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(57) ABSTRACT 

A computer implemented method for modelizing a nuclear 
reactor core, including the steps of partitioning the core in 
cubes to constitute nodes of a grid for computer implemented 
calculation, calculating neutron flux by using an iterative 
Solving procedure of at least one eigensystem, the compo 
nents of an iterant of the eigensystem corresponding either to 
a neutron flux, to a neutron outcurrent or to a neutron incur 
rent, for a respective cube to be calculated. 
The neutrons are sorted in a plurality of neutron energy 
groups, and the eigensystem iterative solving procedure 
includes a Substep of conditioning the eigensystem into a 
restricted eigensystem corresponding to the eigensystem for a 
selection of Some neutron energy groups. 
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COMPUTER IMPLEMENTED METHOD FOR 
MODELIZING ANUCLEAR REACTOR CORE 
AND A CORRESPONDING COMPUTER 

PROGRAMI PRODUCT 

0001. This application claims priority to European appli 
cation EP09305766.9, filed on Aug. 18, 2009, the entire dis 
closure of which is incorporated by reference herein. 
0002 The invention relates to a method for modelizing the 
core of a nuclear reactor, especially for calculating neutron 
flux within the core. 

BACKGROUND 

0003. The results of such a modelizing method can be used 
to prepare safety analysis reports before building and starting 
a reactOr. 

0004. These results can also be useful for existing nuclear 
reactors and especially for managing the nuclear fuel loaded 
therein. In particular, these results can be used to assess how 
the core design should evolve in time and decide of the posi 
tions of the fuel assemblies in the core, especially the posi 
tions of the fresh assemblies to be introduced in the core. 
0005 Such modelizing methods are implemented by com 
puters. To this end, the core is partitioned in cubes, each cube 
constituting a node of a grid for implementing a digital com 
putation. 
0006. Usually the steady-state diffusion equation to be 
Solved during Such a digital computation amounts to: 

renoval g’=l production gig inscatter incurrent 

(1) 

G 2. 
in win i gii SR =X + XX,+ i 

(2) 

with 

0007 where w is a first neutron eigenvalue, m is a cube 
index, also called nodal index, G is the number of neutron 
energy groups and g.g. are neutron energy group indexes, u is 
a Cartesian axis index of the cube, X" represents macro 
scopic absorption cross-section for the cube mand the energy 
group g, X" represents macroscopic fission cross-section 
for the cube m and the energy group g, X" represents 
macroscopic slowing down cross-section for the cube mand 
the energy groups g, d" represent neutron fluxes, such that 
the X". . . . d" represent the reaction rates for the corre 
sponding reactions (absorption, fission), v is the number of 
neutrons produced per fission, X is the fraction of neutrons 
emerging from fission with neutron energy g, a " is the width 
of cube m along Cartesian axis u, and 
0008 with the relationship between the neutron outcur 
rentsi," andji.", neutron fluxes d" and neutron incur 
rentsji," and j," defined by: 

it it it it is - { jg. = Cup - C3aj.It Caig. (3) 
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I0009. The coefficients c.", with i=1,2,3, are character 
istic of the cube m and depend on nodal dimensions and 
macroscopic cross-sections X". 
0010 FIG. 1 is a schematic representation in two dimen 
sions of a cube m showing the neutron incurrents j," and 
j." for u X, y and Z; the neutron outcurrents j," and 
j." for ux, y and Z, and the neutron fluxes X". Indexes 1, 
respectively r, refers to each left interface surface, respec 
tively each right interface surface, of the cube m for the 
respective Cartesian axis X, y. Indexes +, respectively -, rep 
resents the orientation from left to right, respectively from 
right to left, for the respective Cartesian axis X, y. 
0011. The steady-state diffusion equation (1) is also 
named NEM equation, for Nodal Expansion Method equa 
tion. 

0012. Both US Patent Publication 2006/01847286 and EP 
209.1049 teach a method for modelizing a nuclear reactor core 
via a computer. 
0013. In the state of the art methods, most of the compu 
tational efforts are concentrated in the part dedicated to the 
iterative solving of a large eigensystem corresponding to the 
steady-state diffusion equation (1). 
0014. In order to lower these computational efforts and 
therefore accelerate the Solving of the eigensystem, Coarse 
Mesh Rebalancing (CMR) procedures have been used. In 
these procedures, neutron fluxes and currents for a given 
iteration are multiplied with a corrective factor before pursu 
ing Subsequent computationally expensive iterations. The 
multiplicative correction serves to Suppress the presence of a 
non fundamental wavelength part of eigenspectrum with the 
first neutron eigenvalue W close to an exact value W 
0015. However, the acceleration effect realized in this way 
depends on the numerical proximity of the highest coarse 
mesh level in a multi-level hierarchy to the full-core diffusion 
level. Such CMR procedures may therefore lead to very slow 
convergence or even convergence stagnation, thus increasing 
the computational effort. 

exeges 

SUMMARY OF THE INVENTION 

0016. An object of the present invention is to solve the 
above-mentioned problems by providing a nuclear reactor 
modelizing method which offers a better convergence accu 
racy, a better computational robustness and a better compu 
tational efficiency so that relevant neutron flux calculations 
can be obtained within a short computational time period and 
with a very good convergence accuracy. 
0017. The present invention provides a computer imple 
mented method for modelizing a nuclear reactor core, com 
prising the steps of partitioning the core in cubes (10) to 
constitute nodes of a grid (12) for computer implemented 
calculation, calculating neutron flux by using an iterative 
Solving procedure of at least one eigensystem, the compo 
nents of an iterant of the eigensystem corresponding either to 
a neutron flux, to a neutron outcurrent or to a neutron incur 
rent, for a respective cube (10) to be calculated, wherein the 
neutrons are sorted in a plurality of neutron energy groups, 
and wherein the eigensystem iterative solving procedure 
comprises a Substep of conditioning the eigensystem into a 
restricted eigensystem corresponding to the eigensystem for a 
selection of Some neutron energy groups. 
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0018. The present invention also provides a computer pro 
gram product residing on a computer readable medium and 
comprising computer program means for running on a com 
puter implemented method. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0019. The invention will be better understood upon read 
ing of the following description, which is given solely by way 
of example and with reference to the appended drawings, in 
which: 
0020 FIG. 1 is a classic representation of the relationship 
between macroscopic cross-sections, neutron incurrents, 
neutron fluxes and neutron outcurrents, in a modelized 
nuclear core reactor, 
0021 FIG. 2 is a schematic view illustrating the partition 
ing of a nuclear core, and the association of driving factors 
with interface Surfaces of a cube according to an aspect of the 
present invention, 
0022 FIG. 3 is a schematic representation of the decom 
position of isotropic and anisotropic parts of neutron outcur 
rents leaving the cube of FIG. 2. 
0023 FIG. 4 is a schematic representation of a multi-level 
V-cycle from the iterative solving procedure according to 
another aspect of the present invention, 
0024 FIG. 5 is a detailed view of box V of FIG.4, 
0025 FIG. 6 is a schematic view illustrating the partition 
ing of a nuclear core according to another aspect of the inven 
tion, and 
0026 FIG. 7 is a set of convergence curves of eigensystem 
iterative solving procedures for the state of the art method and 
different aspects of the method according to the present 
invention. 

DETAILED DESCRIPTION 

0027. In the following description, the case of a pressur 
ized water reactor (PWR) will be considered, but it should be 
kept in mind that the present invention applies to other types 
of nuclear reactors. 
0028. In a first step of the computer implemented model 
izing method according to the invention, the core of the reac 
tor is partitioned in cubes 10 (shown on FIG. 2) as in the state 
of art methods. Each cube 10 corresponds to a node of a grid 
or network 12 on which numerical computation will be imple 
mented through the computer. 
0029. In order to ease the representation, the grid 12 is 
shown on FIG. 2 as being two-dimensional, but it should be 
kept in mind that the grid is actually three-dimensional in 
order to represent the whole core. 
0030. The neighbours of the cube 10 with the cube index m 
(in the center of FIG. 2) are the cubes 10 with the respective 
cube index m' (m), m'(m), m'. (m) and m'a (m). In the follow 
ing of the description, the cubes 10 will be directly designated 
by their respective cube index. 
0031. In a second step of the computer implemented mod 
elizing method according to the invention, the neutron fluxes 
d" within the core will be calculated by the solving of an 
eigensystem corresponding to the steady-state diffusion 
equation (1). To this end, an iterative solving procedure is 
used. 

10032. A removal operator R, an inscatter operator S, a 
production operator F, and an incurrent operator G are 
defined, from Equation (1), by: 
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i G (4) 

(RI. . -- X. 7. g'tg 

M - G 

(SIC-X- g Eg 

G 

Fol = Y,Xv), d" 
g’=1 

(G. - ) i.e. i + ...) 

I0033) Anisotropic outcurrent generation operator II and a 
mono-directional current throughflow operator G2 are defined 
by: 

(). 
-- it it - C3gu Jigi C2gu Jigit 

(0034) A coupling operator Y couples the outcurrents to the 
incurrents for neighbouring cubes 10, and is defined by: 

iF = "= E- (6) 
is = "= i Sr' 
i" = "= it 
is' = (FJ" = i. 

(0035) This coupling operator Y uses the fact that, for 
example, for a cube m, the u-directional left-oriented outcur 
rent equals the u-directional left-oriented incurrent for the left 
neighbour in direction of the Cartesian axis u, and that similar 
equalities are verified for the other directions and orienta 
tions. For example, the neutron outcurrents coming from 
respective neighbours m' (m), m'(m), m'im), m'a (m) into the 
cube m are the neutron incurrents for the cube m, as the 
neighbours m' (m), m'(m), m'im), m'a (m) shown in FIG. 2 
are respectively the neighbours (m+1) for the Cartesian axisy, 
(m-1) for the Cartesian axis X., (m+1) for the Cartesian axis X 
and (m-1) for the Cartesian axis y of Equation (6). 
0036. Using the above operators, the equations (1) and (2) 
can be written as: 

Rh = (Af+S)3 + Gjin) (7) 
fort) = rib-ffin) 
fin) out, 

0037 or as: 

R-S-AF Ó G ( ) O (8) 

-II 6 || ". - 
in ) 0 

0038 which is the eigensystem to be solved. 
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0039. In Equation (8), d is a neutron flux column vector, 
wherein each element is a neutron flux d" for a respective 
cube mand for a respective energy group g (FIG. 1). Thus, the 
dimensions of the neutron flux column vector d are equal to 
(GxM, 1), where G is the number of energy groups and M is 
the number of cubes 10.j" is a neutron outcurrent column 
vector, wherein each element is a respective neutron outcur 
rent ji". j.", for the respective cube m, energy groupg 
and Cartesian axis u, with u equal to x, y or Z.j" is a neutron 
incurrent column vector, wherein each element is a respective 
neutron incurrent ji", ji", for the respective cube m, 
energy group g and Cartesian axis u. Thus, the dimensions of 
the neutron outcurrent vector columnj?") and the neutron 
incurrent vector columni" are equal to (6xGxM, 1). In the 
following of the description, the neutron outcurrent vector 
columnj?") is also noted j. 
10040. Thus, the components of an iterant (d.j', '") of 
the eigensystem defined by Equation (8) correspond to the 
neutron fluxes d", the neutron outcurrentsi,"j", and 
the neutron incurrents ji".j", to be calculated for each 
cube m and for each energy group g, and which are the 
respective elements of the neutron flux column vector did the 
neutron outcurrent column vectori" and the neutron incur 
rent column vectori". 
0041. The iterative solving procedure comprises a sub step 
of conditioning the eigensystem into a spare eigensystem 
wherein the components of an iterant G'.j") of the spare 
eigensystem only correspond either to the neutron incurrents 
ji", j," coming into the respective cube m or to the 
neutron outcurrentsi", j," coming from the respective 
cube m, which are the respective elements of the neutron 
outcurrent column vectori" and the neutron incurrent col 
umn vectori". 
0042. The conditioning of the eigensystem into a spare 
eigensystem starts from modifying the first part of Equation 
(8) written as: 

cDoD 

(R-S-F)-p-Gji=0, (9) 

0043. Defining the symbolic operator P, (R-S- F), 
the neutron flux column vector d is expressed in function of 
the neutron incurrent column vectori" as: 

(p=PG(i) (10) 

0044. By substituting this expression in the outcurrent 
equation part of Equation (7), i.e. in the second part of Equa 
tion (8), a currents-only relationship is obtained: 

f(e)=ffif, G+62;(n) (11) 
0045. After defining the following operator notations: 

6,-IIP. (12) 

and 

B.-6, G+C2, (13) 
0046 the currents-only relationship is written as: 

(out)–B(in) (14) 
0047 which is a spare eigensystem. 
I0048. Using the relationship ji=Yi") between the neu 
tron outcurrent column vector j“the neutron incurrent col 
umn vector j', where Y is the coupling operator, a spare 
eigensystem is obtained wherein the components of an iterant 
G") of the spare eigensystem only correspond to the neu 
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--Fi tron outcurrents ji", j," coming from the respective 
cube m, which are the elements of the neutron outcurrent 
column vectori". This spare eigensystem corresponds to: 

1-B, Ticott)=0 (15) 

0049 Since the operator BY will initially not be exactly 
equal to 1, and will become equal to 1 only asj“ converges 
to the exact solution j', and if simultaneously the first 
neutron eigenvalue L converges to an exact value W. So 
that Equation (15) becomes: 

i-ui, Yiii)=0, (16) 

0050 with a second neutron eigenvalue L converging 
towards 1, if the first neutron eigenvalue W converges to the 
exact value W 

0051. For numerical optimization, Equation (16) may be 
modified through a premultiplication with the operator II.' 
and the following equation is obtained: 

exeges 

fl-fot)=uff, G-fig2/jfcott) (17) 

0052. The term PGYi “is an isotropic term, which does 
not depend on the Cartesian direction u. 
0053. The expressions of the respective terms from Equa 
tion (17) for the cube index m, Cartesian axes u, u' and the 
respective orientations S, s' along the Cartesian axes u, u' are 
given by: 

tou 18) (19) (20) AnGus = ?' (out) ( 2. le 
o:'' =XX (PGY it 

geGg's G 

10054) G, G' are sets of energy groups. A and Care mono 
energetic operators with their respective factors Act and 
C. Q," are the factors of a spectral operator Q. It 
should be noted that each combination u, s, respectively 
{u', s, defines an interface surface of the cube m with u, u' 
equal to x, y or Z, and s, s' equal to 1 or r. For example, {X, 1} 
defines the left interface surface of the cube m along the 
Cartesian axis X. 

0055. The individual terms are given by: 

?t (out) -- (oitt) (21) If f = c. Jings 
a ... ang'u's' & a ra. (22) (iii (iii PG | ". = X PGY it "... 

g’=1 

8, 1 ne-p(mis') 
gg' 9, Jg' 

g’=1 : 

flag out) ' in i n-nimus') (2) |?' of "I = Ciga (c30 + c, (1 - 0. )) it "' 

0056. Equation (17) is then solved, e.g. by using a conven 
tional iterative solving procedure as a Gauss-Seidel proce 
dure. 
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0057 Thus, a solution is calculated for the elementsi" 
of the neutron outcurrent column vector icott). This 

enables to determine the solution of the neutron incurrent 
column vectori" according to Equation (14), and finally to 
determine the solution of the neutron flux column vector did 
according to Equation (10). 
0058. The calculated neutron flux column vector did 
obtained through the modelizing method can be used to con 
trol an existing nuclear reactor core, e.g. for managing the 
nuclear fuel, or be used for building a new reactor core. 
0059. The modelizing method may be implemented on 
parallel processors or on a single processor. 
0060. This above-disclosed modelizing method has 
proved to lead to better convergence accuracy, a better com 
putational robustness and a better computational efficiency. 
This is connected to the solving of a sparse eigensystem 
wherein the only components of the iterant correspond to 
neutron outcurrents j', and do not depend on neutron 
fluxes. 
0061 Further, the convergence accuracy of the modeliz 
ing method according to the invention may be improved up to 
1E-12, whereas the convergence accuracy obtained with a 
classic modelizing method is limited to 1E-6. 
0062. In other embodiments, the components of the iterant 
of the spare eigensystem to be solved correspond only to 
neutron incurrents j". 
0063. In order to further improve robustness and compu 
tational efficiency, according to a second aspect of the inven 
tion, the eigensystem is first conditioned in a restricted eigen 
system corresponding to the eigensystem for a selection of 
Some neutron energy groups. This selection is also called 
spectral restriction to Some energy groups. The restricted 
eigensystem may then be solved according to the first aspect 
of the invention. Finally, the solution of the restricted eigen 
system is used to solve the eigensystem. 
0064. The number NGC of the selected energy groups is 
Smaller than the total number ng of energy groups. NGC may 
be the number of coarsened spectral bands which are collec 
tions of fine energy groups merged into a smaller number of 
coarse energy groups. 
0065 ng is, for example, equal to 8, and NGC may for 
example be equal to 4, 3, 2 or 1. 
0066. According to this second aspect, the Equation (17) 
for the driving factors do.", with its respective terms 
given by Equations (18) to (20), is expressed as: 

AS2.2) (24) Gaits Gaits 

outflow 

NGC 3 
Gia's (out) p (oist) HX X X, OSG'd Ray, X. CloudC. 

throughflow istropic production’ 

0067 where G. G' are coarse neutron energy group 
indexes, and 
0068 in which an isotropic term 

NGC 3 
Gia's (out) XXX O'G'dS. 
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is independent of the outgoing current direction specified by 
the Cartesian axis u and orientations, and a throughflow term 

p (oist) CGusd.ny 

also called anisotropic term, is defined within the same coarse 
neutron energy group G along the same Cartesian axis u. 
0069. The decomposition of the outcurrents leaving the 
cube m into isotropic and anisotropic terms is illustrated on 
FIG. 3. 

0070 The isotropic term is the same in all directions and 
the anisotropic term varies between interface surfaces of the 
cube m. 
0071 Solving at first the eigensystem for a spectral restric 
tion to Some energy groups, moreover with a decomposition 
of the outcurrents in which the isotropic term is computed 
easily, leads to a better computational robustness and a better 
computational efficiency. This is connected to the reduction 
of eigensystem dimensions that results from the spectral 
restriction according to this second aspect of the invention. 
0072. In order to further improve robustness and compu 
tational efficiency, according to a third aspect of the inven 
tion, the iterative solving procedure for a plurality of energy 
groups may be in form of a multi-level V-cycle 20, as shown 
on FIG.4, comprising a top level 21, a first intermediate level 
22, four second intermediate levels 24, 26, 28, 30, and three 
bottom levels 32, 34, 36. 
(0073. The top level 21 of the V-cycle comprises the itera 
tion for the eigensystem corresponding to the steady-state 
diffusion equation (1), or NEM equation, for the plurality of 
neutron energy groups, and the conditioning of the eigensys 
tem into a restricted eigensystem for a spectral restriction to 
Some energy groups according to the second aspect of the 
invention. The restricted eigensystem resulting from the top 
level 21 is then fed into a first intermediate level 22 just under 
the top level 21. 
0074 The first intermediate level 22 comprises the condi 
tioning of the restricted eigensystem into a spare eigensystem 
according to the first aspect of the invention wherein the 
components of an iterant G'.j") of the spare eigensystem 
only correspond either to neutron incurrents ji". j." 
coming into the cubes m or to neutron outcurrents ji". 
j.", also noted j"gue coming from the cubes m. The 
factors of operators A.O. and C given by Equations (18) to 
(20) are computed explicitly for this first intermediate level 
22. 

0075. Each second intermediate levels 24, 26, 28, 30 com 
prises the conditioning of a former spare eigensystem for a 
former selection of neutron energy groups into a latter spare 
eigensystem for a latter selection of neutron energy groups, 
the number of neutron energy groups in said latter selection 
being Smaller to the number of neutron energy groups in said 
former selection. The former spare eigensystem of the second 
intermediate level 24 subsequent to the first intermediate level 
22 in the downward orientation of the multi-level V-cycle 20 
is the spare eigensystem resulting from the first intermediate 
level 22. The former spare eigensystem of each second inter 
mediate level 26, 28, 30 which is not subsequent to the first 
intermediate level 22 corresponds to the latter spare eigen 
system resulting from the precedent second intermediate 
level 24, 26, 28. In other words, the number of neutron energy 
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groups decreases from a second intermediate level to the next 
second intermediate level in the downward orientation. At the 
last second intermediate level 30, the number of neutron 
energy groups may be equal to 1. It should be noted that this 
restriction of the number of neutron energy groups for the 
second intermediate levels 24, 26, 28.30 may be done accord 
ing to a spectral condensation algebra, which will be 
described later, and not according to the second aspect of the 
invention. 
0076 Bottom levels 32,34, 36 comprise, in the downward 
orientation of the V-cycle, the Solving, according to state of 
the art procedures, of the last spare eigensystem for a single 
energy group determined at the last second intermediate level 
30. Bottom levels 34, 36 correspond to a spatial restriction of 
the eigensystem resulting from the precedent bottom level 32, 
34 in respective coarsened grids with cubes being larger than 
the cubes of the precedent bottom level 32, 34. 
0077. At the bottom level 36 of the V-cycle, a solution of 
the eigensystem for the single energy group is computed. 
0078. This solution is then reintroduced in the upper levels 
of the V-cycle in the upward orientation so that solutions are 
computed for the respective spare eigensystems. 
0079. At the top level 21 of the V-cycle in the upward 
orientation, the solution of the NEM equation for the plurality 
of energy groups is computed. 
0080. In the illustrated embodiment of FIG.4, the number 
ng of neutron energy groups for the NEM equation at the top 
level 21 may be equal to 8. For the intermediate levels 22, 24, 
26, 28, 30, the number of neutron energy groups in the respec 
tive selections may be respectively equal to four, three, two 
and one. The three bottom levels 32, 34, 36 of the V-cycle 
shown on FIG. 4 comprise the Solving of said last spare 
eigensystem for said one energy group according to the CMR 
procedure. 
0081. The four intermediate levels 22, 24, 26, 28 corre 
sponding to the Solving of respective spare eigensystems are 
also designated by the respective references SR4, SR3, SR2 
and SR1 (FIG. 5). 
I0082) The factors of the mono-energetic operator A for the 
level SR4 are computed explicitly. Subsequently, the factors 
of the mono-energetic operator A for the level SR3 are 
derived from the ones for the level SR4, as shown on FIG. 5, 
where each box 37 represents a neutron energy group, 
through: 

I0083. Equation (25) is illustrated on FIG. 5 by the arrows 
38 between levels 22 and 24. 
I0084 Subsequently, the factors of the mono-energetic 
operator A for the level SR2 are derived from the ones for the 
level SR3 through: 

An sR”-Asra" (26) 

I0085 Equation (26) is illustrated on FIG. 5 by the arrows 
40 between levels 24 and 26. 
I0086) Finally, the factors of the mono-energetic operator 
A for the level SR1 are derived from the ones for the level SR2 
through: 

it's' 1za's 2's' An SR." An SR2"+An SR2 (27) 
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I0087 Equation (27) is illustrated on FIG. 5 by the arrows 
42 between levels 26 and 28. 
I0088. Equations (25) to (27) define a spectral condensa 
tionalgebra for the mono-energetic operator A corresponding 
to a spectral grid partitioning strategy shown in FIG. 5. It 
should be noted that another spectral condensation algebra 
for the mono-energetic operator A with different equations 
may be defined with another spectral grid partitioning strat 
egy, i.e. with a different arrangement of the boxes 37. 
I0089. The factors of the mono-energetic operator C are 
derived in a similar manner as for the factors of the mono 
energetic operator A, from the level SR4 to the level SR1 in 
the downward orientation. 
(0090. The factors of the spectral operator Q, for the level 
SR4 are computed explicitly. Subsequently, the factors of the 
spectral operator Q, for the level SR3 are derived from the 
ones for the level SR4 through: 

0091 Subsequently, the factors of the spectral operator Q, 
for the level SR2 are derived from the ones for the level SR3 
through: 

9,2sra" (29) 
0092. Finally, the factors of the spectral operator Q, for the 
level SR1 are derived from the ones for the level SR2 through: 

Q,"-Qaisry"+9, Isro"+2,2SR2"+22. 
SR24 (30) 

I0093. Equations (28) to (30) define a spectral condensa 
tion algebra for the spectral operator Q, corresponding to a 
spectral grid partitioning strategy not shown and similar to the 
one shown in FIG.5 for the mono-energetic operators A and 
C. It should be noted that another spectral condensation alge 
bra for the spectral operator Q, may also be define with 
another spectral grid partitioning strategy. 

(out) 0094 Thus, a solution is calculated for the elements 
of the neutron outcurrent column vector i' at the top 

level 21 of the V-cycle in the upward orientation. This enables 
to determine the solution of the neutron incurrent column 
vectori" according to Equation (14), and finally to deter 
mine the solution of the neutron flux column vector dbaccord 
ing to Equation (10). 
0.095 The nuclear reactor core is then built or operated on 
the basis of the calculated neutron flux column vector db. 
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I0096. Using spectral condensation algebras, wherein no 
complex arithmetic operation is involved, for the operators A, 
Cand O, at the respective levels SR3, SR2 and SR1 allows the 
operators A, C and Q, to be computed very cheaply, thus 
leading to a better computational robustness and a better 
computational efficiency of the modelizing method. 
0097. In order to further improve robustness and compu 
tational efficiency, according to a fourth aspect of the inven 
tion, the cubes 10 are split into a first category and a second 
category. 
0098. In the following description and as shown on FIG. 6, 
the cubes 10R of the first category will be called the red cubes 
and the cubes 10B of the second category will be called the 
black cubes but no specific restrictive meaning should be 
associated with the words “black' and 'red'. Each red cube 
10R has only black cubes 10B as direct neighbours. Thus, 
most of the red cubes 10R have six direct black neighbours 
10B. It should be understood by “direct neighbours, the 
cubes sharing a common Surface with the considered cube. 
0099 Consequently, and as illustrated by FIG. 6, the grid 
12 has a visual analogy with respect to the dark and light 
regions of a checkerboard in a two-dimensional representa 
tion. 
0100. Then, the cubes are numbered, starting for example 
by the red cubes 10R and ending by the black cubes 10B. 
0101. In the following description, such a split of the cubes 
in two categories and the numbering of one category after the 
other will be referred to as red-black ordering. 
0102) An advantage of the red-black ordering of the cubes 
in comparison with the state of the art lexicographical order 
ing is that, for a red cube 1R, all its direct neighbours will be 
black, and Vice versa. 
0103) The Equation (24), which the computer has to solve 
in order to calculate neutron flux within the core, can be 
written in the matrix-vector form: 

Ad-u/O,-Cld (31) 

0104. Using a variable parameter Y, which value is typi 
cally comprised between 0.9 and 0.95, so that the product Yu 
forms a shift, an iteration of Equation (31) is written with the 
following shift-inverted implicit form: 

wheres'"' is a source given by: 

I0106) The spectral operator Q, and the mono-energetic 
operator Care sparse, coupling red cubes 10R only to direct 
black neighbours 10B and vice versa. Thus, the red-black 
ordering enables the following convenient relationship 
between the red and the black parts of the equation: 

Adola-Yu"'(O.--Cae-sac. (34) 
0107 Equation (34) is transformed into the following 
equivalent equation for the red solution part only: 

0-odd = (35) 

-- a -1) .2?, 12, , 2 Ai’ = -(yu'A' (o, + C) 
Sred with 

(n-1) (?) , aya' S = As, +yu"'A' (o, + C)As 

0108. From a calculation point of view, the use of a red 
black ordering means that, during an iterative solving proce 
dure if, in the first half of an iteration, the red components de 
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of the iterant dare updated, then, during the second part of the 
iteration, all the black components do will be updated on 
the basis of the red components of their red neighbours d. 
In other words, the value for each black cube 10B will be 
calculated on the basis of the values for all its direct red 
neighbours 10R. 
I0109) Using the red-black ordering improves the compu 
tation of the operators A, C and Q, described in the first, 
second or third aspects of the invention. Thus, the red-black 
ordering may be used in complement of the first, second or 
third aspects of the invention in order to improve the compu 
tational efficiency. 
0110. Such a red-black ordering proves to be especially 
useful when used with a particular solving procedure which 
constitutes a fifth aspect of the invention. 
0111. This procedure is a particular highly robust stabi 
lized Bi-Conjugate Gradient Stabilized (Bi-CGStab) proce 
dure. An adequate introductory description of this procedure 
can be found in the following references: 
0112 -Y. Saad, "Iterative Methods for Sparse Linear Sys 
tems, second edition, Society for Industrial and Applied 
Mathematics (SIAM) (2003); 

0113. H. A. van der Vorst, “Bi-CGSTAB: a Fast and 
Smoothly Converging Variant of Bi-CG for the solution of 
nonsymmetric linear systems, SIAM.J.Sci. Stat. Comput. 
13(2), pp. 631-644 (1992), 

0114. The Bi-CGStab procedure is derived from a mini 
mization principle for a functional of d, with given 0 and s, 
for which stationarity applies with regard to Small variations 
Öd around the specific optimum d which satisfies, exactly, the 
linear system given by Equation (35), and for which the 
functional assumes a minimum value. 
0115 Thus, it is possible to define a solving procedure 
driven by the minimization of a functional rather than by 
more direct considerations on how to solve Equation (35) 
efficiently. The Bi-CGStab procedure follows from such a 
minimization principle, where the Successive changes in the 
iterant are organized such that each change in the functional 
(which is like a Galerkin-weighted integrated residual) is 
orthogonal with respect to all of the preceding changes. 
0116. The particular Bi-CGStab procedure according to 
the fifth aspect of the invention is given below with solution 
vector d, solution residual r (with r=s-0d) and auxiliary 
vector r, S and p, and with initial Solution estimate do: 

1. ro := S - (2) do, r = ro (36) 
2. Po := ro 
3. do i = 0, 1,... , N 

r', r, 
4. ai =. 
5. Si:= r -a; (2) p. 
6. (o; := (3) Si,Si) 

* T (C2) si, (2) si) 

(r. ri-1)aj 
9. B; : (r, ri)co 
10. p. 1 := r. 1 + f1(p; - co;(2) pi) 
11. end do 

(2) indicates text missing or illegiblewhen filed 
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0117. The above Bi-CGStab sequence is truncated after N 
steps, with usually N3. 
0118 For the Bi-CGStab procedure, the preconditioning 

is based on the shift-inverted implicit form of Equation (32), 
with typically 0.9<y<0.95. 
0119 With this choice for the shift Yu, the operators is 
guaranteed to remain nonsingular since, during the Solution 
process, Yu will converge down to Y times the Smallest pos 
sible eigenvalue of the system. 
0120 Solving Equation (32) is numerically equivalent to 
determining the flux distribution in a slightly Subcritical sys 
tem with a neutron Source, which is a perfect scenario for 
deploying advanced preconditioned Krylov procedure. 
0121. Using the red-black ordering, Equation (32) is trans 
formed into Equation (35) as above explained. The precon 
ditioned system given by Equation (35) constitutes the sixth 
aspect of the invention. 
0122. Once Equation (35) has been solved through the 
Bi-CGStab procedure the black solution part is to be com 
puted from the black part of Equation (34). 
0123. Use of this particular way of preconditioning, which 
means that the direct neutron interaction between neighbor 
ing (red VS. black) nodes, as projected onto the grid, is prein 
cluded in the system to be solved, making the unity operator 
in Equation (35) more dominant since 

given that 

|A' (OFC)|<1 (38) 
0124. This way of preconditioning manages to pre-in 
clude, at low computational cost, crucial information (or the 
major part of that information) with regard to the physical 
interactions between nodes that determine the spatial cou 
plings and hence the solution of the equation. 
0.125. In another embodiment, the iterative solving proce 
dure is a Gauss-Seidel procedure, or an iterative procedure in 
the Krylov Subspace, such as a generalized minimal residual 
method, also abbreviated GMRES, or a plain Jacobi method. 
0126. According to a seventh aspect of the invention, a 
variational principle for improved eigenvalue computation 
will be described in the following description. 
0127 Equation (16) corresponding to the spare eigensys 
tem, above described for the first, second or third aspect of the 
invention, is written in the following form, with the second 
neutron eigenvalue L and the neutron outcurrent vector col 
l jour 

I0128 where c is another notation for the operator II 
depending on the cube properties. 
0129. In what follows, we will assume that the first neu 
tron eigenvaluew fulfills the role of a scalar control parameter. 
Using the property that the second neutron eigenvalue LL 
approaches unity if the total Solution converges and thus 
stabilizes, the variational principle, or perturbation approach, 
comprises the varying the first neutron eigenvalue W to drive 
the second neutron eigenvalue Ll towards 1 and to accelerate 
the convergence of the spare eigensystem solution. This 
variation of the first neutron eigenvalue W may be done prior 
to every iteration of the spare eigensystem, or prior to every 
second, third, fourth or fifth iteration of the spare eigensys 
tem. 

0130. The variation of the first neutron eigenvalue w is an 
application of a variation 6 to such that is driven tow-öw. 
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which impacts the second neutron eigenvalue L through a 
perturbed interface current equation: 

a? , , 0P). A (40) 
in +0 in = | u + ou)||P + ola (G+G|Y(i+0 in) 

6 by a . = (a+ ouc (+o, + arti, toi...) 
I0131 with the partial operator derivative: 

,0P 2, , od (41) 
II a GY ion = ca. 

(0132) As perturbations 8 are expected to be increas 
ingly small during the iterative procedure, they are conve 
niently ignored in Equation (40), and the integration with an 
arbitrary adjoined weighting function (of yields the following 
expression: 

Kolcid) (42) 

0.133 As the variation of the first neutron eigenvalue is 
Such that the second neutron eigenvalue L is driven towards 1, 
i.e. that L+öLL is driven towards 1, the approximation ÖLLE1-l 
is imposed. With this approximation and the Equation (42), 
the following equation is obtained: 

Kolci ) (43) 

I0134. Using the equivalence Lic, pia-OYi. Öw is 
given by: 

(coin - c1() + or iou) (a|r.) (44) das - - - - - - = - - 

(of C () (of C C) 19 19 

0.135 where r represents the residual of the interface 
outcurrent balance equation, i.e. Equation (39), with the 
imposed target value for the second neutron eigenvalue LL 
equal to 1. The residual r, needs to be computed for each 
NEM iteration step in any case. 
0.136 The first neutron eigenvalue w, considered in this 
aspect as a scalar control parameter, is then updated Such that: 

E) (45) (new) - (prev) ( 
(of c. ) 8. 

0.137 where 'P' and "" are respectively the previous 
and the updated value of the first neutron eigenvalue W. 
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0138 For determining the partial operator derivative 

65 

and using Equation (7) for example, the neutron flux d is 
written: 

(p=(R-S-F) 'Gj. (46) 

0139 from which it follows that: 

6b 6 a A-Ila. . (47) a (R-S-AF) G} i. 

0140. An approximate derivative 

65 

is then computed by neglecting the upper-diagonal part of the 
matrix relative to the inscatter operator S Such that SS, i.e. 
by neglecting the upscattering: 

65 8 , a Ayla. . (48) C = (R-Sid-AF) |G: i. 
0141. It should be noted that in many computational cases 

this is not even an approximation, but numerically exact if no 
upscattering is modeled. 
0142. It is assumed that: 

85 605 (49) 
A A 

0143 which will be sufficient for a successful application 
of the variational principle. 
0144. For computing 

it is first written: 

R-S,-F=(R-S, )(i-(R-S,)"F) (50) 

(0145 from which it follows that: 
(R-S,-F)=(1-(R-SD)'F)' (R-S,) (51) 

I0146) Then defining an operator notation B with: 
B=(R-S,)"F (52) 

0147 and in order to implicitly compute 

Ö ra l 
i-AB) , 
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the Taylor formula is applied to i-,B: 

& 53 

|i-AB) = i+ AB+A-B - a B+... =XAB" (53) 
=0 

0.148. The Taylor expansion is rearranged as: 
i+1+. B+B2+. B+... F. B= i+1-B7 B (54) 

0149. By application of the chain rule to Equation (54), the 
derivative 

Ö a r -l 

i-AB 

is given by: 

-l -l 55 

fi-AB) = (i-ai'i li -Abai (55) 
(O150 which yields: 

a or a a 1–1 a (56) 
|i-AB|i-AB) = |i-ABB 

0151. The final expression that allows an efficient iterative 
scheme for determining the derivative 

Ö a l 
i-AB 

is obtained by premultiplication of Equation (56) with i-,B, 
which gives: 

-l (57) 

is obtained from: 

r r 20i (58) 

|i-2AB+ AB =s 

(O153 with the source terms defined by: 
s=B(R-S, ) 'GYi-(R-S, ) F(R-S, ) 'Gj. (59) 

0154) In the case of two energy groups, Equation (58) is 
solved directly and analytically. 
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0155. In the case of more than two energy groups, Equa 
tion (58) is solved iteratively, without exactness required in 
early iteration phases, through application of 

g" sile" (60) 
0156 where 

65 (old) | 
and 

65 (new) | 
are respectively the previous and updated values of the 
approximate derivative 

65 

(O157 Early means about the first thirdup to the first half of 
the totally needed number of iteration steps. 
0158. It should be noted that the iterations from the com 
putation of 

65 

can be abort rather early, since this variational approach needs 
only an approximate value of 

65 

to be useful. 
0159. Thus, this variational principle according to this 
seventh aspect of the invention is very effective, because the 

(prev) in Equation (45) becomes Smaller 
and Smaller upon convergence, whereas the denominator 

(of 
will converge rather quickly to an adequate value. In this 
seventh aspect, the numerator defines the driving principle 
since it converges towards Zero. 
0160 Varying the first neutron eigenvalue according to 
Equation (45) drives the second neutron eigenvalue Ltowards 
1 and accelerates the convergence of the spare eigensystem 

numerator (or 
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Solution. This variation of the first neutron eigenvalue W may 
be done prior to every iteration of the spare eigensystem, or 
prior to every second, third, fourth or fifth iteration of the 
spare eigensystem. 
0.161 Thus, the variational principle of the first neutron 
eigenvalue W may be used in complement of the first, second 
or third aspects of the invention in order to improve the 
computational efficiency. 
0162 All the above mentioned products of this seventh 
aspect can be reduced to the black part of the grid 12 without 
losing numerical efficiency in the method, so that the red 
black ordering above described in the fourth aspect of the 
invention may be used in complement of this seventh aspect. 
0163 According to an eighth aspect of the invention, the 
above described variational principle for the eigenvalue com 
putation can be generalized for the computation of a control 
parameter being noted 0, that typically modulates the removal 
operator R given by Equation (4), the modulated removal 
operator being noted Ro. 
0164. In the example of a modulation in all positions, the 
control parameter 0 is the boron concentration. In the 
example of a modulation in selected positions, the control 
parameter 0 is a parameter for controlling a rod insertion 
depth for a group of selected control rods. 
0.165. It is assumed that R=R 
0166 Equation (16) is then written in the following form, 
with the second neutron eigenvalue L: 

i., uc?pi-627, (61) 

(0167 with a symbolic spectral operator Po defined by 
Po-(Ro-S-F) (62) 

0.168. Using the property that the second neutron eigen 
value L approaches unity if the total solution, including the 
correct value of the control parameter 0, converges and thus 
stabilizes, the variational principle, or perturbation approach, 
comprises varying the control parameter 0 to drive the second 
neutron eigenvalue LL towards 1. 
0169. The variation of the control parameter 0 is an appli 
cation of a variation 60 to 0 such that 0 is driven to 0--80, 
which impacts the second neutron eigenvalue L through a 
perturbed interface current equation: 

is + di = (it -- du) IP + 00: +OY (i.e. + diot) 

6 by A. jout + 0 joid = (it + ope (e -- 00: +OY (i.e. + di) 

0170 with the partial operator derivative: 

,0P ... od) (64) 
II a GY in E C1 

(0171 As perturbations 8 are expected to be increas 
ingly small during the iterative procedure, they are conve 
niently ignored in Equation (63), and the integration with an 
arbitrary adjoined weighting function (of yields the following 
expression: 
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65 oulos t (65) 
(of 199 

0172. As the variation of the control parameter 0 is such 
that the second neutron eigenvalue L is driven towards 1, i.e. 
that L+öu is driven towards 1, the approximation Öu=1-L is 
imposed. With this approximation and the Equation (65), the 
following equation is obtained: 

(66) 

(0173 Using the equivalence uc?pi-OYi. 80 is 
given by: 

(co jou. - c1() + or iou) (a|r.) (67) do as - - - - - - = - - - 

(of C () (of C C) 

(0174 where r represents the residual of the interface 
outcurrent balance equation, i.e. Equation (39), with the 
imposed target value for the second neutron eigenvalue LL 
equal to 1. 
0.175. The control parameter 0 is then updated such that: 

E") (68) (new) - (prev) ( 
(of c. ) 

0176 It is assumed that 

ob 03 

which will be sufficient for a successful application of the 
variational principle to the control parameter 0. 
(0177. For computing 

65 

the above described conditioning with application of the Tay 
lor formula is also used in the same manner. 
0.178 The eighth aspect of the invention offers the same 
advantages as the above described seventh aspect of the 
invention, and may be used in complement of the first, second 
or third aspects of the invention in a manner similar to that for 
the above described seventh aspect of the invention, in order 
to improve the computational efficiency. 
0179 FIG. 7 represents a set of convergence curves for 
different eigensystem iterative solving procedures with the 

10 
Feb. 24, 2011 

number of pursued NEM iterative steps in abscissa and the 
fast flux error in ordinate, which is the maximum solution 
error of the neutron flux for the fast neutrons energy group. 
Since all energy groups are spectrally coupled, the maximum 
Solution errors of the neutron flux for the other energy groups 
are quite similar to the fast flux error. Thus, the comparison 
between different eigensystem iterative solving procedures is 
possible through these convergence curves. 
0180. The curve 50 is the convergence curve for the classic 
Coarse Mesh Rebalancing (CMR) procedure with use of 
single precision, and the curve 51 is the convergence curve for 
the classic CMR procedure with use of double precision. The 
single and double precisions are the classic precisions used 
for representing the floating point numbers in a computer 
program product. 
0181. The curve 52 is the convergence curve for the itera 
tive procedure according to the first and the seventh aspects of 
the present invention for a single energy group with use of 
single precision, and the curve 53 is the convergence curve for 
the iterative procedure according to the same aspects of the 
present invention with use of double precision. 
0182. The curve 54 is the convergence curve for the itera 
tive procedure according to the first and the second aspects of 
the present invention for four coarse energy groups with use 
of single precision, and the curve 55 is the convergence curve 
for the iterative procedure according to the same aspects of 
the present invention with use of double precision. 
0183 The curve 56 is the convergence curve for the itera 
tive procedure according to the first, the second and seventh 
aspects of the present invention for four coarse energy groups 
with use of single precision, and the curve 57 is the conver 
gence curve for the iterative procedure according to the same 
aspects of the present invention with use of double precision. 
0.184 The procedure according to the first, the second and 
seventh aspects for four coarse energy groups with use of 
double precision (curve 57) is the procedure with both the 
smallest error with a value substantially equal to 10' for 50 
pursued NEM iteration steps and the best computational effi 
ciency, as illustrated by the gradient of the convergence 
curves which is maximum for the curve 57. 

0185. The procedure according to the first and the seventh 
aspects for a single energy group with use of double precision 
(curve 53) also provides a small error with a value substan 
tially equal to 10 for 130 pursued NEM iteration steps. 
Moreover, the computational efficiency of this procedure 
(curve 53) is worth than the computational efficiency of the 
procedure according to the first and the second aspects for 
four coarse energy groups with use of double precision (curve 
55), because the gradient of the curve 55 is greater than the 
gradient of curve 53. 
0186 The procedure according to the first and the second 
aspects for four coarse energy groups with use of double 
precision provides an error substantially equal to 107 for 40 
pursued NEM iteration steps. 
0187 Thus, the double precision has a great effect on the 
value of the fast flux error, but has no impact on the compu 
tational efficiency of the modelizing method. 
0188 The seventh aspect of the present invention has also 
a greater effect on the value of the fast flux error, than on the 
computational efficiency. 
0189 The first and the second aspects for four coarse 
energy groups provides the best computational efficiency, and 
FIG. 7 illustrates that the greatest gradient for an error value 
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comprised between 10' and 10 is obtained for the curves 54 
to 57, which all correspond to the first and the second aspects. 
0190. As set forth in the previous description, the first to 
eighth aspects of the invention help to achieve robust model 
izing methods providing a better computational efficiency so 
that relevant core simulations can be obtained within short 
computational time period. 
0191 It should be kept in mind that the first aspect in itself 
helps in achieving this goal and can thus be used separately 
from the second to eighth aspects. Also, the second, third, 
seventh and eighth aspects are not necessarily implemented 
with the first aspect or with any one of the fourth to sixth 
aspects. 

What is claimed is: 

1-9. (canceled) 
10. A computer implemented method for modelizing a 

nuclear reactor core, comprising the steps of: 
partitioning the core in cubes to constitute nodes of a grid 

for computer implemented calculation, 
calculating neutron flux by using an iterative solving pro 

cedure of at least one eigensystem, components of an 
iterant of the eigensystem corresponding either to a neu 
tron flux, to a neutron outcurrent or to a neutron incur 
rent, for a respective cube to be calculated, 

wherein neutrons are sorted in a plurality of neutron energy 
groups, and 
wherein the iterative solving procedure includes a substep of 
conditioning the eigensystem into a restricted eigensystem 
corresponding to the eigensystem for a selection of Some of 
the plurality of neutron energy groups. 

11. The method of claim 10 wherein a number of the 
plurality of neutron energy groups is equal to 8. 

12. The method of claim 10 wherein a number of the 
selected neutron energy groups is between 1 and 4. 

13. The method of any one of claim 10 wherein an iteration 
of the restricted eigensystem solving procedure is: 

WGC 3 
Gits' (out) X. X. X. Qd defin's 4's -- 

G=1 it=1 s'=1.r 
visotropic production 

p (oitt) X. Camusdy 
A set) det) Gits''Gaits 

outflow 
Fil 

v throughflow 

wherein d" designates the components of the iterant corre 
sponding to an individual cube m; u, u' are Cartesian axis 
indexes; S, s' are orientations equal to 1 or rand corresponding 
respectively to a left or a right surface of the individual cube 
along the respective Cartesian axes u, u'; G, G' being neutron 
energy groups, A and C being mono-energetic factors, and Q 
designating a spectral factor, NGC being a number of neutron 
energy groups in the selection of neutron energy groups, and 
L is a neutron eigenvalue, 
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in which an isotropic term 

NGC 3 
Gius' (out) X. Qld di'in'''' 

G=1 a-1 s'=1r 

is independent of an outgoing current direction specified by 
the Cartesian axis u and orientations, and a throughflow term 

s (oist) X. CGus dy 

being defined within the same neutron energy group G along 
the same Cartesian axis u. 

14. The method of claim 10 wherein the iterative solving 
procedure includes a multi-level V-cycle, the multi-level 
V-cycle including a top level, a first intermediate level and at 
least a bottom level, 

wherein the top level includes the iteration of the eigensys 
tem for the plurality of neutron energy groups and the 
conditioning of the eigensystem into a restricted eigen 
system for the selection of neutron energy groups, 

wherein the first intermediate level includes the condition 
ing of the restricted eigensystem into a spare eigensys 
tem wherein components of an iterant of the spare eigen 
system only correspond either to neutron incurrents 
coming into the cubes or to neutron outcurrents coming 
from the cubes, and 

wherein the bottom level includes solving of a first spare 
eigensystem for a single energy group. 

15. The method of claim 14 wherein the multi-levelV-cycle 
also includes at least a second intermediate level. 

wherein each second intermediate level includes, in a 
downward orientation of the multi-level V-cycle, a con 
ditioning of a former spare eigensystem for a former 
Selection of neutron energy groups into a latter spare 
eigensystem for a latter selection of neutron energy 
groups, the number of neutron energy groups in the latter 
Selection being Smaller than the number of neutron 
energy groups in the former selection, 

wherein the former spare eigensystem of the second interme 
diate level subsequent to the first intermediate level in the 
downward orientation of the multi-level V-cycle is the spare 
eigensystem resulting from the first intermediate level, and 
wherein the former spare eigensystem of each second inter 
mediate level which is not subsequent to the first intermediate 
level is the latter spare eigensystem resulting from a prece 
dent second intermediate level. 

16. The method of claim 10 further comprising a step of 
building a nuclear reactor core on the basis of the calculated 
neutron flux. 

17. The method of claim 10 further comprising operating a 
nuclear reactor core on the basis of the calculated neutron 
flux. 

18. A computer program product residing on a computer 
readable medium and comprising a computer program for 
running on a computer the method according to claim 10. 

c c c c c 


