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TRANSCUTANEOUSMEDICAL DEVICE 
WITH VARIABLE STIFFNESS 

RELATED APPLICATION 

This application claims the benefit of U.S. Provisional 
Application No. 60/587,800 filed Jul. 13, 2004; which is 
incorporated by reference herein in its entirety, and which is 
hereby made a part of this specification. 

FIELD OF THE INVENTION 

The present invention relates generally to systems and 
methods for use with partially implantable medical devices. 
More particularly, the present invention relates to systems and 
methods for use with transcutaneous analyte sensors. 

BACKGROUND OF THE INVENTION 

Transcutaneous medical devices are useful in medicine for 
providing the enhanced functionality of a wholly implantable 
medical device while avoiding many of the complications 
associated with a wholly implantable device. For example, 
transcutaneous analyte sensors are generally minimally inva 
sive compared to wholly implantable sensor, and are capable 
of measuring an analyte concentration for a short period of 
time (e.g., three days) with similar accuracy as in a wholly 
implantable sensor. 

SUMMARY OF THE INVENTION 

In a first aspect, a transcutaneous analyte sensor is pro 
vided, the sensor comprising an elongated flexible portion, 
wherein the elongated flexible portion has a variable stiffness 
along at least a portion of its length. 

In an embodiment of the first aspect, the sensor comprises 
at least one wire in a helical configuration, and wherein the 
variable stiffness is provided by a variable pitch of the helical 
configuration. 

In an embodiment of the first aspect, the sensor comprises 
at least one wire in a helical configuration, and wherein the 
variable stiffness is provided by a variable cross-section of the 
wire. 

In an embodiment of the first aspect, the sensor comprises 
at least one wire, and wherein the variable stiffness is pro 
vided by a variable hardness of the wire. 

In an embodiment of the first aspect, the variable stiffness 
of the elongated flexible portion is produced by subjecting the 
wire to an annealing process. 

In an embodiment of the first aspect, the sensor comprises 
at least one wire, the wire having a variable diameter. 

In an embodiment of the first aspect, a distal portion of the 
sensor is more flexible than a proximal portion of the sensor. 

In an embodiment of the first aspect, an intermediate por 
tion of the sensor is more flexible than at least one of a distal 
portion of the sensor and a proximal portion of the sensor. 

In an embodiment of the first aspect, a distal tip of the 
sensor is stiffer than at least one of an intermediate portion of 
the sensor and a proximal portion of the sensor. 

In a second aspect, a transcutaneous analyte sensor is pro 
vided, the sensor comprising a distal portion, an intermediate 
portion, and a proximal portion, wherein the distal portion is 
adapted to be inserted through a skin of a host, wherein the 
proximal portion is adapted to remain Substantially external 
to the host when the distal portion is inserted in the host, and 
wherein a stiffness of the sensor is variable along a length of 
the sensor. 
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2 
In an embodiment of the second aspect, the proximal por 

tion is stiffer than the distal portion. 
In an embodiment of the second aspect, the sensor com 

prises at least one wire in a helical configuration, and wherein 
a difference in stiffness of the distal portion and the proximal 
portion is provided by varying a pitch of the helical configu 
ration. 

In an embodiment of the second aspect, the sensor com 
prises at least one wire in a helical configuration, and wherein 
a difference in flexibility of the distal portion and the proxi 
mal portion is provided by a varying a cross-section of the 
wire. 

In an embodiment of the second aspect, the sensor com 
prises at least one wire, and wherein a difference in flexibility 
of the distal portion and the proximal portion is provided by a 
varying a hardness of the wire. 

In an embodiment of the second aspect, a variation in 
stiffness of the elongated flexible portion is produced by 
Subjecting the wire to an annealing process. 

In an embodiment of the second aspect, the intermediate 
portion is more flexible than at least one of the distal portion 
and the proximal portion. 

In an embodiment of the second aspect, the distal portion 
comprises a distal tip on an end of the sensor that is stiffer a 
Substantial portion of the sensor. 

In an embodiment of the second aspect, the intermediate 
portion is more flexible than at least one of the distal portion 
and the proximal portion. 

In an embodiment of the second aspect, the distal portion 
comprises a distal tip on an end of the sensor that is stiffer a 
Substantial portion of the sensor. 

In a third aspect, a transcutaneous analyte sensor is pro 
vided, the sensor comprising an in vivo portion adapted for 
insertion into a host and an ex vivo portion adapted for oper 
able connection to a device that remains external to the host, 
wherein the sensor is configured to absorb a relative move 
ment between the ex vivo portion of the sensor and the in vivo 
portion of the sensor. 

In an embodiment of the third aspect, the sensor is config 
ured to absorb a relative movement by a flexibility of at least 
an intermediate portion located between the in vivo portion 
and the ex vivo portion. 

In an embodiment of the third aspect, the device comprises 
a housing adapted for mounting on a skin of a host, wherein 
the housing comprises electrical contacts operably connected 
to the sensor. 

In an embodiment of the third aspect, the ex vivo portion of 
the sensor is has a preselected Stiffness to maintain a stable 
connection between the sensor and the electrical contacts. 

In an embodiment of the third aspect, the in vivo portion of 
the sensor has a preselected flexibility to minimize mechani 
cal stresses caused by motion of the host. 

In an embodiment of the third aspect, a stiffness of the ex 
vivo portion of the sensor is greater than a stiffness of the in 
vivo portion of the sensor. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A is a perspective view of a transcutaneous sensor 
assembly. 
FIG.1B is a side cross-sectional view of the transcutaneous 

sensor assembly of FIG. 1A. 
FIG. 2 is a schematic side view of a transcutaneous medical 

device. 
FIG. 3A is a schematic side view of a first transcutaneous 

medical device having a variable stiffness. 



US 7,783,333 B2 
3 

FIG. 3B is a schematic side view of a second transcutane 
ous medical device having a variable stiffness. 
FIG.3C is a schematic side view of a third transcutaneous 

medical device having a variable stiffness. 
FIGS. 4A to 4D are perspective and side views of a first 

variable stiffness wire for use with a transcutaneous analyte 
SSO. 

FIGS.5A and 5B are perspective and cross-sectional views 
of a second variable stiffness wire for use with a transcutane 
ous analyte sensor. 
FIGS.6A and 6B are perspective and cross-sectional views 

of a third variable stiffness wire suitable for use with a tran 
Scutaneous analyte sensor. 

FIG. 7 is an expanded view of distal and proximal portions 
of a transcutaneous sensor in one example. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The following description and examples illustrate some 
exemplary embodiments of the disclosed invention in detail. 
Those of skill in the art will recognize that there are numerous 
variations and modifications of this invention that are encom 
passed by its scope. Accordingly, the description of a certain 
exemplary embodiment should not be deemed to limit the 
Scope of the present invention. 

DEFINITIONS 

In order to facilitate an understanding of the preferred 
embodiments, a number of terms are defined below. 
The term “analyte’ as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, to 
refer to a Substance or chemical constituent in a biological 
fluid (for example, blood, interstitial fluid, cerebral spinal 
fluid, lymph fluid or urine) that can be analyzed. Analytes can 
include naturally occurring Substances, artificial Substances, 
metabolites, and/or reaction products. In some embodiments, 
the analyte for measurement by the sensing regions, devices, 
and methods is glucose. However, other analytes are contem 
plated as well, including but not limited to acarboxypro 
thrombin; acylcarnitine; adenine phosphoribosyltransferase; 
adenosine deaminase, albumin; alpha-fetoprotein; amino 
acid profiles (arginine (Krebs cycle), histidine/urocanic acid, 
homocysteine, phenylalanine?tyrosine, tryptophan); 
andrenostenedione; antipyrine; arabinitol enantiomers; argi 
nase; benzoylecgonine (cocaine); biotinidase; biopterin; 
c-reactive protein; carnitine; carnosinase; CD4; ceruloplas 
min; chenodeoxycholic acid; chloroquine; cholesterol, cho 
linesterase; conjugated 1-3hydroxy-cholic acid; cortisol; cre 
atine kinase; creatine kinase MM isoenzyme; cyclosporin A; 
d-penicillamine; de-ethylchloroquine; dehydroepiandroster 
one sulfate; DNA (acetylator polymorphism, alcohol dehy 
drogenase, alpha 1-antitrypsin, cystic fibrosis, Duchenne? 
Becker muscular dystrophy, glucose-6-phosphate 
dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin 
C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, 
beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1, 
Leber hereditary optic neuropathy, MCAD, RNA, PKU. 
Plasmodium vivax, sexual differentiation, 21-deoxycortisol); 
desbutylhalofantrine; dihydropteridine reductase; diptheria/ 
tetanus antitoxin; erythrocyte arginase; erythrocyte protopor 
phyrin, esterase D; fatty acids/acylglycines; free B-human 
chorionic gonadotropin; free erythrocyte porphyrin; free thy 
roxine (FT4); free tri-iodothyronine (FT3); fumarylacetoac 
etase; galactose/gal-1-phosphate; galactose-1-phosphate 
uridyltransferase; gentamicin; glucose-6-phosphate dehy 
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4 
drogenase; glutathione; glutathione perioxidase; glycocholic 
acid; glycosylated hemoglobin; halofantrine; hemoglobin 
variants; hexosaminidase A.; human erythrocyte carbonic 
anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine 
phosphoribosyltransferase; immunoreactive trypsin, lactate; 
lead; lipoproteins ((a), B/A-1, B); lysozyme; mefloquine; 
netilmicin; phenobarbitone; phenytoin: phytanic/pristanic 
acid; progesterone; prolactin; prolidase; purine nucleoside 
phosphorylase; quinine; reverse tri-iodothyronine (rT3); 
Selenium; serum pancreatic lipase; Sissomicin; Somatomedin 
C; specific antibodies (adenovirus, anti-nuclear antibody, 
anti-Zeta antibody, arbovirus, Aujeszky's disease virus, den 
gue virus, Dracunculus medimensis, Echinococcus granulo 
sus, Entamoeba histolytica, enterovirus, Giardia duodenal 
isa, Helicobacter pylori, hepatitis B virus, herpesvirus, HIV 
1, IgE (atopic disease), influenza virus, Leishmania 
donovani, leptospira, measles/mumpS/rubella, Mycobacte 
rium leprae, Mycoplasma pneumoniae, Myoglobin, 
Onchocerca volvulus, parainfluenza virus, Plasmodium fall 
ciparum, poliovirus, Pseudomonas aeruginosa, respiratory 
syncytial virus, rickettsia (Scrub typhus), Schistosoma man 
soni, Toxoplasma gondii, Trepenoma pallidium, Trypano 
Soma Cruzi/rangeli, Vesicular stomatis virus, Wuchereria 
bancrofti, yellow fever virus); specific antigens (hepatitis B 
virus, HIV-1); succinylacetone; sulfadoxine; theophylline; 
thyrotropin (TSH); thyroxine (T4); thyroxine-binding globu 
lin; trace elements; transferrin; UDP-galactose-4-epimerase; 
urea; uroporphyrinogen I synthase; vitamin A; white blood 
cells; and Zinc protoporphyrin. Salts, Sugar, protein, fat, Vita 
mins and hormones naturally occurring in blood or interstitial 
fluids can also constitute analytes in certain embodiments. 
The analyte can be naturally present in the biological fluid, for 
example, a metabolic product, a hormone, an antigen, an 
antibody, and the like. Alternatively, the analyte can be intro 
duced into the body, for example, a contrast agent for imag 
ing, a radioisotope, a chemical agent, a fluorocarbon-based 
synthetic blood, or a drug or pharmaceutical composition, 
including but not limited to insulin; ethanol; cannabis (mari 
juana, tetrahydrocannabinol, hashish); inhalants (nitrous 
oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydro 
carbons); cocaine (crack cocaine); stimulants (amphet 
amines, methamphetamines, Ritalin, Cylert, Preludin, 
Didrex, PreState, Voranil, Sandrex, Plegine); depressants 
(barbituates, methaqualone, tranquilizers such as Valium, 
Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens 
(phencyclidine, lysergic acid, mescaline, peyote, psilocybin); 
narcotics (heroin, codeine, morphine, opium, meperidine, 
Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, 
Lomotil); designer drugs (analogs of fentanyl, meperidine, 
amphetamines, methamphetamines, and phencyclidine, for 
example, Ecstasy); anabolic steroids; and nicotine. The meta 
bolic products of drugs and pharmaceutical compositions are 
also contemplated analytes. Analytes Such as neurochemicals 
and other chemicals generated within the body can also be 
analyzed, such as, for example, ascorbic acid, uric acid, 
dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4- 
dihydroxyphenylacetic acid (DOPAC), homovanillic acid 
(HVA), 5-hydroxytryptamine (5HT), and 5-hydroxyin 
doleacetic acid (FHIAA). 
The terms “operably connected and “operably linked as 

used herein are broad terms and are used in their ordinary 
sense, including, without limitation, to refer to one or more 
components linked to one or more other components. The 
terms can refer to a mechanical connection, an electrical 
connection, or a connection that allows transmission of sig 
nals between the components. For example, one or more 
electrodes can be used to detect the amount of analyte in a 
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sample and to convert that information into a signal; the signal 
can then be transmitted to a circuit. In Such an example, the 
electrode is “operably linked to the electronic circuitry. 
The term "host’ as used herein is a broad term and is used 

in its ordinary sense, including, without limitation, to refer to 
mammals, particularly humans. 
The term “exit-site' as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, to 
refer to the area where a medical device (for example, a sensor 
arid/or needle) exits from the host’s body. 
The phrase "continuous (or continual) analyte sensing as 

used herein is a broad term and is used in its ordinary sense, 
including, without limitation, to refer to the period in which 
monitoring of analyte concentration is continuously, continu 
ally, and or intermittently (regularly or irregularly) per 
formed, for example, about every 5 to 10 minutes. 
The term “electrochemically reactive surface' as used 

herein is a broad term and is used in its ordinary sense, 
including, without limitation, to refer to the Surface of an 
electrode where an electrochemical reaction takes place. For 
example, a working electrode measures hydrogen peroxide 
produced by the enzyme-catalyzed reaction of the analyte 
detected, which reacts to create an electric current. Glucose 
analyte can be detected utilizing glucose oxidase, which pro 
duces HO as a byproduct. HO reacts with the surface of 
the working electrode, producing two protons (2H), two 
electrons (2e) and one molecule of oxygen (O), which 
produces the electronic current being detected. In the case of 
the counter electrode, a reducible species, for example, O is 
reduced at the electrode surface in order to balance the current 
being generated by the working electrode. 

The term “sensing region' as used herein is a broad term 
and is used in its ordinary sense, including, without limita 
tion, to refer to the region of a monitoring device responsible 
for the detection of a particular analyte. The sensing region 
generally comprises a non-conductive body, a working elec 
trode (anode), a reference electrode (optional), and/or a 
counter electrode (cathode) passing through and secured 
within the body forming electrochemically reactive surfaces 
on the body and an electronic connective means at another 
location on the body, and a multi-domain membrane affixed 
to the body and covering the electrochemically reactive sur 
face. 
The terms “electronic connection' and “electrical connec 

tion” as used herein is a broad term and is used in its ordinary 
sense, including, without limitation, to refer to any electronic 
connection known to those in the art that can be utilized to 
interface the sensing region electrodes with the electronic 
circuitry of a device. Such as mechanical (for example, pin 
and socket) or soldered electronic connections. 
The term “domain as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, to 
refer to a region of the membrane system that can be a layer, 
a uniform or non-uniform gradient (for example, an anisotro 
pic region of a membrane), or a portion of a membrane. 
The term "distal to as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, the 
spatial relationship between various elements in comparison 
to a particular point of reference. 

The term “proximal to as used herein is a broad term and 
is used in its ordinary sense, including, without limitation, the 
spatial relationship between various elements in comparison 
to a particular point of reference. 

The terms “in vivo portion' and “distal portion” as used 
herein are broad terms and are used in their ordinary sense, 
including, without limitation, to refer to the portion of the 
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6 
device (for example, a sensor) adapted for insertion into and/ 
or existence within a living body of a host. 
The terms "ex vivo portion' and “proximal portion' as 

used herein are broad terms and are used in their ordinary 
sense, including, without limitation, to refer to the portion of 
the device (for example, a sensor) adapted to remain and/or 
exist outside of a living body of a host. 
The term “intermediate portion” as used herein is a broad 

term and is used in its ordinary sense, including, without 
limitation, to refer to a portion of the device between a distal 
portion and a proximal portion. 
The terms “transdermal” and “transcutaneous” as used 

herein are broad terms and is used in their ordinary sense, 
including, without limitation, to refer to extending through 
the skin of a host. For example, a transdermal analyte sensor 
is one that extends through the skin of a host. 
The term “hardening as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, to 
refer to an increase in hardness of a metal induced by a 
process Such as hammering, rolling, drawing, or the like. 
The term “softening as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, to 
refer to an increase in softness of a metal induced by pro 
cesses such as annealing, tempering, or the like. 
The term “tempering as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, to 
refer to the heat-treating of metal alloys, particularly steel, to 
reduce brittleness and restore ductility. 
The term “annealing as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, to 
refer to the treatment of a metal or alloy by heating to a 
predetermined temperature, holding for a certain time, and 
then cooling to room temperature to improve ductility and 
reduce brittleness. 
The term “stiff as used herein is a broad term and is used 

in its ordinary sense, including, without limitation, to refer to 
a material not easily bent, lacking in Suppleness or respon 
siveness. In the preferred embodiments, the degree of stiff 
ness can be relative to other portions of the device. 
The term “flexible” as used herein is a broad term and is 

used in its ordinary sense, including, without limitation, to 
refer to a material that is bendable, pliable, or yielding to 
influence. In the preferred embodiments, the degree of flex 
ibility can be relative to other portions of the device. 
The devices of the preferred embodiments include trans 

dermal medical devices, such as transcutaneous sensor 
assemblies, with variable stiffness configured along at least a 
portion of the device. In one aspect of the preferred embodi 
ments, a transcutaneous sensor assembly is provided, includ 
ing a sensor for sensing an analyte linked to a housing for 
mounting on the skin of the host. The housing houses an 
electronics unit associated with the sensor and is adapted for 
secure adhesion to the host’s skin. 

Transcutaneous Sensors 
FIGS. 1A and 1B are perspective and side cross-sectional 

views of a transcutaneous sensor assembly 10 of a preferred 
embodiment. The sensor System includes a housing 12 and 
preferably includes an adhesive material 14 on its backside 16 
for adhesion to a host’s skin. A sensor 18 extends from the 
housing and is adapted for transdermal insertion through the 
skin of the host. The sensor portion can be configured for 
insertion into a variety of in vivo locations, including Subcu 
taneous, venous, or arterial locations, for example. One or 
more contacts 22 are configured to provide secure electrical 
contact between sensor 18 and an electronics unit 20. The 
housing 12 is designed to maintain the integrity of the sensor 
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in the host so as to reduce or eliminate translation of motion 
between the housing 12, the host, and/or the sensor 18. 

In general, the sensor includes at least one electrode con 
figured for measuring an analyte. In one embodiment, the 
sensor 18 includes at least two electrodes: a working elec 
trode and at least one additional electrode, which can function 
as a counter and/or reference electrode. Preferably, the work 
ing electrode comprises a wire formed from a conductive 
material. Such as platinum, palladium, graphite, gold, carbon, 
conductive polymer, or the like. In some embodiments, the 
wire is formed from a bulk material, or alternatively, a com 
posite of two or more metals and/or insulators (e.g., platinum 
plated Steel). The working electrode is configured to measure 
the concentration of an analyte. The reference electrode, 
which can function as a reference electrode alone, or as a dual 
reference and counter electrode, is preferably formed from 
silver, silver/silver chloride, or the like. In preferred embodi 
ments, the reference electrode is twisted with or around the 
working electrode; however other configurations for the 
working electrode and the reference electrode are also pos 
sible, for example juxtapositioned, adjacent, coaxial, concen 
tric, interdigitated, spiral-wound, or the like. 

In some alternative embodiments, additional electrodes 
can be included within the assembly. For example, a three 
electrode system (working, reference, and counter elec 
trodes) and/or a system including an additional working elec 
trode (which can be used to generate oxygen or can be 
configured as a baseline Subtracting electrode, for example) 
can be employed. Other sensor/wire/electrode configurations 
(for example one, two, three, four, or more wires and/or 
electrode configurations) are also within the scope of the 
preferred embodiments. For example, U.S. Pat. No. 6,613, 
379 to Ward et al. describes abundle of wires around which a 
counter electrode is deposed and configured for measuring an 
analyte, and U.S. Pat. No. 6,329,161 to Heller et al. describes 
a single wire electrode configured for measuring an analyte. 
Any such configuration adapted for transcutaneous analyte 
measurement can be configured with a variable stiffness in 
accordance with the preferred embodiments. 

In Some embodiments (for example, enzymatic-based sen 
sors), a membrane system is disposed over some or all of the 
electroactive surfaces of the sensor 18 (working and/or refer 
ence electrodes) and provides one or more of the following 
functions: 1) protection of the exposed electrode surface from 
the biological environment; 2) diffusion resistance (limita 
tion) of the analyte; 3) a catalyst for enabling an enzymatic 
reaction; 4) hindering or blocking passage of interfering spe 
cies; and 5) hydrophilicity at the electrochemically reactive 
Surfaces of the sensor interface. Such as is described in co 
pending U.S. patent application Ser. No. 1 1/077,715, filed on 
even date herewith and entitled “TRANSCUTANEOUS 
ANALYTE SENSOR. 
The electronics unit 20 can be integral with or removably 

attached to the housing 12, and includes hardware, firmware 
and/or software that enable measurement of levels of the 
analyte via the sensor 18. For example, the electronics unit 20 
comprises a potentiostat, a power source for providing power 
to the sensor, other components useful for signal processing, 
and preferably an RF module for transmitting data from the 
electronics unit 20 to a receiver. Electronics can be affixed to 
a printed circuit board (PCB), or the like, and can take a 
variety of forms. For example, the electronics can take the 
form of an integrated circuit (IC). Such as an application 
specific integrated circuit (ASIC), a microcontroller, or a 
processor. Preferably, the electronics unit 20 houses the sen 
Sor electronics, which comprise systems and methods for 
processing sensor analyte data. Examples of systems and 
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8 
methods for processing sensor analyte data are described in 
more detail below and in co-pending U.S. application Ser. No. 
10/633,367 filed Aug. 1, 2003 entitled, “SYSTEM AND 
METHODS FOR PROCESSING ANALYTE SENSOR 
DATA 

Co-pending U.S. patent application Ser. No. 1 1/077,715, 
filed on even date herewith, and entitled, “TRANSCUTANE 
OUSANALYTE SENSOR, describes an embodiment of a 
transcutaneous analyte sensor that benefits from variable 
stiffness. Variable stiffness configurations along at least a 
portion of the device can be employed with devices such as 
are described in U.S. Pat. No. 6,613,379 to Ward et al., U.S. 
Pat. No. 6,122,536 to Sun et al., U.S. Pat. No. 6,329,161 to 
Heller et al., U.S. Pat. No. 6,477,395 to Schulman, and U.S. 
Pat. No. 4,671,288 to Gough. 
Variable Stiffness 

Conventional transcutaneous devices can be subject to 
motion artifact associated with host movement when the host 
is using the device. For example, in the example of a trans 
cutaneous analyte sensor Such as described above, various 
movements on the sensor (for example, relative movement 
within and between the Subcutaneous space, dermis, skin, and 
external portions of the sensor) create stresses on the device, 
which are known to produce artifacts on the sensor signal. 

Accordingly, the design considerations (for example, 
stress considerations) vary for different sections of a transcu 
taneous medical device. For example, certain portions of the 
device can benefit in general from greater flexibility as the 
portion of the device encounters greater mechanical stresses 
caused by movement of the tissue within the patient and 
relative movement between the in vivo and ex vivo portions of 
the sensor. Additionally or alternatively, certain portions of 
the device can benefit in general from a stiffer, more robust 
design to ensure structural integrity and/or reliable electrical 
connections. Additionally, in some embodiments wherein an 
insertion device (for example, needle that aids in insertion) is 
retracted over the device, a stiffer design can enable mini 
mized crimping and/or easy retraction. Thus, by designing 
greater flexibility into the some portions of the device, the 
flexibility can compensate for movement and noise associ 
ated therewith; and by designing greater stiffness into other 
portions, column strength (for retraction of the needle over 
the sensor), electrical connections, and structural integrity 
can be enhanced. 

FIG. 2 is a side schematic view of a transcutaneous medical 
device 34, Such as illustrated as the transcutaneous analyte 
sensor 18 of FIG. 1. In general, a transcutaneous medical 
device 34, can be divided into three Zones, a proximal portion 
24 with a proximal tip 26, a distal portion 28 with a distal tip 
30, and an intermediate portion 32. The preferred embodi 
ments can employ a variety of configurations that provide 
variable stiffness along at least a portion of the device in order 
to overcome disadvantages of conventional transcutaneous 
devices. Although the following description is focused on an 
embodiment of a transcutaneous analyte sensor, one skilled in 
the art can appreciate that the variable stiffness of the pre 
ferred embodiments can be implemented with a variety of 
transcutaneous medical devices. 

Generally, the proximal portion 24 is adapted to remain 
above the hosts skin after device insertion and operably 
connects to a housing ex vivo, for example. The proximal 
portion 24 typically provides the mechanical and/or electrical 
connections of the device to housings, electronics, or the like. 
The proximal portion includes a proximal tip 26 on an end 
thereof. It is noted that the terms “proximal portion.” “ex vivo 
portion, and “proximal tip do not necessarily imply an exact 
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length or section, rather is generally a section that is more 
proximal than distal relative to the housing. In some embodi 
ments, the proximal portion (or proximal tip) is stiffer than at 
least one of the intermediate and distal portions. 

Generally, the distal portion 28 of the sensor is adapted for 
insertion under the host’s skin, and is also referred to as the in 
vivo portion. The distal portion 28 typically provides the 
device function in vivo, and therefore encounters stresses 
caused by insertion of the device into the host’s tissue and 
subsequent movement of the tissue of the patient. The distal 
portion includes a distal tip 30 on an end thereof. It is noted 
that the terms “distal portion.” “in vivo portion.” and “distal 
tip” do not necessarily imply an exact length or section, rather 
is generally a section that is more distal than proximal relative 
to the housing. In some embodiments, the distal portion is 
more flexible than at least one of the intermediate and proxi 
mal portions. In some embodiments, the distal tip is less 
flexible than at least one of the remaining (non-tip) distal 
portion, the intermediate portion, and the proximal portion. 

Generally, the intermediate portion 32 is located between 
the proximal portion 24 and the distal portion and may 
include portions adapted for insertion or adapted to remain 
above the skin. The intermediate portion 32 typically pro 
vides a transition between the in vivo and ex vivo portions, 
and can incur stresses caused by relative movement between 
the in vivo and ex vivo portions of the sensor, for example. It 
is noted that the term “intermediate portion' does not neces 
sarily imply an exact length or section, rather is generally a 
section that in-between the proximal and distal portions. In 
some embodiments, the intermediate portion is more flexible 
than one or both of the distal and proximal portions. 
FIG.3A is a side schematic view of a transcutaneous medi 

cal device 34a in one embodiment adapted for insertion 
through the skin of a host. In this embodiment, the device 
34ais designed with greater flexibility generally in a distal 
portion 28 (relative to intermediate and/or proximal por 
tions), which is illustrated by light cross-hatching in the distal 
portion of the device. Stated in another way, the device is 
designed with a greater stiffness generally in the proximal 
portion 24 than the intermediate and/or the distal portions, 
which is illustrated by heavy cross-hatching in the proximal 
portion 24 of the device. In some embodiments, the interme 
diate portion includes a flexibility substantially similar to that 
of the distal portion; in other embodiments, the intermediate 
portion gradually transitions between the flexibility of the 
distal portion and the stiffness of the proximal portion. For 
example, in situations wherein movement of the tissue within 
the patient and relative movement between the in vivo and ex 
vivo portions of the device create stresses on the device, 
greater flexibility in a distal portion (relative to intermediate 
and/or proximal portions) can provide relief from these 
mechanical stresses, protecting both the integrity of the sen 
sor and the host tissue. Additionally or alternatively, in situ 
ations wherein mechanical and/or electrical connections are 
required for accurate device function, greater stiffness in the 
proximal portion 24 (and/or the proximal tip) of the device 
can increase the stability and reliability of these connections. 
Thus, the ex-vivo or proximal portion 24 of the sensor is 
configured for stable connection to the electronics and can 
additionally be configured to receive an insertion device 
(such as a needle that aids in sensor insertion) upon retraction 
from the skin of the host (see co-pending U.S. patent appli 
cation Ser. No. 1 1/077,715, filed on even date herewith and 
entitled “TRANSCUTANEOUSANALYTE SENSOR”). 
FIG.3B is a side schematic view of a transcutaneous medi 

cal device 34b of a preferred embodiment adapted to be 
inserted through the skin of a host. In this embodiment, the 
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10 
device is designed with an increased stiffness at a distal tip 30 
(or a distal portion 28) of the device (relative to intermediate 
and/or proximal portions) in order to provide increased 
strength and/or structural integrity to the tip, which is illus 
trated by heavy cross-hatching. In some situations, the device 
is inserted into the host such that a tunnel is formed therein. 
When the device abuts the tunnel end, increased stress to the 
distal tip can occur. This increased stress can cause the device 
to bend, resulting in malfunctioning of the device. 

In some embodiments, this increased stiffness is designed 
into the device by creating a greater hardness of the distal tip 
of the device, for example, by annealing or coating the device. 
In one embodiment of a transcutaneous analyte sensor as 
described above with reference to FIG.1, a higher pitch of the 
helically wound reference electrode for at least a few wind 
ings at a distal end of the reference electrode creates a relative 
stiffness of the distal portion or tip of the device. It is believed 
that a stiffer distal portion or tip advantageously provides 
increased stability, column strength, and proper placement of 
the device in the host. 
FIG.3C is a side schematic view of a transcutaneous medi 

cal device 34c in yet another embodiment adapted to be 
inserted through the skin of a host. In this embodiment, the 
device 34c is designed with an increased flexibility at an 
intermediate portion 32 thereof. Namely, the intermediate 
portion of the device is designed to absorb shock between the 
proximal and distal portions, for example, Such that move 
ment of the ex vivo portion of the device does not substan 
tially translate to the in vivo portion of the device (and vice 
Versa). In some aspects of this embodiment, the distal portion 
is designed with a flexibility similar to that of the intermediate 
portion. In some aspects of this embodiment, the flexibility 
gradually changes from the distal portion to the proximal 
portion, including a relatively flexible intermediate portion 
32. 

In some embodiments, any combination of the above 
described relatively stiff or flexible portions can be designed 
into a transcutaneous medical device. In fact, a variety of 
additional stiff and/or flexible portions can be incorporated 
into the distal and/or proximal portions of the device without 
departing from the scope of the preferred embodiments. The 
flexibility and/or stiffness can be stepped, gradual, or any 
combination thereof. 
The variable stiffness (flexibility) of the preferred embodi 

ments can be provided by a variable pitch of any one or more 
wires of the device, a variable cross-section of any one or 
more wires of the device, and/or a variable hardening and/or 
softening of any one or more wires of the device, for example, 
as is described in more detail below. 

FIGS. 4A to 4D are perspective and side views of a variable 
stiffness wire used in a transcutaneous medical device. Such 
as an analyte sensor. In FIG. 4A, a wire 36 is shown, which 
can represent the working electrode or reference electrode of 
the embodiment described with reference to FIG. 1, for 
example. Alternatively, the wire 36 can represent one or more 
wires of a multiple wire sensor (examples of each are 
described above). The variable stiffness wire described herein 
can be employed in a transcutaneous medical device to pro 
vide variable stiffness along a portion of the length of the 
device. Such as in an analyte sensor. 

FIG. 4B is a side view of a variable Stiffness wire 36b 
wherein physical processing of the distal, intermediate, and/ 
or proximal portions of the wire provide for variability of the 
stiffness of the wire. In some embodiments, some portion (for 
example, the distal portion) of the wire is softened using a 
process such as annealing or tempering. In some embodi 
ments, some portion (for example, the proximal portion) of 
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the wire is hardened using a process such as drawing or 
rolling. In some embodiments, some combination of soften 
ing and hardening as described herein are employed to pro 
vide variable stiffness of the wire. In the embodiment 
described with reference to FIG. 1, including a working elec 
trode and a reference electrode, the working electrode can be 
hardened and/or softened to provide for the variable stiffness 
of one or more portions of the device, such as is described in 
more detail elsewhere herein. Another alternative embodi 
ment provides a varying modulus of elasticity of the material 
to provide the variable stiffness of the preferred embodi 
mentS. 

FIG. 4C is a side view of an alternative variable stiffness 
wire 36c, wherein the wire has a gradually increasing or 
decreasing diameter along its length. The variability in diam 
eter can be produced by physical or chemical processes, for 
example, by grinding, machining, rolling, pulling, etching, 
drawing, Swaging, or the like. In this way, a transcutaneous 
analyte sensor, or other transcutaneous medical device, can 
be produced having a variable stiffness. In the embodiment 
described with reference to FIG. 1, for example, including a 
working electrode and a reference electrode, the working 
electrode can be formed with a variable diameter to provide 
for the variable stiffness of one or more portions of the device, 
such as described in more detail elsewhere herein. 

FIG. 4D is a side view of another alternative variable stiff 
ness wire 36d, wherein the wire is step increased or decreased 
to provide two (or more) different flexibilities of the wire. The 
wire can be stepped by physical or chemical processes known 
in the art, such as described with reference to FIG. 4C. In this 
way, a transcutaneous analyte sensor, or other transcutaneous 
medical device, can be produced with a variable stiffness. A 
noted advantage of the Smaller diameter configurations of 
FIGS. 4C and 4D include reduced sizing of the in vivo portion 
of the device, which is believed to be more comfortable for the 
patient and to induce less invasive trauma around the device, 
thereby providing an optimized device design. 
FIGS.5A and 5B are perspective and cross-sectional views 

of a variable stiffness wire 38 in an alternative embodiment 
representing any one or more wires associated with a trans 
cutaneous medical device. Such as an analyte sensor. For 
example, the wire 38 can represent the reference electrode of 
the embodiment described with reference to FIG.1. Alterna 
tively, the wire 38 can represent the wire of a single or mul 
tiple wire sensor (examples of each are described above). 

In this embodiment, two distinct portions 40, 42 are shown 
with first and second pitches; however, the illustration is not 
meant to be limiting and the variable pitch can include any 
number of gradual portions, stepped portions, or the like. 
Additionally, the variable pitch and/or helical configuration 
can be provided on only a portion of the wire or on the entire 
length of the wire, and can include any number of pitch 
changes. In this embodiment, a first portion 40 is wound to 
have relatively closely spaced coils, namely, a high helix 
pitch, whereas a second 42 portion is not subjected to high 
stress levels and can include coils wound with a lower helix 
pitch. The helix pitch is defined as the number of coils of the 
wire core per unit length of the device, or the distance 
between the coils. 

FIG. 5B is a cross-sectional view along line B-B of the 
device of FIG.5A, illustrating a first distanced between the 
coils in the first portion 40 and a second distanced between 
the coils in the second portion 42, wherein d is greater than 
d. Thus, the wire has a variable stiffness attributable to the 
varying helix pitch over the length of the sensor. In this way, 
portions of a device having wire with a low helix pitch are 
designed with greater flexibility and are more able to handle 
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the stresses associated with motion of the sensor while por 
tions of the sensor having wire with a high helix pitch are 
designed with more stiffness and provide more stability for 
the sensor in the housing. Any portions (proximal, interme 
diate, and/or distal portions (or tips)) can be designed with a 
variable pitch to impart variable stiffness. 

FIGS. 6A and 6B are perspective and longitudinal views of 
a variable stiffness wire 44 in yet another alternative embodi 
ment representing any one or more wires associated with a 
transcutaneous medical device, such as an analyte sensor. For 
example, the wire 44 can be the reference electrode of the 
embodiment described with reference to FIG. 1. Alterna 
tively, the wire 44 can be a working electrode, and/or one or 
more wires of a multiple wire sensor (examples of each are 
described above). 

In this embodiment, two distinct portions 46, 48 are shown 
with first and second wire diameters that provide a variable 
cross-section; however, the illustration is not meant to be 
limiting and the variable cross-section can be gradual, 
stepped, or the like. Additionally, the variable cross-section 
and/or helical configuration can be provided on only a portion 
of the wire or on the entire length of the wire, and can include 
any number of cross-section changes. In this embodiment, the 
helically wound wire is designed with a variable cross-sec 
tional area over the length of the sensor from a small cross 
sectional area in the first portion 46 to a larger cross-sectional 
area in the second portion 48. 

FIG. 6B is a cross-sectional view along line B-B of the 
device of FIG. 6A, revealing cross-sectional information 
about one or more wires that make up the coil, including a first 
cross-section X, of the wire in the first portion 20 and a second 
cross-section X of the wire in the second portion 48, wherein 
X is greater than X. Thus, the device of this embodiment has 
a variable stiffness attributable to the varying cross-section 
over the length of the sensor. In this way, first portion 46 has 
a smaller cross-sectional area and is therefore more flexible 
and capable of withstanding the stresses associated with 
patient movement, for example; while the second portion 48 
has a larger cross-sectional area and is stiffer and provides 
more stability and column strength desirable for mechanical 
and electrical connections, for example. 
The transcutaneous analyte sensor of FIG. 1 includes a 

helical configuration. The helical Surface topography of the 
reference electrode Surrounding the working electrode not 
only provides electrochemical functionality, but can also pro 
vide anchoring within the host tissue. The device preferably 
remains Substantially stationary within the tissue of the host, 
Such that migration or motion of the sensor with respect to the 
Surrounding tissue is minimized. Migration or motion can 
cause inflammation at the sensor implant site due to irritation 
and can also cause noise on the sensor signal due to motion 
related artifact, for example. Therefore, it can be advanta 
geous to provide an anchoring mechanism that provides Sup 
port for the sensor in vivo portion to avoid or minimize the 
above-mentioned problems. Combining advantageous sensor 
geometry with advantageous anchoring minimizes additional 
parts in the device, and allows for an optimally Small or low 
profile design of the sensor. Additionally or alternatively, 
anchoring can be provided by prongs, spines, barbs, wings, 
hooks, rough surface topography, gradually changing diam 
eter, or the like, which can be used alone or in combination 



US 7,783,333 B2 
13 

with the helical surface topography to stabilize the sensor 
within the Subcutaneous tissue. 

EXAMPLE 

FIG. 7 is an expanded view of distal and proximal portions 
of a transcutaneous sensor 50 in one example. FIG. 7 illus 
trates a sensor 50 broken away between its distal portion 52 
and proximal portion 54, representing any length or configu 
ration there between. In the illustrated embodiment, the sen 
sor 50 includes two electrodes: a working electrode 56 and 
one additional electrode, which can function as a counter 
and/or reference electrode, hereinafter referred to as the ref 
erence electrode 58. Each electrode is formed from a fine wire 
with a diameter of approximately 0.0045 inches. 

The working electrode 56 comprises a platinum wire and is 
configured and arranged to measure the concentration of an 
analyte. In this example of an enzymatic electrochemical 
sensor, the working electrode measures the hydrogen peroX 
ide produced by an enzyme catalyzed reaction of the analyte 
being detected and creates a measurable electronic current 
(for example, detection of glucose utilizing glucose oxidase 
produces HOperoxide as a by product, HO reacts with the 
Surface of the working electrode producing two protons 
(2H), two electrons (2e) and one molecule of oxygen (O) 
which produces the electronic current being detected). 

The working electrode 56 is covered with an insulator 57. 
e.g., Parylene, which is vapor-deposited on the working elec 
trode. Parylene is an advantageous conformal coating 
because of its strength, lubricity, and electrical insulation 
properties; however, a variety of other insulating materials 
can also be used, for example, fluorinated polymers, polyeth 
yleneterephthalate, polyurethane, polyimide, or the like. The 
reference electrode 58, which can function as a counter elec 
trode alone, or as a dual reference and counter electrode, is 
preferably silver or a silver-containing material. In this 
example, the reference electrode 58 is helically twisted 
around the working electrode 56. A window 55 is formed on 
the insulating material to expose an electroactive Surface of 
the working electrode 56. Other methods and configurations 
for exposing electroactive surfaces can also be employed. 

In this example, the reference electrode 58 is wound with a 
variable pitch that creates a variable stiffness along the length 
of the sensor 50. Namely, the sensor 50 is designed with a 
greater stiffness generally in the proximal portion 54 than the 
intermediate and/or the distal portions 52. However, an 
increased stiffness of a section of the distal portion 52, shown 
adjacent to the window 55 wherein the reference electrode 58 
includes a higher helix pitch for a few windings, provides 
increased strength in a high stress location, without inhibiting 
the overall flexibility of the distal portion 52. It is believed that 
in situations wherein movement of the tissue within the 
patient and relative movement between the in vivo and ex vivo 
portions of the device create stresses on the device, greater 
flexibility in a distal portion (and optionally in the interme 
diate portion relative to the proximal portion) can provide 
relief from these mechanical stresses, protecting both the 
integrity of the sensor and the host tissue. Additionally or 
alternatively, in situations wherein mechanical and/or electri 
cal connections are employed for accurate function, greater 
stiffness in the proximal portion (and/or the proximal tip) of 
the device can increase the stability and reliability of these 
connections. Additionally, this exemplary configuration is 
advantageous for the reasons described above, and further 
provides an enhanced mechanical stability by the distribution 
of forces of the helical wire along the straight wire. 
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Methods and devices that are suitable for use in conjunc 

tion with aspects of the preferred embodiments are disclosed 
in U.S. Pat. No. 4,994,167 issued Feb. 19, 1991 and entitled 
“BIOLOGICAL FLUID MEASURING DEVICE: U.S. Pat. 
No. 4,757,022 issued February Jul. 12, 1988 and entitled 
“BIOLOGICAL FLUID MEASURING DEVICE: U.S. Pat. 
No. 6,001,067 issued February Dec. 14, 1999 and entitled 
DEVICE AND METHOD FOR DETERMINING ANA 
LYTE LEVELS”; U.S. Pat. No. 6,741,877 issued February 
May 25, 2004 and entitled “DEVICE AND METHOD FOR 
DETERMINING ANALYTE LEVELS”; U.S. Pat. No. 
6,702,857 issued February Mar. 9, 2004 and entitled “MEM 
BRANE FOR USE WITH IMPLANTABLE DEVICES; 
and U.S. Pat. No. 6.558.321 issued February May 6, 2003 and 
entitled SYSTEMS AND METHODS FOR REMOTE 
MONITORING AND MODULATION OF MEDICAL 
DEVICES. Methods and devices that are Suitable for use in 
conjunction with aspects of the preferred embodiments are 
disclosed in co-pending U.S. application Ser. No. 10/991.353 
filed Nov. 16, 2004 and entitled “AFFINITY DOMAIN FOR 
ANALYTE SENSOR: U.S. application Ser. No. 11/055,779 
filed Feb. 9, 2005 and entitled “BIOINTERFACE WITH 
MACRO-AND-MICRO-ARCHITECTURE”; U.S. applica 
tion Ser. No. 11/004,561 filed Dec. 3, 2004 and entitled 
“CALIBRATION TECHNIQUES FOR A CONTINUOUS 
ANALYTE SENSOR: U.S. application Ser. No. 11/034,343 
filed Jan. 11, 2005 and entitled “COMPOSITE MATERIAL 
FOR IMPLANTABLE DEVICE: U.S. application Ser. No. 
09/.447,227 filed Nov. 22, 1999 and entitled “DEVICE AND 
METHOD FOR DETERMINING ANALYTE LEVELS: 
U.S. application Ser. No. 1 1/021,046 filed Dec. 22, 2004 and 
entitled “DEVICE AND METHOD FOR DETERMINING 
ANALYTELEVELS”; U.S. application Ser. No. 09/916,858 
filed Jul. 27, 2001 and entitled “DEVICE AND METHOD 
FOR DETERMINING ANALYTE LEVELS”; U.S. applica 
tion Ser. No. 11/039,269 filed Jan. 19, 2005 and entitled 
DEVICE AND METHOD FOR DETERMINING ANA 
LYTE LEVELS”; U.S. application Ser. No. 10/897,377 filed 
Jul. 21, 2004 and entitled “ELECTROCHEMICAL SEN 
SORS INCLUDING ELECTRODE SYSTEMS WITH 
INCREASED OXYGENGENERATION”; U.S. application 
Ser. No. 10/897,312 filed Jul. 21, 2004 and entitled “ELEC 
TRODE SYSTEMS FOR ELECTROCHEMICAL SEN 
SORS”; U.S. application Ser. No. 10/838,912 filed May 3, 
2004 and entitled “IMPLANTABLE ANALYTE SENSOR: 
U.S. application Ser. No. 10/838,909 filed May 3, 2004 and 
entitled “IMPLANTABLE ANALYTE SENSOR: U.S. 
application Ser. No. 10/838,658 filed May 3, 2004 and 
entitled “IMPLANTABLE ANALYTE SENSOR: U.S. 
application Ser. No. 11/034,344 filed Jan. 11, 2005 and 
entitled “IMPLANTABLE DEVICE WITH IMPROVED 
RADIO FREQUENCY CAPABILITIES”; U.S. application 
Ser. No. 10/896,772 filed Jul. 21, 2004 and entitled 
INCREASING BIAS FOR OXYGEN PRODUCTION IN 
AN ELECTRODE SYSTEM”; U.S. application Ser. No. 
10/789,359 filed Feb. 26, 2004 and entitled “INTEGRATED 
DELIVERY DEVICE FOR CONTINUOUS GLUCOSE 
SENSOR: U.S. application Ser. No. 10/991,966 filed Nov. 
17, 2004 and entitled “INTEGRATED RECEIVER FOR 
CONTINUOUS ANALYTE SENSOR”; U.S. application 
Ser. No. 10/646,333 filed Aug. 22, 2003 and entitled “OPTI 
MIZED SENSOR GEOMETRY FOR ANIMPLANTABLE 
GLUCOSE SENSOR: U.S. application Ser. No. 10/896,639 
filed Jul. 21, 2004 and entitled “OXYGEN ENHANCING 
MEMBRANE SYSTEMS FOR IMPLANTABLE 
DEVICES; U.S. application Ser. No. 10/647,065 filed Aug. 
22, 2003 and entitled “POROUS MEMBRANES FOR USE 
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WITH IMPLANTABLE DEVICES; U.S. application Ser. 
No. 10/896,637 filed Jul. 21, 2004 and entitled “ROLLED 
ELECTRODE ARRAY AND ITS METHOD FOR MANU 
FACTURE”; U.S. application Ser. No. 09/916,711 filed Jul. 
27, 2001 and entitled “SENSOR HEAD FOR USE WITH 
IMPLANTABLE DEVICE: U.S. application Ser. No. 
11/021,162 filed Dec. 22, 2004 and entitled “SENSOR 
HEAD FOR USE WITH IMPLANTABLE DEVICES; U.S. 
application Ser. No. 11/007,920 filed Dec. 8, 2004 and 
entitled SIGNAL PROCESSING FOR CONTINUOUS 
ANALYTE SENSOR: U.S. application Ser. No. 10/695,636 
filed Oct. 28, 2003 and entitled “SILICONE COMPOSI 
TION FOR BIOCOMPATIBLE MEMBRANE”; U.S. appli 
cation Ser. No. 11/038,340 filed Jan. 18, 2005 and entitled 
SYSTEM AND METHODS FOR PROCESSING ANA 
LYTE SENSOR DATA: U.S. application Ser. No. 11/007, 
635 filed Dec. 7, 2004 and entitled “SYSTEMS AND METH 
ODS FOR IMPROVING ELECTROCHEMICAL 
ANALYTE SENSORS”; U.S. application Ser. No. 10/885, 
476 filed Jul. 6, 2004 and entitled “SYSTEMS AND METH 
ODS FOR MANUFACTURE OF AN ANALYTE-MEA 
SURING DEVICE INCLUDING A MEMBRANE 
SYSTEM”; U.S. application Ser. No. 10/648,849 filed Aug. 
22, 2003 and entitled “SYSTEMS AND METHODS FOR 
REPLACING SIGNAL ARTIFACTS IN AGLUCOSE SEN 
SOR DATA STREAM: U.S. application Ser. No. 10/153, 
356 filed May 22, 2002 and entitled “TECHNIQUESTO 
IMPROVE POLYURETHANE MEMBRANES FOR 
IMPLANTABLE GLUCOSE SENSORS”; U.S. application 
Ser. No. 10/846,150 filed May 14, 2004 and entitled “ANA 
LYTE MEASURING DEVICE: U.S. application Ser. No. 
10/842,716 filed May 10, 2004 and entitled “BIOINTER 
FACE MEMBRANES INCORPORATING BIOACTIVE 
AGENTS”; U.S. application Ser. No. 10/657,843 filed Sep. 9, 
2003 and entitled DEVICE AND METHOD FOR DETER 
MINING ANALYTE LEVELS”; U.S. application Ser. No. 
10/768,889 filed Jan. 29, 2004 and entitled “MEMBRANE 
FOR USE WITH IMPLANTABLE DEVICES; U.S. appli 
cation Ser. No. 10/633,367 filed Aug. 1, 2003 and entitled 
SYSTEM AND METHODS FOR PROCESSING ANA 
LYTE SENSOR DATA: U.S. application Ser. No. 10/632, 
537 filed Aug. 1, 2003 and entitled “SYSTEMAND METH 
ODS FOR PROCESSING ANALYTE SENSOR DATA: 
U.S. application Ser. No. 10/633,404 filed Aug. 1, 2003 and 
entitled SYSTEMAND METHODS FOR PROCESSING 
ANALYTE SENSOR DATA: U.S. application Ser. No. 
10/633,329 filed Aug. 1, 2003 and entitled “SYSTEMAND 
METHODS FOR PROCESSING ANALYTE SENSOR 
DATA. 

All references cited herein, including but not limited to 
published and unpublished applications, patents, and litera 
ture references, and also including but not limited to the 
references listed in the Appendix, are incorporated herein by 
reference in their entirety and are hereby made a part of this 
specification. To the extent publications and patents or patent 
applications incorporated by reference contradict the disclo 
Sure contained in the specification, the specification is 
intended to Supersede and/or take precedence over any Such 
contradictory material. 
The term "comprising as used herein is synonymous with 

“including.”“containing,” or “characterized by, and is inclu 
sive or open-ended and does not exclude additional, unrecited 
elements or method steps. 

All numbers expressing quantities of ingredients, reaction 
conditions, and so forth used in the specification are to be 
understood as being modified in all instances by the term 
"about.” Accordingly, unless indicated to the contrary, the 
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numerical parameters set forth herein are approximations that 
may vary depending upon the desired properties sought to be 
obtained. At the very least, and not as an attempt to limit the 
application of the doctrine of equivalents to the scope of any 
claims in any application claiming priority to the present 
application, each numerical parameter should be construed in 
light of the number of significant digits and ordinary rounding 
approaches. 
The above description discloses several methods and mate 

rials of the present invention. This invention is susceptible to 
modifications in the methods and materials, as well as alter 
ations in the fabrication methods and equipment. Such modi 
fications will become apparent to those skilled in the art from 
a consideration of this disclosure or practice of the invention 
disclosed herein. Consequently, it is not intended that this 
invention be limited to the specific embodiments disclosed 
herein, but that it cover all modifications and alternatives 
coming within the true scope and spirit of the invention. 
What is claimed is: 
1. An analyte sensor, the sensor comprising an elongated 

flexible portion, wherein the elongated flexible portion com 
prises a first electrode and a second electrode at least partially 
Surrounding at least a portion of the first electrode, wherein 
the first and/or second electrode is configured to produce a 
signal indicative of an analyte concentration in a host, and 
wherein the second electrode provides a variable stiffness of 
the sensor by a variable stiffness of the material of the second 
electrode and/or by a variable pitch of a helical configuration 
of the second electrode along at least a portion of its length. 

2. The sensor of claim 1, further comprising an insulator 
located between the first electrode and the second electrode. 

3. The sensor of claim 1, wherein the variable stiffness of 
the second electrode is provided by a variable cross-section of 
the second electrode. 

4. The sensor of claim 1, wherein the variable stiffness of 
the second electrode is provided by a variable hardness of the 
second electrode. 

5. The sensor of claim 4, wherein the variable hardness is 
produced by Subjecting the second electrode to an annealing 
process. 

6. The sensor of claim 1, wherein the wherein the variable 
stiffness of the second electrode is provided by a variable 
diameter. 

7. The sensor of claim 1, wherein a distal portion of the 
sensor is more flexible than a proximal portion of the sensor. 

8. The sensor of claim 1, wherein an intermediate portion 
of the sensor is more flexible than at least one of a distal 
portion of the sensor and a proximal portion of the sensor. 

9. The sensor of claim 1, wherein a distal portion of the 
sensor is stiffer than at least one of an intermediate portion of 
the sensor and a proximal portion of the sensor. 

10. The sensor of claim 1, wherein the first electrode com 
prises a Solid cross-section. 

11. The sensor of claim 1, wherein the sensor is configured 
and arranged such that after the sensor is transcutaneously 
inserted, the entire portion of the sensor that is in vivo directly 
contacts tissue. 

12. The sensor of claim 1, wherein the elongated flexible 
portion comprises a distal portion configured and arranged 
with a flexibility that minimizes mechanical stresses caused 
by motion of the host. 

13. The sensor of claim 1, further comprising sensor elec 
tronics adapted for mounting on a skin of a host, wherein the 
sensor electronics comprise electrical contacts configured 
and arranged for releasable connection with electrical con 
tacts associated with the first and second electrodes. 
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14. The sensor of claim 13, wherein the elongated flexible 
portion comprises a proximal portion is configured and 
arranged with a stiffness that maintains a stable connection 
between the electrical contacts associated with the first and 
second electrodes and the electrical contacts of the sensor 
electronics housing. 

15. The sensor of claim 1, wherein the sensor is configured 
to absorb a relative movement between an in vivo portion and 
an ex vivo portion. 

16. An analyte sensor, the sensor comprising an in vivo 
portion adapted for insertion into a host and an ex vivoportion 
adapted for operable connection to a device that remains 
external to the host, wherein the in vivo portion of the sensor 
comprises a first electrode twisted with or around a second 
electrode along a length of the sensor in Such a way that a 
stiffness of the sensor gradually changes along a length of the 
sensor where the first electrode is located, and wherein the 
first and/or second electrode is configured to produce a signal 
indicative of an analyte concentration in a host. 

17. The sensor of claim 16, wherein the ex vivo portion is 
stiffer than the in vivo portion. 

18. The sensor of claim 16, wherein an intermediate por 
tion is more flexible than at least one of the in vivo portion and 
the ex vivo portion. 

19. The sensor of claim 18, wherein the in vivo portion 
comprises a tip on an end of the sensor that is stiffer than a 
Substantial portion of the sensor. 

20. The sensor of claim 16, wherein at least one electrode 
comprises a wire in a helical configuration, and wherein a 
change in stiffness is provided by a varying a cross-section of 
the wire. 

21. The sensor of claim 16, wherein the sensor is config 
ured to absorb a relative movement between the in vivo por 
tion and the ex vivo portion. 

22. The sensor of claim 16, wherein the device comprises a 
housing adapted for mounting on a skin of a host, wherein the 
housing comprises electrical contacts operably connected to 
the sensor. 

23. The sensor of claim 22, wherein the ex vivo portion of 
the sensor has a preselected Stiffness to maintain a stable 
connection between the sensor and the electrical contacts. 

24. The sensor of claim 16, wherein the in vivo portion of 
the sensor has a preselected flexibility to minimize mechani 
cal stresses caused by motion of the host. 

25. The sensor of claim 16, wherein a stiffness of the ex 
vivo portion of the sensor is greater than a stiffness of the in 
vivo portion of the sensor. 

26. The sensor of claim 16, wherein at least one electrode 
comprises a wire, and wherein a change in stiffness is pro 
vided by a varying a hardness of the wire. 

27. The sensor of 26, wherein the change is produced by 
Subjecting the wire to an annealing process. 

28. The sensor of claim 16, wherein an intermediate por 
tion of the sensor is more flexible than at least one of the in 
vivo portion and the ex vivo portion. 

29. The sensor of claim 28, wherein the in vivo portion 
comprises a tip on an end of the sensor that is stiffer than a 
Substantial portion of the sensor. 
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30. The sensor of claim 16, further comprising a membrane 

covering the first and second electrodes. 
31. The sensor of claim 16, wherein the first electrode at 

least partially surrounds the second electrode. 
32. The sensor of claim 16, further comprising an insulator 

located between the first electrode and the second electrode. 

33. The sensor of claim 16, wherein the second electrode 
comprises a solid cross-section. 

34. The sensor of claim 16, wherein one of the first and 
second electrodes comprises a first working electrode and the 
other of the first and second electrodes comprises a second 
working electrode. 

35. The sensor of claim 16, wherein the second electrode 
comprises a working electrode and the first electrode com 
prises a reference electrode. 

36. The sensor of claim 16, wherein the sensor is config 
ured and arranged such that after the sensor is transcutane 
ously inserted, the entire portion of the sensor that is in vivo 
directly contacts tissue. 

37. An analyte sensor configured to produce a signal 
indicative of an analyte concentration in a host, the sensor 
comprising an in vivo portion adapted for insertion into a host 
and an ex vivo portion adapted for operable connection to a 
device that remains external to the host, wherein the in vivo 
portion of the sensor comprises a first electrode twisted with 
or around a second electrode along a length of the sensor in 
Sucha way that that a stiffness of the sensor gradually changes 
along a length of the sensor where the first electrode is 
located, wherein the ex vivo portion is stiffer than the in vivo 
portion, wherein at least one electrode comprises a wire in a 
helical configuration, and wherein the difference in stiffness 
between the ex vivo portion and the in vivo portion is pro 
vided by a varying pitch of the helical configuration. 

38. An analyte sensor, the sensor comprising an in vivo 
portion adapted for insertion into a hostandan ex vivo portion 
adapted for operable connection to a device that remains 
external to the host, wherein the in vivo portion of the sensor 
comprises a first electrode twisted with or around a second 
electrode along a length of the sensor in Such a way that a 
stiffness of the sensor gradually changes along a length of the 
sensor where the first electrode is located, wherein the first 
and/or second electrode is configured to produce a signal 
indicative of an analyte concentration in a host and wherein 
the first electrode provides the change in stiffness of the 
SSO. 

39. An analyte sensor, the sensor comprising an elongated 
flexible portion, wherein the elongated flexible portion com 
prises a first electrode and a second electrode at least partially 
Surrounding at least a portion of the first electrode, wherein 
the first and/or second electrode is configured to produce a 
signal indicative of an analyte concentration in a host, and 
wherein the second electrode provides a variable stiffness of 
the sensor by a variable stiffness of the material of the second 
electrode along at least a portion of its length. 
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