence
of nodes between the second BPD node and the root node of
the subtree of BPD nodes .
[0165] 18. In some embodiments , a first battery powered
device (BPD) node that resides within a wireless network ,
the first BPD node comprising : a memory storing instruc
tions , and a processor that is coupled to the memory and ,
when executing the instructions : identify a network address
that is associated with a second BPD node included in a
subtree of BPD nodes within the wireless network ; identi
fying an address list that is associated with the first BPD
node included in the subtree of BPD nodes , wherein the
address list includes a node path between the first BPD node
and a root node of the subtree of BPD nodes ; and determine
whether the first BPD node and the second BPD node are
included in a potential node loop or a formed node loop
based on the network address associated with the second
BPD node and the address list associated with the first BPD
node .
[0166] 19. The first BPD node of clause 18 , wherein : the
second BPD node comprises a discovering node ; and the
first BPD node comprises a potential parent node that
receives a discovery request message from the discovering
node .
[0167] 20. The first BPD node of any of clauses 18-19 ,
wherein determining whether the first BPD node and the
second BPD node are included in the potential node loop or
the formed node loop comprises determining that the first
BPD node and the second BPD node are included in the
potential node loop upon determining that the address list
associated with the first BPD node includes the network
address associated with the second BPD node .
[0168] Any and all combinations of any of the claim
elements recited in any of the claims and / or any elements
described in this application , in any fashion , fall within the
contemplated scope of the present embodiments and pro
tection .

a

a

a

9

2

US 2022/0353786 A1 Nov. 3 , 2022
19

[0169] The descriptions of the various embodiments have
been presented for purposes of illustration , but are not
intended to be exhaustive or limited to the embodiments
disclosed . Many modifications and variations will be appar
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments .
[0170] Aspects of the present embodiments can be embod
ied as a system , method or computer program product .
Accordingly , aspects of the present disclosure may take the
form of an entirely hardware embodiment , an entirely soft
ware embodiment (including firmware , resident software ,
micro - code , etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “ module , ” a “ system , ” or a “ computer . ” In addition , any
hardware and / or software technique , process , function , com
ponent , engine , module , or system described in the present
disclosure may be implemented as a circuit or set of circuits .
Furthermore , aspects of the present disclosure may take the
form of a computer program product embodied in one or
more computer readable medium (s) having computer read
able program code embodied thereon .
[0171] Any combination of one or more computer read
able medium (s) may be utilized . The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium . A computer readable
storage medium may be , for example , but not limited to , an
electronic , magnetic , optical , electromagnetic , infrared , or
semiconductor system , apparatus , or device , or any suitable
combination of the foregoing . More specific examples (a
non - exhaustive list) of the computer readable storage
medium would include the following : an electrical connec
tion having one or more wires , a portable computer diskette ,
a hard disk , a random access memory (RAM) , a read - only
memory (ROM) , an erasable programmable read - only
memory (EPROM or Flash memory) , an optical fiber , a
portable compact disc read - only memory (CD - ROM) , an
optical storage device , a magnetic storage device , or any
suitable combination of the foregoing . In the context of this
document , a computer readable storage medium may any
tangible medium that can contain , or store a program for use
by or in connection with an instruction execution system ,
apparatus , or device .
[0172] Aspects of the present disclosure are described
above with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) and computer
program products according to embodiments of the disclo
sure . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer program instructions .
These computer program instructions may be provided to a
processor of a general purpose computer , special purpose
computer , or other programmable data processing apparatus
to produce a machine . The instructions , when executed via
the processor of the computer or other programmable data
processing apparatus , enable the implementation of the
functions / acts specified in the flowchart and / or block dia
gram block or blocks . Such processors may be , without
limitation , general purpose processors , special - purpose pro
cessors , application - specific processors , or field - program
mable gate arrays .
[0173] The flowchart and block diagrams in the figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods and computer

program products according to various embodiments of the
present disclosure . In this regard , each block in the flowchart
or block diagrams may represent a module , segment , or
portion of code , which comprises one or more executable
instructions for implementing the specified logical function
(s) . It should also be noted that , in some alternative imple
mentations , the functions noted in the block may occur out
of the order noted in the figures . For example , two blocks
shown in succession may , in fact , be executed substantially
concurrently , or the blocks may sometimes be executed in
the reverse order , depending upon the functionality
involved . It will also be noted that each block of the block
diagrams and / or flowchart illustration , and combinations of
blocks in the block diagrams and / or flowchart illustration ,
can be implemented by special purpose hardware - based
systems that perform the specified functions or acts , or
combinations of special purpose hardware and computer
instructions .
[0174] While the preceding is directed to embodiments of
the present disclosure , other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof , and the scope thereof is determined by the
claims that follow .
What is claimed is :
1. A computer - implemented method for performing node

loop operations within a wireless network , the method
comprising :

identifying a network address that is associated with a first
battery powered device (BPD) node included in a
subtree of BPD nodes within the wireless network ;

identifying an address list that is associated with a second
BPD node included in the subtree of BPD nodes ,
wherein the address list includes a node path between
the second BPD node and a root node of the subtree of
BPD nodes ; and

determining whether the first BPD node and the second
BPD node are included in a potential node loop or a
formed node loop based on the network address asso
ciated with the first BPD node and the address list
associated with the second BPD node .

2. The computer - implemented method of claim 1 ,
wherein :

the first BPD node comprises a discovering node ; and
the second BPD node comprises a potential parent node

that receives a discovery request message from the first
BPD node .

3. The computer - implemented method of claim 2 ,
wherein determining whether the first BPD node and the
second BPD node are included in the potential node loop or
the formed node loop comprises determining that the first
BPD node and the second BPD node are included in the
potential node loop upon determining that the address list
associated with the second BPD node includes the network
address associated with the first BPD node .

4. The computer - implemented method of claim 3 , further
comprising , in response to determining that the address list
associated with the second BPD node includes the network
address associated with the first BPD node , preventing the
potential node loop from being formed .

5. The computer - implemented method of claim 4 ,
wherein preventing the potential node loop from being
formed comprises causing the second BPD node to not
respond to the discovery request message received from the
first BPD node .

be

a

US 2022/0353786 A1 Nov. 3 , 2022
20

a

6. The computer - implemented method of claim 2 ,
wherein determining whether the first BPD node and the
second BPD node are included in the potential node loop or
the formed node loop comprises determining that the first
BPD node and the second BPD node are not included in the
potential node loop or the formed node loop upon determin
ing that the address list associated with the second BPD node
does not include the network address associated with the
first BPD node .

7. The computer - implemented method of claim 6 , further
comprising , in response to determining that the address list
associated with the second BPD node does not include the
network address associated with the first BPD node , causing
the second BPD node to respond to the discovery request
message received from the first BPD node .

8. The computer - implemented method of claim 1 ,
wherein the first BPD node comprises a child node of the
second BPD node .

9. The computer - implemented method of claim 8 ,
wherein determining whether the first BPD node and the
second BPD node are included in the potential node loop or
the formed node loop comprises determining that the first
BPD node and the second BPD node are included in the
formed node loop upon determining that the address list
associated with the second BPD node includes the network
address associated with the first BPD node .

10. One or more non - transitory computer - readable media
storing program instructions that , when executed by one or
more processors , cause the one or more processors to
perform node - based operations by performing the steps of :

identifying a network address that is associated with a first
battery powered device (BPD) node included in a
subtree of BPD nodes within the wireless network ;

identifying an address list that is associated with a second
BPD node included in the subtree of BPD nodes ,
wherein the address list includes a node path between
the second BPD node and a root node of the subtree of
BPD nodes ; and

determining whether the first BPD node and the second
BPD node are included in a potential node loop or a
formed node loop based on the network address asso
ciated with the first BPD node and the address list
associated with the second BPD node .

11. The one or more non - transitory computer - readable
media of claim 10 , wherein :

the first BPD node comprises a discovering node ; and
the second BPD node comprises a potential parent node

that receives a discovery request message from the first
BPD node .

12. The one or more non - transitory computer - readable
media of claim 11 , wherein determining whether the first
BPD node and the second BPD node are included in the
potential node loop or the formed node loop comprises
determining that the first BPD node and the second BPD
node are included in the potential node loop upon determin
ing that the address list associated with the second BPD node
includes the network address associated with the first BPD
node .

13. The one or more non - transitory computer - readable
media of claim 12 , further comprising , in response to
determining that the address list associated with the second
BPD node includes the network address associated with the
first BPD node , preventing the potential node loop from

being formed by causing the second BPD node to not
respond to the discovery request message received from the
first BPD node .

14. The one or more non - transitory computer - readable
media of claim 11 , wherein the first BPD node comprises a
child node of the second BPD node that periodically trans
mits the address list to the first BPD node .

15. The one or more non - transitory computer - readable
media of claim 14 , wherein determining whether the first
BPD node and the second BPD node are included in the
potential node loop or the formed node loop comprises
determining that the first BPD node and the second BPD
node are included in the formed node loop upon determining
that the address list associated with the second BPD node
includes the network address associated with the first BPD
node .

16. The one or more non - transitory computer - readable
media of claim 15 , further comprising , in response to
determining that the address list associated with the second
BPD node includes the network address associated with the
first BPD node , disconnecting the first BPD node from the
second BPD node .

17. The one or more non - transitory computer - readable
media of claim 11 , wherein ;

the network address associated with the first BPD node
comprises a media access control (MAC) of the first
BPD node ; and

the address list associated with the second BPD node
comprises a sequence of MAC addresses correspond
ing to a sequence of nodes between the second BPD
node and the root node of the subtree of BPD nodes .

18. A first battery powered device (BPD) node that resides
within a wireless network , the first BPD node comprising :

a memory storing instructions ; and
a processor that is coupled to the memory and , when

executing the instructions :
identify a network address that is associated with a

second BPD node included in a subtree of BPD
nodes within the wireless network ;

identifying an address list that is associated with the
first BPD node included in the subtree of BPD nodes ,
wherein the address list includes a node path
between the first BPD node and a root node of the
subtree of BPD nodes ; and

determine whether the first BPD node and the second
BPD node are included in a potential node loop or a
formed node loop based on the network address
associated with the second BPD node and the
address list associated with the first BPD node .

19. The first BPD node of claim 18 , wherein :
the second BPD node comprises a discovering node ; and
the first BPD node comprises a potential parent node that

receives a discovery request message from the discov
ering node .

20. The first BPD node of claim 18 , wherein determining
whether the first BPD node and the second BPD node are
included in the potential node loop or the formed node loop
comprises determining that the first BPD node and the
second BPD node are included in the potential node loop
upon determining that the address list associated with the
first BPD node includes the network address associated with
the second BPD node .

a

a

:)

