(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 April 2002 (18.04.2002) PCT

(10) International Publication Number

WO 02/31648 A2

(51) International Patent Classification’: GO6F 9/00 (81)
(21) International Application Number: PCT/GB01/04533
(22) International Filing Date: 11 October 2001 (11.10.2001)
(25) Filing Language: English

(26) Publication Language: English
84
(30) Priority Data: @4
0024918.5 11 October 2000 (11.10.2000) GB

(71) Applicant (for all designated States except US):
SEALEDMEDIA LIMITED [GB/GB]; Sorbon, Ayles-
bury End, Beaconsfield, Buckinghamshire HP9 1LW
(GB).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MV,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU,
ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

(72) Inventor; and Published:

(75) Inventor/Applicant (for US only): LAMBERT, Mar- ~—
tin, Richard [GB/GB]; 15 Old Mill Court, High Street,
Twyford, Berkshire RG10 9AF (GB).

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agent: FLINT, Adam; W.H. Beck, Greener & Co., 7 ance Notes on Codes and Abbreviations" appearing at the begin-
Stone Buildings, Lincoln’s Inn, London WC2A 3SZ (GB). ning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF PROVIDING JAVA TAMPERPROOFING

1. Java compiler compiles 2. Archiver utility
source code to class files stores application
containing bytecode as class files in archive
part of build process. file.
402 404 406 408 410

Bytecode
Encrypted
Bytecode

Java source Java v
code bytecode
7

3. DRM utility encrypts nominated
classes within archive file, adjusting
archive format to remain valid after

4. Additional proxy and

application stub classes added
by DRM encryption utility.

modifications to class files.
12 414
/ Unencrypted
DRM P Java class
= o
any | B
Vv
Encrypted Java
%7 class files
%/ 414a
> Proxy class 414c
> Application stub
> (entry point to
application)
414b

02/31648 A2

(57) Abstract: A method of protecting Java bytecode is provided that includes the steps of encrypting at least one Java class file to
produce at least one encrypted Java class file (414a) which is archived in an archive (414). A Java application that depends on the

encrypted Java archive (414) is configured to run by first loading an application stub class (414b) and calling an entry within the
application stub clas (414b). A method is provided of running a Java application that uses such a previously encrypted Java archive

g (414). The method includes the steps of loading an application stub class (414b) is called thereby to call a secure class loader to
enable the at least one encrypted Java class file (414a) to be loaded from the archive (414) and decrytped.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

~] -

METHODS OF PROVIDING JAVA TAMPERPROOFING

The present invention relates to a method of
protecting Java bytecode and to a method of running a Java

application that uses a previously encrypted Java archive.

The present invention is generally in the field of
digital rights management (DRM) and limits the potential
for decompiling or reverse engineering from bytecode to the

original Java source code.

If there is to be a viable commerce based upon the
electronic distribution of valuable multimedia content
(such as for example reports, images, music tracks, videos,
etc.), then there must be some means of enforcing and
retaining copyright control over the electronic content.
There is now emerging a set of hardware and software
solutions, generically known as digital rights management
(DRM) solutions, that aim to provide this copyright control
while, to a varying degree, also enabling new commercial
methods suited to the Internet and electronic delivery.
Common to virtually all these solutions is the requirement
that the multimedia content be distributed within a
persistent tamperproof encryption wrapper (the idea being
that a million copies of encrypted content is no more
valuable than one). Very simply, DRM works by carefully
providing the consumers of this encrypted content with
secret decryption keys that provide temporary access to the
content for some controlled purpose, e.g. viewing,
printing, playing, etc. without ever providing access to
the raw decrypted content that could be used for

unauthorised reuse or redistribution.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

Figure 1 illustrates schematically an overview of how
typical DRM systems work. Referring to Figure 1, a
"publisher" of digital content seals their digital content,
buffers or streams within a layer of encryption and digital
signatures into a DRM-encrypted content format 102. The
encryption makes it difficult for malicious consumers to
obtain access to the raw decrypted content (and make
unauthorised copies for redistribution). The digital
signatures prevent malicious consumers or hackers from
tampering with the encrypted content (perhaps to pass off
the content as theilr own or redistribute for free content
that normally has to be paid for) by enabling the DRM
system to detect the smallest change to the encrypted
content. The DRM-encrypted content 102 can then be
delivered to consumers via any electronic distribution
medium 104, e.g. web, ftp, email, CD-ROM, etc. The
publisher need not worry about protecting the DRM-encrypted
content 102 in transit to the consumer since it is
inherently protected by its encryption layer and digital

signatures.

Less sophisticated DRM systems sometimes bundle
individual consumer access rights with the content, either
within the encryption layer or at least protected by the
digital signatures. The advantage of bundling rights with
the content is that the consumer can obtain both the
content and the rights at the same time. Disadvantages
include extreme inflexibility in the rights management
policies that can be implemented and an enormous versioning
problem (since there needs to be a separate version of the
encrypted content 102 for each consumer and a new version

of the encrypted content whenever the rights change).

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

More sophisticated DRM systems deliver the rights
separately from the content (from a DRM server 108). The
rights are encoded in some electronic format 110 (i.e.
electronic "rights") and specify the permitted relationship
between consumers and DRM-encrypted content sets (and
subsets), e.g. which content the consumer can access, what
they are permitted to do with it (e.g. printing), and for

how long.

A specialised viewer (the DRM client 106) resident on
the consumer device is required to obtain, manage and
interpret the rights, temporarily decrypt the encrypted
content and view/play it within a secure environment (so
that the consumer cannot obtain access to the raw decrypted
content or the decryption keys) subject to the restrictions
implied by the consumer’s rights (e.g. view but do not
print a document). The DRM server 108 is responsible for
issuing rights to requesting DRM clients 106. Current DRM
systems typically issue rights to authenticated consumers
at the time of purchase (or grant) and the rights are
transferred to permanent storage on the consumer device
106. The DRM server 108 plays no further role in the

ongoing use of those rights.

A non-limiting description of several terms used
herein will now be given to aid the understanding of the

present invention.

In general, "rights" can be thought of as an
electronic description (explicit or by implication) of the
association between consumers {or consumer devices) and

DRM-protected content sets. Rights can optionally specify

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-4 -

means of identifying the consumer (or consumer device) to
which the rights "belong"; means of identifying the content
sets and subsets to which the rights apply; encryption keys
and checksums (cryptographic or otherwise); and the
specific access rights granted to the consumers (and/or
their consumer devices) over those content sets (e.g.
whether or not the consumer can print a document, the
duration of access, etc.). Rights can be encoded in any
machine-readable form (e.g. parsable languages, specialised
data structures, etc.) and are used internally by the DRM
system to grant, deny or meter consumer access to encrypted

content.

"Bytecode" refers to machine-independent code
generated by a Java compiler and executed by a Java

interpreter.

"Class" refers to the basic data structure in the Java
programming language. Classes have member data and member

functions and are instantiated to objects.

"Class file" refers to a file containing the bytecode
required to implement a given Java class. The Java
compiler generates a separate class file for each class,

even if they are defined in the same Java source file.

"Class loader" refers to a special class used to load
other classes. from arbitrary data sources, e.g. the local
file system, networks, archives, etc. The Java programming
language allows the development of new class loaders to
support the loading of classes from new data sources, e.g.

loading classes from encrypted archives.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

"Native method" refers to a method defined within a
Java class whose implementation is not in Java within the
same source file but in a separate loadable module compiled

from a different programming language.

"Native method API (application programming
interface)" refers to the programming API available to
developers of native methods. This includes methods of
"up~-calling" back into Java (from whence the native method

was originally invoked).

"Operating system" (OS) refers to the (usually pre-
installed) low-level software which handles the interface
to peripheral hardware, schedules tasks, allocates storage,
and presents a default interface to the user when no

application program is running.

"Device driver" refers to a special software program
which i1s capable of operating within the lowest levels of
the operating system and capable of directly manipulating
the low-level hardware components that make up the
computing device (e.g. memory, video memory, disk drives,

etc.).

"Java virtual machine (JVM)" refers to a software
"execution engine" that safely and compatibly executes the
bytecodes in Java class files on a microprocessor (whether
in a computer or in another electronic device). The JVM
comprises a bytecode interpreter, considerable compiled
Java class libraries, and native methods providing 0OS-

dependent functionality.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

"Java application” refers to one of two categories of
Java executable components: applications or applets.
Applets are typically taken to mean specialised Java
applications that support a defined interface that suits
them to running in the context of a web browser. For the
purposes of this specification, this distinction is
irrelevant and, unless explicitly stated, the term Java
application is to be taken to refer to any executable Java
component (e.g. Java applications, applets, servlets,

beans, etc.).

"Java archive" refers to a grouping of class files.
Java archives are made to optimise the downloading of Java
applications over networks and to group Java classes
together into related modules. It is very common for JVMs
to be capable of loading class files from within common
archive formats, such as ZIP files, JAR files, CAB files,
etc. These archive formats typically support compression,

digital signing to verify authenticity, etc.

Software is one form of digital content and is itself
vulnerable to unauthorised access, tampering and/or
redistribution, especially as it is now routinely
downloaded over the Internet. The Java programming
language from SUN Microsystems provides some unigue
features that make it an ideal software development
platform for the next generation of net-enabled, download-
on-demand software applications. These features include
(1) bytecode runtime images capable of execution within
standardised JVM interpreters running on any operating
system (OS): "Write once, Run anywhere" in the parlance of

the Java authors; (ii) late binding language

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-7~

implementation: application components (classes) can be
downloaded incrementally and on demand; and (iii) simple
stack-based JVMs which are highly portable to next-

generation mobile devices.

Unfortunately, these very features that make Java so
suitable for net-enabled applications also expose a
particular wvulnerability: Java applications can trivially
be decompiled or reverse engineered from bytecode to the
original source code and trivially patched with malicious
code fragments. The late binding nature of the language
means that much of the symbolic information in the source
code (e.g. the names of class member functions and class
member data) is passed through to the bytecode. The simple
syntax of the language combined with the simple stack-based
nature of the JVM means that the operational bytecode is
very simple, relatively non-optimised and closely related
to the original Java source code from which it was
compiled. In short, Java applications are particularly

vulnerable to tampering or hacking.

The Java compilation process and the ease with which
it can be reverse engineered (decompiled) and tampering
process are illustrated schematically in Figure 2. As
illustrated, Java source code 202 is compiled in a Java
compilation step 204 to obtain low level bytecode 206.
End-users can then download the bytecode 206 as shown in
step 208, via the internet or some other transmission
medium, which bytecode 206 can then be executed by JVMs
210. Once downloaded, the user can, as illustrated in step
212, maliciously decompile it to look like the original

Java source code 202', modify it to obtain modified Java

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-8—

source code 202", and then in step 214 recompile it to

obtain a tampered version of the Java application 200.

There are presently two main approaches to protecting
Java from tampering: bytecode obfuscation and bytecode

encryption/scrambling.

Figure 3 illustrates schematically the process of
bytecode obfuscation. Java source code 302 is compiled in
step 304 to obtain bytecode 306 in the manner previously
described. Thereafter, as shown by step 308, bytecode
obfuscation is performed to make the bytecode more
difficult to understand by removing as much helpful
information as possible from the bytecode (e.g. renaming
variables to cryptic strings) and making changes to the
operational bytecode to make it harder to read without
changing the actual operations (e.g. unrolling loops,
optimising away variables, etc.). This results in an
obfuscated Java bytecode 310. When maliciously decompiled,
as shown by step 312, the decompiled source code 302' is

thus difficult to read, i.e. obfuscated.

In practice, obfuscation is only marginally useful in
protecting a Java application from complete reverse
engineering into Java source code even though the resultant
Java source code (recovered from obfuscated bytecode) is
quite different from how it would appear if written by a
human engineer. Unfortunately, a practical significant
threat to Java applications generally involves relatively
small amounts of reverse engineering in key code sections
(e.g. where a Java application processes a credit card
request) in order to make relatively small "patches" (e.g.

writing the credit card information out to disk).

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-0-

Obfuscation cannot change the areas in the bytecode that
interface to the built-in Java class libraries or third
party Java code and therefore obfuscation is not

particularly effective.

A more proactive means of protecting Java from
tampering is to encrypt or scramble the bytecode so that it
cannot be reverse engineered at all. However, this
approach requires a method by which the encrypted bytecode
can be loaded into standard off-the-shelf JVMs. Java does
provide a mechanism for extending JVMs to load bytecode
from new sources via the class loader mechanism.

Developers can define a class (called a class loader) which
can read the raw bytecode of a class from, for example,
within an encrypted file and load the class into the JVM’s
internal memory structures (from which it is far more
difficult to reverse engineer). These class loaders are
actually used by base Java implementations to read classes
from the local file system (for example, the class loader
that loads classes from the local file system, as defined
by the CLASSPATH environment variable, is known as the
system class loader), archives and the network.
Unfortunately, these class loaders are themselves
implemented in Java (although like many system classes they
use native methods) and are therefore themselves vulnerable
to tampering. Although some attempts at protecting Java
from tampering have been based upon creating new class
loaders, they are relatively ineffective since the hacker
can simply reverse engineer the class loader to obtain

access to the decrypted class bytecode.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-10-

In the context of digital rights management (DRM),
Java applications are just another form of digital content,
easily distributable by digital means (e.g. the Internet)
but vulnerable to reverse engineering, tampering and

unauthorised redistribution.

According to a first aspect of the present invention,
there is provided a method of running a Java application
that uses a previously encrypted Java archive, the
encrypted Java archive comprising at least one encrypted
Java class file, the method comprising the steps of: wusing
a secure class loader to load the at least one encrypted
Java class file from the archive into a Java virtual

machine.

- In one preferred embodiment, the secure class loader
is implemented by a native method cooperating with a file
hook which intercepts and modifies file input/output
requests. A device driver may be loaded to install the

file hook.

In another preferred embodiment, the secure class
loader is implemented by a native method cooperating with a
patch which intercepts and modifies file input/output

requests.

In another preferred embodiment, the secure class
loader is implemented by a native method cooperating with a
trap patch which intercepts and modifies file input/output
requests. In some operating systems, such as MacOS,
applications access OS kernel service entry points by
looking up an offset that identifies the particular entry

point, loading this offset into a pre-defined location, and

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-11-

firing a software interrupt (known as a "trap"). A
separate trap dispatcher handles the interrupt and looks up
the offset set by the calling process. This offset is used
to look up the address of the desired kernel service from a
table mapping offsets to service entry point addresses.

The trap handler then transfers CPU execution to this
address. Standard MacOS services enable "trap patching”
whereby application processes (or special processes
executed at 0S start-up) can load a code fragment (the
patch) into global memory and substitute the address of
this patch in place of the actual kernel service entry
point address in the trap dispatcher’s table. Thus, when
the actual kernel service is loaded, and a software
interrupt is fired, the trap handler transfers execution,
to the patch code. The patch code is then executed in
place of the kernel service (although it can itself call

the kernel service).

Implementing the secure class loader from within a
native method means that it can be called in a single,
opaque operation (unlike a vulnerable Java class loader for
example). The (installable) file hook, patch, trap patch
or other similar modification enables file input/output
to/from the encrypted archive to be intercepted so that the
encrypted Java archive can be decrypted to its
pre-encrypted form to an internal memory buffer, from where

subsequent class loading can proceed.

The method may comprise the steps of: loading an
application stub class; and, calling an entry point within
the application stub class thereby to call the secure class
loader. The application stub can be used to execute DRM

native methods and decrypt and load the protected classes

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-12-

without requiring any modifications to the protected Java
classes and particularly without requiring any

modifications to the source code of the Java application.

In one embodiment, the application stub class is not
contained in the archive so that it can invoke the secure
class loader to pre-emptively decrypt the archive before

the Java virtual machine has opened the archive.

The application stub class may be saved locally at a

client device where the Java application is run.

In another embodiment, the application stub class is

located within the archive.

The method preferably comprises the step of
stimulating file input/output requests to the archive by
the step of the secure class loader attempting to load a
proxy class from the archive. The proxy class is

preferably located in the archive.

The method preferably comprises the step of
establishing a thread guard to limit access to the archive

to a trusted thread calling the secure class loader.

The secure class loader may be used to load at least
one further encrypted Java class file from another archive
into the Java virtual machine, the secure class loader
operating to keep track of which encrypted Java class file

has been loaded from which archive.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-13-

The method may comprise the step of decrypting the at
least one encrypted Java class file from the archive to an
in-memory buffer from which it is loaded into the Java

virtual machine by the secure class loader.

The archive may include a manifest file which includes
at least one of the following items: the identity of the
at least one encrypted Java class file; the name of the at
least one encrypted Java class file; metadata relating to
rights management of the at least one encrypted Java class
file; and, at least one digital signature for the at least
one encrypted Java class file; and the method may comprise
the step of loading the manifest file into the Java virtual
machine. The manifest file is preferably protected against

tampering by a digital signature.

The archive may contain at least one encrypted Java
class file that is digitally signed, the method comprising
the step of the secure class loader pre-emptively
decrypting the entire archive when it is first opened by
the Java virtual machine but before any signed class files

have been read from by the Java virtual machine.
The archive may be digitally signed after encryption.

The archive may be digitally signed both before and
after encryption, with the pre-encryption signatures being
stored in the encrypted Java archive so that they can be

restored after the archive is decrypted.

According to another aspect of the present invention,
there is provided a computer program containing program

instructions for causing a computer to perform a method as

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-14-

described above. The computer program may be embodied in a

digital rights management client.

According to another aspect of the present invention,
there is provided a method of protecting Java bytecode, the
method comprising the steps of: encrypting at least one
Java class file to produce at least one encrypted Java
class file; and, archiving, in an archive, the at least one
encrypted Java class file; whereby a secure class loader
can load the at least one encrypted Java class file from

the archive into a Java virtual machine.

The method may comprise the step of configuring a Java
application that depends on the encrypted Java archive to
run by first loading an application stub class and calling
an entry point within the application stub class. As noted
above, the application stub can be used to execute DRM
native methods and decrypt and load the protected classes
without requiring any modifications to the protected Java
classes and particularly without requiring any

modifications to the source code of the Java application.

The application stub class may be contained in the

archive.

The method preferably comprises the step of including
a proxy class in the archive that a secure class loader can
attempt to load in order to stimulate file input/output

requests when the Java application is run.

The method may comprise the step of: adding a
manifest file to the archive, the manifest file including

at least one of the following items: the identity of the

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-15-

at least one encrypted Java class file; the name of the at
least one encrypted Java class file; metadata relating to
rights management of the at least one encrypted Java class
file; and, at least one digital signature for the at least
one encrypted Java class file. The manifest file is
preferably protected against tampering by a digital

signature.

The archive may contain at least one encrypted Java

class file that is digitally signed.
The archive may be digitally signed after encryption.

The archive may be digitally signed both before and
after encryption, with the pre-encryption signatures being
stored in the encrypted Java archive so that they can be

restored after the archive is decrypted.

The at least one Java class file may provide at least
one of the following functioﬁs: decrypting rights
management protected content handled by a Java application;
obtaining a licence; checking for licence validity;
determining whether a function is permitted by licensed
rights; obtaining information about a function; and,

obtaining information about at least one licensing term.

According to another aspect of the present invention,
there is provided a computer program containing program
instructions for causing a computer to perform a method as

described above.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-16-

According to another aspect of the present invention,
there is provided a programming language having
functionality to enable the method as described above. The
language may be for example an interpreted language (e.g.

Java or C#) or a compiled language (e.g. C++).

The preferred embodiment of the present invention thus
provides techniques for wrapping Java bytecode within
encryption and digital signatures, thus protecting it from
decompilation and tampering, whilst still allowing the
encrypted Java bytecode to be executed within standard off-
the-shelf JVMs, preferably without requiring any changes to
the underlying Java source or bytecode, and to use DRM
techniques to effectively build commercial licensing and
reporting functionality directly into the Java programming

language.

In the preferred embodiment, native methods are used
to build a secure class loader that is capable of loading
encrypted class files from the local file system (or the
network) into a standard, unmodified Java virtual machine
without requiring source code modifications to the
encrypted Java classes. These native methods are
preferably used in conjunction with an installable file
hook or patches applied to the operating system in order to

allow for such a secure class loader.

The preferred embodiment of the present invention uses
native methods to provide an opaque, tamperproof operation
for progressively loading classes from a decrypted in-
memory Java archive by using JVM-supplied functions
designed to operate on the local file system but

intercepted and modified by a DRM file hook or patches.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-17-

Embodiments of the present invention will now be
described by way of example with reference to the

accompanying drawings, in which:

Fig. 1 illustrates schematically a DRM overview;

Fig. 2 illustrates schematically an example of

decompiling and tampering of compiled Java bytecodes;

Fig. 3 illustrates schematically a conventional

obfuscation technique;

Fig. 4 illustrates schematically an example of a
method of encrypting Java archives according to an

embodiment of the present invention;

Fig. 5 illustrates schematically an example of a
method of decrypting a previously encrypted Java archive
using a secure class loader with an installable file hook

according to an embodiment of the present invention;

Fig. 6 illustrates schematically an example of a
method of decrypting a previously encrypted Java archive
using a secure class loader with operating system patches

according to an embodiment of the present invention;

Fig. 7 illustrates schematically an example of a
method of creating a DRM protected Java archive including a
DRM manifest according to an embodiment of the present

invention;

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-18-

Fig. 8 illustrates schematically an example of a
method of use of a DRM encryption utility to create a DRM
protected signed Java archive according to an embodiment of

the present invention; and,

Fig. 9 illustrates schematically how Java
tamperproofing enables full DRM capabilities to be built

into the Java programming language.

In one preferred embodiment of the present invention,
native methods and an installable file hook are used to
build a secure class loader that is capable of loading
archives containing encrypted class files from the local
file system (or the network) into a standard, unmodified
JVM (e.g. the JVM bundled within a web browser such as
Microsoft Internet Explorer or Netscape Navigator) without
requiring source code modifications to the encrypted Java
classes. The approach is based upon an assumption that is
satisfied by the majority of standard JVMs, namely that the
Java native method API provide a means for native methods

to load a named class from a given class loader.

An exemplary process by which Java classes are first
encrypted within a Java archive by a DRM utility and then
decrypted and loaded into a standard, unmodified JVM by a
DRM client component implemented within Java native methods

will be described with reference to Figure 4.

Referring to Figure 4, during the build cycle, Java
developers, as shown in step 404, compile Java source files
402 into class files containing bytecode 406. At the end

of the build cycle, these class files are inserted, as

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

~19-

shown by step 408, into a Java archive, e.g. a ZIP, JAR or
CAB file 410.

A DRM encryption utility program that understands the
Java archive format 410 is given the names of the classes
414a that are to be encrypted. As shown by step 412, it
parses the Java archive 410 to locate the specified classes
414a, encrypts them within the Java archive and, if
necessary, updates any internal archive data structures to
ensure that the archive remains valid. If these updates
result in the loss of data which cannot be recalculated at
the time of decryption (e.g. field lengths or checksums
from the decrypted content), then this data must be saved
along with the encrypted bytecode. The encrypted archive
remains a valid archive after this processing, it is simply
that some of its data is now encrypted, i.e. the archive is
only partially encrypted: the data within it is encrypted
but the archive itself is not. This partially encrypted
Java archive is also referred to herein as the encrypted

Java archive or the DRM-protected Java archive.

As part of step 412, an application stub class 414b is
added to the archive (either by the DRM utility, manually
or as part of the build process). This application stub
class 414b is a simple Java class that ultimately calls the
initial entry point of the DRM-protected Java application.
Its full operation is further described below with
reference to the decryption phase. The application stub
class 414b is not encrypted within the DRM-protected

archive.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-20-

A small proxy class 4l4c is also added in step 412 to
the archive (either by the DRM utility, manually or as part
of the build process). This proxy class 414c is a simple
non-functional class that is loaded later by the client-
side DRM system to stimulate file i/0 on the encrypted Java

archive, again as will be described further below.

The publisher of the encrypted Java archive configures
the Java application such that it will be run by first
loading the application stub class 414b and calling a

predefined entry point within it.

Figure 5 illustrates schematically an example of a
method of decrypting a previously encrypted Java archive
using a secure class loader with an installable file hook.
As illustrated, the end user attempts to run the Java
application that depends upon the DRM-protected Java
archive 414. Since the publisher of the DRM-protected Java
archive has configured the application to be run via the
application stub class 414b, this causes the application
stub class 414b, as shown in step 502, to be loaded from
the DRM-protected archive and its entry point invoked. The
application stub class 414b first loads the native method
library containing the client-side DRM code implementing

the secure class loader, as shown in step 504.

If successful, the application stub class 414b then
calls a special native method to locate, decrypt and load
the encrypted classes from the DRM-protected Java archive
414. This can all be done from within a single opaque
native method (although using a single method, as opposed
to multiple methods, is not necessary) without ever

exposing decrypted bytecode to the vulnerable Java code.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-2 -

This special native method is also referred to herein as
the secure application loader native method or SAL native

method.

The SAL native method looks up the class loader of the
application stub class 414b, i.e. the class loader
responsible for loading classes from the encrypted Java
archive. This can be achieved either by calling API
functions available to native methods or by up-calling back
into Java (where there are suitable member functions
defined on the base Java classes java.lang.Object and
java.lang.Class). This class loader is used to load

subsequent classes from the DRM-protected archive.

The SAL native method, at step 506, then loads a
device driver 508 (also referred to as the DRM device
driver) capable of installing a file hook 510 (also
referred to as the DRM file hook) which is itself capable
of intercepting and modifying file i/o requests in the
lowest levels of the operating system. On most operating
system this requires the creation and installation of a
special device driver as part of the client-side DRM
installation. On some operating systems, the device driver
and/or file hook must be installed at the time of 0S start-
up, in which case the device driver and/or file hook are
installed in a deactivated mode and do nothing until
activated via communications from the SAL native method.
Creating and installing device drivers and file hooks
involve known techniques long available to practitioners of

low-level device driver development.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

~22=

The SAL native method then communicates with the DRM
device driver to establish a thread guard, i.e. to inform
the DRM device driver 508 and/or file hook 510 that the SAL
native method, running in its current thread, is about to
initiate activity that will result in relevant file i/o
(i.e. the loading of classes from the encrypted Java
archive). The purpose of establishing the thread guard is
two-fold: first, it tells the device driver 508 and/or
file hook 510 to look out for file i/o from the DRM-
protected Java archive and, secondly, to make sure that
while the thread guard is in place no other operating
system thread can take advantage of the DRM file hook 510
to obtain access to decrypted content from the DRM-

protected Java archive. .

Using the class loader recovered previously, the SAL
method, at step 509, attempts to load the proxy class 4l4c
from the DRM-protected Java archive. As mentioned above,
the proxy class 41l4c is an unencrypted place holder class
that does nothing apart from residing within the DRM-

protected Java archive.

The activated file hook 510 intercepts all low-level
file i/o operations (e.g. reads, writes, seeks, etc.)
throughout the 0S. If the thread is not the thread on
which the SAL native method has set the thread guard, i.e.
the thread currently attempting to load the proxy class
414c from the DRM-protected Java archive, then the file
hook 510 passes the file i/o operations onto the next hook
in the hook chain (if present) or through to the underlying
unmodified OS file i/o services. If the thread is the
trusted thread (i.e. the thread on which the guard has been
set), the file hook 510 looks to see if it has already

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-23-

processed file i/o operations on this file (the file hook
510 keeps track of files being processed by the trusted
thread via some file identifier passed as part of the file
i/o operation, e.g. the low-level file number). If the
file i/o0 operation is for a new file (in the context of the
thread guard), then the file hook 510 uses the unhooked
low-level OS file i/o services to inspect the new file. If
the new file is in a supported Java archive format and
contains DRM-encrypted class files, then the file hook 510
continues to use the low-level 0S file i/o services to read
the entire DRM-protected Java archive into an internal
memory buffer 515 (step 514). Subsequent file i/o
operations on the DRM-protected Java archive are now routed
by the file hook 510 to the internal memory buffer 515 (as
opposed to the file system) while file i/0o operations on
any other files are passed through to the underlying
unmodified 0S file i/o services. This phase thus uses the
loading of an unencrypted innocuous proxy class 41l4c to
stimulate file i/o activity on the DRM-protected Java
archive so that it can be identified and read into an
internal memory buffer 515. The proxy class 4l4c is read

from the internal memory buffer 515 and loaded into the
JVM.

If the proxy class 414c has been successfully loaded
in step 509, the SAL native method communicates with the
DRM device driver at step 516 to obtain access to the
internal memory buffer 515 containing the DRM-protected
Java archive. Depending upon the 0S, this may involve

passing pointers to buffers or actually copying buffers.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-24-

The SAL native method can now restore the DRM-
protected Java archive to its original form by decrypting
the encrypted class files within the DRM-protected Java
archive in the internal memory buffer 515 and restoring any
related archive data structures (e.g. field lengths or
checksums). This is more easily achieved in the SAL native
method than in the DRM device driver 508 since device
drivers typically operate in resource-constrained
environments (although performing the decryption on-demand
from within the DRM device driver 508 is an option). The
decryption may involve first authenticating the end user or
their computer and obtaining cryptographic keys from local
or network caches or servers. For present purposes it is
in any event assumed that the DRM system has a secure
means of obtaining these keys and protecting them from

discovery and unauthorised redistribution.

The SAL method restores the decrypted Java archive
515a to be accessible from the DRM device driver 508 and
file hook 510. By this point, the DRM client has recovered
the original DRM-protected Java archive to an internal
memory buffer 515a to which "trusted" file i/o operations

are being redirected (for this trusted thread).

The SAL method, at step 518, now iterates through all
the encrypted classes within the DRM-protected Java
archive, requesting the JVM to load each class by name.
This results in further file i/0 requests being routed to
the decrypted DRM-protected Java archive stored in the

internal memory buffer 515a.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-25-

When the SAL method has successfully loaded all the
DRM-protected classes it can communicate with the DRM
device driver to remove the thread guard, de-allocate any
buffers, remove or deactivate the DRM file hook 510 and to
unload or deactivate the DRM device driver 508. By this
point, the DRM-protected classes have been loaded into the
JVM and stored in JVM-specific data structures in virtual
memory from where they are far more difficult to reverse
engineer than when stored on disk in the well documented
Java class file format. Care should preferably be taken to
ensure that the internal 0S file i/o structures are left in
a state such that subsequent unhooked file i/o for
unencrypted classes within the (encrypted) DRM-protected

Java archive on the local file system will succeed.

The SAL method can thereafter, at step 520, return
control to the Java application stub class 414b which then
hands over execution to the original entry point of the
Java application. The basic use of application stubs to
provide an executable wrapper around a Java application
(including Java applets) is a standard technique available
in Java programming. The application stub is used in this
embodiment to load the DRM native method library and then
to invoke the SAL native method without requiring any

changes to the underlying DRM-protected Java application.

While according to one embodiment, the Java archive is
loaded from the local file system, in an alternative
embodiment the Java archive is loaded from a network.
Almost all JVMs capable of loading archives over a network
(e.g. web browsers such as Microsoft Internet Explorer and
Netscape Navigator) actually download the archive to a

cached file before processing it. Consequently, one of

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-26-

ordinary skill in the art will appreciate that the approach
described above is also applicable to Java archives loaded

from a network.

Some JVMs support the loading of applications from
multiple archives. This can be accommodated by an
embodiment which can be applied to an application loaded
from multiple archives, some of which may be encrypted and
some not. The approach described above is merely extended
to keep track of which encrypted classes are within which
archive. Proxies are provided within each encrypted
archive which, when loaded, provide access to the class
loader for each encrypted archive and stimulate file i/o to
that archive (see above). The application stub is provided
with a list of proxies. The proxy class could
alternatively be a nominated class from within the
application that does not need to be protected by

encryption.

Figure 6 illustrates schematically an example of a
method of decrypting a previously encrypted Java archive
using a secure class loader with operating system patches.
This example is similar to that described above with
reference to Figure 5, but the use of an installable file
hook is replaced by the use of patches applied to the
operating system (0S) file i/o services. These patches are
applied to the OS since the DRM client is able to patch the
low~-level 0OS file i/o services such that it can again
intercept and modify file i/o requests from the target JVM.
The encryption phase for this example is the same as

described above with reference to Figure 4.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-27-

With respect to the client-side decryption, and
referring to Figure 6, the end user attempts to run the
Java application that depends upon the DRM-protected Java
archive 414. Since the publisher of the DRM-protected Java
archive has configured the application to be run via the
application stub class 414b, this causes the application
stub class 414b, as shown in step 602, to be loaded from
the DRM-protected archive and its entry point invoked. The
application stub class 414b first loads the native method
library containing the client-side DRM code implementing
the secure class loader, as shown in step 604. If
successful, the application stub class 414b then calls a
special native method to locate, decrypt and load the
encrypted classes from the DRM-protected Java archive 414.
This can all be done from within a single opaque native
method (although using a single method, as opposed to
multiple methods, is not necessary) without ever exposing
decrypted bytecode to the vulnerable Java code. This
special native method is again also referred to as the
secure application loader native method or SAL native

method.

The SAL native method looks up the class loader of the
application stub class 414b, i.e. the class loader
responsible for loading classes from the encrypted Java
archive. This can be achieved either by calling API
functions available to native methods or by up-calling back
into Java (where there are suitable member functions
defined on the base Java classes java.lang.Object and
java.lang.Class). This class loader is used to load

subsequent classes from the DRM-protected archive.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-28-

The SAL native method, at step 606, then installs a
set of low-level patches 610 to the 0S file i/o services
which are capable of intercepting and modifying file i/o
requests in the lowest levels of the operating system. On
some operating systems, the file i/o service patches must
be applied at the time of OS start-up, in which case the
patches are installed in a deactivated mode and do nothing
until activated from the SAL native method. Creating and

installing OS patches involve techniques known in the art.

The SAL native method then establishes a thread guard,
i.e. to inform the DRM file i/o patches 610 that the SAL
native method, running in its current thread, is about to
initiate activity that will result in relevant file i/o
(i.e. the loading of classes from the encrypted Java
archive). The purpose of establishing the thread guard is
two-fold: first, it tells the DRM file i/o patches 610 to
look out for file i/o from the DRM-protected Java archive
and, secondly, to make sure that while the thread guard is
in place no other operating system thread can take
advantage of the DRM file i/o patches 610 to obtain access

to decrypted content from the DRM-protected Java archive.

Using the class loader recovered previously, the SAL
method loads, in step 609, the proxy class 4l4c from the
DRM-protected Java archive. Again as mentioned above, the
proxy class 4l4c is an unencrypted place holder class that
does nothing apart from residing within the DRM-protected

Java archive.

The activated DRM file i/o patches 610 intercept all
low-level file i/o operations (e.g. reads, writes, seeks,

etc.) from the JVM process. If the thread is not the

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-20-~

thread on which the SAL native method has set the thread
guard, i.e. the thread currently attempting to load the
proxy class 41l4c from the DRM-protected Java archive, then
the DRM file i/o patches 610 pass the file i/o operations
through to the underlying unmodified 0S file i/o services.
If the thread is the trusted thread (i.e. the thread on
which the guard has been set), the DRM file i/o patches 610
look to see if they have already processed file i/o
operations on this file (the DRM file i/o patches 610 keep
track of files being processed by the trusted thread via
some file identifier passed as part of the file i/o
operation, e.g. the low-level file number). If the file
i/o operation is for a new file (in the context of the
thread guard), then the DRM file i/o patches 610 use the
unmodified low-level 0S file i/0o services to inspect the
new file. If the new file is in a supported Java archive
format and contains DRM-encrypted class files, then the DRM
file i/o patches 610 continue to use the unmodified low-
level 0S file i/o services to read the entire DRM-protected
Java archive into an internal memory buffer 615(step 614).
Subsequent file i/o operations on the DRM-protected Java
archive are now routed by the DRM file i/o patches 610 to
the internal memory buffer 615 (as opposed to the file
system) while file i/o operations on any other files are
passed through to the underlying unmodified OS file i/o
services. This phase again therefore uses the loading of
an unencrypted innocuous proxy class 41l4c to stimulate file
i/o0 activity on the DRM-protected Java archive so that it
can be identified and read into an internal memory buffer
615. The proxy class 41l4c is read from the internal memory

buffer 615 and loaded into the JVM.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-30-

If the proxy class 4l4c has been successfully loaded
in step 609, the SAL native method obtains access to the
internal memory buffer 615 containing the DRM-protected
Java archive at step 616. Depending upon the 0S, this may
involve passing pointers to buffers or actually copying
buffers.

The SAL native method can now restore the DRM-
protected Java archive to its original form by decrypting
the encrypted class files within the DRM-protected Java
archive in the internal memory buffer 615 and restoring any
related archive data structures (e.g. field lengths or
checksums). This is more easily achieved in the SAL native
method than in the DRM file i/o patches 610 since DRM file
i/o patches typically operate in resource-constrained
environments (although performing the decryption on-demand
from within the DRM file i/o patches is an option). The
decryption may involve first authenticating the end user or
their computer and obtaining cryptographic keys from local
or network caches or servers. For present purposes it is
in any event assumed that the DRM system has a secure means
of obtaining these keys and protecting them from discovery

and unauthorised redistribution.

The SAL method restores the decrypted Java archive
61l5a to be accessible from the DRM file i/o patches 610.
By this point, the DRM client has recovered the original
DRM-protected Java archive to an internal memory buffer
615a to which "trusted" file i/o operations are being

redirected (for this trusted thread).

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-3]-

The SAL method, as shown by step 618, now iterates
through all the encrypted classes within the DRM-protected
Java archive, requesting the JVM to load each class by
name. This results in further file i/o requests being
routed to the decrypted DRM-protected Java archive stored

in the internal memory buffer 6l5a.

When the SAL method has successfully loaded all the
DRM-protected classes it can remove or deactivate the DRM
file i/o patches 610 and deallocate any buffers. By this
point, the DRM-protected classes have been loaded into the
JVM and stored in JVM-specific data structures in virtual
memory from where they are far more difficult to reverse
engineer than when stored on disk in the well documented
Java class file format. Care should preferably be taken to
ensure that internal OS file i/o structures are left in a
state such that subsequent unmodified file i/o for
unencrypted classes within the (encrypted) DRM-protected

Java archive on the local file system will succeed.

The SAL method can thereafter, as shown by step 620,

return control to the Java application stub class 414b

- which then hands over execution to the original entry point

of the Java application. The basic use of application
stubs to provide an executable wrapper around a Java
application (previously defined to include Java applets) is
a standard technique available in Java programming. The
application stub is used in this embodiment to load the DRM
native method library and then to invoke the SAL native
method without requiring any changes to the underlying DRM-

protected Java application.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-32-

Figure 7 illustrates schematically an example of a
method of creating a DRM protected Java archive including a
DRM manifest . A DRM encryption utility 700 adds an
additional manifest file 702 (or set of manifest files) to
the DRM-protected archive 704 containing information about
the encrypted class files within the archive to obtain a
DRM protected Java archive 706. This manifest can contain
for example any of the following: (i) the names and/or
locations of the encrypted class files within the DRM-
protected archive; (ii) DRM metadata related to the
licensing of the encrypted classes, e.g. their identity
from a rights management perspective, the URLs of remote
DRM rights servers, etc.; and (iii) digital signatures for
the encrypted class files to enable the DRM client to
verify that they have not been tampered with.

To prevent tampering, the manifest is itself
preferably digitally signed with a private key known only
to the DRM client. The DRM client verifies the manifest
signature to check that the manifest has not been tampered
with. Once‘it has verified the manifest signature, the DRM
client uses the DRM data in the manifest file to perform
its rights management operations, e.g. obtain licences and
decryption keys, iterate through the archive decrypting
encrypted class files (see above), etc. All Java archive
formats support the concept of folders, in an analogous
fashion to directories in a typical 0S file system. The
manifest can be given a DRM-recognisable name and stored in
a special DRM folder within the archive so that it does not

clash with the names of the class files.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-33-

It is to be noted that the separate manifest within
the DRM-protected archive may in practice be one manifest

file or several.

Figure 8 illustrates schematically an example of a DRM
encryption utility 800 that creates a DRM protected signed
Java archive 804 from a signed Java archive 802. Java
applications are typically downloaded to the end user’s
computer and executed within a specific vendor’s JVM.

Since Java applications are active, executable components,
there is a risk (to the end user) that the Java application
is not what it appears to be and is in fact a "virus", i.e.
a malicious application intent on causing damage to the end
user’s computer or obtaining access to sensitive end user
information. Consequently, there are several levels of
security built into the Java language aimed at protecting
the end user. One of these levels of security is known as
code-signing where the Java classes are packaged into a
Java archive (e.g. in ZIP, JAR or CAB format) and the
archive is digitally signed so that compatible JVMs can

detect any signs of tampering with the Java archive.

Digital signing involves calculating cryptographic
hash values for the class files within the archive and
encrypting them using a secrét key. Hash functions are
mathematical algorithms used to calculate a value encoded
as a small number of bytes from a buffer containing a
potentially far larger number of bytes. The value is
calculated such that it is (a) difficult or impossible to
reconstitute the larger buffer from the hash value and (b)
very difficult to construct another large buffer that would

yield the same hash value.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-34-

Verifying digital signatures involves recalculating
the cryptographic hash values for the class files within
the archive, decrypting the original hash values using the
secret key (or the matching key from a public-key, private-
key pair), and comparing the hash values. If the class
files have been modified, the hash values will be
different. The hash values are protected by the
encryption. This is a widely used, well-known technique.
The problem for DRM systems wishing to encrypt signed Java
archives (such as those described above) is that when the
DRM system encrypts class files within the Java archive, it
is effectively tampering with the class files and
invalidating the archive’s digital signatures. This may
not be a problem if the DRM client is able to restore the
encrypted Java archive to its original form before the
digital signatures are verified, but this is often not
possible. The methods discussed above can be extended to

handle signed Java archives.

If the archive’s digital signatures are checked one at

a time, at the time each class i1s loaded from the Java
archive, then no changes need be made to the processes
described above, since before the first encrypted class is
loaded it will already have been pre-emptively restored as
a consequence of loading the unencrypted proxy class. The
application stub and proxy will already have been loaded
but their signatures will be valid since they were not

encrypted.

If all the archive’s digital signature are checked at
the time that the first class is loaded from the archive,

then the DRM client cannot afford to load even the

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-35-

application stub from the DRM-protected Java archive
(otherwise the JVM will detect the invalid signatures
caused by the encrypted class files and refuse to load the
Java archive). Various ways of decrypting the DRM-protected
archive before any classes are loaded from it are

avallable.

For example, the DRM client can monitor all file i/o
(using either of the methods described previously) for DRM-
protected Java archives being opened, and pre-emptively

decrypt them.

As another example, the application stub class can be
locally installed as part of the DRM client installation
and loaded from the local file system. This gives it the
privilege to execute the SAL native method, load the proxy
class and pre-emptively decrypt the DRM-protected Java
archive and load the decrypted classes, as described

previously.

An alternative method for avoiding the problem of
invalid digital signatures is to sign the Java archive
after it has been partially encrypted (so that the
encrypted Java archive has valid digital signatures). It
may also be necessary to sign the Java archive before and
after the encryption phase so that the pre-encryption
signatures for class files can be stored during the

encryption phase and restored at the decryption phase.

Figure 9 illustrates schematically an example of how
the Java tamperproofing techniques described above enable
full DRM capabilities to be built into the Java programming

language. Client-side DRM systems are effectively complex

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-36-

rights management engines that are capable of decrypting
encrypted content, authenticating end users, and obtaining
and managing the rights that end users have over specific
pieces of digital content. The client-side DRM may also
include secure viewers for supported format (e.g. a secure
HTML renderer) or the DRM client may itself be included
within a secure viewer. Whichever way, the DRM client must
hand off decrypted content to a secure viewer from which it
cannot easily be recovered (in its decrypted form) by
unauthorised users. The interface between the secure
viewer and the DRM client in software is in practice

inevitably via a DRM client-side programming APT.

Referring to Figure 9, in the case of Java, secure
viewer 902 is a Java Virtual Machine (JVM). The DRM
client, as discussed above, is responsible for loading
encrypted classes from within a partially encrypted Java
archive 904. Additional rights management functionality is
exposed as part of a Java DRM programming API which is
exposed as a DRM class library 906 (for example
javax.drm.*). Typical functionality provided by the Java
DRM programming API includes: (i) decrypting DRM-protected
content handled by the Java application; (ii) obtaining
licences and checking for ongoing validity; (iii) checking
whether certain licensed functionality is permitted by the
eﬁd user rights, e.g. printing, saving, etc.; and (iv)
obtaining information about licensed functionality and

licensing terms

Both the Java DRM implementation and the calling Java
application code can be protected from tampering by the
techniques described above. Using the Java tamperproofing

techniques described above to protect Java rights

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-37-

management code, combined with the easy extensibility of
JVMs beyond the built-in Java class libraries 908, through
installable class libraries, enables DRM vendors to
effectively build digital rights management directly into
the Java programming language. Without this, any rights
management or security technology built into Java
applications can easily be reverse engineered (using a
disassembler or decompiler) and removed or modified. The
built-in security features of Java, such as code-signing,
are all aimed at protecting the end user from malicious
Java applications and do nothing to protect Java

applications from malicious end users.

Accordingly, in this example, Java tamperproofing
techniques are used in conjunction with a client-side DRM
API implemented in Java so as to be able to offer powerful
licensing and rights management capabilities to the
developers of Java applications. As Java applications
become more widely used in a commercial context (i.e. as
opposed to purely in-house developments where security and
licensing is less of an issue), this aspect will become
very important. Example applications include (i) content
delivery systems implemented in Java which need to be able
to deliver valuable content (e.g. documents, audio, video,
etc.) to consumers in a controlled fashion without losing
control of that content; and (ii) e-commerce systems that
handle sensitive information (such as credit card
information) and need to be protected from unauthorised

access.

Embodiments of the present invention have been
described with particular reference to the examples

illustrated. However, it will be appreciated that

WO 02/31648 PCT/GB01/04533
-38-

variations and modifications may be made to the examples

described within the scope of the present invention.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-39-

CLAIMS

1. A method of running a Java application that uses a
previously encrypted Java archive, the encrypted Java
archive comprising at least one encrypted Java class file,
the method comprising the steps of:

using a secure class loader to load the at least one
encrypted Java class file from the archive into a Java

virtual machine.

2. A method according to claim 1, wherein the secure
class loader is implemented by a native method cooperating
with a file hook which intercepts and modifies file

input/output requests.

3. A method according to claim 2, comprising the step of

loading a device driver to install the file hook.

4. A method according to claim 1, wherein the secure
class loader is implemented by a native method cooperating
with a patch which intercepts and modifies file

input/output requests.

5. A method according to claim 1, wherein the secure

class loader is implemented by a native method cooperating

with a trap patch which intercepts and modifies file

input/output requests.

6. A method according to any of claims 1 to 5, comprising

the steps of:

loading an application stub class; and,

10

15

20

25

30

WO 02/31648 PCT/GB01/04533
-40-

calling an entry point within the application stub

class thereby to call the secure class loader.

7. A method according to claim 6, wherein the application
stub class is not contained in the archive so that it can
invoke the secure class loader to pre-emptively decrypt the
archive before the Java virtual machine has opened the

archive.

8. A method according to claim 6 or claim 7, wherein the
application stub class is saved locally at a client device

where the Java application is run.

9. A method according to claim 6, wherein the application

stub class is located within the archive.

10. A method according to any of claims 1 to 9, comprising
the step of stimulating file input/output requests to the
archive by the step of the secure class loader attempting

to load a proxy class from the archive.

11. A method according to claim 10, wherein the proxy

class is located in the archive.

12. A method according to any of claims 1 to 11,
comprising the step of establishing a thread guard to limit
access to the archive to a trusted thread calling the

secure class loader.

13. A method according to any of claims 1 to 12,
comprising the step of using the secure class loader to
load at least one further encrypted Java class file from

another archive into the Java virtual machine, the secure

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-41-

class loader operating to keep track of which encrypted

Java class file has been loaded from which archive.

14. A method according to any of claims 1 to 13,
comprising the step of decrypting the at least one
encrypted Java class file from the archive to an in-memory
buffer from which it is loaded into the Java virtual

machine by the secure class loader.

15. A method according to any of claims 1 to 14, wherein
the archive includes a manifest file which includes at
least one of the following items:
the identity of the at least one encrypted Java
class file;
the name of the at least one encrypted Java class
file;
metadata relating to rights management of the at
least one encrypted Java class file; and,
at least one digital signature for the at least
one encrypted Java class file;
the method comprising the step of loading the manifest

file into the Java virtual machine.

16. A method according to claim 15, wherein the manifest

file is protected against tampering by a digital signature.

17. A method according to any of claims 1 to 16, wherein
the archive contains at least one encrypted Java class file
that is digitally signed, the method comprising the step of
the secure class loader pre-emptively decrypting the entire
archive when it is first opened by the Java virtual machine
but before any signed class files have been read from by

the Java virtual machine.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-42-

18. A method according to any of claims 1 to 17, wherein

the archive is digitally signed after encryption.

19. A method according to any of claims 1 to 17, wherein
the archive is digitally signed both before and after
encryption, with the pre-encryption signatures being stored
in the encrypted Java archive so that they can be restored

after the archive is decrypted.

20. A computer program containing program instructions for
causing a computer to perform a method according to any of

claims 1 to 19.

21. A computer program according to claim 20, wherein the
computer program is embodied in a digital rights management

client.

22. A method of protecting Java bytecode, the method
comprising the steps of:

encrypting at least one JavaAclass file to produce at
least one encrypted Java class file; and,

archiving, in an archive, the at least one encrypted
Java class file;

whereby a secure class loader can load the at least
one encrypted Java class file from the archive into a Java

virtual machine.

23. A method according to claim 22, comprising the step of
configuring a Java application that depends on the
encrypted Java archive to run by first loading an
application stub class and calling an entry point within

the application stub class.

10

15

20

25

30

WO 02/31648 PCT/GB01/04533

-43-

24. A method according to claim 23, wherein the

application stub class i1s contained in the archive.

25. A method according to any of claims 22 to 24,
comprising the step of including a proxy class in the
archive that a secure class loader can attempt to load in
order to stimulate file input/output requests when the Java

application is run.

26. A method according to any of claims 22 to 25,
comprising the step of:
adding a manifest file to the archive, the manifest
file including at least one of the following items:
the identity of the at least one encrypted Java
class file;
the name of the at least one encrypted Java class
file;
metadata relating to rights management of the at
least one encrypted Java class file; and,
at least one digital signature for the at least

one encrypted Java class file.

27. A method according to claim 26, wherein the manifest

file is protected against tampering by a digital signature.

28. A method according to any of claims 22 to 27, wherein
the archive contains at least one encrypted Java class file

that is digitally signed.

29. A method according to any of claims 22 to 28, wherein

the archive 1s digitally signed after encryption.

10

15

20

25

WO 02/31648 PCT/GB01/04533

-44-

30. A method according to any of claims 22 to 28, wherein
the archive is digitally signed both before and after
encryption, with the pre-encryption signatures being stored
in the encrypted Java archive so that they can be restored

after the archive is decrypted.

31. A method according to any of claims 22 to 30, wherein
the at least one Java class file provides at least one of
the following functions:
decrypting rights management protected content
handled by a Java application;
obtaining a licence;
checking for licence validity;
determining whether a function is permitted by
licensed rights;
obtaining information about a function; and,
obtaining information about at least one

licensing term.

32. A computer program containing program instructions for
causing a computer to perform a method according to any of

claims 22 to 31.

33. A programming language having functionality to enable

the method of any of claims 22 to 31.

PCT/GB01/04533

WO 02/31648

1/9

| @1nbi4

‘suofjeoyivads abesn pue sainjeubis >
‘sAay uondAlosp palinbal ay) JaAles NHd
BuluIRlUOD SJ8sn pus pajesiusyine
0] s)ybu senss) JoAIas INHA b \\.
801
[|
]
=y
"sjybu paioads
ay} 0} Buipiodoe 1asn
pus ayj 0})i shejdsip
pue jusjuod ay} sydAiosp
Ajelodwsl “1enias WHA - = =
woy sjybu sysenbal | ——; _ JeuenU| |
JoMaIA pojgeus-Nda € | =) | feuls| _
JUSJU0D
_ pajdAiou]
@O . , | /_‘/ T
: | _ G
wy --— - - - — — K
0l

"0)0 ‘NOY-a) ‘dy ‘18ussn

sainjeubis |eybip pue
uondAious jo 1aAe} uiyym
JUBU0D s|ess Jaysiiqnd °|

‘lew ‘gam "B 8 ‘uonnqlysip
2IU0J}08}e BIA Aj9al) S8)B|NDIID
Juayuoo paydAiouy g

SUBSTITUTE SHEET (RULE 26)

Z 2unbi4

9p02 82JN0S 8p0o 82IN0Ss
BAB[PayIPOIN eAer [eulbLO

PCT/GB01/04533

WO 02/31648

2/9

eAB[

00¢ 1] %4

‘'swiv)sAs Bunetado juaiayip

uo (SWAF) Seulyoey [enpiA eaer
UIYHIM 8]N0axa 0} 9p0oajAg eAep
aWwes ay} peojumop siasn puj g

1ouRIU|
LENIET

80¢

‘uonesiidde eaep

9y} JO uoIsIaA paledwe) e 0}
ajidwooal pue 1 Ajjpow ‘@pod
92In0s eAer |eulbuo ay}

0] }I 9|1Idwod8p ‘@p0oos)Aq ay)
2} ued Jasn snopjjew y "¢

8po9o
apooajAqg 924N0S
BAB[eAer

= Joj1dwod aanal

< = ¢ eAefr ¢ IR

_.
_.

90¢ 1414 ¢0c¢

8p029JAQ [9AS|-MO|

ojul pa[Idwoo si yoym
9p02 92IN0S BAEB[[OA3]
-ybiy eyum siadojana(g |

SUBSTITUTE SHEET (RULE 26)

PCT/GB01/04533

WO 02/31648

3/9

¢ ainbi4

20IN0S AR

"sellelql] ssejo
BAB[UlH|INg JO sjuauodwiod
"9p0o2 ener Aued paiy) jeussixe
0} seoeuBiul pabueyoun

(.payeosnyqo,)
peal 0} JjnoIyip
‘Buisnjuon

KA 43

}Aann

! Jaidwoss(g
} s

4

9poosiAqg
eAep
pajedsniqo

i

i

e T

3%

10)eosniqo

80¢

2poo8iAg

eAe

.IIAI

il

l‘l

—le

90€

Jajdwod
eAep

[

y0€

opoo
92In0os
eAep

—— | X

c0¢

SUBSTITUTE SHEET (RULE 26)

PCT/GB01/04533

WO 02/31648

4/9

aviy

(uoneoydde
0} juiod Asjua) 11

gnjs uoneoiddy
7

L

oLy ssejo Axold

I

2

5434
S8l sse|o \ 2

¥ 2unb14

‘Anmn uopdAious WyQ Aq
pappe sasse[o gnis uoneoidde
pue Axoud jeuonippy "¢

eAep pajdAioug /

3y

N [§

SSEJO BAEl \\

paydAiousaun w
17457

Li

Ayn
uondAsoua
WHa

[4%%

"S9|l} SSE[O 0} suoleduipow

Jajje pljeA ujeulal 0} jeulLIo) dAlyoe
Bunsnipe ‘sji 8AIyaIR UIYIM SBSSE|D
pajeulwou sydAious Ayinn INYQA 'S

) o

oLy

8pooalAg
eAer

UL

apooviig
pajdAioug §
apooslAg m
Aoy
apoo

92IN0S eARp

J9|1dwod et
eAep 1
/

—_—

148174 c0v

ol

aAlYyOJE U] SBjl) ssejo
uoneoldde salo)s
Amn JeAyory g

-ssa001d piing Jo ued
Sk 8p0o8)Ag Buuiejuoo

SO|1} SSB[O 0} ©P0D 99IN0S
saidwoo Jojidwoo eaer °|

SUBSTITUTE SHEET (RULE 26)

PCT/GB01/04533

WO 02/31648

5/9

G ainbig

"O/1 3]} paxooyun

‘1ejnbai eIA BAIYDIR BAB[B} WOJ) pOPEO] 8l Sasse|o
(peyosjoidun) Jusnbasqgng "uoneoldde eaep BulAjJapun
ay} Jo juiod Anuae ay) 03} sessed uonnosax3 ‘g

\

025~

"18ALIP 92IA8P YA

8y} speojun pue ooy o NHQ 2y} Ssjjeisuiun ‘piend
pealiy} ey} seAowal ‘(aAlyote paydAiosp Alowsw-ul
U} 0} ooy 3l WHA 8y Aq paynol st O/| 8l4) INAr 8y}
ojul sasse|o pajdAioep sy} Speoj poylaw aAleU S G

8Lg~ =
‘a)e)s uondAious-aid sji 0] sAlyole
ay) Buuoysal ‘Jeyng Alowsw-uj 8y} Ul dAIYDIE BABI
PAALL sidA1oep (poyjaw sAleU TYS UIYIM) JUsld NYA T
919
"layng Alowsw-uj
Ue O}Jul 8AIyDJe aljud ay) speoj Ajpandwas-aid pue sseo
Axoid Buipeo] wouy O/} a)y sidasteiul ooy o INYJ "€
605~
‘plenb pealy} saysiiqe}sa pue Yooy wa)sAs o)l a|ge|jelsul
. PUEJSALID S0IABP |NYQ SPEO] PoUleW SAlBU VS "2
906~
"(poujew sAlj_U YS BU} SBINJ8X8 Pue SPeOj UYoIYyM)
0o |_» SAIYOJE BAEB[BY) WOy gn)s uopeoijdde speoj WA “L

gnjs uopeoyddy

@
in\Av

SaSse|0 pa}os)old

=)

—7]

BAIyOJe Beae
pajoajoud

4

BaAIyoJe
eAer Aowsuwi-ul paidAioeq

0 oo g)
eGLG $

aAlyole eAe Alowsw-uj v

EEE@% i %E
GG & g “

sse|o Axoud

M
QS\AV

JOALIP

S01ASP INHQ
805~

INTINN\TITTE:

¢ —

I J

2

qnis uoneoiddy

niv\.wl -

pealiy} lapeo) sse|o WAr

SUBSTITUTE SHEET (RULE 26)

PCT/GB01/04533

WO 02/31648

6/9

029"

819~

9 ainbi4

"O/1 8|} payoledun ‘Jeinbal eiA aAlyole

BAe ay) wody papeo| ale sasse)o (pajosjoidun)
juanbasgng uoneoljdde eaep Buikjiepun

ay} jo yiod Anjus ay) 0} sassed uonnosax3y "9

"S80IAIBS O/ Sl SO |89AS|-MO] 8y}
woJ} seyoled WNQ 9yl seaowsel pue pienb pealy)
oy} sanowal ‘(eAlyose paydAiosp Alowaw-ul ay) o)

sayojed WHQ 8yt Ag paynol st O/ 8ly) Al 8} ol
sosse|o paydAIoap sy} Speo| poylall SAIIBU S °G

Le

"8}e]s uondAioua-aid s)i 0} SAIYdIe ay]
Bunoysal Jayng Alowsw-ul 8y Ul 8AIYDIE BAR[8]
sjdAIoap (poyjew eAleu yS UIYIM) Jusiio WHQA v

4

919~

609"

"19)yng Alowsw-ul ue
OJul aAlyoJe anmua ay) peoj Ajlaajdws-aid pue sse[o
|, Axoid Buipeoj wouy O] 8|y 1deousyul ssyojed WHQ '€

909

"pienb peauy) saysijge}se pue saoiales Off 9l SO

. [9A8]-MO] 0} saydjed S|jejsul poyisw aAijeU yS ‘2

P09~

‘(poylaw aAnBU TYS 8Y} S8INDXS pUB SPEO| YdIYM)
|, 9AIYdJE BABI BU} WOl gnis uoneolidde speo] WAT 'L

gnjs uoneolddy

=)
ary—" 4

S9SSE[0 Pa}09]0id

=

—Z

2

BaAIyole
eAer Alowsw-ul paydAioeg

EEEEE o]
A

eGl9
BAIYoJe eAer Alowsw-u #

TTmNNIDND

& vE\.

ssejo Axold

aAlyole eAep
pajoajoud
W¥a

x

019
/

wmcou.ma
O/l Nda

GiL9

TN [Y

Q
Q
i
5
\.
|
I
—

qnis c%mo__aa,q —

== — — — —

@S\.W

peaiy] Japeo| ssejo NAr

SUBSTITUTE SHEET (RULE 26)

PCT/GB01/04533

WO 02/31648

7/9

. 9inbi4

dAIUYDJR BARP
pajoaoid YA 1ap|o}

}ssjiueiy
ainjeubis ".wo.m“--v\
| | Ua ‘ 1sslivewl
et 1
[eybip ysajiuey m .\m\\ Wyda

IIIIIII

"aAIyoIe pejoslold-NYa eul =
ul papnjoul pue paubis Ajjepbip %
J[osH ‘sl ssepo pejdAious \\\\
Joj saunjeubis jeubip apnjoul
O} payipow siissjiuew INHQA ¢

O

90. ¢0. Wd 0.

aAIyDJE BABRP
pajoajoidun

L o o

AwmtcmE /

"aAIyoue eAep 1dAIous Q)

Ann uondAious YA Aq pasn si ejepelawl
WY@ pue pajoajold aq 0] sajj ssejo

Jo saweu Bujuejuod jsayiuew WYQ L

SUBSTITUTE SHEET (RULE 26)

PCT/GB01/04533

WO 02/31648

8/9

g 91nbi14

aAIyDle
eAer paubis
pajosjoid-NHQ

&SE]

19

"'sasse|o paydAious
ay} Joj sainjeubis [eybip

oy} sejepijeAul WwasAs WHQA 8y}

aAlyoJe eAep paubis ay} uIym
so|i} sse|o swos bundAious Ag

El
7

7,

\

NI

008

\iLIIII

08

\ Wyda

BAIyole
eAer paubig

ainjeubis
lenbiq-

Aupn
uondAinous

) »
UL @

1

c08

SUBSTITUTE SHEET (RULE 26)

PCT/GB01/04533

WO 02/31648

9/9

6 92anb14

abenbue| Buiwwelbo.id eaep sy} ojul saijigedes
Juswabeuew sybil |BI0ISWIWOD plINg 0} 8P0D
Buisuasi| Y@ 03 Sj|ed apnjoul ued suonestdde
eAe((pajooidiadwe)) pajosloid-AN Qg

« wIp-xeael

‘69 ‘(psjooidiadwey)
salelql] ssepo

BABI INY [dAllisusg

7

7

906

Lorenel

‘. Buejeael

‘6o ‘sauelq
SSe0 BAB[Ul-}jing

FEYNELNIN TG

lonses Juswabeuewl
sjybu ejowal
0} sisenbai asuaoi

e Bl

Spoyiall 80!

oAU Y[/

006
WAP

suoneoldde eaer
pajosl0ld-INHQ

77
7

N

¥06

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

