
US 20210350066A1
M IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0350066 A1

Ren et al . (43) Pub . Date : Nov. 11 , 2021

Publication Classification (54) ERROR DETECTION IN TEXT STRING
WITHIN DISPLAYED LAYOUT

(71) Applicant : MICRO FOCUS LLC , Santa Clara ,
CA (US)

(72) Inventors : Yi - Qun Ren , Shanghai (CN) ; Kai Hu ,
Shanghai (CN) ; Le Peng , Shanghai
(CN)

(51) Int . Ci .
G06F 40/106 (2006.01)
GOOT 7/90 (2006.01)
G06T 11/00 (2006.01)

(52) U.S. CI .
CPC G06F 40/106 (2020.01) ; G06T 11/001

(2013.01) ; G06T 7/90 (2017.01)
(57) ABSTRACT
The color of a character of a text string within a layout is
changed , and the layout is displayed . An image of the layout
as displayed is captured . An error in the text string within the
layout as displayed is detected by detecting the changed
color of the character within the captured image .

a

(21) Appl . No .: 16 / 870,189

(22) Filed : May 8 , 2020

430 432A 432B 4320 432D

434A 434D
444B 444C -444D

436 Only
1. In lo

1948 me 5 434C 444A 446

440
442A 442B 442C 442D

Patent Application Publication Nov. 11 , 2021 Sheet 1 of 7 US 2021/0350066 A1

FIG 1A 100
102 102 '

Version V Ausführy
104 104

?
100 '

102 " 104 " "
???? <

100 "
FIG 1B

150

, Computersname : :
OMEGA

s
154

Patent Application Publication Nov. 11 , 2021 Sheet 2 of 7 US 2021/0350066 A1

200 FIG 2
204

206 , 208
WEB BROWSER
PROGRAM 202

ERROR
DETECTION
PROGRAM

LAYOUT
MODIFICATION
PROGRAM EXTENSION OR

PLUGIN

Patent Application Publication Nov. 11 , 2021 Sheet 3 of 7 US 2021/0350066 A1

300 FIG 3
202 204 206 208
3 s ERRORS EXTENSION

OR PLUGIN

WEB
BROWSER
PROGRAM

DETECTION
PROGRAM

LAYOUT
MODIFICATION
PROGRAM

308

310

CHANGE
FOREGROUND AND
BACKGROUND

COLORS OF EACH
NON - SPACE

CHARACTER OF
EACH STRING OF

LAYOUT

DISPLAY
LAYOUT

CAPTURE
IMAGE OF
DISPLAYED
LAYOUT

302

306

SEND SPECIFICATION
OF CHANGED
COLORS

RECEIVE
SPECIFICATION
OF CHANGED
COLORS

316
304

312 DETECT ERRORS
IN TEXT

STRINGS WITHIN
DISPLAYED
LAYOUT

MODIFY
LAYOUT TO
CORRECT
ERRORS

314

OUTPUT ALERT

Patent Application Publication Nov. 11 , 2021 Sheet 4 of 7 US 2021/0350066 A1

FIG 4A
400

402A 402B 402C

406A
406C TAB

404A 404B
406B 4040

422

FIG 4B
428

420

430 P 432

424 426

Patent Application Publication Nov. 11 , 2021 Sheet 5 of 7 US 2021/0350066 A1

FIG 4C
430 432A 432B 432C 432D o

434A 434D
444C 444D Only im 436

434B 434C 444A
446 me

1111 440

442A 442B 4420 442D

Patent Application Publication Nov. 11 , 2021 Sheet 6 of 7 US 2021/0350066 A1

500 FIG 5

502 CHANGE COLOR OF CHARACTER OF TEXT
STRING WITHIN LAYOUT

504
DISPLAY LAYOUT

506
CAPTURE IMAGE OF DISPLAYED LAYOUT

508
DETECT ERROR IN TEXT STRING WITHIN

DISPLAYED LAYOUT

FIG 6
600

COMPUTER - READABLE DATA STORAGE MEDIUM

602
PROGRAM CODE -604

RECEIVE SPECIFICATION OF COLOR TO WHICH
CHARACTER OF TEXT STRING HAS BEEN

CHANGED WITHIN LAYOUT

606

CAPTURE IMAGE OF DISPLAYED LAYOUT

-608

DETECT ERROR IN TEXT STRING WITHIN
DISPLAYED LAYOUT

Patent Application Publication Nov. 11 , 2021 Sheet 7 of 7 US 2021/0350066 A1

FIG 7
, 700

SYSTEM

2702
PROCESSOR

5704
MEMORY 706 -708

LAYOUT CHANGE
PROGRAM CODE

ERROR DETECTION
PROGRAM CODE

US 2021/0350066 A1 Nov. 11 , 2021
1

ERROR DETECTION IN TEXT STRING
WITHIN DISPLAYED LAYOUT

BACKGROUND
[0001] Computer programs commonly display graphical
and textual information . For example , web browser pro
grams can render and display web pages specified in markup
languages such as the hypertext markup language (HTML) .
As another example , other computer programs , like appli
cation programs , can display information by accessing
application programming interfaces (APIS) exposed by oper
ating systems on which the computer programs run .

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIGS . 1A and 1B are diagrams depicting examples
of some of the types of text string errors within displayed
layouts that techniques presented herein can detect .
[0003] FIG . 2 is a diagram of an example system for
detecting and correcting text string errors within displayed
layouts .
[0004] FIG . 3 is a flowchart of an example method for
detecting and correcting text string errors within displayed
layouts in the context of the system of FIG . 2 .
[0005] FIGS . 4A , 4B , and 4C are diagrams illustratively
depicting example performance of text string error detection
per the method of FIG . 3 .
[0006] FIG . 5 is a flowchart of an example method that is
consistent with but more general than the method of FIG . 3 .
[0007] FIG . 6 is a diagram of an example computer
readable data storage medium .
[0008] FIG . 7 is a diagram of an example system that is
consistent with but more general than the system of FIG . 2 .

captured . Errors in the text strings within the resultantly
displayed layout can then be detected by detecting within the
captured image the colors to which the characters have been
changed , without having to actually detect the characters
themselves .
[0012] Such techniques provide for more accurate and
easier to implement detection of errors in text strings within
displayed layouts than techniques that detect the characters
of the text strings themselves . The myriad different ways in
which text can be rendered and displayed , as well as the
many different types of errors , can make accurate error
detection by detecting the characters themselves difficult at
best . Programmatic techniques have proven inadequate ,
whereas machine learning techniques usually require large
amounts of relevant training data , and still provide less than
desired accuracy .
[0013] For example , programmatic techniques may rely
upon optical character recognition (OCR) . However , such
techniques have difficulty detecting with near - perfect accu
racy all the myriad different manners by which text strings
of different fonts and sizes can be rendered and displayed .
Furthermore , OCR accuracy is reduced when text strings
overlap other elements within a layout , such as graphical
elements . In such cases , OCR may fail to detect the char
acters that overlap the graphical elements , and thus fail to
detect such overlap errors . Similarly , OCR accuracy is
reduced when text strings overlap one another , such that
OCR may fail to detect overlapping characters and thus fail
to detect these types of errors .
[0014] Machine learning techniques have similar short
comings . For machine learning to successfully detect dif
ferent types of errors in the display of text strings , large
amounts of training data for all these types of errors have to
first be provided to the machine learning model that will be
used . Obtaining such copious amounts of training data is
difficult and laborious in practice , with no guarantee that the
resultantly trained model will be able to detect specific
instances of text string display errors that may occur
specifically those that have had not been contemplated
beforehand .
[0015] FIGS . 1A and 1B shows examples of some of the
types of text string errors within displayed layouts that
techniques presented herein can detect . In FIG . 1A , a layout
100 includes a dropdown menu graphical user interface
(GUI) element 102 with the text string “ Version ” 104. The
layout 100 is localized in German as the layout 100 ' , and is
localized in Hebrew as the layout 100 " . The German word
for “ Version ” is “ Ausführung , " whereas the Hebrew word
for “ Version ” is “ DMA . ”
[0016] The error in the text string 104 ' of the dropdown
menu GUI element 102 ' of the layout 100 ' is that the German
word “ Ausführung ” has been improperly cutoff or truncated ,
with the three characters at the end of the word not being
displayed . This example error is thus a truncation error . The
error in the text string 104 " of the dropdown menu GUI
element 102 " of the layout 100 " is that the characters of the
Hebrew word “ 1071 ” has been improperly reversed :
Hebrew is written right - to - left instead of from left - to - right
as English is . This example error is thus a reversal error .
[0017] Manual detection of these errors can be difficult . A
tester who knows English may be able to verify that the
layout 100 is displayed correctly , but is less likely to detect
that the German and Hebrew localized layouts 100 ' and 100 "
are displayed incorrectly . A tester who does not know

DETAILED DESCRIPTION

a [0009] As noted in the background section , a wide variety
of different types of computer programs commonly display
graphical and textual information . The locations at which
text elements , including text strings , and graphical elements ,
including user interface ements , are displayed , as well as
the elements themselves , can be referred to as a layout . A
layout can be specified in a markup language format for
rendering and display by a web browser program , for
instance , or can be hardcoded by a computer program calling
operating system - exposed application programming inter
faces (APIs) .
[0010] Different web browser programs may render lay
outs defined by a markup language specification slightly
differently , and likewise different versions of operating
systems may render layouts defined by calling their APIs
slightly differently . Furthermore , user settings as to font type
and size , dots - per - inch (DPI) scaling , and so on , can also
affect the rendering and resulting display of layouts . Layout
localization from one language to another , such as from
English to Mandarin , German , Hebrew , and so on , can also
affect layout rendering and resulting display .
[0011] Described herein are techniques for detecting
errors in text strings within displayed layouts . The colors of
characters of the text strings can be changed within the
layout prior to rendering and display of the layout . The color
of a character is defined herein as the foreground color of the
character , as the background color of the character , or as
both the foreground and background colors of the character .
An image , like a screenshot , of the displayed layout is

a

US 2021/0350066 A1 Nov. 11 , 2021
2

.

German may not detect the text string truncation error in the
layout 100 ' , and a tester who does not know Hebrew may not
detect the reversal error in the layout 100 " . Automated
detection of these errors via detection of the characters
themselves has also proven difficult .
[0018] In FIG . 1B , a layout 150 includes a text string
“ Computer name : " 152 and a text string “ OMEGA ” 154 ,
and a graphical element 156 , which is specifically a small
dot or shaded circle . A first error in the layout 150 is that the
descender or stem of the lower - case letter “ p ” in the text
string 152 overlaps the top horizontal bar of the upper - case
letter “ E ” in the text string 154. This example error is
particularly one type of text string overlap error . It is noted
that the other letters of the text string 154 do not overlap any
letter in the text string 152. If the lower - case letter “ p ” were
absent from the text string 152 , there would be no overlap
error between the text strings 152 and 154 .
[0019] Furthermore , it is noted that if the background of
the text string 154 were not transparent and had layer
priority over the text string 152 , a similar error would occur
in that the letter “ E ” in the string 154 would overlap the letter
“ p ” in the text string 152. However , in such instance , the
descender of the letter “ p ” would effectively be cut off by the
non - transparent background of the letter “ E. ” In case
instance , the resulting error would be another type of text
string overlap error . Two types of text string overlap errors
may therefore be detected : text string overlap when the text
strings both have transparent backgrounds , and text string
overlap when either or both text strings have non - transparent
backgrounds .
[0020] A second error in the layout 150 is that the upper
case letter “ C ” in the text string 152 overlaps the graphical
element 156. Specifically , the dot or shaded circle of the
graphical element 156 is within the center portion of this
character of the text string 152. While the graphical element
156 is not adjacent to and does not overlap any portion of the
foreground of this character i.e. , the dot is not adjacent to
and does not overlap the actual curve of the letter “ C ” —the
presence of the dot within the character's background is still
considered an overlap error .
[0021] Manual error detection techniques may miss either
or both of these errors . For instance , the dot of the graphical
element 156 may be sufficiently small that a tester misses its
presence within the text string 152. Similarly , the limited
overlap between the text strings 152 and 154 may result in
a tester failing to recognize this text string error . That is ,
without careful inspection , the tester may similarly miss the
limited overlap between the text strings 152 and 154 .
Automated detection of such overlap errors via detection of
the characters themselves has also proven difficult .
[0022] The techniques described herein can detect specific
instances , or test cases , of different types of text string errors ,
such as those that have been described in relation to FIGS .
1A and 1B . The text strings of a layout can be static or
dynamic . The actual characters of a static text string may be
specified within the layout itself , or otherwise remain the
same across different test case instances of the layout . By
comparison , the actual characters of a dynamic text string
can differ across different test case instances . For example ,
the actual characters may be specified by a content source
specified within the layout , where the content source can
provide different text at different times .
[0023] Some instances of dynamic text strings may result
in text string errors , whereas other instances may not .

Therefore , multiple test cases may be specified , with the
actual characters of a dynamic text string varying across the
test cases . The techniques described herein detect whether
any such test case includes a dynamic text string error . The
ability to detect dynamic text string errors within a given
layout therefore increases with the number of different test
cases that are run .

[0024] FIG . 2 shows an example system 200 for detecting
and correcting text string errors within displayed layouts .
Other systems can also be employed for detecting such text
string errors , however . The system 200 specifically pertains
to detecting text string errors within layouts of web pages ,
which may be specified in a markup language . The system
200 includes an extension or plugin 202 executing within a
web browser program 204 , as well as an error detection
program 206. The system 200 can further include a layout
modification program 208 , such as an integrated develop
ment environment (IDE) .
[0025] A general overview of how the system 200 operates
is now described , with a more detailed description provided
later in relation to FIG . 3. The extension or plugin 202
changes the color of each of one or more of the characters
of each text string of the layout of a web page . The web
browser program 204 then displays the resultantly changed
layout . The error detection program 206 captures an image
of the layout as displayed , and from the extension or plugin
202 receives specification of the colors to which the char
acters of the text strings have been changed .
[0026] The error detection program 206 detects text string
errors , such as the truncation , reversal , and overlap errors of
FIGS . 1A and 1B , by detecting the specified colors within
the captured image . The error detection program 206 may
provide a notification of any detected such errors , which the
layout modification program 208 may then correct . This
process can be iteratively repeated until no text string errors
are detected . The layout modification program 208 may
automatically modify the layout to resolve the errors without
user interaction , or a user may instead manually modify the
layout .
[0027] FIG . 3 shows an example method 300 by which the
system 200 detects and corrects text string errors within
displayed layouts . The method 300 is divided over four
columns corresponding to the extension or plugin 202 , the
web browser program 204 , the error detection program 206 ,
and the layout modification program 208 , which perform
their respective parts of the method 300. The method 300
may be implemented as program code stored on a non
transitory computer - readable data storage medium and
executable by a processor of a computing device .
[0028] In one implementation , the extension or plugin 202
changes the foreground and background colors of each
non - space character of each text string within a layout (302) .
More generally , the foreground and / or background color of
each of one or more characters of each text string can be
changed . As noted above , the color of a character is defined
as the character's foreground color , as the character's back
ground color , or as both the character's foreground and
background colors . The color (e.g. , the foreground and / or
background color) of just the first character of each text
string , of just the last character of each text string , or of each
of the first and last characters may be changed . The first and
last characters of a text string may be the string's first and
last non - space characters .

O

US 2021/0350066 A1 Nov. 11 , 2021
3

a

a

[0029] The foreground of a character of a text string is the
color of the actual character itself , such as the lines , curves ,
and so on , making up the character . The background of the
character is the rectangular space against which the fore
ground of the character is displayed . For a given font size of
a given font , the background of each character may be
identical in height . The width of each character , by com
parison , may vary if the font is a proportional font and may
be identical if the font is a non - proportional font .
[0030] The extension or plugin 202 can change the color
of each character of each text string to a unique color within
the layout . That is , no other element of the layout has the
color to which a character of a text string is changed ; the
color otherwise does not appear within the layout . If both the
foreground and background colors of each such character
are changed , the foreground color of each character is
unique within the layout , as is the background color of each
character .
[0031] In another implementation , the extension or plugin
202 can change the color of each character of each text string
to a color in correspondence to the position of the character
within its text string . Therefore , the characters of different
text strings at corresponding positions within their strings
are changed to the same color . For example , the first
character of every text string may have its foreground and / or
background colors changed to first and / or second colors , the
second character of every text string may have its fore
ground and / or background colors changed to third and / or
fourth colors , and so on .
[0032] In one implementation , the layout for a web page
specified in a markup language , such as the hypertext
markup language (HTML) . In such an implementation , the
extension or plugin 202 can change the color of a character
of a text string of a layout by wrapping the character within
a “ mark ” HTML element , and by setting " color " and " back
ground " inline cascading style sheet (CSS) properties within
the element to unique color values . The extension or plugin
202 can change the color of a character of a text string of a
layout in another manner as well .
[0033] The extension or plugin 202 sends the specification
of the colors to which it has changed each character to the
error detection program 206 (304) , which receives this
specification of the changed colors (306) . The web browser
program 204 displays the layout as has been modified by the
extension or plug 202 (308) , which can include first render
ing the layout . The error detection program 206 then cap
tures an image of the layout that has been displayed (310) ,
such as by taking a screenshot of a window of the web
browser program 204 in which the web page having the
layout has been displayed .
[0034] The error detection program 206 detects errors in
the text strings within the layouts as displayed (312) , by
detecting the changed colors of the non - space characters of
the text strings within the captured image of the displayed
layout . The error detection program 206 does not actually
detect the characters themselvese.g . , the program 206
does not perform OCR or any other character detection
technique . Rather , the error detection program 206 detects ,
within the captured image , just the colors to which the
characters have been changed within the layout , and not the
characters themselves .
[0035] How the method 300 can detect certain types of
text string errors is now described generally . These types of
text string errors are truncation errors , reversal errors , and

overlap errors . More particular techniques for detecting such
certain types of text string errors is described later in the
detailed description , with reference to FIGS . 4A - 4C .
[0036] If the color to which a character of a text string has
been changed is not detected within the captured image , then
a truncation error of the string is detected . This is why in one
implementation just the colors of non - space characters are
changed . If a text string ends with a space , and the space is
truncated , there is no meaningful difference as compare to if
the space was not truncated . Because the color of the space
is not changed , the absence of the space within the captured
image is not detected , and accordingly no truncation error is
detected .
[0037] If the detected color to which the first character of
a text string has been changed is out of order relative to the
color to which the last character of the string has been
changed , then a reversal error of the string is detected . For
example , if the text string is in a right - to - left language like
Hebrew or Arabic , then the changed color of the first
character should appear to the right of the changed color of
the last color . By comparison , if the text string is in a
left - to - right language like English , then the changed color of
the first character should appear to the left of the changed
color of the last color .
[0038] Whether a text string is in a right - to - left human
language or a left - to - right human language so that whether
there is a reversal error in the displayed text string can be
detected can be determined in a number of different ways .
For example , the layout itself may specify the language of
a text string . As another example , the system 200 that is
detecting text string errors may have a default language that
is a left - to - right or a right - to - left language . In such instance ,
if the layout does not override the default language for a text
string , then whether there is a reversal error in the text string
is detected based on the default language .
[0039] If the changed background color of a character of
a text string contains any color other than the changed
foreground color to the character , then an overlap error is
detected . For instance , the overlap may be between the
character and a graphical element of the layout having the
additionally detected color . Similarly , if the changed fore
ground color of a first text string overlaps the changed
foreground color of a character of a second text string has
been changed , then an overlap error of the first string and the
second string is detected .
[0040] The error detection program 206 can output an alert
indicating the errors that have been detected (314) . The
layout modification program 208 can instead or additionally
modify the layout to correct the detected errors (316) . For
example , the error detection program 206 can notify the
layout modification program 208 of the detected errors .
Based on this information , the layout modification program
208 may modify the layout , such as in an automated manner ,
to correct the detected errors . For example , the displayed
length of the text sting may be increased , the characters may
be reversed , the location of the text string may be moved ,
and / or the like . In this case , the layout modification program
208 may at least partially reside on the computing device
that provides the web browser program 204. The method
300 may be iteratively repeated at part 302 until no errors are
detected .
[0041] FIGS . 4A , 4B , and 4C depict example performance
of text string error detection in the method 300. That is ,
FIGS . 4A , 4B , and 4C describe in more detail how text string

a
a

a

a a

a

US 2021/0350066 A1 Nov. 11 , 2021
4

a

errors can be detected in the method 300. In FIG . 4A , a text
string “ TAB ” 400 includes characters 402A , 402B , and
402C , respectively corresponding to the letters " T , " " A , " and
“ B. ” The characters 402A , 402B , and 402C have different
changed foreground colors 404A , 404B , and 404C , respec
tively . The characters 402A , 402B , and 402C similarly have
different changed background colors 406A , 406B , and
406C , respectively . Each of the colors 404 and 406 is unique
within the layout of which the text string 400 is a part .
[0042] The captured image of the displayed layout includ
ing the text string 400 is inspected to determine whether the
foreground and background colors 404 and 406 of the
characters 402 are present in the image . If any foreground
color 404 or any background color 406 is absent , then
detection of the color in question will be unsuccessful .
Therefore , a truncation error of the text string 400 within the
displayed layout is detected . For example , just the first two
letters “ TA ” of the text string 400 may be displayed . The
foreground color 404C and the background color 406C of
the character 402C will thus not be detected .
[0043] Manual detection , or a different type of automated
detection , of such a truncation error may be difficult . This is
because the letter sequence “ TA ” is the acronym for the
phrase “ teaching assistant . " Therefore , such manual or auto
mated detection may incorrectly conclude that there is no
truncation error . The techniques described herein , by com
parison , correctly detect the truncation error , because the
colors 404C and 406C of the character 402C are not detected
within the captured image .
[0044] The captured image of the displayed layout includ
ing the text string 400 is also inspected to determine the
order of the foreground colors 404 and / or the background
colors 406 within the image . For instance , if when the layout
including the text string 400 is displayed the letter sequence
“ BAT ” is instead displayed , then the detection of the fore
ground and background colors 404A and 406A of the
character 402A will be detected out of order relative to the
foreground and background colors 404B and 406B of the
character 402B . Specifically , the colors 404A and 406A will
be detected after — not before the colors 404B and 406B.A
reversal error of the text string 400 within the displayed
layout will thus be detected .
[0045] Manual detection , or a different type of automated
detection , of such a reversal error may also be difficult . This
is because the letter sequence “ BAT ” is also a proper word
in English . Therefore , such manual or automated detection
may incorrectly conclude that there is no reversal error . By
comparison , the techniques described herein correctly detect
the reversal error , because the colors 404A and 406A are
detected out of order relative to the colors 404B and 406B
within the captured image .
[0046] In FIG . 4B , a text string 420 includes a character
422 corresponding to the letter “ P. ” The character 422 has a
changed foreground color 424 and a changed background
color 426. Each of the colors 424 and 426 is unique within
the layout of which the text string 420 is a part . The layout
part also includes a graphical element 428 , specifically a dot .
The dot has a color 430. Because the colors 424 and 426 are
each unique within the layout , the color 430 is different than
the colors 424 and 426 .
[0047] A bounding box 432 surrounding the background
color 426 is considered within the captured image of the
displayed layout including the text string 420 , and the colors
within the bounding box 432 detected . The bounding box

432 in the example of FIG . 4B can be at a character level .
That is , a bounding box is considered for each character of
the text string 420 , as opposed to a bounding box for the text
string 420 as a whole . The bounding box 432 is determined
using just the captured image .
[0048] The bounding box 432 can be a rectangular box
having top and bottom horizontal sides and left and right
vertical sides . The top and bottom horizontal sides can be
determined by detecting the topmost and bottommost pixels
of the background color 426 within the captured image . The
top horizontal side is a horizontal line extending through the
pixel immediately above the detected topmost pixel and the
bottom horizontal side is a horizontal line including and
extending through the pixel immediately below the detected
bottommost pixel .
[0049] The left and right vertical sides of the bounding
box 432 can be determined by detecting the leftmost and
rightmost pixels of the background color 426 within the
captured image . The left vertical side is a vertical line
including and extending through the pixel immediately to
the left of the detected leftmost pixel . The right vertical side
is a vertical line including and extending through the pixel
immediately to the right of the detected rightmost pixel .
[0050] Two other colors are detected in the bounding box
432 in addition to the background color 426 that the box 432
surrounds : the foreground color 424 and the color 430 .
Because a color other than the foreground color 424 has
been detected within the bounding box 432 in addition to the
background color 426_namely , the color 430 - an overlap
error is therefore detected . The overlap error that is detected
is specifically overlap of the text string 420 of which the
character 422 is a part and the graphical element 428 having
the color 430 .
[0051] In FIG . 4C , a text string 430 includes characters
432A , 432B , 432C , and 432D . The characters 432A , 432B ,
432C , and 432D have changed foreground colors 434A ,
434B , 434C , and 434D , respectively . Also in FIG . 4C , a text
string 440 includes characters 442A , 442B , 442C , and 442D .
The characters 442A , 4426 , 442C , and 442D have changed
foreground colors 444A , 444B , 444C , and 444D , respec
tively . The colors 434 and 444 are each unique within the
layout including the text strings 430 and 440 .
[0052] A bounding box 436 surrounding the foreground
colors 434 of the characters 432 of the text string 430 is
considered within the captured image of the displayed layout
including the text strings 430 and 440. A bounding box 446
surrounding the foreground colors 444 of the characters 442
of the text string 440 can additionally or instead be consid
ered within the captured image . The bounding boxes 436
and 446 in the example of FIG . 4C can be at a text string
level . That is , a bounding box 436 is considered for the
characters 432 of the text string 430 as a whole , and a
bounding box 446 is considered for the characters 442 of the
text string 440 as a whole .
[0053] The bounding boxes 436 and 446 are determined
using just the captured image . The bounding boxes 436 and
446 can each be a rectangular box having top and bottom
horizontal sides and left and right vertical sides . How the
horizontal and vertical sides of the bounding box 436 can be
determined is described , but the horizontal and vertical sides
of the bounding box 446 can be determined in a similar

2

manner .

[0054] The top and bottom horizontal sides of the bound
ing box 436 can be determined by detecting the topmost and

US 2021/0350066 A1 Nov. 11 , 2021
5

a

bottommost pixels of the foreground color 434 of any
character 432 of the text string 430 within the captured
image . The top horizontal side is a horizontal line including
and extending through the pixel immediately above the
detected topmost pixel . The bottom horizontal side is a
horizontal line including and extending through the pixel
immediately below the detected bottommost pixel .
[0055] The left and right vertical sides of the bounding
box 436 can be determined by detecting the leftmost and
rightmost pixels of the foreground color 434 of any char
acter 432 of the text string 430 within the captured image .
The left vertical side is a vertical line including and extend
ing through the pixel immediately to the left of the detected
leftmost pixel . The right vertical side is a vertical line
including and extending through the pixel immediately to
the right of the detected rightmost pixel .
[0056] The colors within either or both of the bounding
boxes 436 and 446 are detected . If the foreground color 444
of any character 442 of the text string 440 is detected within
the bounding box 436 for the text string 430 , then an overlap
error of the text strings 430 and 440 is detected . If the
foreground color 434 of any character 432 of the text string
430 is detected within the bounding box 440 , then an overlap
error of the text strings 430 and 440 is likewise detected .
0057] In the specific example of FIG . 4C , the foreground
color 444A of the character 442A of the text string 440 is
within the bounding box 436. Likewise the foreground color
434D of the character 432D of the text string 430 is within
the bounding box 446. Therefore , an overlap error of the text
strings 430 and 440 is detected .
[0058] The bounding boxes 436 and 446 of the foreground
colors 434 and 444 of the text strings 430 and 440 are
considered , as opposed to , for instance , bounding boxes of
background colors of the text strings 430 and 440. This is
because if such background color bounding boxes over
lapped but the foreground color bounding boxes 436 and
446 did not , then the text strings 430 and 440 would not
actually overlap . Character background colors may thus not
be considered to detect this type of overlap error .
[0059] FIG . 5 shows an example method 500. The method
500 is consistent with but more general than the method of
FIG . 3. The method 500 can be performed by a computing
system , such as that of FIG . 2. The method 500 includes
changing a color of a character of a text string within a
layout (502) , and then displaying the layout (504) . The
method 500 includes capturing an image of the layout as
displayed (506) . The method includes detecting an error in
the text string within the layout as displayed by detecting the
changed color of the character within the captured image
(508) .
[0060] FIG . 6 shows an example non - transitory computer
readable data storage medium 600. The computer - readable
data storage medium stores program code 602 executable by
a processor to perform processing . The processing may be a
processor of a computing system , like that of FIG . 2. The
processing is consistent with but more general than the
method of FIG . 3. The processing includes receiving speci
fication of a color to which a character of a text string has
been changed within a layout (604) , and capturing an image
of the layout as displayed (606) . The processing includes
detecting an error in the text string within the displayed
layout by detecting the color within the layout (608) .
[0061] FIG . 7 shows an example system 700. The system
700 is consistent with but more general than the system of

FIG . 2. The system 700 includes a processor 702 , and a
memory 704 storing program code executable by the pro
cessor 702. The program code includes layout change pro
gram code 706 to change a color of a character of a text
string within a layout . For instance , the layout change
program code 706 may be an extension or plugin code
executable within a web browser program that is executable
by the processor and that is to display the layout .
[0062] The program code further includes error detection
program code 708. The error detection program code 708 is
to receive specification of the changed color from the layout
change program code . The error detection program code 708
captures an image of the layout as it is displayed . The error
detection program code 708 detects an error in the text string
within the layout as displayed by detecting the changed
color of the character within the captured image .
[0063] Techniques have been described herein for detect
ing errors in text strings within displayed layouts . The
techniques change colors of characters of the text strings
within the layout and then detect the changed colors within
a captured image of the layout , instead of detecting the
actual characters themselves . The techniques can therefore
accurately detect text string errors within the layout as
displayed .

1. A method comprising :
changing a color of a character of a text string within a

layout to a specified color different than a color indi
cated by the layout for the character ;

displaying the layout ;
capturing an image of the layout as displayed ; and
detecting an error in the text string within the layout as

displayed by detecting the changed color of the char
acter within the captured image .

2. The method of claim 1 , further comprising :
outputting an alert indicating the error that has been

detected .
3. The method of claim 1 , further comprising :
modifying the layout in an automated manner to correct

the error that has been detected .
4. The method of claim 1 ,
wherein detecting the changed color of the character

within the captured image comprises detecting the
specified color within the captured image .

5. The method of claim 1 , wherein detecting the changed
color of the character comprises detecting the changed color
within the captured image without specifically detecting the
character itself .

6. The method of claim 1 , wherein the character is a last
character of the text string ,

wherein detecting the changed color of the character
within the captured image comprises unsuccessfully
detecting the changed color within the captured image ,

and wherein the error comprises a truncation error of the
text string within the layout as displayed in that one or
multiple characters including the last character are not
displayed within the layout .

7. The method of claim 1 , wherein changing the color of
the character of the text string within the layout comprises :

changing a color of a first character of the text string to a
first color ; and

changing a color of a second character of the text string
to a second color different than the first color ,

wherein detecting the changed color of the character
within the captured image comprises detecting that the

US 2021/0350066 A1 Nov. 11 , 2021
6

a

a a

second color is out of order relative to the first color
within the captured image as compared to an order of
the first character and the second character within the
text string as indicated by the layout ,

and wherein the error comprises a reversal error of the text
string within the layout as displayed in that the second
character appears before the first character within the
layout as displayed instead of after the first character as
indicated by the layout .

8. The method of claim 1 , wherein changing the color of
the character of the text string within the layout comprises :

changing a background color of the character , the changed
background color being a first color ; and

changing a foreground color of the character , the changed
foreground color being a second color different than the
first color ,

wherein detecting the changed color of the character
within the captured image comprises detecting , within
the captured image , a third color different than the first
and second colors within a bounding box of the first
color ,

and wherein the error comprises an overlap error of the
text string and a graphical element having the third
color within the layout as displayed .

9. The method of claim 1 , wherein changing the color of
the character of the text string within the layout comprises :

changing a foreground color of a character of a first text
string , the changed foreground color of the character of
the first text string being a first color ;

changing a foreground color of a character of a second
text string , the changed foreground color of the char
acter of the second text string being a second color
different than the first color ,

wherein detecting the changed color of the character
within the captured image comprises detecting , within
the captured image , the second color within a bounding
box of the first color ,

and wherein the error comprises an overlap error of the
first and second text strings within the layout as dis
played .

10. The method of claim 1 , wherein changing the color of
the character of the text string within the layout comprises
changing a foreground color of the character to a first
specified color different than a color indicated by the layout
for a foreground of the character , changing a background
color of the character to a second specified color different
than a color indicated by the layout for a background of the
character , or changing both the foreground and background
colors of the character to the first and second specified
colors , respectively .

11. The method of claim 1 , wherein the specified color is
a unique color not indicated by the layout for any character .

12. The method of claim 1 , wherein changing the color of
the character of the text string within the layout comprises
changing the color of each of a plurality of characters of the
text string .

13. The method of claim 1 , wherein changing the color of
the character of the text string within the layout comprises
changing the color of every non - space character of the text
string .

14. The method of claim 1 , wherein changing the color of
the character of the text string within the layout comprises

changing the color of the character to the specified color
corresponding to a position of the character within the text
string ,

wherein a character of every text string within the layout
at a same position is changed to a same color .

15. The method of claim 1 , wherein the text string is a
dynamic text string , and wherein the method is repeated a
number of times for different instances of the dynamic text
string .

16. A non - transitory computer - readable data storage
medium comprising program code executable by a processor
to perform processing comprising :

receiving specification of a color to which a character of a
a text string has been changed within a layout , the color
to which the character has been changed being different
than a color indicated by the layout for the character ;

capturing an image of the layout as displayed ; and
detecting an error in the text string within the displayed

layout by detecting the color within the layout .
17. The non - transitory computer - readable data storage

medium of claim 16 , wherein the error comprises one or
more of :

a truncation error of the text string within the displayed
layout ;

a reversal error of the text string within the displayed
layout ; and

an overlap error of the text string with a graphical element
within the displayed layout ;

an overlap error of the text string with a different text
string within the displayed layout , in which the text
string and the different text string each have a trans
parent background ; and

an overlap error of the text string with the different text
string within the displayed layout , in which either or
both the text string and the different text string each
have a non - transparent background .

18. The non - transitory computer - readable data storage
medium of claim 16 , wherein processor is to detect the error
in the text string of the displayed layout by detecting the
color within the layout without specifically detecting the
character itself .

19. A system comprising :
a processor ; and
a memory storing program code executable by the pro

cessor , the program code comprising :
layout change program code to change a color of a

character of a text string within a layout to a specified
color different than a color indicated by the layout for
the character ;

error detection program code to receive specification of
the changed color from the layout change program
code , capture an image of the layout as displayed ,
and detect an error in the text string within the layout
as displayed by detecting the changed color of the
character within the captured image .

20. The system of claim 19 , wherein the layout program
code comprises an extension or plugin code executable
within a web browser program executable by the processor
and that is to display the layout .

a

a

a

