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technology disclosed . 

Machine Learning 
[ 0037 ] In machine learning input variables are used to 
predict an output variable . The input variables are often 
called features and are denoted by X = ( X1 , X2 , ... , X ) , 
where each Xi , iEl , ... , k is a feature . The output variable 
is often called the response or dependent variable and is 
denoted by the variable Y ;. The relationship between Y and 
the corresponding X can be written in a general form : 

Y = f ( x ) + E 
[ 0038 ] In the equation above , F is a function of the features 
( X1 , X2 , ... , Xx ) and E is the random error term . The error 
term is independent of X and has a mean value of zero . 
[ 0039 ] In practice , the features X are available without 
having Y or knowing the exact relation between X and Y. 
Since the error term has a mean value of zero , the goal is to 
estimate f . 

Y = F = ( x ) 
[ 0040 ] In the equation above , F is the estimate of E , which 
is often considered a black box , meaning that only the 
relation between the input and output of f is known , but the 
question why it works remains unanswered . 
[ 0041 ] The function f is found using learning . Supervised 
learning and unsupervised learning are two ways used in 
machine learning for this task . In supervised learning , 
labeled data is used for training . By showing the inputs and 
the corresponding outputs ( labels ) , the function f is opti 
mized such that it approximates the output . In unsupervised 
learning , the goal is to find a hidden structure from unlabeled 
data . The algorithm has no measure of accuracy on the input 
data , which distinguishes it from supervised learning . 

a 

Neural Networks 

FIELD OF THE TECHNOLOGY DISCLOSED 

[ 0035 ] The technology disclosed relates to artificial intel 
ligence type computers and digital data processing systems 
and corresponding data processing methods and products for 
emulation of intelligence ( i.e. , knowledge based systems , 
reasoning systems , and knowledge acquisition systems ) ; and 
including systems for reasoning with uncertainty ( e.g. , fuzzy 
logic systems ) , adaptive systems , machine learning systems , 
and artificial neural networks . In particular , the technology 
disclosed relates to using deep learning - based techniques for 
training deep convolutional neural networks . 

[ 0042 ] The single layer perceptron ( SLP ) is the simplest 
model of a eural network . It comprises one input layer and 
one activation function as shown in FIG . 1. The inputs are 
passed through the weighted graph . The function f uses the 
sum of the inputs as argument and compares this with a 
threshold o . 
[ 0043 ] FIG . 2 shows one implementation of a fully con 
nected neural network with multiple layers . A neural net 
work is a system of interconnected artificial neurons ( e.g. , 
21 , 22 , az ) that exchange messages between each other . The 
illustrated neural network has three inputs , two neurons in 
the hidden layer and two neurons in the output layer . The 
hidden layer has an activation function f ) and the output 
layer has an activation function g ( * ) . The connections have 
numeric weights ( e.g. , W11 , W21 , W12 , W31 , W22 , W32 , V11 , V22 ) 
that are tuned during the training process , so that a properly 
trained network responds correctly when fed an image to 
recognize . The input layer processes the raw input , the 
hidden layer processes the output from the input layer based 
on the weights of the connections between the input layer 
and the hidden layer . The output layer takes the output from 
the hidden layer and processes it based on the weights of the 
connections between the hidden layer and the output layer . 
The network includes multiple layers of feature - detecting 
neurons . Each layer has many neurons that respond to 
different combinations of inputs from the previous layers . 

' 

BACKGROUND 

[ 0036 ] The subject matter discussed in this section should 
not be assumed to be prior art merely as a result of its 
mention in this section . Similarly , a problem mentioned in 
this section or associated with the subject matter provided as 
background should not be assumed to have been previously 
recognized in the prior art . The subject matter in this section 
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BRIEF DESCRIPTION OF THE DRAWINGS These layers are constructed so that the first layer detects a 
set of primitive patterns in the input image data , the second 
layer detects patterns of patterns and the third layer detects 
patterns of those patterns . 
[ 0044 ] Genetic variations can help explain many diseases . 
Every human being has a unique genetic code and there are 
lots of genetic variants within a group of individuals . Most 
of the deleterious genetic variants have been depleted from 
genomes by natural selection . It is important to identify 
which genetics variations are likely to be pathogenic or 
deleterious . This will help researchers focus on the likely 
pathogenic genetic variants and accelerate the pace of diag 
nosis and cure of many diseases . 
[ 0045 ] Modeling the properties and functional effects 
( e.g. , pathogenicity ) of variants is an important but chal 
lenging task in the field of genomics . Despite the rapid 
advancement of functional genomic sequencing technolo 
gies , interpretation of the functional consequences of non 
coding variants remains a great challenge due to the com 
plexity of cell type - specific transcription regulation systems . 
In addition , a limited number of non - coding variants have 
been functionally validated by experiments . 
[ 0046 ] Previous efforts on interpreting genomic variants 
have mainly concentrated on variants in the coding regions . 
However , the non - coding variants also play an important 
role in complex diseases . Identifying the pathogenic func 
tional non - coding variants from the massive neutral ones can 
be important in genotype - phenotype relationship research 
and precision medicine . 
[ 0047 ] Furthermore , most of the known pathogenic non 
coding variants reside in the promoter regions or conserved 
sites , causing ascertainment bias in the training set because 
easy or obvious cases known for pathogenic tendencies are 
likely to be enriched in labeled data sets relative to the entire 
population of the pathogenic non - coding variants . If left 
unaddressed , this bias in the labeled pathogenic data would 
lead to unrealistic model performance , as a model could 
achieve relatively high test set performance simply by 
predicting that all core variants are pathogenic and all others 
are benign . However , in the clinic , such a model would 
incorrectly classify pathogenic , non - core variants as benign 
at an unacceptably high rate . 
[ 0048 ] Advances in biochemical technologies over the 
past decades have given rise to next generation sequencing 
( NGS ) platforms that quickly produce genomic data at much 
lower costs than ever before . Such overwhelmingly large 
volumes of sequenced DNA remain difficult to annotate . 
Supervised machine learning algorithms typically perform 
well when large amounts of labeled data are available . In 
bioinformatics and many other data - rich disciplines , the 
process of labeling instances is costly ; however , unlabeled 
instances are inexpensive and readily available . For a sce 
nario in which the amount of labeled data is relatively small 
and the amount of unlabeled data is substantially larger , 
semi - supervised learning represents a cost - effective alterna 
tive to manual labeling . 
[ 0049 ] An opportunity arises to construct deep learning 
based pathogenicity classifiers that accurately predict patho 
genicity of non - coding variants . Databases of pathogenic 
non - coding variants that are free from human ascertainment 
bias may result . 

[ 0050 ] The patent or application file contains at least one 
drawing executed in color . Copies of this patent or patent 
application publication with color drawing ( s ) will be pro 
vided by the Office upon request and payment of the 
necessary fee . The color drawings also may be available in 
PAIR via the Supplemental Content tab . 
[ 0051 ] In the drawings , like reference characters generally 
refer to like parts throughout the different views . Also , the 
drawings are not necessarily to scale , with an emphasis 
instead generally being placed upon illustrating the prin 
ciples of the technology disclosed . In the following descrip 
tion , various implementations of the technology disclosed 
are described with reference to the following drawings , in 
which : 
[ 0052 ] FIG . 1 shows a single layer perceptron ( SLP ) . 
[ 0053 ] FIG . 2 shows one implementation of a feed - for 
ward neural network with multiple layers . 
[ 0054 ] FIG . 3 depicts one implementation of workings of 
a convolutional neural network . 
[ 0055 ] FIG . 4 depicts a block diagram of training a con 
volutional neural network in accordance with one imple 
mentation of the technology disclosed . 
[ 0056 ] FIG . 5 shows one implementation of a ReLU 
non - linear layer in accordance with one implementation of 
the technology disclosed . 
[ 0057 ] FIG . 6 illustrates dilated convolutions . 
[ 0058 ] FIG . 7 is one implementation of sub - sampling 
layers ( average / max pooling ) in accordance with one imple 
mentation of the technology disclosed . 
[ 0059 ] FIG . 8 depicts one implementation of a two - layer 
convolution of the convolution layers . 
[ 0060 ] FIG . 9 depicts a residual connection that reinjects 
prior information downstream via feature - map addition . 
[ 0061 ] FIG . 10 depicts one implementation of residual 
blocks and skip - connections . 
[ 0062 ] FIG . 11 shows one implementation of stacked 
dilated convolutions . 
[ 0063 ] FIG . 12 shows the batch normalization forward 
pass . 
[ 0064 ] FIG . 13 illustrates the batch normalization trans 
form at test time . 
[ 0065 ] FIG . 14 shows the batch normalization backward 
pass . 
[ 0066 ] FIG . 15 depicts use of a batch normalization layer 
with convolutional or densely connected layer . 
[ 0067 ] FIG . 16 shows one implementation of 1D convo 
lution . 
[ 0068 ] FIG . 17 illustrates how global average pooling 
( GAP ) works . 
[ 0069 ] FIG . 18 illustrates one implementation of a com 
puting environment with training servers and production 
servers that can be used to implement the technology 
disclosed . 
[ 0070 ] FIG . 19 depicts one implementation of the archi 
tecture of a model that can be used a sequence - to - sequence 
epigenetic model and / or a pathogenicity determiner . 
[ 0071 ] FIG . 20 shows one implementation of a residual 
block that can used by the sequence - to - sequence epigenetic 
model and / or the pathogenicity determiner . 
[ 0072 ] FIG . 21 depicts another implementation of the 
architecture of the sequence - to - sequence epigenetic model 
and / or the pathogenicity determiner , referred to herein as 
“ Mode180 ” . 



US 2022/0406411 A1 Dec. 22 , 2022 
4 

connections tackle two common problems that plague any 
large - scale deep - learning model : vanishing gradients and 
representational bottlenecks . In general , adding residual 
connections to any model that has more than 10 layers is 
likely to be beneficial . As discussed above , a residual 
connection comprises making the output of an earlier layer 
available as input to a later layer , effectively creating a 
shortcut in a sequential network . Rather than being concat 
enated to the later activation , the earlier output is summed 
with the later activation , which assumes that both activations 
are the same size . If they are of different sizes , a linear 
transformation to reshape the earlier activation into the 
target shape can be used . a 

[ 0073 ] FIG . 22 depicts yet another implementation of the 
architecture of the sequence - to - sequence epigenetic model 
and / or the pathogenicity determiner , referred to herein as 
“ Mode1400 ” . 
[ 0074 ] FIG . 23 depicts yet further implementation of the 
architecture of the sequence - to - sequence epigenetic model 
and / or the pathogenicity determiner , referred to herein as 
“ Model2000 ” . 
[ 0075 ] FIG . 24 depicts yet another implementation of the 
architecture of the sequence - to - sequence epigenetic model 
and / or the pathogenicity determiner , referred to herein as 
“ Model10000 ” . 
[ 0076 ] FIG . 25 illustrates a one - hot encoder . 
[ 0077 ] FIG . 25B shows an example promoter sequence of 
a gene . 
[ 0078 ] FIG . 26 shows an input preparation module that 
accesses a sequence database and generates an input base 
sequence . 
[ 0079 ] FIG . 27 shows an example of a sequence - to - se 
quence epigenetic model . 
[ 0080 ] FIG . 28 shows per - track processors of the 
sequence - to - sequence model . 
[ 0081 ] FIG . 29 depicts a reference sequence and an alter 
native sequence . 
[ 0082 ] FIG . 30 illustrates one implementation of generat 
ing a position - wise comparison result using the sequence 
to - sequence model 2700 . 
[ 0083 ] FIG . 31 shows an example pathogenicity classifier . 
[ 0084 ] FIG . 32 depicts one implementation of training the 
pathogenicity classifier using training data that includes a 
pathogenic set of non - coding variants that are annotated 
with a pathogenic label ( e.g. , “ 1 ” ) and a benign set of 
non - coding variants that are annotated with a benign label 
( e.g. , “ O ” ) . 
[ 0085 ] FIG . 33 is a simplified block diagram of a computer 
system that can be used to implement the technology dis 
closed . 
[ 0086 ] FIG . 34 shows one implementation of how a patho 
genic set of non - coding variants is generated . 
[ 0087 ] FIG . 35 depicts how training datasets are generated 
for the technology disclosed . 

a 

Residual Learning and Skip - Connections 
[ 0090 ] FIG . 10 depicts one implementation of residual 
blocks and skip - connections . The main idea of residual 
learning is that the residual mapping is much easier to be 
learned than the original mapping . Residual network stacks 
a number of residual units to alleviate the degradation of 
training accuracy . Residual blocks make use of special 
additive skip connections to combat vanishing gradients in 
deep neural networks . At the beginning of a residual block , 
the data flow is separated into two streams : the first carries 
the unchanged input of the block , while the second applies 
weights and non - linearities . At the end of the block , the two 
streams are merged using an element - wise sum . The main 
advantage of such constructs is to allow the gradient to flow 
through the network more easily . 
[ 0091 ] Benefited from residual network , deep convolu 
tional neural networks ( CNNs ) can be easily trained and 
improved accuracy has been achieved for image classifica 
tion and object detection . Convolutional feed - forward net 
works connect the output of the 1th layer as input to the 
( 1 + 1 ) th layer , which gives rise to the following layer transi 
tion : X = H / ( x2-1 ) . Residual blocks add a skip - connection that 
bypasses the non - linear transformations with an identify 
function : X - H / ( x2-1 ) + X7-1 . An advantage of residual blocks is 
that the gradient can flow directly through the identity 
function from later layers to the earlier layers . However , the 
identity function and the output of Hy are combined by 
summation , which may impede the information flow in the 
network . DETAILED DESCRIPTION 

WaveNet [ 0088 ] The following discussion is presented to enable any 
person skilled in the art to make and use the technology 
disclosed , and is provided in the context of a particular 
application and its requirements . Various modifications to 
the disclosed implementations will be readily apparent to 
those skilled in the art , and the general principles defined 
herein may be applied to other implementations and appli 
cations without departing from the spirit and scope of the 
technology disclosed . Thus , the technology disclosed is not 
intended to be limited to the implementations shown , but is 
to be accorded the widest scope consistent with the prin 
ciples and features disclosed herein . 

[ 0092 ] The WaveNet is a deep neural network for gener 
ating raw audio waveforms . The WaveNet distinguishes 
itself from other convolutional networks since it is able to 
take relatively large ' visual fields ’ at low cost . Moreover , it 
is able to add conditioning of the signals locally and glob 
ally , which allows the WaveNet to be used as a text to speech 
( TTS ) engine with multiple voices , is the TTS gives local 
conditioning and the particular voice the global condition 
ing . 
[ 0093 ] The main building blocks of the WaveNet are the 
causal dilated convolutions . As an extension on the causal 
dilated convolutions , theWaveNet also allows stacks of 
these convolutions , as shown in FIG . 11. To obtain the same 
receptive field with dilated convolutions in this figure , 
another dilation layer is required . The stacks are a repetition 
of the dilated convolutions , connecting the outputs of dilated 
convolution layer to a single output . This enables the Wave 
Net to get a large ‘ visual field of one output node at a 

Residual Connections 

[ 0089 ] FIG . 9 depicts a residual connection that reinjects 
prior information downstream via feature - map addition . A 
residual connection comprises reinjecting previous repre 
sentations into the downstream flow of data by adding a past 
output tensor to a later output tensor , which helps prevent 
information loss along the data - processing flow . Residual 
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relatively low computational cost . For comparison , to get a 
visual field of 512 inputs , a fully convolutional network 
( FCN ) would require 511 layers . In the case of a dilated 
convolutional network , we would need eight layers . The 
stacked dilated convolutions only need seven layers with 
two stacks or six layers with four stacks . To get an idea of 
the differences in computational power required for covering 
the same visual field , the following table shows the number 
of weights required in the network with the assumption of 
one filter per layer and a filter width of two . Furthermore , it 
is assumed that the network is using binary encoding of the 
8 bits . 

a 

Network 
type 

No. 
stacks 

No. weights Total No. 
of weights 

the activations — at different locations are normalized in the 
same way in order to obey the convolutional property . Thus , 
all activations in a mini - batch are normalized over all 
locations , rather than per activation . 
[ 0098 ] The internal covariate shift is the major reason why 
deep architectures have been notoriously slow to train . This 
stems from the fact that deep networks do not only have to 
learn a new representation at each layer , but also have to 
account for the change in their distribution . 
[ 0099 ] The covariate shift in general is a known problem 
in the deep learning domain and frequently occurs in real 
world problems . A common covariate shift problem is the 
difference in the distribution of the training and test set 
which can lead to suboptimal generalization performance . 
This problem is usually handled with a standardization or 
whitening preprocessing step . However , especially the whit 
ening operation is computationally expensive and thus 
impractical in an online setting , especially if the covariate 
shift occurs throughout different layers . 
[ 0100 ] The internal covariate shift is the phenomenon 
where the distribution of network activations change across 
layers due to the change in network parameters during 
training . Ideally , each layer should be transformed into a 
space where they have the same distribution but the func 
tional relationship stays the same . In order to avoid costly 
calculations of covariance matrices to decorrelate and 
whiten the data at every layer and step , we normalize the 
distribution of each input feature in each layer across each 
mini - batch to have zero mean and a standard deviation of 

per channel 
1 FCN 

WN 
WN 
WN 

1 
2 
4 

2.6 · 105 
1022 
1022 
508 

2.6 · 106 
8176 
8176 
4064 

[ 0094 ] The WaveNet adds a skip connection before the 
residual connection is made , which bypasses all the follow 
ing residual blocks . Each of these skip connections is 
summed before passing them through a series of activation 
functions and convolutions . Intuitively , this is the sum of the 
information extracted in each layer . 

Batch Normalization 

one . 

BN 

[ 0095 ] Batch normalization is a method for accelerating 
deep network training by making data standardization an 
integral part of the network architecture . Batch normaliza 
tion can adaptively normalize data even as the mean and 
variance change over time during training . It works by 
internally maintaining an exponential moving average of the 
batch - wise mean and variance of the data seen during 
training . The main effect of batch normalization is that it 
helps with gradient propagation much like residual con 
nections — and thus allows for deep networks . Some very 
deep networks can only be trained if they include multiple 
Batch Normalization layers . 
[ 0096 ] Batch normalization can be seen as yet another 
layer that can be inserted into the model architecture , just 
like the fully connected or convolutional layer . The 
BatchNormalization layer is typically used after a convolu 
tional or densely connected layer . It can also be used before 
a convolutional or densely connected layer . Both implemen 
tations can be used by the technology disclosed and are 
shown in FIG . 15. The Batch Normalization layer takes an 
axis argument , which specifies the feature axis that should 
be normalized . This argument defaults to -1 , the last axis in 
the input tensor . This is the correct value when using Dense 
layers , ConviD layers , RNN layers , and Conv2D layers 
with data format set to " channels_last " . But in the niche use 
case of Conv2D layers with data format set to " channels 
first ” , the features axis is axis 1 ; the axis argument in 
BatchNormalization can be set to 1 . 
[ 0097 ] Batch normalization provides a definition for feed 
forwarding the input and computing the gradients with 
respect to the parameters and its own input via a backward 
pass . In practice , batch normalization layers are inserted 
after a convolutional or fully connected layer , but before the 
outputs are fed into an activation function . For convolutional 
layers , the different elements of the same feature mapi.e. 

[ 0101 ] Forward Pass 
[ 0102 ] During the forward pass , the mini - batch mean and 
variance are calculated . With these mini - batch statistics , the 
data is normalized by subtracting the mean and dividing by 
the standard deviation . Finally , the data is scaled and shifted 
with the learned scale and shift parameters . The batch 
normalization forward pass fon is depicted in FIG . 12 . 
[ 0103 ] In FIG . 12 , up is the batch mean and of ? is the 
batch variance , respectively . The learned scale and shift 
parameters are denoted by y and ß , respectively . For clarity , 
the batch normalization procedure is described herein per 
activation and omit the corresponding indices . 
[ 0104 ] Since normalization is a differentiable transform , 
the errors are propagated into these learned parameters and 
are thus able to restore the representational power of the 
network by learning the identity transform . Conversely , by 
learning scale and shift parameters that are identical to the 
corresponding batch statistics , the batch normalization trans 
form would have no effect on the network , if that was the 
optimal operation to perform . At test time , the batch mean 
and variance are replaced by the respective population 
statistics since the input does not depend on other samples 
from a mini - batch . Another method is to keep running 
averages of the batch statistics during training and to use 
these to compute the network output at test time . At test 
time , the batch normalization transform can be expressed as 
illustrated in FIG . 13. In FIG . 13 , up and op ’ denote the 
population mean and variance , rather than the batch statis 
tics , respectively . 
[ 0105 ] Backward Pass 
[ 0106 ] Since normalization is a differentiable operation , 
the backward pass can be computed as depicted in FIG . 14 . 

2 
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1D Convolution 

[ 0107 ] 1D convolutions extract local 1D patches or sub 
sequences from sequences , as shown in FIG . 16. 1D con 
volution obtains each output timestep from a temporal patch 
in the input sequence . 1D convolution layers recognize local 
patters in a sequence . Because the same input transformation 
is performed on every patch , a pattern learned at a certain 
position in the input sequences can be later recognized at a 
different position , making 1D convolution layers translation 
invariant for temporal translations . For instance , a 1D con 
volution layer processing sequences of bases using convo 
lution windows of size 5 should be able to learn bases or 
base sequences of length 5 or less , and it should be able to 
recognize the base motifs in any context in an input 
sequence . A base - level 1D convolution is thus able to learn 
about base morphology . 
Global Average Pooling 
[ 0108 ] FIG . 17 illustrates how global average pooling 
( GAP ) works . Global average pooling can be use used to 
replace fully connected ( FC ) layers for classification , by 
taking the spatial average of features in the last layer for 
scoring . The reduces the training load and bypasses over 
fitting issues . Global average pooling applies a structural 
prior to the model and it is equivalent to linear transforma 
tion with predefined weights . Global average pooling 
reduces the number of parameters and eliminates the fully 
connected layer . Fully connected layers are typically the 
most parameter and connection intensive layers , and global 
average pooling provides much lower - cost approach to 
achieve similar results . The main idea of global average 
pooling is to generate the average value from each last layer 
feature map as the confidence factor for scoring , feeding 
directly into the softmax layer . 
[ 0109 ] Global average pooling have three benefits : ( 1 ) 
there are no extra parameters in global average pooling 
layers thus overfitting is avoided at global average pooling 
layers ; ( 2 ) since the output of global average pooling is the 
average of the whole feature map , global average pooling 
will be more robust to spatial translations ; and ( 3 ) ecause 
of the huge number of parameters in fully connected layers 
which usually take over 50 % in all the parameters of the 
whole network , replacing them by global average pooling 
layers can significantly reduce the size of the model , and this 
makes global average pooling very useful in model com 
pression . 
[ 0110 ] Global average pooling makes sense , since stronger 
features in the last layer are expected to have a higher 
average value . In some implementations , global average 
pooling can be used as a proxy for the classification score . 
The feature maps under global average pooling can be 
interpreted as confidence maps , and force correspondence 
between the feature maps and the categories . Global average 
pooling can be particularly effective if the last layer features 
are at a sufficient abstraction for direct classification ; how 
ever , global average pooling alone is not enough if multi 
level features should be combined into groups like parts 
models , which is best performed by adding a simple fully 
connected layer or other classifier after the global average 
pooling 

lots of genetic variants within a group of individuals . Most 
of the deleterious genetic variants have been depleted from 
genomes by natural selection . It is important to identify 
which genetics variations are likely to be pathogenic or 
deleterious . This will help researchers focus on the likely 
pathogenic genetic variants and accelerate the pace of diag 
nosis and cure of many diseases . 
[ 0112 ] Modeling the properties and functional effects 
( e.g. , pathogenicity ) of variants is an important but chal 
lenging task in the field of genomics . Despite the rapid 
advancement of functional genomic sequencing technolo 
gies , interpretation of the functional consequences of vari 
ants remains a great challenge due to the complexity of cell 
type - specific transcription regulation systems . 
[ 0113 ] Regarding pathogenicity classifiers , deep neural 
networks are a type of artificial neural networks that use 
multiple nonlinear and complex transforming layers to suc 
cessively model high - level features . Deep neural networks 
provide feedback via backpropagation which carries the 
difference between observed and predicted output to adjust 
parameters . Deep neural networks have evolved with the 
availability of large training datasets , the power of parallel 
and distributed computing , and sophisticated training algo 
rithms . Deep neural networks have facilitated major 
advances in numerous domains such as computer vision , 
speech recognition , and natural language processing . 
[ 0114 ] Convolutional neural networks ( CNNs ) and recur 
rent neural networks ( RNNs ) are components of deep neural 
networks . Convolutional neural networks have succeeded 
particularly in image recognition with an architecture that 
comprises convolution layers , nonlinear layers , and pooling 
layers . Recurrent neural networks are designed to utilize 
sequential information of input data with cyclic connections 
among building blocks like perceptrons , long short - term 
memory units , and gated recurrent units . In addition , many 
other emergent deep neural networks have been proposed 
for limited contexts , such as deep spatio - temporal neural 
networks , multi - dimensional recurrent neural networks , and 
convolutional auto - encoders . 
[ 0115 ] The goal of training deep neural networks is opti 
mization of the weight parameters in each layer , which 
gradually combines simpler features into complex features 
so that the most suitable hierarchical representations can be 
learned from data . A single cycle of the optimization process 
is organized as follows . First , given a training dataset , the 
forward pass sequentially computes the output in each layer 
and propagates the function signals forward through the 
network . In the final output layer , an objective loss function 
measures error between the inferenced outputs and the given 
labels . To minimize the training error , the backward pass 
uses the chain rule to backpropagate error signals and 
compute gradients with respect to all weights throughout the 
neural network . Finally , the weight parameters are updated 
using optimization algorithms based on stochastic gradient 
descent . Whereas batch gradient descent performs parameter 
updates for each complete dataset , stochastic gradient 
descent provides stochastic approximations by performing 
the updates for each small set of data examples . Several 
optimization algorithms stem from stochastic gradient 
descent . For example , the Adagrad and Adam training 
algorithms perform stochastic gradient descent while adap 
tively modifying learning rates based on update frequency 
and moments of the gradients for each parameter , respec 
tively . 

Deep Learning in Genomics 
[ 0111 ] Genetic variations can help explain many diseases . 
Every human being has a unique genetic code and there are 
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[ 0116 ] Another core element in the training of deep neural 
networks is regularization , which refers to strategies 
intended to avoid overfitting and thus achieve good gener 
alization performance . For example , weight decay adds a 
penalty term to the objective loss function so that weight 
parameters converge to smaller absolute values . Dropout 
randomly removes hidden units from neural networks during 
training and can be considered an ensemble of possible 
subnetworks . To enhance the capabilities of dropout , a new 
activation function , maxout , and a variant of dropout for 
recurrent neural networks called rnnDrop have been pro 
posed . Furthermore , batch normalization provides a new 
regularization method through normalization of scalar fea 
tures for each activation within a mini - batch and learning 
each mean and variance as parameters . 
[ 0117 ] Given that sequenced data are multi- and high 
dimensional , deep neural networks have great promise for 
bioinformatics research because of their broad applicability 
and enhanced prediction power . Convolutional neural net 
works have been adapted to solve sequence - based problems 
in genomics such as motif discovery , pathogenic variant 
identification , and gene expression inference . Convolutional 
neural networks use a weight - sharing strategy that is espe 
cially useful for studying DNA because it can capture 
sequence motifs , which are short , recurring local patterns in 
DNA that are presumed to have significant biological func 
tions . A hallmark of convolutional neural networks is the use 
of convolution filters . Unlike traditional classification 
approaches that are based on elaborately - designed and 
manually - crafted features , convolution filters perform adap 
tive learning of features , analogous to a process of mapping 
raw input data to the informative representation of knowl 
edge . In this sense , the convolution filters serve as a series 
of motif scanners , since a set of such filters is capable of 
recognizing relevant patterns in the input and updating 
themselves during the training procedure . Recurrent neural 
networks can capture long - range dependencies in sequential 
data of varying lengths , such as protein or DNA sequences . 
[ 0118 ] Therefore , a powerful computational model for 
predicting the pathogenicity of variants can have enormous 
benefits for both basic science and translational research . 

sequence epigenetic model and / or the pathogenicity deter 
miner is a combination of a convolutional neural network 
and a recurrent neural network . 
[ 0121 ] One skilled in the art will appreciate that the 
sequence - to - sequence epigenetic model and / or the pathoge 
nicity determiner can use various padding and striding 
configurations . It can use different output functions ( e.g. , 
classification or regression ) and may or may not include one 
or more fully - connected layers . It can use 1D convolutions , 
2D convolutions , 3D convolutions , 4D convolutions , 5D 
convolutions , dilated or atrous convolutions , transpose con 
volutions , depthwise separable convolutions , pointwise con 
volutions , 1x1 convolutions , group convolutions , flattened 
convolutions , spatial and cross - channel convolutions , 
shuffled grouped convolutions , spatial separable convolu 
tions , and deconvolutions . It can use one or more loss 
functions such as logistic regression / log loss , multi - class 
cross - entropy / softmax loss , binary cross - entropy loss , 
mean - squared error loss , Li loss , L2 loss , smooth L1 loss , 
and Huber loss . It can use any parallelism , efficiency , and 
compression schemes such TFRecords , compressed encod 
ing ( e.g. , PNG ) , sharding , parallel calls for map transfor 
mation , batching , prefetching , model parallelism , data par 
allelism , and synchronous / asynchronous SGD . It can 
include upsampling layers , downsampling layers , recurrent 
connections , gates and gated memory units ( like an LSTM 
or GRU ) , residual blocks , residual connections , highway 
connections , skip connections , peephole connections , acti 
vation functions ( e.g. , non - linear transformation functions 
like rectifying linear unit ( ReLU ) , leaky ReLU , exponential 
liner unit ( ELU ) , sigmoid and hyperbolic tangent ( tan h ) ) , 
batch normalization layers , regularization layers , dropout , 
pooling layers ( e.g. , max or average pooling ) , global average 
pooling layers , and attention mechanisms . 

Particular Implementations 
[ 0119 ] We describe systems , methods , and articles of 
manufacture for artificial intelligence - based epigenetics . 
One or more features of an implementation can be combined 
with the base implementation . Implementations that are not 
mutually exclusive are taught to be combinable . One or 
more features of an implementation can be combined with 
other implementations . This disclosure periodically reminds 
the user of these options . Omission from some implemen 
tations of recitations that repeat these options should not be 
taken as limiting the combinations taught in the preceding 
sections — these recitations are hereby incorporated forward 
by reference into each of the following implementations . 
[ 0120 ] In one implementation , the sequence - to - sequence 
epigenetic model and / or the pathogenicity determiner is a 
convolutional neural network . In another implementation , 
the sequence - to - sequence epigenetic model and / or the 
pathogenicity determiner is a recurrent neural network . In 
yet another implementation , the sequence - to - sequence epi 
genetic model and / or the pathogenicity determiner is a 
residual neural network with residual bocks and residual 
connections . In a further implementation , the sequence - to 

Promoter Sequence 
[ 0122 ] FIG . 25B shows an example promoter sequence 
2501 of a gene . The input to the pathogenicity classifiers are 
promoter sequences , which are regulatory regions located 
upstream ( towards the 5 ' region ) of the gene , adjacent to the 
transcription start site ( TSS ) . They do not code for proteins 
and instead provide an initiation and control point for 
regulated gene transcription . 
[ 0123 ] In one implementation , the length of the promoter 
sequences is 3001 bases . In other implementations , the 
length can be decreased or increased , for instance from 200 
to 20,000 bases , or it can be adapted to specific promoter 
regions ( e.g. , be centered at the TSS ) . The promoter 
sequences are flanked by right and left context that extends 
outside the promoter region , including into the gene 
sequence that follows the promoter region ( e.g. , 5 ' UTR 
regions 2502 , start and stop codons 2503 , 3 ' UTR regions 
2504 , transcription terminator 2505 ) . The flanking context 
can be 100 to 5000 bases . Typically , the upstream and 
downstream flanking contexts are equal , but that is not 
essential . 
[ 0124 ] The promoter sequences contain reference bases 
from one or more reference genome databases . The refer 
ence bases are one - hot encoded to conserve the position 
specific information of each individual base in the promoter 
sequences . In one - hot encoding , each reference base is 
encoded with a binary vector of four bits , with one of the bits 
being hot ( i.e. , 1 ) while others being off ( i.e. , 0 ) . For 
instance , as shown in FIG . 25 , T = ( 1,0,0,0 ) , G = ( 0 , 1 , 0 , 0 ) , 
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C = ( 0 , 0 , 1 , 0 ) , and A = ( 0 , 0 , 0 , 1 ) . In some implementations , 
an undetermined base is encoded as N = 0,0,0,0 ) . FIG . 25B 
shows an example promoter sequence ( in yellow ) with 
reference bases represented using one - hot encoding . When 
the pathogenicity classifiers , as convolutional neural net 
works , receive the one - hot encoded reference bases , they are 
able to preserve the spatial locality relationships within the 
promoter sequences . 

Sequence - to - Sequence Epigenetic Model 
[ 0125 ] FIG . 26 shows an input preparation module 2610 
that accesses a sequence database 2608 and generates an 
input base sequence 2602. The input base sequence 2602 
comprises ( i ) a target base sequence with target bases . The 
target base sequence is flanked by ( ii ) a right base sequence 
with downstream context bases , and ( iii ) a left base sequence 
with upstream context bases . In some implementations , the 
target base sequence is the promoter sequence 2501 . 
[ 0126 ] FIG . 27 shows an example of a sequence - to - se 
quence epigenetic model 2700 . 
[ 0127 ] The sequence - to - sequence model 2700 processes 
the input base sequence 2602 and generates an alternative 
representation 2702 of the input base sequence 2602. An 
output module processes the alternative representation 2702 
of the input base sequence 2602 and produces an output 
2704 that has at least one per - base output for each of the 
target bases in the target base sequence , wherein the per - base 
output specifies , for a corresponding target base , signal 
levels of a plurality of epigenetic tracks . Details of the 
sequence - to - sequence model 2700 are described in FIGS . 
19 , 20 , 21 , 22 , 23 , and 24 . 
Epigenetic Tracks and their Signal Levels 
[ 0128 ] The plurality of epigenetic tracks includes deoxy 
ribonucleic acid ( DNA ) methylation changes ( e.g. , CpG ) , 
histone modifications , noncoding ribonucleic acid ( ncRNA ) 
expression , and chromatin structural changes ( e.g. , nucle 
osome positioning ) . The plurality of epigenetic tracks 
includes deoxyribonuclease ( DNase ) tracks . The plurality of 
epigenetic tracks includes histone 3 lysine 27 acetylation 
( H3K27ac ) tracks . A combination of these epigenetic tracks 
across different tissues , cell types , and cell lines produces 

a thousand different epigenetic tracks and our 
sequence - to - sequence model 2700 can produce an output 
that specifies signals levels for each of a thousand epigenetic 
tracks for each base in the input base sequence . 
[ 0129 ] In one implementation , our sequence - to - sequence 
model 2700 produces an output that specifies signals levels 
for each one of 151 epigenetic tracks for each base in the 
input base sequence . These 151 epigenetic tracks are pro 
duced as cell type and cell line combination of the following 
epigenetic signals : GM12878 Roadmap tracks ( DNase , 
H2A.Z , H3K27ac , H3K27me3 , H3K36me3 , H3K4mel , 
H3K4me2 , H3K4me3 , H3K79me2 , H3K9ac , H3K9me3 , 
H4K20mel ) . 
[ 0130 ] For training purposes , ground truth signal levels of 
epigenetic tracks are obtained from sources like the Road 
map Epigenomics Project ( https://egg2.wustl.edu/roadmap/ 
webportal / index.html ) and / or the ENCODE ( https : // www . 
encodeproject.org/ ) . In one implementation , the epigenetic 
tracks are Genome - wide signal coverage tracks found here https://egg2.wustl.edu/roadmap/webportal/processed data . 
html # ChipSeq_DNaseSeq , which is incorporated by refer 
ence herein . In some implementations , the epigenetic tracks 
are –log 10 ( p - value ) signal tracks found here https : // egg2 . 

wustl.edu/roadmap/data/byFileType/signal/consolidated/ 
macs2signal / pval / , which is incorporated by reference 
herein . In other implementations , the epigenetic tracks are 
Fold - enrichment signal tracks found here https : //egg2.wustl . 
edu / roadmap / data / byFile Type / signal / consolidated / 
macs2signal / foldChange / , which is incorporated by refer 
ence herein . 
[ 0131 ] In one implementation , we used the signal process 
ing engine of the MACSV2.0.10 peak caller to generate 
genome - wide signal coverage tracks ( https://github.com/ 
taoliu / MACS / , incorporated by reference herein ) . Whole 
cell extract was used as a control for signal normalization for 
the histone ChIP - seq coverage . Each DNase - seq dataset was 
normalized using simulated background datasets generated 
by uniformly distributing equivalent number of reads across 
the mappable genome . 
[ 0132 ] In one implementation , we generated two types of 
tracks that use different statistics based on a Poisson back 
ground model to represent per - base signal scores . Briefly , 
reads are extended in the 5 ' to 3 ' direction by the estimated 
fragment length . At each base , the observed counts of 
ChIP - seq / DNasel - seq extended reads overlapping the base 
are compared to corresponding dynamic expected back 
ground counts ( local ) estimated from the control dataset . 
local is defined as max ( BG , 1K , 5K , 10K ) where BG is the 
expected counts per base assuming a uniform distribution of 
control reads across all mappable bases in the genome and 
1K , 5K , 10K are expected counts estimated from the 1 kb , 
5 kb and 10 kb window centered at the base . local is adjusted 
for the ratio of the sequencing depth of ChIP - seq / DNase - seq 
dataset relative to the control dataset . The two types of signal 
score statistics computed per base are as follows . 
[ 0133 ] ( 1 ) Fold - enrichment ratio of ChIP - seq or DNase 
counts relative to expected background counts local . These 
scores provide a direct measure of the effect size of enrich 
ment at any base in the genome . 
[ 0134 ] ( 2 ) Negative log 10 of the Poisson p - value of 
ChIP - seq or DNase counts relative to expected background 
counts local . These signal confidence scores provide a 
measure of statistical significance of the observed enrich 
ment . 
[ 0135 ] Additional information about the how signal levels 
such as p - values , fold enrichment values , etc. are measured 
using ChIP - seq or DNase and peak calling can be found in 
Appendix B , which is bodily incorporated in the Priority 
Provisional Application No. 62 / 903,700 . 

over 

. 

Per - Track Processors 

[ 0136 ] FIG . 28 shows per - track processors of the 
sequence - to - sequence model 2700. In one implementation , 
the sequence - to - sequence model 2700 has a plurality of 
per - track processors 2802 , 2812 , and 2822 corresponding to 
a respective epigenetic track in a plurality of epigenetic 
tracks . Each per - track processor further comprises at least 
one processing module 2804a , 2814a , and 2824a ( e.g. , 
multiple residual blocks in each per - track processor ) and an 
output module 2808 , 2818 , and 2828 ( e.g. , a linear module , 
a rectified linear unit ( ReLU ) module ) . The sequence - to 
sequence model processes an input base sequence and 
generates an alternative representation 2702 of the input 
base sequence . Each per - track processor's processing mod 
ule processes the alternative representation and generates a 
further alternative representation 2806 , 2816 , and 2826 that 
is specific to a particular per - track processor . Each per - track 
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processor's output module processes the further alternative 
representation generated by its corresponding processing 
module and produces , as output 2810 , 2820 , and 2830 , a 
signal level for a corresponding epigenetic track and for 
each base in the input base sequence . 

tive sequence as pathogenic or benign . In implementation , if 
the output above a threshold ( above 0.5 ) , then the variant is 
classified as pathogenic . 

Position - Wise Comparison 
[ 0137 ] FIG . 29 depicts a reference sequence 2902 and an 
alternative / variant sequence 2912. FIG . 30 illustrates one 
implementation of generating a position - wise comparison 
result using the sequence - to - sequence model 2700 . 
[ 0138 ] In one implementation , the input preparation mod 
ule 2610 that accesses a sequence database and generates ( 1 ) 
the reference sequence 2902 that contains , at a target posi 
tion 2932 , a base , wherein the base is flanked by downstream 
2942 and upstream context bases 2946 , and ( ii ) the alterna 
tive sequence 2912 that contains , at the target position , a 
variant 2922 of the base , wherein the variant is flanked by 
the downstream and upstream context bases . The sequence 
to - sequence model 2700 processes the reference sequence 
and generates a reference output 3014 , wherein the reference 
output specifies , for each base in the reference sequence 
2902 , signal levels of a plurality of epigenetic tracks , and 
processes the alternative sequence 2912 and generates an 
alternative output 3024 , wherein the alternative output 3024 
specifies , for each base in the alternative sequence 2912 , the 
signal levels of the plurality of epigenetic tracks . 
( 0139 ] A comparator 3002 applies a position - wise deter 
ministic comparison function to the reference output 3014 
and the alternative output 3024 generated for bases in the 
reference sequence 2902 and the alternative sequence 2912 , 
and generates a position - wise comparison result 3004 based 
on differences , caused by the variant in the alternative 
sequence 2912 , between the signal levels of the reference 
output 3014 and the signal levels of the alternative output 
3024 . 
[ 0140 ] The position - wise deterministic comparison func 
tion calculates an element - wise difference between the ref 
erence output 3014 and the alternative output 3024. The 
position - wise deterministic comparison function calculates 
an element - wise sum of the reference output 3014 and the 
alternative output 3024. The position - wise deterministic 
comparison function calculates an element - wise ratio 
between the reference output 3014 and the alternative output 
3024 . 

Gene Expression Based Pathogenicity Label 
[ 0142 ] The pathogenicity determiner 3100 is trained using 
training data that includes a pathogenic set of non - coding 
variants 3202 that are annotated with a pathogenic label 
3312 ( e.g. , “ 1 ” ) and a benign set of non - coding variants 
3204 that are annotated with a benign label 3314 ( e.g. , “ O ” ) ; 
[ 0143 ] FIG . 34 shows one implementation of how a patho 
genic set of non - coding variants is generated . The patho 
genic set of non - coding variants includes singletons that 
appear only in a single individual among a cohort of 
individuals , and , for genes adjacent to the non - coding vari 
ants in the pathogenic set , the single individual exhibited 
under - expression across a plurality of tissues / organ tissues 
3402. The pathogenic set of non - coding variants are con 
sidered “ expression outliers ” in FIG . 34 . 
[ 0144 ] The benign set of non - coding variants are single 
tons that appear only in a single individual among the cohort 
of individuals and , for genes adjacent to the non - coding 
variants in the benign set , the single individual did not 
exhibit the under - expression across the plurality of tissues . 
[ 0145 ] The under - expression is determined by analyzing 
distributions of expressions exhibited by the cohort of 
individuals for each of the genes across each of the plurality 
of tissues , and calculating a median z - score for the single 
individual based on the distributions . 
[ 0146 ] In each tissue , we compute the z - scores for each 
individual . That is , if x_i is the value for individual i , m is 
the mean of x_i values across all individuals , and s is the 
standard deviation , then the z - score for individual i , is going 
to be ( x_i - m ) s . Then we test whether z_i is below some 
threshold ( e.g. , -1.5 as mentioned in the claim ) . We also 
require that this happens for the same individual in multiple 
tissues ( e.g. , at least two tissues where z_i < -1.5 ) . 
[ 0147 ] Additional details about gene expression - based 
pathogenic labelling can be found in Appendix B , which is 
bodily incorporated in the Priority Provisional Application 
No. 62 / 903,700 . 
[ 0148 ] This system implementation and other systems 
disclosed optionally include one or more of the following 
features . System can also include features described in 
connection with methods disclosed . In the interest of con 
ciseness , alternative combinations of system features are not 
individually enumerated . Features applicable to systems , 
methods , and articles of manufacture are not repeated for 
each statutory class set of base features . The reader will 
understand how features identified in this section can readily 
be combined with base features in other statutory classes . 
[ 0149 ] Other implementations may include a non - transi 
tory computer readable storage medium storing instructions 
executable by a processor to perform actions of the system 
described above . Yet another implementation may include a 
method performing actions of the system described above . 
[ 0150 ] Additional details about the technology disclosed 
can be found in Appendix A , which is bodily incorporated in 
the Priority Provisional Application No. 62 / 903,700 . 

Pathogenicity Determiner 
[ 0141 ] A pathogenicity determiner 3100 processes the 
position - wise comparison result 3004 and produces an out 
put which scores the variant in the alternative sequence 2912 
as pathogenic or benign . The pathogenicity determiner 3100 
processes the position - wise comparison result 3004 and 
generates an alternative representation of the position - wise 
comparison result 3004. The position - wise comparison 
result 3004 is based on differences , caused by a variant in the 
alternative sequence 2912 , between signal levels of a plu 
rality of epigenetic tracks determined for bases in a refer 
ence sequence , and signal levels of the plurality of epigen 
etic tracks determined for bases in the alternative sequence . 
An output module ( e.g. , sigmoid ) processes the alternative 
representation of the position - wise comparison result and 
produces an output which scores the variant in the alterna 

Model Architecture 

[ 0151 ] We trained several ultra - deep convolutional neural 
network - based models for the sequence - to - sequence epigen 
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etic model 2700 and / or the pathogenicity determiner 3100 . 
We designed four architectures , namely , Model - 80nt , 
Model - 400nt , Model - 2k and Model - 10k , which use 40 , 200 , 
1,000 and 5,000 nucleotides on each side of a position of 
interest as input respectively , the input to the models is a 
sequence of one - hot encoded nucleotides , where A , C , G and 
T ( or equivalently U ) are encoded as [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] , 
[ 0 , 0 , 1 , 0 ] and [ 0 , 0 , 0 , 1 ] . 
[ 0152 ] The model architectures can be used for the 
sequence - to - sequence epigenetic model 2700 and / or the 
pathogenicity determiner 3100 . 
[ 0153 ] The model architectures have a modified WaveNet 
style architecture that iterating over particular locations in an 
input promoter sequence and over three base variations from 
a reference base found at a particular location . The modified 
WaveNet - style architecture can calculate up to 9,000 outputs 
for 3,000 locations in the input , as each location has up to 
three single base variations . The modified WaveNet - style 
architecture scales relatively well , because intermediate 
calculations are reused . The pathogenicity classifiers deter 
mine in a single invocation of the modified WaveNet - like 
architecture pathogenicity likelihood scores for at least one 
of the three base variations at a multiplicity of the particular 
locations in the input promoter sequence and store the 
pathogenicity likelihood scores determined in the single 
invocation . The determining of at least one of the three base 
variations further includes determining all of the three 
variations . The multiplicity of the particular locations is at 
least 500 or 1,000 , or 1500 , or 2000 , or ninety percent of the 
input promoter sequence . 
[ 0154 ] The basic unit of the model architectures is a 
residual block ( He et al . , 2016b ) , which consists of batch 
normalization layers ( Ioffe and Szegedy , 2015 ) , rectified 
linear units ( ReLU ) , and convolutional units organized in a 
specific manner ( FIGS . 21 , 22 , 23 , and 24 ) . Residual blocks 
are commonly used when designing deep neural networks . 
Prior to the development of residual blocks , deep neural 
networks consisting of many convolutional units stacked 
one after the other were very difficult to train due to the 
problem of exploding / vanishing gradients ( Glorot and Ben 
gio , 2010 ) , and increasing the depth of such neural networks 
often resulted in a higher training error ( He et al . , 2016a ) . 
Through a comprehensive set of computational experiments , 
architectures consisting of many residual blocks stacked one 
after the other were shown to overcome these issues ( He et 
al . , 2016a ) . 
[ 0155 ] The complete model architectures are provided in 
FIGS . 21 , 22 , 23 , and 24. The architectures consist of K 
stacked residual blocks connecting the input layer to the 
penultimate layer , and a convolutional unit with softmax 
activation connecting the penultimate layer to the output 
layer . The residual blocks are stacked such that the output of 
the ith residual block is connected the input of the i + 1th 
residual block . Further , the output of every fourth residual 
block is added to the input of the penultimate layer . Such 
“ skip connections ” are commonly used in deep neural 
networks to increase convergence speed during training 
( Oord et al . , 2016 ) . 
[ 0156 ] Each residual block has three hyper - parameters N , 
W and D , where N denotes the number of convolutional 
kernels , W denotes the window size and D denotes the 
dilation rate ( Yu and Koltun , 2016 ) of each convolutional 
kernel . Since a convolutional kernel of window size W and 
dilation rate D extracts features spanning ( W - 1 ) D neigh 

boring positions , a residual block with hyper - parameters N , 
W and D extracts features spanning 2 ( W - 1 ) D neighboring 
positions . Hence , the total neighbor span of the Model 
architectures is given by S = ? = 1 2 ( W , -1 ) D ,, where N ,, W ; 
and D ; are the hyper - parameters of the ith residual block . For 
Model - 80nt , Model - 400nt , Model - 2k and Model - 10k archi 
tectures , the number of residual blocks and the hyper 
parameters for each residual block were chosen so that S is 
equal to 80 , 400 , 2,000 and 10,000 , respectively . 
[ 0157 ] The model architectures only have normalization 
and non - linear activation units in addition to convolutional 
units . Consequently , the models can be used in a sequence 
to - sequence mode with variable sequence length ( Oord et 
al . , 2016 ) . For example , the input to the Model - 10k model 
( S = 10,000 ) is a one - hot encoded nucleotide sequence of 
length S / 2 + 1 + S / 2 , and the output is an 1x3 matrix , corre 
sponding to the three scores of the / central positions in the 
input , i.e. , the positions remaining after excluding the first 
and last S / 2 nucleotides . This feature can be leveraged to 
obtain a tremendous amount of computational saving during 
training as well as testing . This is due to the fact that most 
of the computations for positions which are close to each 
other are common , and the shared computations need to be 
done only once by the models when they are used in the 
sequence - to - sequence epigenetic model 2700 and / or the 
pathogenicity determiner 3100 . 
[ 0158 ] Our models adopted the architecture of residual 
blocks , which has become widely adopted due to its success 
in image classification . The residual blocks comprise repeat 
ing units of convolution , interspersed with skip connections 
that allow information from earlier layers to skip over 
residual blocks . In each residual block , the input layer is first 
batch normalized , followed by an activation layer using 
rectified linear units ( ReLU ) . The activation is then passed 
through a 1D convolution layer . This intermediate output 
from the 1D convolution layer is again batch normalized and 
ReLU activated , followed by another 1D convolution layer . 
At the end of the second 1D convolution , we summed its 
output with the original input into the residual block , which 
acts as a skip connection by allowing the original input 
information to bypass the residual block . In such an archi 
tecture , termed a deep residual learning network by its 
authors , the input is preserved in its original state and the 
residual connections are kept free of nonlinear activations 
from the model , allowing effective training of deeper net 
works . 

[ 0159 ] Following the residual blocks , the softmax layer 
computes probabilities of the three states for each amino 
acid , among which the largest softmax probability deter 
mines the state of the amino acid . The model is trained with 
accumulated categorical cross entropy loss function for the 
whole protein sequence using the ADAM optimizer . 
[ 0160 ] Atrous / dilated convolutions allow for large recep 
tive fields with few trainable parameters . An atrous / dilated 
convolution is a convolution where the kernel is applied 
over an area larger than its length by skipping input values 
with a certain step , also called atrous convolution rate or 
dilation factor . Atrous / dilated convolutions add spacing 
between the elements of a convolution filter / kernel so that 
neighboring input entries ( e.g. , nucleotides , amino acids ) at 
larger intervals are considered when a convolution operation 
is performed . This enables incorporation of long - range con 
textual dependencies in the input . The atrous convolutions 

a 
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conserve partial convolution calculations for reuse as adja 
cent nucleotides are processed . 
[ 0161 ] The illustrated example uses 1D convolutions . In 
other implementations , the model can use different types of 
convolutions such as 2D convolutions , 3D convolutions , 
dilated or atrous convolutions , transposed convolutions , 
separable convolutions , and depthwise separable convolu 
tions . Some layers also use ReLU activation function which 
greatly accelerates the convergence of stochastic gradient 
descent compared to saturating nonlinearities such as sig 
moid or hyperbolic tangent . Other examples of activation 
functions that can be used by the technology disclosed 
include parametric ReLU , leaky ReLU , and exponential 
linear unit ( ELU ) . 
[ 0162 ] Some layers also use batch normalization ( Ioffe 
and Szegedy 2015 ) . Regarding batch normalization , distri 
bution of each layer in a convolution neural network ( CNN ) 
changes during training and it varies from one layer to 
another . This reduces the convergence speed of the optimi 
zation algorithm . Batch normalization is a technique to 
overcome this problem . Denoting the input of a batch 
normalization layer with x and its output using z , batch 
normalization applies the following transformation on x : 

x – M 
Z = -Y + B 

No ? + € 

[ 0163 ] Batch normalization applies mean - variance nor 
malization on the input x using u and o and linearly scales 
and shifts it using Y and B. The normalization parameters u 
and o are computed for the current layer over the training set 
using a method called exponential moving average . In other 
words , they are not trainable parameters . In contrast , y and 
Bare trainable parameters . The values for u and o calculated u 
during training are used in forward pass during inference . 
[ 0164 ] As shown in FIG . 19 , the model can comprise 
groups of residual blocks arranged in a sequence from 
lowest to highest . Each group of residual blocks is param 
eterized by a number of convolution filters in the residual 
blocks , a convolution window size of the residual blocks , 
and an atrous convolution rate of the residual blocks . 
[ 0165 ] As shown in FIG . 20 , each residual block can 
comprise at least one batch normalization layer , at least one 
rectified linear unit ( abbreviated ReLU ) layer , at least one 
atrous convolution layer , and at least one residual connec 
tion . In such an implementation , each residual block com 
prises two batch normalization layers , two ReLU non 
linearity layers , two atrous convolution layers , and one 
residual connection . 
[ 0166 ] As shown in FIGS . 21 , 22 , 23 , and 24 , in the model , 
the atrous convolution rate progresses non - exponentially 
from a lower residual block group to a higher residual block 
group . 
[ 0167 ] As shown in FIGS . 21 , 22 , 23 , and 24 , in the model , 
the convolution window size varies between groups of 
residual blocks . 
[ 0168 ] The model can be configured to evaluate an input 
that comprises a target nucleotide sequence further flanked 
by 40 upstream context nucleotides and 40 downstream 
context nucleotides . In such an implementation , the model 
includes one group of four residual blocks and at least one 
skip connection . Each residual block has 32 convolution 
filters , 11 convolution window size , and 1 atrous convolu 

tion rate . This implementation of the model is referred to 
herein as " SpliceNet80 ” and is shown in FIG . 21 . 
[ 0169 ] The model can be configured to evaluate an input 
that comprises the target nucleotide sequence further flanked 
by 200 upstream context nucleotides and 200 downstream 
context nucleotides . In such an implementation , the model 
includes at least two groups of four residual blocks and at 
least two skip connections . Each residual block in a first 
group has 32 convolution filters , 11 convolution window 
size , and 1 atrous convolution rate . Each residual block in a 
second group has 32 convolution filters , 11 convolution 
window size , and 4 atrous convolution rate . This implemen 
tation of the model is referred to herein as “ SpliceNet400 " 
and is shown in FIG . 22 . 
[ 0170 ] The model can be configured to evaluate an input 
that comprises a target nucleotide sequence further flanked 
by 1000 upstream context nucleotides and 1000 downstream 
context nucleotides . In such an implementation , the model 
includes at least three groups of four residual blocks and at 
least three skip connections . Each residual block in a first 
group has 32 convolution filters , 11 convolution window 
size , and 1 atrous convolution rate . Each residual block in a 
second group has 32 convolution filters , 11 convolution 
window size , and 4 atrous convolution rate . Each residual 
block in a third group has 32 convolution filters , 21 convo 
lution window size , and 19 atrous convolution rate . This 
implementation of the model is referred to herein as “ Spli 
ceNet2000 ” and is shown in FIG . 23 . 
[ 0171 ] The model can be configured to evaluate an input 
that comprises a target nucleotide sequence further flanked 
by 5000 upstream context nucleotides and 5000 downstream 
context nucleotides . In such an implementation , the model 
includes at least four groups of four residual blocks and at 
least four skip connections . Each residual block in a first 
group has 32 convolution filters , 11 convolution window 
size , and 1 atrous convolution rate . Each residual block in a 
second group has 32 convolution filters , 11 convolution 
window size , and 4 atrous convolution rate . Each residual 
block in a third group has 32 convolution filters , 21 convo 
lution window size , and 19 atrous convolution rate . Each 
residual block in a fourth group has 32 convolution filters , 
41 convolution window size , and 25 atrous convolution rate . 
This implementation of the model is referred to herein as 
“ SpliceNet10000 ” and is shown in FIG . 24 
[ 0172 ] The trained model can be deployed on one or more 
production servers that receive input sequences from 
requesting clients , as shown in FIG . 18. In such an imple 
mentation , the production servers process the input 
sequences through the input and output stages of the model 
to produce outputs that are transmitted to the clients , as 
shown in FIG . 18 . 
[ 0173 ] FIG . 35 depicts how training datasets are generated 
for the technology disclosed . First , promoter sequences in 
19,812 genes are identified , according to one implementa 
tion . In some implementations , each of the 19,812 promoter 
sequences has 3001 base positions ( not including the flank 
ing contexts outside the promoter region ) , which produces 
59,455,812 total base positions 3501 ( in grey ) . 
[ 0174 ] In one implementation , from the 59,455,812 total 
base positions 3501 , 8,048,977 observed PSNV positions 
3502 are qualified as benign positions . 8,048,977 benign 
positions 3502 yield 8,701,827 observed psNVs , which 
form a final benign set , according to one implementation . In 
some implementations , the benign pSNVs are observed in 

a 
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human and non - human primate species such as chimpanzee , 
bonobo , gorilla , orangutan , rhesus , and marmoset . 
[ 0175 ] In some implementations , the criterion for inclu 
sion in the benign set is that the minor allele frequency of an 
observed PSNV should be greater than 0.1 % . Such a crite 
rion produces 600,000 observed PSNVs , according to one 
implementation . In other implementations , the inclusion 
criterion does not take into account the minor allele fre 
quencies of observed PSNVs . That is , as long as a PSNV is 
observed in human and the non - human primate species , it is 
included in the benign set and thus labeled as benign . The 
second inclusion strategy produces the much larger benign 
set of 8,701,827 observed PSNVs , according to one imple 
mentation . 
[ 0176 ] Further , from the 59,455,812 total base positions 
3501 , 15,406,835 unobserved PSNV positions 3503 are 
removed that belong to homopolymer regions , low - com 
plexity regions , and overlapping coding positions ( e g , start 
or stop codons ) , which are considered either unreliable due 
to sequence - specific errors or irrelevant to the analysis of 
non - coding variants . 
[ 0177 ] Thus , in some implementations , what results is 
36,000,000 unobserved PSNV positions 3504 , from which a 
total of 108,000,000 unobserved PSNVs 3505 are derived by 
mutating each of the 36,000,000 loci to the three alternative 
single - base alleles . These 108,000,000 unobserved PSNVs 
form the final pool 3505 of substitutionally generated unob 
served PSNVs , according to one implementation . 

Computer System 
[ 0178 ] FIG . 33 is a simplified block diagram of a computer 
system that can be used to implement the technology dis 
closed . Computer system typically includes at least one 
processor that communicates with a number of peripheral 
devices via bus subsystem . These peripheral devices can 
include a storage subsystem including , for example , memory 
devices and a file storage subsystem , user interface input 
devices , user interface output devices , and a network inter 
face subsystem . The input and output devices allow user 
interaction with computer system . Network interface sub 
system provides an interface to outside networks , including 
an interface to corresponding interface devices in other 
computer systems . 
[ 0179 ] In one implementation , the neural networks such as 
ACNN and CNN are communicably linked to the storage 
subsystem and user interface input devices . 
[ 0180 ] User interface input devices can include a key 
board ; pointing devices such as a mouse , trackball , touch 
pad , or graphics tablet ; a scanner ; a touch screen incorpo 
rated into the display ; audio input devices such as voice 
recognition systems and microphones , and other types of 
input devices . In general , use of the term “ input device ” is 
intended to include all possible types of devices and ways to 
input information into computer system . 
[ 0181 ] User interface output devices can include a display 
subsystem , a printer , a fax machine , or non - visual displays 
such as audio output devices . The display subsystem can 
include a cathode ray tube ( CRT ) , a flat - panel device such as 
a liquid crystal display ( LCD ) , a projection device , or some 
other mechanism for creating a visible image . The display 
subsystem can also provide a non - visual display such as 
audio output devices . In general , use of the term “ output 
device ” is intended to include all possible types of devices 

and ways to output information from computer system to the 
user or to another machine or computer system . 
[ 0182 ] Storage subsystem stores programming and data 
constructs that provide the functionality of some or all of the 
modules and methods described herein . These software 
modules are generally executed by processor alone or in 
combination with other processors . 
[ 0183 ] Memory used in the storage subsystem can include 
a number of memories including a main random access 
memory ( RAM ) for storage of instructions and data during 
program execution and a read only memory ( ROM ) in which 
fixed instructions are stored . A file storage subsystem can 
provide persistent storage for program and data files , and can 
include a hard disk drive , a floppy disk drive along with 
associated removable media , a CD - ROM drive , an optical 
drive , or removable media cartridges . The modules imple 
menting the functionality of certain implementations can be 
stored by file storage subsystem in the storage subsystem , or 
in other machines accessible by the processor . 
[ 0184 ] Bus subsystem provides a mechanism for letting 
the various components and subsystems of computer system 
communicate with each other as intended . Although bus 
subsystem is shown schematically as a single bus , alterna 
tive implementations of the bus subsystem can use multiple 
busses . 

[ 0185 ] Computer system itself can be of varying types 
including a personal computer , a portable computer , a work 
station , a computer terminal , a network computer , a televi 
sion , a mainframe , a server farm , a widely - distributed set of 
loosely networked computers , or any other data processing 
system or user device . Due to the ever - changing nature of 
computers and networks , the description of computer system 
depicted in FIG . 33 is intended only as a specific example for 
purposes of illustrating the technology disclosed . Many 
other configurations of computer system are possible having 
more or less components than the computer system depicted 
in FIG . 33 . 

[ 0186 ] The deep learning processors can be GPUs or 
FPGAs and can be hosted by a deep learning cloud platforms 
such as Google Cloud Platform , Xilinx , and Cirrascale . 
Examples of deep learning processors include Google's 
Tensor Processing Unit ( TPU ) , rackmount solutions like 
GX4 Rackmount Series , GX8 Rackmount Series , NVIDIA 
DGX - 1 , Microsoft Stratix V FPGA , Graphcore's Intelligent 
Processor Unit ( IPU ) , Qualcomm's Zeroth platform with 
Snapdragon processors , NVIDIA’s Volta , NVIDIA's 
DRIVE PX , NVIDIA'S JETSON TX1 / TX2 MODULE , 
Intel's Nirvana , Movidius VPU , Fujitsu DPI , ARM's 
DynamiclQ , IBM TrueNorth , and others . 
[ 0187 ] The preceding description is presented to enable 
the making and use of the technology disclosed . Various 
modifications to the disclosed implementations will be 
apparent , and the general principles defined herein may be 
applied to other implementations and applications without 
departing from the spirit and scope of the technology 
disclosed . Thus , the technology disclosed is not intended to 
be limited to the implementations shown , but is to be 
accorded the widest scope consistent with the principles and 
features disclosed herein . The scope of the technology 
disclosed is defined by the appended claims . 
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Clauses 

[ 0188 ] The following clauses are included herein . 

a 

a 

histone modifications , noncoding ribonucleic acid ( ncRNA ) 
expression , and chromatin structural changes ( e.g. , nucle 
osome positioning ) . 
9. The artificial intelligence - based system of clause 1 , 
wherein the plurality of epigenetic tracks includes deoxyri 
bonuclease ( DNase ) tracks . 
10. The artificial intelligence - based system of clause 1 , 
wherein the plurality of epigenetic tracks includes histone 3 
lysine 27 acetylation ( H3K27ac ) tracks . 
11. The artificial intelligence - based system of clause 1 , 
wherein the sequence - to - sequence model is a convolutional 
neural network . 
12. The artificial intelligence - based system of clause 11 , 
wherein the convolutional neural network further comprises 
groups of residual blocks . 
13. The artificial intelligence - based system of clause 12 , 
wherein each group of residual blocks is parameterized by a 
number of convolution filters in the residual blocks , a 
convolution window size of the residual blocks , and an 
atrous convolution rate of the residual blocks . 
14. The artificial intelligence - based system of clause 12 , 
wherein the convolutional neural network is parameterized 
by a number of residual blocks , a number of skip connec 
tions , and a number of residual connections . 
15. The artificial intelligence - based system of clause 12 , 
wherein each group of residual blocks produces an interme 
diate output by processing a preceding input , wherein 
dimensionality of the intermediate output is ( I - [ { ( W - 1 ) 
* D } * A ] ) xN , where 
[ 0198 ] I is dimensionality of the preceding input , 
[ 0199 ] W is convolution window size of the residual 
blocks , 
[ 0200 ] D is atrous convolution rate of the residual blocks , 
[ 0201 ] A is a number of atrous convolution modules in the 

Artificial Intelligence - Based Pathogenicity Classification of 
Noncoding Variants 
[ 0189 ] 1. An artificial intelligence - based system , compris 
ing : 
[ 0190 ] an input preparation module that accesses 
sequence database and generates an input base sequence , 
wherein the input base sequence comprises 

[ 0191 ] ( i ) a target base sequence with target bases , 
wherein the target base sequence is flanked by 
[ 0192 ] ( ii ) a right base sequence with downstream 

context bases , and 
[ 0193 ] ( iii ) a left base sequence with upstream con 

text bases ; 
[ 0194 ] a sequence - to - sequence model that processes the 
input base sequence and generates an alternative represen 
tation of the input base sequence ; and 
[ 0195 ] an output module that processes the alternative 
representation of the input base sequence and produces at 
least one per - base output for each of the target bases in the 
target base sequence ; 
[ 0196 ] wherein the per - base output specifies , for a corre 
sponding target base , signal levels of a plurality of epigen 
etic tracks . 
2. The artificial intelligence - based system of clause 1 , 
wherein the per - base output uses continuous values to 
specify the signal levels of the plurality of epigenetic tracks . 
3. The artificial intelligence - based system of clause 1 , 
wherein the output module further comprises a plurality of 
per - track processors , with each per - track processor corre 
sponds to a respective epigenetic track in the plurality of 
epigenetic tracks and produces a signal level for a corre 
sponding epigenetic track . 
4. The artificial intelligence - based system of clause 3 , 
wherein each per - track processor in the plurality of per - track 
processors processes the alternative representation of the 
input base sequence , generates a further alternative repre 
sentation that is specific to a particular per - track processor , 
and produces the signal level for the corresponding epigen 
etic track based on the further alternative representation . 
5. The artificial intelligence - based system of clause 4 , 
wherein each per - track processor further comprises at least 
one residual block and a linear module and / or rectified linear 
unit ( ReLU ) module , and 
[ 0197 ] wherein the residual block generates the further 
alternative representation and the linear module and / or the 
ReLU module processes the further alternative representa 
tion and produces the signal level for the corresponding 
epigenetic track . 
6. The artificial intelligence - based system of clause 3 , 
wherein each per - track processor in the plurality of per - track 
processors processes the alternative representation of the 
input base sequence and produces the signal level for the 
corresponding epigenetic track based on the alternative 
representation . 
7. The artificial intelligence - based system of clause 6 , 
wherein each per - track processor further comprises a linear 
module and / or a ReLU module . 
8. The artificial intelligence - based system of clause 1 , 
wherein the plurality of epigenetic tracks includes deoxyri 
bonucleic acid ( DNA ) methylation changes ( e.g. , CpG ) , 

2 

group , and 
a [ 0202 ] N is a number of convolution filters in the residual 

blocks . 
16. The artificial intelligence - based system of clause 15 , 
wherein the atrous convolution rate progresses non - expo 
nentially from a lower residual block group to a higher 
residual block group . 
17. The artificial intelligence - based system of clause 16 , 
wherein atrous convolutions conserve partial convolution 
calculations for reuse as adjacent bases are processed . 
18. The artificial intelligence - based system of clause 13 , 
wherein the size of convolution window varies between 
groups of residual blocks . 
19. The artificial intelligence - based system of clause 1 , 
wherein dimensionality of the input base sequence is ( Cu + 
L + Cd ) x4 , where 
[ 0203 ] Cu is a number of upstream context bases in the left 
base sequence ; 
[ 0204 ] Cd is a number of downstream context bases in the 
right base sequence , and 
[ 0205 ] L is a number of target base in the target base 
sequence . 
20. The artificial intelligence - based system of clause 11 , 
wherein the convolutional neural network further comprises 
dimensionality altering convolution modules that reshape 
spatial and feature dimensions of a preceding input . 
21. The artificial intelligence - based system of clause 12 , 
wherein each residual block further comprises at least one 

a 
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batch normalization module , at least ReLU module , at least 
one atrous convolution module , and at least one residual 
connection . 
22. The artificial intelligence - based system of clause 21 , 
wherein each residual block further comprises two batch 
normalization modules , two ReLU non - linearity modules , 
two atrous convolution modules , and one residual connec 
tion . 
23. The artificial intelligence - based system of clause 1 , 
wherein the sequence - to - sequence model is trained on train 
ing data that includes both coding and non - coding bases . 
24. An artificial intelligence - based system , comprising : 
[ 0206 ] a sequence - to - sequence model ; 
[ 0207 ] a plurality of per - track processors corresponding to 
a respective epigenetic track in a plurality of epigenetic 
tracks , 

[ 0208 ] wherein each per - track processor further com 
prises at least one processing module ( e.g. , a residual 
block ) and an output module ( e.g. , a linear module , a 
rectified linear unit ( ReLU ) module ) ; 

[ 0209 ] the sequence - to - sequence model processes an input 
base sequence and generates an alternative representation of 
the input base sequence ; 
[ 0210 ) each per - track processor's processing module pro 
cesses the alternative representation and generates a further 
alternative representation that is specific to a particular 
per - track processor ; and 
[ 0211 ] each per - track processor's output module processes 
the further alternative representation generated by its corre 
sponding processing module and produces , as output , a 
signal level for a corresponding epigenetic track and for 
each base in the input base sequence . 
[ 0212 ] Other implementations may include a non - transi 
tory computer readable storage medium storing instructions 
executable by a processor to perform actions of the system 
described above . Yet another implementation may include a 
method performing actions of the system described above . 

output generated for bases in the reference sequence 
and the alternative sequence , and 

[ 0222 ] generates a position - wise comparison result 
based on differences , caused by the variant in the 
alternative sequence , between the signal levels of the 
reference output and the signal levels of the alternative 
output ; and 

[ 0223 ] a pathogenicity determiner that processes the posi 
tion - wise comparison result and produces an output which 
scores the variant in the alternative sequence as pathogenic 
or benign . 
2. The artificial intelligence - based system of clause 1 , 
wherein the position - wise deterministic comparison func 
tion calculates an element - wise difference between the ref 
erence output and the alternative output . 
3. The artificial intelligence - based system of clause 1 , 
wherein the position - wise deterministic comparison func 
tion calculates an element - wise sum of the reference output 
and the alternative output . 
4. The artificial intelligence - based system of clause 1 , 
wherein the position - wise deterministic comparison func 
tion calculates an element - wise ratio between the reference 
output and the alternative output . 
5. The artificial intelligence - based system of clause 1 , fur 
ther comprises a post - processing module that 
[ 0224 ] processes the reference output and produces a 
further reference output ; and 
[ 0225 ] processes the alternative output and produces a 
further alternative output . 
6. The artificial intelligence - based system of clause 5 , 
wherein the comparator 
[ 0226 ] applies the position - wise deterministic comparison 
function to the further reference output and the further 
alternative output for elements in the reference output and 
the alternative output , and 
[ 0227 ] generates the position - wise comparison result . 
7. The artificial intelligence - based system of clause 5 , 
wherein the post - processing module is a convolutional neu 
ral network with one or more convolution layers . 
8. The artificial intelligence - based system of clause 1 , 
wherein the sequence - to - sequence model further comprises 
a plurality of intermediate layers , and one of the interme 
diate layers 
[ 0228 ] processes the reference sequence and generates an 
intermediate reference output ; 
[ 0229 ] processes the alternative sequence and generates an 
intermediate alternative output ; and 
[ 0230 ] the comparator 

[ 0231 ] applies the position - wise deterministic compari 
son function to the intermediate reference output and 
the intermediate alternative output for elements in the 
intermediate reference sequence and the intermediate 
alternative sequence , and 

[ 0232 ] generates the position - wise comparison result . 
9. The artificial intelligence - based system of clause 1 , 
wherein the reference sequence is further flanked by right 
and left flanking base sequences , and the sequence - to 
sequence model processes the reference sequence along with 
the right and left flanking base sequences . 
10. The artificial intelligence - based system of clause 1 , 
wherein the alternative sequence is further flanked by right 
and left flanking base sequences , and the sequence - to 
sequence model processes the alternative sequence along 
with the right and left flanking base sequences . 

a 

Artificial Intelligence - Based Pathogenicity Classification of 
Noncoding Variants 
[ 0213 ] 1. An artificial intelligence - based system , compris 
ing : 
[ 0214 ] an input preparation module that accesses 
sequence database and generates 

[ 0215 ] ( i ) a reference sequence that contains , at a target 
position , a base , wherein the base is flanked by down 
stream and upstream context bases , and 

[ 0216 ] ( ii ) an alternative base sequence that contains , at 
the target position , a variant of the base , wherein the 
variant is flanked by the downstream and upstream 
context bases ; 

[ 0217 ] a sequence - to - sequence model that 
[ 0218 ] processes the reference sequence and generates a 

reference output , wherein the reference output speci 
fies , for each base in the reference sequence , signal 
levels of a plurality of epigenetic tracks , and 

[ 0219 ] processes the alternative sequence and generates 
an alternative output , wherein the alternative output 
specifies , for each base in the alternative sequence , the 
signal levels of the plurality of epigenetic tracks ; 

[ 0220 ] a comparator that 
[ 0221 ] applies a position - wise deterministic compari 

son function to the reference output and the alternative 
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[ 0237 ] an output module that processes the alternative 
representation of the position - wise comparison result and 
produces an output which scores the variant in the alterna 
tive sequence as pathogenic or benign . 
25. The artificial intelligence - based system of clause 24 , 
further comprising providing the reference sequence as input 
to the pathogenicity determiner . 
26. The artificial intelligence - based system of clause 24 , 
further comprising providing the alternative sequence as 
input to the pathogenicity determiner . 
[ 0238 ] Other implementations may include a non - transi 
tory computer readable storage medium storing instructions 
executable by a processor to perform actions of the system 
described above . Yet another implementation may include a 
method performing actions of the system described above . 

11. The artificial intelligence - based system of clause 1 , 
wherein the reference sequence and the alternative sequence 
are non - coding base sequences . 
12. The artificial intelligence - based system of clause 11 , 
wherein the reference sequence and the alternative sequence 
are promoter sequences , and the variant is a promoter 
sequence . 
13. The artificial intelligence - based system of clause 1 , 
wherein the input feeding module further includes in the 
input to the pathogenicity determiner , in addition to the 
position - wise comparison result , the reference sequence and 
the alternative sequence . 
14. The artificial intelligence - based system of clause 13 , 
wherein the reference sequence and the alternative sequence 
are one - hot encoded . 
15. The artificial intelligence - based system of clause 1 , 
wherein the sequence - to - sequence model is a convolutional 
neural network . 
16. The artificial intelligence - based system of clause 15 , 
wherein the convolutional neural network further comprises 
groups of residual blocks . 
17. The artificial intelligence - based system of clause 16 , 
wherein each group of residual blocks is parameterized by a 
number of convolution filters in the residual blocks , a 
convolution window size of the residual blocks , and an 
atrous convolution rate of the residual blocks . 
18. The artificial intelligence - based system of clause 16 , 
wherein the convolutional neural network is parameterized 
by a number of residual blocks , a number of skip connec 
tions , and a number of residual connections . 
19. The artificial intelligence - based system of clause 1 , 
wherein the pathogenicity determiner further comprises an 
output module that produces the output as a pathogenicity 
score . 

20. The artificial intelligence - based system of clause 19 , 
wherein the output module is a sigmoid processor and the 
pathogenicity score is between zero and one . 
21. The artificial intelligence - based system of clause 20 , 
further comprising identifying whether the variant in the 
alternative sequence is pathogenic or benign based on 
whether the pathogenicity score is above or below a preset 
threshold . 
22. The artificial intelligence - based system of clause 1 , 
further comprising jointly training the sequence - to - sequence 
model and the pathogenicity determiner using contiguous 
backpropagation . 
23. The artificial intelligence - based system of clause 1 , 
further comprising using transfer learning to initialize 
weights of the pathogenicity determiner during its training 
based on weights of the sequence - to - sequence model 
learned during its training . 
24. An artificial intelligence - based system , comprising : 
[ 0233 ] a pathogenicity determiner that processes a posi 
tion - wise comparison result and generates an alternative 
representation of the position - wise comparison result , 

[ 0234 ] wherein the position - wise comparison result is 
based on differences , caused by a variant in an alter 
native sequence , between 
[ 0235 ] signal levels of a plurality of epigenetic tracks 

determined for bases in a reference sequence , and 
[ 0236 ] signal levels of the plurality of epigenetic 

tracks determined for bases in the alternative 
sequence ; and 

Gene Expression - Based Labeling of Non - Coding Variants 
for Artificial Intelligence - Based Training 
[ 0239 ] 1. An artificial intelligence - based method of train 
ing a pathogenicity determiner , including : 
[ 0240 ] training the pathogenicity determiner using train 
ing data that includes a pathogenic set of non - coding vari 
ants that are annotated with a pathogenic label ( e.g. , “ 1 ” ) and 
a benign set of non - coding variants that are annotated with 
a benign label ( e.g. , “ O ” ) ; 
[ 0241 ] wherein the pathogenic set of non - coding variants 
are singletons that appear only in a single individual among 
a cohort of individuals , and , for genes adjacent to the 
non - coding variants in the pathogenic set , the single indi 
vidual exhibited under - expression across a plurality of tis 
sues ; 
[ 0242 ] wherein the benign set of non - coding variants are 
singletons that appear only in a single individual among the 
cohort of individuals and , for genes adjacent to the non 
coding variants in the benign set , the single individual did 
not exhibit the under - expression across the plurality of 
tissues ; and 
[ 0243 ] for a particular non - coding variant in the training 
data , 

[ 0244 ] generating ( i ) an alternative sequence that con 
tains , at a target position , the particular non - coding 
variant flanked by downstream and upstream context 
bases , and ( ii ) a reference sequence that contains , at the 
target position , a reference base flanked by the down 
stream and upstream context bases ; 

[ 0245 ] processing the alternative and reference 
sequences through an epigenetic model and determin 
ing , for each base in the alternative and reference 
sequences , signal levels of a plurality of epigenetic 
tracks ; 

[ 0246 ] generating a position - wise comparison result 
based on differences , caused by the particular non 
coding variant , between the signal levels determined 
for bases in the reference sequence and the alternative 
sequence ; 

[ 0247 ] processing the position - wise comparison result 
through the pathogenicity determiner and producing a 
pathogenicity prediction for the particular non - coding 
variant ; and 

[ 0248 ] modifying weights of the pathogenicity deter 
miner using backpropagation based on an error com 
puted between the pathogenicity prediction and the 
pathogenic label when the particular non - coding vari 
ant is from the pathogenic set , and between the patho 
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genicity prediction and the benign label when the 
particular non - coding variant is from the benign set . 

2. The artificial intelligence - based method of clause 1 , 
wherein the under - expression is determined by analyzing 
distributions of expressions exhibited by the cohort of 
individuals for each of the genes across each of the plurality 
of tissues , and calculating a median z - score for the single 
individual based on the distributions . 
3. The artificial intelligence - based method of clause 1 , 
wherein adjacency of the genes adjacent to the non - coding 
variants in the pathogenic set is measured based on a number 
of bases between transcription start sites ( TSSs ) on the genes 
and the non - coding variants . 
4. The artificial intelligence - based system of clause 3 , 
wherein the number of bases is 1500 bases . 
5. The artificial intelligence - based system of clause 1 , fur 
ther comprising , when the median z - score is below a thresh 
old , inferring the under - expression . 
6. The artificial intelligence - based system of clause 5 , 
wherein the threshold is -1.5 . 
[ 0249 ] Other implementations may include a non - transi 
tory computer readable storage medium storing instructions 
executable by a processor to perform actions of the system 
described above . Yet another implementation may include a 
method performing actions of the system described above . 

1. An artificial intelligence - based system , comprising : 
an input preparation module that accesses a sequence 

database and generates an input base sequence , wherein 
the input base sequence comprises 
( i ) a target base sequence with target bases , wherein the 

target base sequence is flanked by 
( ii ) a right base sequence with downstream context 

bases , and 
( iii ) a left base sequence with upstream context 

bases ; 
a sequence - to - sequence model that processes the input 

base sequence and generates an alternative representa 
tion of the input se sequence ; and 

an output module that processes the alternative represen 
tation of the input base sequence and produces at least 
one per - base output for each of the target bases in the 
target base sequence , 

wherein the per - base output specifies , for a corresponding 
target base , signal levels of a plurality of epigenetic 
tracks . 

2. The artificial intelligence - based system of claim 1 , 
wherein the per - base output uses continuous values to 
specify the signal levels of the plurality of epigenetic tracks . 

3. The artificial intelligence - based system of claim 1 , 
wherein the output module further comprises a plurality of 
per - track processors , with each per - track processor corre 
sponds to a respective epigenetic track in the plurality of 
epigenetic tracks and produces a signal level for a corre 
sponding epigenetic track . 

4. The artificial intelligence - based system of claim 3 , 
wherein each per - track processor in the plurality of per - track 
processors processes the alternative representation of the 
input base sequence , generates a further alternative repre 
sentation that is specific to a particular per - track processor , 
and produces the signal level for the corresponding epigen 
etic track based on the further alternative representation . 

5. The artificial intelligence - based system of claim 4 , 
wherein each per - track processor further comprises at least 
one residual block and a linear module and / or rectified linear 
unit ( ReLU ) module , and 

wherein the residual block generates the further alterna 
tive representation and the linear module and / or the 
ReLU module processes the further alternative repre 
sentation and produces the signal level for the corre 
sponding epigenetic track . 

6. The artificial intelligence - based system of claim 3 , 
wherein each per - track processor in the plurality of per - track 
processors processes the alternative representation of the 
input base sequence and produces the signal level for the 
corresponding epigenetic track based on the alternative 
representation . 

7. The artificial intelligence - based system of claim 6 , 
wherein each per - track processor further comprises a linear 
module and / or a ReLU module . 

8. The artificial intelligence - based system of claim 1 , 
wherein the plurality of epigenetic tracks includes deoxyri 
bonucleic acid ( DNA ) methylation changes ( e.g. , CpG ) , 
histone modifications , noncoding ribonucleic acid ( ncRNA ) 
expression , and chromatin structural changes ( e.g. , nucle 
osome positioning ) . 

9. The artificial intelligence - based system of claim 1 , 
wherein the plurality of epigenetic tracks includes deoxyri 
bonuclease ( DNase ) tracks . 

10. The artificial intelligence - based system of claim 1 , 
wherein the plurality of epigenetic tracks includes histone 3 
lysine 27 acetylation ( H3K27ac ) tracks . 

11. The artificial intelligence - based system of claim 1 , 
wherein the sequence - to - sequence model is a convolutional 
neural network . 

12. The artificial intelligence - based system of claim 11 , 
wherein the convolutional neural network further comprises 
groups of residual blocks . 

13. The artificial intelligence - based system of claim 12 , 
wherein each group of residual blocks is parameterized by a 
number of convolution filters in the residual blocks , a 
convolution window size of the residual blocks , and an 
atrous convolution rate of the residual blocks . 

14. The artificial intelligence - based system of claim 12 , 
wherein the convolutional neural network is parameterized 
by a number of residual blocks , a number of skip connec 
tions , and a number of residual connections . 

15. The artificial intelligence - based system of claim 12 , 
wherein each group of residual blocks produces an interme 
diate output by processing a preceding input , wherein 
dimensionality of the intermediate output is ( 1 - [ { ( W - 1 ) 
* D } * A ] ) xN , where 

I is dimensionality of the preceding input , 
W is convolution window size of the residual blocks , 
D is atrous convolution rate of the residual blocks , 
Ais a number of atrous convolution modules in the group , 

and 
N is a number of convolution filters in the residual blocks . 
16. The artificial intelligence - based system of claim 15 , 

wherein the atrous convolution rate progresses non - expo 
nentially from a lower residual block group to a higher 
residual block group . 

17. The artificial intelligence - based system of claim 16 , 
wherein atrous convolutions conserve partial convolution 
calculations for reuse as adjacent bases are processed . 

a 
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18. The artificial intelligence - based system of claim 13 , 
wherein the size of convolution window varies between 
groups of residual blocks . 

19. The artificial intelligence - based system of claim 1 , 
wherein dimensionality of the input base sequence is ( Cu + 
L + Cd ) x4 , where 
Cu is a number of upstream context bases in the left base 

sequence , 
Cd is a number of downstream context bases in the right 

base sequence , and 
L is a number of target base in the target base sequence . 
20. The artificial intelligence - based system of claim 11 , 

wherein the convolutional neural network further comprises 
dimensionality altering convolution modules that reshape 
spatial and feature dimensions of a preceding input . 

21. The artificial intelligence - based system of claim 12 , 
wherein each residual block further comprises at least one 
batch normalization module , at least ReLU module , at least 
one atrous convolution module , and at least one residual 
connection . 

22. The artificial intelligence - based system of claim 21 , 
wherein each residual block further comprises two batch 
normalization modules , two ReLU non - linearity modules , 
two atrous convolution modules , and one residual connec 
tion . 

23. The artificial intelligence - based system of claim 1 , 
wherein the sequence - to - sequence model is trained on train 
ing data that includes both coding and non - coding bases . 

24. An artificial intelligence - based system , comprising : 
a sequence - to - sequence model ; 
a plurality of per - track processors corresponding to a 

respective epigenetic track in a plurality of epigenetic 
tracks , 
wherein each per - track processor further comprises at 

least one processing module ( e.g. , a residual block ) 
and an output module ( e.g. , a linear module , a 
rectified linear unit ( ReLU ) module ) ; 

the sequence - to - sequence model processes an input base 
sequence and generates an alternative representation of 
the input base sequence ; 

each per - track processor's processing module processes 
the alternative representation and generates a further 
alternative representation that is specific to a particular 
per - track processor ; and 

each per - track processor's output module processes the 
further alternative representation generated by its cor responding processing module and produces , as output , 
a signal level for a corresponding epigenetic track and 
for each base in the input base sequence . 


