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INTERACTING WITH AN UNSAFE 
PHYSICAL ENVIRONMENT 

may not learn from real - world environment interactions , it 
be possible to avoid that the interaction system performs 
dangerous actions . 

CROSS REFERENCE 

[ 0001 ] The present application claims the benefit under 35 
U.S.C. § 119 of European Patent Application EP 19219055.1 
filed on Dec. 20 , 2019 , which is expressly incorporated 
herein by reference in its entirety . 

FIELD 

[ 0002 ] The present invention relates to a computer - imple 
mented method of configuring a system which interacts with 
a physical environment , and to a corresponding configura 
tion system . The present invention further relates to a 
computer - readable medium . 

BACKGROUND INFORMATION 

may not 

[ 0003 ] Robotics is an important technical field that is 
being applied in practice more and more often . Robots , or 
more broadly , computer - controlled systems , are used for 
example in logistics and storage facilities to insert and pick 
out items ; in manufacturing plants to perform various parts 
of manufacturing processes . Also in traffic , semi - autono 
mous or fully autonomous vehicles are being used in prac 
tice more and more . As computer - controlled systems are 
being applied in more and more complex environments to 
perform more and more complex tasks , it is becoming less 
and less feasible to explicitly program the robot's behaviour . 
Instead , robots are often configured by letting them learn , 
using machine learning techniques , from performing real 
interactions with the environment . Specifically , computer 
controlled systems may be trained to interact with a physical 
environment according to a so - called policy which selects an 
action to be performed by the system based on a measure 
ment of the current state of the physical environment . 
[ 0004 ] Interaction systems that interact with a physical 
environment may be configured by letting the interaction 
system learn from real - world interactions with the physical 
environment . In such cases , it is often important to avoid that 
the interaction system performs dangerous actions , e.g. , an 
action that may cause an automated vehicle to bump into an 
object , or an action that may cause a manufacturing robot to 
damage an object being manufactured , etcetera . Apart from 
the possibility of damage to the robot and other equipment , 
in various settings a system may also interact with a physical 
environment involving people , in which case it is particu 
larly important to avoid actions that are dangerous to these 
human beings . For example , in the setting of a Markov 
Decision Process , such dangerous situations may be repre 
sented by a negative reward . 
[ 0005 ] In the paper “ An analysis of model - based Interval 
Estimation for Markov Decision Processes ” by A. Strehl and 
M. Littman in Journal of Computer and System Sciences 74 
( 2008 ) 1309-1331 ( incorporated herein by reference ) , a 
method called “ Model - Based Interval Estimation ” ( MBIE ) 
is presented for learning a policy . MBIE keeps track of 
empirical transition probabilities of an action in a state 
resulting in another state . Based on these transition prob 
abilities , the discounted , infinite - horizon value function rep 
resenting the expected reward from taking respective actions 
is estimated , and the action with the highest action - value 
estimate is selected . MBIE does not take safety into account . 
Accordingly , when using MBIE to let an interaction system 

SUMMARY 
[ 0006 ] In accordance with a first aspect of the present 
invention , a computer - implemented method of configuring a 
system which interacts with a physical environment is 
provided . In accordance with a further aspect of the present 
invention , a configuration system for configuring an inter 
action system which interacts with a physical environment is 
provided . In accordance with an aspect of the present 
invention , a computer - readable medium is provided . 
[ 0007 ] When interacting with a physical environment , an 
action of the system in a state of the physical environment 
may result in an updated state of the physical environment . 
In various embodiments , an unsafe set of state - action pairs 
to be avoided when interacting with the environment may be 
identified . For example , such state - action pairs may lead to 
damage relatively directly . However , as the inventors real 
ized , if a state - action pair is not in the unsafe set , it 
necessarily be safe to perform the action . For example , the 
action may lead to a state from which only unsafe actions are 
available , or at least from which no actions are available that 
are known to be safe . 
[ 0008 ] Accordingly , in accordance with an example 
embodiment of the present invention , during training and / or 
use of an interaction system , both an unsafe set of state 
action pairs and a safe set of state - action pairs may be 
maintained , and updated based on environment interaction 
experiences . To this end , the inventors envisaged to transfer 
knowledge from state - action pairs that are known to be safe 
to state - action pairs that are not yet known to be safe . In 
particular , empirical transition probabilities of an action in a 
safe state leading to a subsequent state , may be used to 
determine estimated transition probabilities for similar state 
action pairs that are not yet known to be safe . Accordingly , 
unsafe state - action pairs may advantageously be avoided not 
just when using the interaction system but also when con 
figuring it , while allowing the safe set of state - action pairs 
to be progressively extended . 
[ 0009 ] Generally , various embodiments relate to the con 
figuration of a system which interacts with a physical 
environment . Such an interaction system may be trained , for 
example , in a controlled test environment , for a later deploy 
ment . However , it is also possible that the interaction system 
is already deployed , in which case the training may comprise 
refining pre - trained parameters . For example , once 
deployed , the system may continue to gain experience of 
interacting with the environment that can be used , e.g. , to 
further improve the way the system performs its tasks . 
[ 0010 ] As described herein , in accordance with an 
example embodiment of the present invention , an interaction 
of the system with the physical environment may comprise 
the system performing a certain action in a certain state of 
the physical environment . The state of the physical envi 
ronment may refer to a set of information about the physical 
environment available to the system interacting with it , e.g. , 
obtained from sensors such as a camera , a tachometer , or 
GPS receiver . The action may be performed by the system 
using one or more actuators , e.g. , by determining a control 
signal for the actuators based on the action to be performed . 
In various embodiments , both the set of actions and the set 
of states may be finite , e.g. , the state of the physical 
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environment may be obtained by discretizing sensor signals . 
It may be assumed that performing the action results in an 
updated state of the physical environment according to 
unknown , stochastic dynamics , in other words , according to 
a transition probability that is unknown to the interaction 
system . However , transition probabilities may be assumed to 
remain substantially the same throughout the use of the 
system . Typically , at least one transition probability is nei 
ther zero nor one , but , e.g. , between 0.1 and 0.9 or even 
between 0.2 and 0.8 . For example , the physical system may 
not be modelled by a deterministic transition function . In 
many cases , a stochastic model of the physical environment 
may be more realistic than a deterministic model . 
[ 0011 ] The use of physical environment models based on 
transition probabilities is conventional , for example , in 
systems that base their actions on a Markov Decision 
Process ( MDP ) model of reality . Such a model additionally 
comprises a given reward function indicating a desirability 
of performing a given action in a given state . However , 
physical environment models based on transition probabili 
ties are also useful without such a reward function , e.g. , for 
systems that simply attempt to gain information about the 
physical environment without necessarily trying to achieve 
a particular goal . 
[ 0012 ] As the inventors realized , if a state - action pair is 
not included in the unsafe set of state - action pairs , then this 
may not necessarily imply that it is safe to execute that 
action . For example , the unsafe set may provide momentar 
ily unsafe state - action pairs , e.g. , state - action pairs that are 
likely to lead , directly or in a short amount of time , to some 
kind of undesirable situation such as damaged equipment . In 
such cases , although taking an action that is not labelled as 
unsafe may be safe in the short run , this may not be safe over 
a longer time period , e.g. , as a result of taking the action , the 
system may directly or indirectly end up in a state from 
which all possible actions are labelled unsafe , or more 
generally , from which no action exists that is known with 
sufficient confidence to be safe . Labelling such a set of 
momentarily unsafe state - action pairs may be feasible , e.g. , 
in many cases such a set may be predefined . 
[ 0013 ] On the other hand , especially during training , in 
many practical situations it may not be feasible to obtain 
beforehand a sufficiently exhaustive set of state - action pairs 
that are guaranteed to be safe in the long run . Indeed , 
knowing beforehand which state - action pairs are safe in the 
long run may effectively require to know transition prob 
abilities of the physical environment , information that is 
typically only learned during the configuration of the inter 
action system . An initial set of state - action pairs that are safe 
in the long run may be available , e.g. , safe state - action pairs 
for a part of the physical environment , e.g. , immediate 
surroundings of an initial state reachable by taking a rela 
tively small number of actions . But beyond that , it may not 
be known whether a particular action performed in a par 
ticular state is safe or not . Still , it is often beneficial to be 
able to perform such actions that are not initially known to 
be safe , especially also during training . For example , in 
order to reach a goal , a manufacturing robot may need to 
come close to or touch an object it is supposed to work with , 
even if the robot may not initially know how fast it will 
move towards the object by performing a certain action . 
[ 0014 ] In various embodiments , to ensure safety , the con 
figuration of an interaction system may involve maintaining 
a safe set of state - action pairs . State - action pairs from the 

safe set may be known to be safely performable , e.g. , safely 
performable in the long run , in the sense that the safe set 
does not contain state - action pairs labelled as unsafe and , 
whenever an action from the safe set is performed , this may 
be likely , e.g. , with probability greater than a given thresh 
old , to result in a state from which another action from the 
safe set is available . This latter property may be referred to 
throughout as “ closedness ” of the safe set . Interestingly , in 
many embodiments , a safe set is maintained that is not static . 
Instead , the inventors found ways to updated the safe set , 
e.g. , an initial safe set , as additional information about 
environment interactions is obtained , without however hav 
ing to take actions outside of the safe set . 
[ 0015 ] As the inventors realized , in many cases , inclusion 
of a state - action pair in the safe set may be hampered due to 
a lack of information about that state - action pair , e.g. , a lack 
of information about transition probabilities for that state 
action pair which is sufficiently reliable to conclude that the 
safe - action pair is safe in the long run . Interestingly , the 
inventors realized that , in many practical settings , transition 
probabilities of state - action pairs in one part of the state 
action space may be expected to be similar to transition 
probabilities of state - action pairs in another part of the 
state - action space . For example , the result of taking an 
action to move an autonomous device may be assumed to be 
dependent largely on local conditions such as the type or 
incline of the surface on which it moves , regardless of the 
absolute location . Particularly , state - action pairs may be 
similar in terms of their expected transition probabilities 
regardless of whether the state - action pairs themselves or 
state - action pairs of close states are labelled as unsafe or not . 
For example , the positional effect of moving an autonomous 
vehicle around may be independent of whether there are any 
dangerous objects in the neighbourhood . As the inventors 
realized , in such cases , experience gained in a part of the 
state - action space without dangerous objects may be trans 
ferred to another part of the state - action space with danger 
ous objects . Moreover , in various embodiments of the pres 
ent invention , it is enabled to dynamically switch between 
exploring parts of the state - space relevant to achieving a 
goal and exploring safe parts that help to gain the experience 
needed to safely perform such goal - oriented learning . 
[ 0016 ] Specifically , in various embodiments of the present 
invention , a transition probability for a state - action pair may 
be estimated based on an empirical transition probability of 
a similar other state - action pair . Based on estimated transi 
tion probability , it may be concluded that the action from the 
analogous state is unlikely to result in a state labelled as 
unsafe . For example , an autonomous device may learn to 
move around on a certain type of surface far away from any 
object to be avoided , and use this knowledge when moving 
around close to an object to be avoided , for example , to 
conclude that it is possible to safely move closer the object 
without substantial risk of a collision . As another concrete 
example , consider training a robot to make a tight - rope walk 
between two high buildings . In such a case , losing balance 
would damage or destroy the robot . However , the effect of 
taking an action in this dangerous environment may be 
expected to be substantially the same as taking an analogous 
action in the situation where the rope is only a few centi 
metres above the ground , where a fall of the rope may not 
damage the robot . Accordingly , the robot may be configured 
by letting it perform interactions in the safe part of the 
physical environment first until this experience allows to 
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establish with sufficient confidence that taking analogous 
actions in another part of the environment is also safe , at 
which point the other part of the environment may be 
explored or exploited . 
[ 0017 ] In various embodiments of the present invention , 
during training and / or use , only actions from the safe set of 
state - action pairs may be performed . Empirical transition 
probabilities of such state - action pairs may then be used to 
estimate transition probabilities of other state - action pairs , 
for example , that are not known to be safe . The use of 
empirical transition probabilities of safe state - action pairs to 
estimate transition probabilities of other states may be 
referred to as Analogous Safe - state Exploration ( ASE ) . 
However , it will be understood that if , for any reason , 
empirical transition probabilities are available for states that 
are not in the safe set , these empirical transition probabilities 
can be used for the estimation as well . Transition probabili 
ties for a state - action pair can also be based on the empirical 
transition probabilities of the state - action pair itself , but 
interestingly , at least in one iteration for one state - action 
pair , an empirical transition probability of another state 
action pair may be used . 
[ 0018 ] Interestingly , based on determining an estimated 
transition probability for a state - action pair , this state - action 
pair may be included in the safe set of state - action pairs . For 
example , for a state - action pair to be included , this state 
action pair may not be labelled as unsafe , and moreover , it 
may be determined , based estimated transition probabilities , 
that the safe set of state - action pairs can be reached with 
sufficient probability from this state - action pair . In other 
words , in respective states that may result from taking the 
action in the state , it may be possible to select respective 
actions that , with sufficient probability , lead to states from 
the safe set . Here , the “ sufficient probability ” may represent 
a , typically application - dependent , acceptable risk of dan 
gerous actions being performed during training and / or use . 
[ 0019 ] For example , in various embodiments of the pres 
ent invention , the interaction system may be trained to 
achieve a particular goal , and accordingly , it may be desir 
able to perform various actions to achieve that goal . In 
various embodiments , such actions are only performed when 
they are comprised in the safe set of state - action pairs . If an 
action from a current state is not comprised in the safe set of 
state - action pairs , then another action from the safe set of 
state - action pairs may be selected , preferably an action that 
helps towards achieving the goal , for example , by informing 
safety of desirable actions . For example , if insufficient 
empirical evidence is available to conclude that a desirable 
state - action pair is safe , a similar action from a similar state 
may be performed instead allow more accurate transition 
probabilities to be estimated for the desirable state - action 
pair , and thus to possibly allow adding the desirable state 
action pair to the safe set . 
[ 0020 ] Generally , also in non - goal - oriented environments , 
analogous safe - state exploration may allow the interaction 
system to perform actions in the physical environment 
sufficiently safely while still allowing state - action pairs that 
were not initially known to be safe to be performed . For 
example , by exploiting such analogies between state - action 
pairs , exploration may be guided towards relevant states 
while simultaneously guaranteeing safety with high prob 
ability . As a consequence , a larger part of the state space may 
be safely explored . In particular , in case interactions are 
according to a reward function , an expected reward of 

interacting with the system may be increased compared to 
performing only actions from an initial safe set . In other 
words , the interaction system may be able to perform its 
tasks more efficiently and / or more accurately , or even to 
perform tasks for which predefining a safe set of state - action 
pairs may not be feasible at all . Interestingly , safety may be 
guaranteed not only in use but also during training . Also , the 
required a priori knowledge of system dynamics may be 
reduced , e.g. , because of estimation of transition probabili 
ties . For example , not even a parametrized version of the 
transition function may need to be known , the construction 
a priori of which is usually difficult . Accordingly , interacting 
with physical systems may be enabled for a broader range of 
situations where exact dynamics are initially unknown . 
[ 0021 ] Optionally , the interaction with the physical system 
that takes place may be for interacting according to a reward 
function . For example , an action may be selected for maxi 
mizing an expected reward , e.g. , an expected accumulated 
reward . The reward function may be known to the system 
selecting the actions , e.g. , predefined . The reward function 
may also define which state - action pairs are labelled as 
unsafe , e.g. , a state - action pair may be labelled unsafe if it 
has a negative reward . Various techniques for reward - based 
interaction with physical environments are conventional , 
e.g. , in reinforcement learning , and can be applied here . In 
an iteration of the interaction , a goal - oriented action to be 
performed in the current state of the physical environment 
may be determined based on the reward function . Interest 
ingly , this determined interaction may be selected for being 
performed only if the action in the current state of the 
physical environment is comprised in the safe set of state 
action pairs . This way , exploring towards a goal may be 
balanced with ensuring safety during the exploration . 
Accordingly , safety may be assured while still achieving a 
relatively high sample efficiency . The function selecting an 
action to be performed based on the reward function is 
commonly known as a policy . 
[ 0022 ] Effectively , the interaction with the physical envi 
ronment may be based on two estimates of the true system 
dynamics . Empirical transition probabilities may be used for 
goal - based exploration , but used only if its suggested action 
is in the safe set . In that sense , the empirical transition 
probabilities may be regarded as an optimistic estimate of 
the system dynamics . Estimated transition probabilities may 
be used for adding state - action pairs to the safe set , but only 
if it is possible with sufficient probability to return to the safe 
set after taking that action . In that sense , the estimated 
transition probabilities may be regarded as a pessimistic 
estimate of the system dynamics . 
[ 0023 ] In various embodiments for interaction according 
to a reward function , it can even be shown that the policy for 
selecting an action to be performed is a so - called optimal 
policy in the PAC - MDP sense , while still guaranteeing 
safety . This definition of optimality provides , in a math 
ematical sense , guarantees about the effectiveness of the 
actions being performed with respect to the reward function . 
Although providing such a mathematical guarantee is gen 
erally beneficial , in practice , also embodiments that do not 
attain this mathematical guarantee may be beneficial in 
terms of safety and / or effectiveness . 
[ 0024 ] Optionally , a set of goal state - action pairs reach 
able by performing goal - oriented actions may be deter 
mined . The goal - oriented action may be performed only if 
each goal state - action pair is comprised in the safe set of 
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state - action pairs , e.g. , as opposed to just checking that the 
current state - action pair is comprised in the safe set of 
state - action pairs . The inventors found that this may avoid 
situations , possible otherwise , where goal - oriented actions 
would be selected until the edge of the safe set of state 
action pairs is reached , at which point a step back into the 
safe set of state - action pairs may be selected , after which 
again a step for going to the edge may be taken , etcetera . 
Accordingly , the probability of getting stuck without reach 
ing a goal may be reduced . 
[ 0025 ] Optionally , a similar state - action pair may be deter 
mined that is similar to a goal - oriented state - action pair not 
comprised in the safe set , and transition probabilities for the 
goal - oriented state - action pair may be estimated based on 
empirical transition probabilities of the similar state - action 
pair . Accordingly , a better estimate of the transition prob 
ability for the goal - oriented state - action pair may be 
obtained which may enable to add the goal - oriented state 
action pair to the safe set . For example , a goal - oriented 
action or set of actions may be determined and , if it is found 
that no goal - oriented action can be performed , instead a 
similar state - action pair may be selected that allows transi 
tion probabilities of a goal - oriented action to be refined . For 
example , an action from the safe set of state - action pairs 
providing a highest estimated transition probability of arriv 
ing at or moving towards the set of goal state - action pairs , 
may be selected . In such cases , even if performing a goal 
oriented action may not be possible , at least progress 
towards the goal may be achieved by specifically targeting 
actions for moving closer to the set of goal state - action pairs , 
e.g. , leading to a higher expected reward . 
[ 0026 ] Instead or in addition , a similar state - action pair 
may be determined that is similar not to the goal - oriented 
state - action pair , but to a return state - action pair on a return 
path from the goal - oriented state - action pair to the safe set . 
For example , it may not be safe to add the goal - oriented 
state - action pair to the safe set because it may not be 
established yet that the safe set of state - action pairs can be 
reached with sufficient probability from the state - action pair . 
By selecting the state - action pair to be similar to the return 
state - action pair , more accurate estimates of the transition 
probabilities for the return pair may be determined , so that 
the goal - oriented state - action pair may be included in the 
safe set . 
[ 0027 ] Optionally , a return state - action pair may be 
selected for returning to the set of goal state - action pairs . For 
example , it may be the case that it is possible to perform a 
goal - oriented action from the safe set of state - action pairs , 
but not from the current state . For example , this can happen 
if a previously selected state - action pair was a similar 
state - action pair as described before . In such cases , by 
selecting a return state - action pair , quicker progress towards 
the goal may be achieved . It is also possible that in one or 
more iterations a similar state - action pair is selected and in 
one or more other iterations a return state - action pair is 
selected . 
[ 0028 ] Although a goal - oriented action may be performed 
whenever this is possible , e.g. , whenever the goal - oriented 
action is in the safe set or each goal state - action pair is in the 
safe set , this is not needed . For example , in one or more 
iterations a goal - oriented action may be selected and in one 
or more other iterations a non - goal - oriented action may be 
selected , e.g. , a random action from the safe set of an action 
targeted towards exploring a previously unexplored part of 

the physical environment . Employing such mixed strategies 
may allow avoiding to get stuck in a certain part of the state 
space where no further progress is made . 
[ 0029 ] Optionally , an action may be determined and an 
alert raised if the action is not comprised in the safe set of 
state - action pairs . For example , the action may be a goal 
oriented action determined based on a reward function , the 
action may be determined by a parametrized policy that is 
being trained or that is pre - trained , such as a neural network 
policy , or the like . For example , it may be signalled that 
there is a potential error , e.g. , a potential safety hazard . For 
example , the interaction with the physical environment may 
switch into a safe mode , may be paused or halted , or user 
feedback on how to proceed may be obtained . Accordingly , 
the situation where the interaction system is in danger of 
ending up in a dangerous situation may be dealt with 
suitably . 
[ 0030 ] Generally , various similarity metrics , in other 
words pairwise state - action distance mappings , may be used 
to establish that state - action pairs are similar to each other , 
e.g. , a L1 , L2 , or other type of Lp norm . Optionally , a 
similarity between a state - action pair and another state 
action pair may be determined by comparing only portions 
of the respective states and / or actions relevant for transition 
probabilities . For example , merely a subset of features of a 
state and / or action may be taken into account , and / or states 
and / or actions may be categorized into categories relevant 
for the transition probabilities . For example , if the interact 
ing system moves in the physical environment , the similarity 
may take into account local conditions , e.g. , a type of 
surface , irrespective of the absolute location of the interact 
ing system in the environment . This way , transition prob 
abilities based on local conditions may be learned within the 
safe set , e.g. , at a safe location , and the transition probabili 
ties may be used to estimate transition probabilities outside 
of the safe set but with similar local conditions , e.g. , close 
to unsafe state - action pairs . 
[ 0031 ] Interestingly , determining the similarity typically 
does not rely on whether state - action pairs are labelled as 
unsafe , e.g. , is independent from any reward function . 
Accordingly , information from safe states can be used in 
states that are less safe or at least not known to be safe . Two 
state - action pairs may be defined to be similar , for example , 
only if their actions correspond , e.g. , are equal or permuted 
in some way . Also for actions , subsets of features or cat 
egorizations may be used . Various examples of similarities 
are given herein . 
[ 0032 ] Optionally , in at least one iteration , a transition 
probability may be estimated for a state - action pair for 
which no empirical transition probabilities are available , and 
this action may be selected to be performed . This way , it may 
be enabled to perform this action in a safe way even though 
this action was not predefined to be safe . 
[ 0033 ] Optionally , a transition probability for a state 
action pair may be estimated by determining similarities 
between the state - action pair and one or more other state 
action pairs for which empirical transition probabilities are 
available ; selecting a most relevant other state - action pair 
based on at least the similarities ; and determining the 
estimated transition probability for the state - action pair 
based on the empirical transition probabilities of the selected 
other state - action pair . For example , the empirical transition 
probabilities of the selected other state - action pair may be 
assumed to carry over to the state - action pair with a certain 
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margin of error . If the increased accuracy of the empirical 
transition probabilities compensates for this margin of error , 
then a better estimate for the state - action pair may accord 
ingly be obtained , in particular also if no empirical transition 
probabilities for the state - action pair are available at all . 
[ 0034 ] Optionally , the relevant other state - action pair may 
be selected based additionally on confidence intervals deter 
mined for the empirical transition probabilities of the other 
state - action pairs . For example , in various embodiments , the 
estimated transition probability for the present state - action 
pair may be determined by translating confidence intervals 
of other state - action pairs to confidence intervals for tran 
sition probabilities of the present state - action pair , and then 
selecting a state - action pair based on the translated confi 
dence intervals . For example , a state - action pair with small 
est confidence intervals , or smallest upper end of the con 
fidence interval , may be selected . The estimated transition 
probabilities of that state - action pair may then be translated 
to the present state - action pair . This way , more reliable 
estimates may be obtained , decreasing the probability of 
inadvertently performing an unsafe action . It is noted that 
the selected state - action pair can also be the present state 
action pair itself . 
[ 0035 ] As a concrete example , a transition probability of 
a state - action pair may be estimated based on empirical 
transition probabilities of another state - action pair using 
pairwise state - action distance mapping providing a similar 
ity between state - action pairs , and an analogous state func 
tion which , given a first state - action pair , a first resulting 
state , and a second state - action pair , provides an analogous 
second resulting state . It may be assumed that the transition 
probabilities of arriving at the first resulting state from the 
first state - action pair and arriving at the second resulting 
state from the second state - action pair , differ by at most the 
similarity between the state - action pairs . Accordingly , for a 
pair of state - action pairs , their dynamics may be bounded by 
this assumption . Variations will be apparent to the skilled 
person , e.g. , it may be assumed or proven that whenever the 
difference between state - action pairs is smaller than a first 
fixed threshold , then the difference between corresponding 
transition probabilities is smaller than a second fixed thresh 
old . As this example also shows , generally , similarities and 
estimated transition probabilities are typically determined 
regardless of whether or not state - action pairs are safe , 
allowing information about state - action pairs from the safe 
set to be transferred to pairs outside of the set . 
[ 0036 ] Optionally , the configuration of the interaction 
system may be performed in a training phase . Accordingly , 
the training phase may result in a safe set of state - action 
pairs , and possibly other information , e.g. , the empirical 
transition probabilities . In a later use phase , additional 
interactions with the physical environment may take place , 
with actions being selected from the safe set of state - action 
pairs determined in the training phase . Thus , safety can be 
guaranteed also in the use phase , without necessarily still 
updating the safe set at that point . It is also possible , 
however , to keep updating the safe set of state - action pairs 
also during use , for example , the configuration of the 
interaction system may be based on a predefined set of safe 
state - action pairs and a predefined policy for selecting action 
of the system , the configuration comprising updating the 
safe set of state - action pairs as described herein , selecting 
actions based on the policy , and only executing the actions 
if they are in the safe set . When configuring the system 

during training , for example , the training can be ended based 
on various stopping criteria , e.g. , a certain amount of time or 
number of interactions , a closeness to the goal , e.g. , a 
sufficiently high value of a reward function in the current 
state - action pair or a sufficiently high average over a number 
of past state - action pairs , etc. 
[ 0037 ] Optionally , the data indicating the current state of 
the physical environment may comprise sensor data of a 
computer - controlled device . In such cases , control data may 
be determined for letting the computer - controlled device 
effect the selected action in the physical environment , e.g. , 
through one or more actuators . This way , the compute 
controlled device may be configured to interact with a 
physical environment in a way that is safe , e.g. , avoids being 
forced to take actions that are labelled as unsafe . 
[ 0038 ] Computer - controlled systems include robotic sys 
tems , in which a robot can perform one or more tasks 
automatically , e.g. , under control of an external device or an 
embedded controller . Further examples of systems that can 
be computer - controlled are vehicles and components 
thereof , domestic appliances , power tools , manufacturing 
machines , personal assistants , access control systems , 
drones , nanorobots , and heating control systems . In various 
embodiments , the computer - controlled system can be an 
autonomous device . 
[ 0039 ] Various types of sensor data may be comprised in 
the state of the physical system , for example , video data , 
radar data , LiDAR data , ultrasonic data , motion data , etc. 
The state of the physical system is preferably represented by 
a discrete variable , possibly obtained by discretizing con 
tinuous sensor measurements . However , embodiments with 
continuous state spaces are also possible , transition prob 
abilities being estimated and a safe set of state - action pairs 
kept as described herein . 
[ 0040 ] For example , the computer - controlled device may 
move around in the physical environment , in which case the 
physical environment may comprise objects to be avoided 
by the computer - controlled device . For example , state 
action pairs may be labelled as unsafe based on the state of 
the physical environment indicating a closeness to objects to 
be avoided . Interestingly , however , similarities between 
state - action pairs may be defined regardless of the objects to 
be avoided , allowing the interaction system to gain knowl 
edge away from the objects and transfer it to the situation 
where the objects are nearby . For example , an autonomous 
vehicle may learn to brake and accelerate in a safe environ 
ment , and apply this knowledge when driving around in real 
traffic . 

( 0041 ] Optionally , the safe set of state - action pairs may be 
updated by determining a candidate set of state - action pairs 
that are not labelled as unsafe and for which sufficiently 
accurate estimated transition probabilities are available ; 
determining a subset of the candidate set of state - action pairs 
for which adding the subset to the safe set of state - action 
pairs results in an ergodic set of state - action pairs not 
labelled as unsafe ; and adding the determined subset to the 
safe set of state - action pairs . Here , a set of states - action pairs 
may be defined as ergodic if each first state in the set is 
reachable from a second state by performing actions from 
the set . Determining a candidate set and then pruning the 
candidate set to ensure ergodicity may allow the safe set to 
be extended with a larger number of candidates while 
preserving safety in the long run . 
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DETAILED DESCRIPTION OF EXAMPLE 
EMBODIMENTS 

[ 0042 ] Specifically , the subset of the candidate set of 
state - action pairs may be determined in an iterative process , 
in which state - action pairs are eliminated that cannot be 
reached from the set of state - action pairs according to the 
estimated transition probabilities ; state - action pairs are 
eliminated from which the safe set of state - action pairs 
cannot be reached according to the estimated transition 
probabilities , and state - action pairs may be eliminated to 
avoid reaching a state from which no action from the safe set 
of state - action pairs or the subset of the candidate set of 
state - action pairs can be taken . For example , the elimination 
steps may be repeated until no additional state - action pairs 
are eliminated . By performing elimination in this way , the 
inventors were able to provide a feasibly computable pro 
cedure by which the safe set of state - action pairs can be 
extended . 
[ 0043 ] It will be appreciated by those skilled in the art that 
two or more of the above - mentioned embodiments , imple 
mentations , and / or optional aspects of the invention may be 
combined in any way deemed useful . 
[ 0044 ] Modifications and variations of any system and / or 
any computer readable medium , which correspond to the 
described modifications and variations of a corresponding 
computer - implemented method , can be carried out by a 
person skilled in the art on the basis of the present descrip 
tion . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0045 ] These and other aspects of the present invention 
will be apparent from and elucidated further with reference 
to the embodiments described by way of example in the 
following description and with reference to the figures . 
[ 0046 ] FIG . 1 shows a configuration system for configur 
ing an interaction system , in accordance with an example 
embodiment of the present invention . 
[ 0047 ] FIG . 2 shows an interaction system , in accordance 
with an example embodiment of the present invention . 
[ 0048 ] FIG . 3 shows an autonomous device comprising a 
configuration system , in accordance with an example 
embodiment of the present invention . 
[ 0049 ] FIG . 4 shows an autonomous device in a physical 
environment , in accordance with an example embodiment of 
the present invention . 
[ 0050 ] FIG . 5 shows a detailed example of a model of 
states and actions for interacting with a physical environ 
ment , in accordance with an example embodiment of the 
present invention . 
[ 0051 ] FIG . 6 shows a detailed example of a model of 
states and actions in which transition probabilities are esti 
mated , in accordance with an example embodiment of the 
present invention . 
[ 0052 ] FIG . 7 shows a computer - implemented method of 
configuring a system which interacts with a physical envi 
ronment , in accordance with an example embodiment of the 
present invention . 
[ 0053 ] FIG . 8 shows a computer - readable medium com 
prising data , in accordance with an example embodiment of 
the present invention . 
[ 0054 ] It should be noted that the figures are purely 
diagrammatic and not drawn to scale . In the figures , ele 
ments which correspond to elements already described may 
have the same reference numerals . 

[ 0055 ] FIG . 1 shows a configuration system 100 for con 
figuring an interaction system 200 which interacts with a 
physical environment . An action of the interaction system 
200 in a state of the physical environment may result in an 
updated state of the physical environment according to a 
transition probability . System 100 may comprise a data 
interface 120 and a processor subsystem 140 which may 
internally communicate via data communication 124. Data 
interface 120 may be for accessing data indicating a safe set 
of state - action pairs known to be safely performable and / or 
data indicating an unsafe set of state - action pairs to be 
avoided when interacting with the physical environment . 
Configuration system 100 may configure a remote interac 
tion system 200 , but interaction system 200 may also be 
combined with configuration system 100 as discussed 
throughout 
[ 0056 ] The processor subsystem 140 may be configured 
to , during operation of the system 100 and using the data 
interface 120 , access data 030 , 040. For example , as shown 
in FIG . 1 , the data interface 120 may provide access 122 to 
an external data storage 021 which may comprise said data 
030 , 040. Alternatively , the data 030 , 040 may be accessed 
from an internal data storage which is part of the system 100 . 
Alternatively , the data 030 , 040 may be received via a 
network from another entity . In general , the data interface 
120 may take various forms , such as a network interface to 
a local or wide area network , e.g. , the Internet , a storage 
interface to an internal or external data storage , etc. The data 
storage 021 may take any known and suitable form . 
[ 0057 ] Processor subsystem 140 may be configured to , 
during operation of the system 100 and using the data 
interface 120 , iteratively control an interaction of the inter 
action system 200 with the physical environment by per 
forming one or more iterations . In an iteration , processor 
subsystem 140 may obtain data from the interaction system 
200 indicating a current state of the physical environment . In 
the iteration , processor subsystem 140 may further update 
the set of state - action pairs . The updating by processor 
subsystem 140 may comprise estimating a transition prob 
ability for a state - action pair based on an empirical transition 
probability of a similar other state - action pair . The updating 
may further comprise including the state - action pair in the 
safe set of state - action pairs if the state - action pair is not 
labelled as unsafe and the safe set of state - action pairs can 
be reached with sufficient probability from the state - action 
pair based on the estimated transition probability . 
[ 0058 ] In the iteration , processor subsystem 140 may 
further select an action to be performed in the current state 
of the physical environment from the safe set of state - action 
pairs , and provide the action to be performed to the inter 
action system 200 . 
[ 0059 ] The configuration system 100 may comprise a 
communication interface 160 configured for communication 
162 with the interaction system 200. Communication inter 
face 160 may internally communicate with processor sub 
system 140 via data communication 142. Communication 
interface 160 may be arranged for direct communication 
with the other system 200 , e.g. , using USB , IEEE 1394 , or 
similar interfaces . Communication interface 160 may also 
communicate over a computer network , for example , a 
wireless personal area network , an internet , an intranet , a 
LAN , a WLAN , etc. For instance , communication interface 
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160 may comprise a connector , e.g. , a wireless connector , an 
Ethernet connector , a Wi - Fi , 4G or 4G antenna , a ZigBee 
chip , etc. , as appropriate for the computer network . Com 
munication interface 160 may also be an internal commu 
nication interface , e.g. , a bus , an API , a storage interface , etc. 
For example , configuration system 100 and interaction sys 
tem 200 may be combined into a single system , e.g. , their 
processor subsystems and / or data interfaces may be com 
bined , etc. 
[ 0060 ] Various details and aspects of the operation of the 
system 100 will be further elucidated with reference to 
FIGS . 3-6 , including optional aspects thereof . 
[ 0061 ] In general , the system 100 may be embodied as , or 
in , a single device or apparatus , such as a workstation , e.g. , 
laptop or desktop - based , or a server . The device or apparatus 
may comprise one or more microprocessors which execute 
appropriate software . For example , the processor subsystem 
may be embodied by a single Central Processing Unit 
( CPU ) , but also by a combination or system of such CPUs 
and / or other types of processing units . The software may 
have been downloaded and / or stored in a corresponding 
memory , e.g. , a volatile memory such as RAM or a non 
volatile memory such as Flash . Alternatively , the functional 
units of the system , e.g. , the data interface and the processor 
subsystem , may be implemented in the device or apparatus 
in the form of programmable logic , e.g. , as a Field - Program 
mable Gate Array ( FPGA ) and / or a Graphics Processing 
Unit ( GPU ) . In general , each functional unit of the system 
may be implemented in the form of a circuit . It is noted that 
the system 100 may also be implemented in a distributed 
manner , e.g. , involving different devices or apparatuses , 
such as distributed servers , e.g. , in the form of cloud 
computing 
[ 0062 ] FIG . 2 shows an interaction system 200 interacting 
with physical environment 010. System 200 may comprise 
a data interface 220 and a processor subsystem 240 which 
may internally communicate via data communication 224 . 
The processor subsystem 240 may be configured to , during 
operation of the system 200 and using the data interface 220 , 
access various data . For example , as shown in FIG . 2 , the 
data interface 220 may provide access 222 to an external 
data storage 022 which may comprise said data . Alterna 
tively , the data may be accessed from an internal data storage 
which is part of the system 200. Alternatively , the data may 
be received via a network from another entity . In general , the 
data interface 220 may take various forms , such as a network 
interface to a local or wide area network , e.g. , the Internet , 
a storage interface to an internal or external data storage , etc. 
The data storage 022 may take any known and suitable form . 
[ 0063 ] Processor subsystem 240 may be configured to 
perform an interaction with the environment 010 by itera 
tively obtaining , via a sensor interface 280 , sensor data 282 
from one or more sensors indicative of a state of the physical 
environment 010 ; providing the state of the physical system 
to a configuration system 100 ; and obtaining an action to be 
performed in the state of the physical environment 010 from 
the configuration system 100 in return ; and provide via an 
actuator interface 270 actuator data 272 to one or more 
actuators causing the actuators to effect the obtained action 
in the physical environment 010 . 
[ 0064 ] The interaction system 200 may comprise a com 
munication interface 260 configured for communication 262 
with a configuration system 100. Communication interface 
260 may internally communicate with processor subsystem 

240 via data communication 242. Communication interface 
260 may be as discussed for communication system 160 of 
configuration system 100. In particular , communication 
interface 160 may be an internal communication interface , 
e.g. , a bus , an API , a storage interface , etc. , e.g. , interaction 
system 200 may be combined with configuration system 100 
in a single system . 
[ 0065 ] In an example embodiment , interaction system 200 
may be configured by configuration system 100 in a training 
phase . Interaction system 200 may obtain at least the safe set 
of state - action pairs 040 from interaction system 100 during 
the training phase . For example , as illustrated in the figure , 
interaction system 200 may access safe set 040 via data 
interface 220 , e.g. , processor subsystem 240 may obtain safe 
set 040 from the interaction system via the data interface 220 
or store an otherwise obtained safe set 040 using the data 
interface 220. In a use phase following this training phase , 
interaction system 200 may interact with the environment 
010 , e.g. , according to a policy , wherein interaction system 
200 may iteratively : obtain a current state of the physical 
environment ; select an action to be performed in this current 
state from safe set 040 ; and provide actuator data based on 
the selected action to the one or more actuators as described 
herein . 

[ 0066 ] The system 200 may comprise a sensor interface 
280 for obtaining , from one or more sensors ( not shown ) , 
sensor data 282 indicative of a state of the physical envi 
ronment 010. Sensor interface 280 may internally commu 
nicate with processor subsystem 240 via data communica 
tion 244. In the following , for explanatory purposes , a single 
sensor is discussed . The sensor data 282 may comprise one 
or more physical quantities of the environment and / or inter 
action system 200. In some embodiments , the sensor may be 
arranged in physical environment 010. In other examples , 
the sensor may be arranged remotely from the environment , 
for example if the quantities can be measured remotely . For 
example , a camera - based sensor may be arranged outside of 
environment 010 but may nevertheless measure quantities 
associated with the environment , such as a position and / or 
orientation of the physical entity in the environment . Sensor 
interface 280 may also access the sensor data from else 
where , e.g. , from a data storage or a network location . 
Sensor interface 280 may have any suitable form , including 
but not limited to a low - level communication interface , e.g. , 
based on 12C or SPI data communication , but also a data 
storage interface such as a memory interface or a persistent 
storage interface , or a personal , local or wide area network 
interface such as a Bluetooth , Zigbee or Wi - Fi interface or 
an ethernet or fibreoptic interface . The sensor may be part of 
system 200 . 
[ 0067 ] The system 200 may comprise an actuator interface 
270 for providing , to one or more actuators ( not shown ) , 
actuator data 272 causing the one or more actuators to effect 
an action in the environment 010. Actuator interface 270 
may internally communicate with processor subsystem 240 
via data communication 246. For ease of explanation , below , 
a single actuator is discussed . For example , the actuator may 
be an electric , hydraulic , pneumatic , thermal , magnetic 
and / or mechanical actuator . Specific yet non - limiting 
examples include electrical motors , electroactive polymers , 
hydraulic cylinders , piezoelectric actuators , pneumatic 
actuators , servomechanisms , solenoids , stepper motors , etc. 
The actuator may be part of system 200 . 
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[ 0068 ] Various details and aspects of the operation of the 
system 200 will be further elucidated with reference to 
FIGS . 3-6 , including optional aspects thereof . 
[ 0069 ] In general , the system 200 may be embodied as , or 
in , a single device or apparatus , such as a workstation , e.g. , 
laptop or desktop - based , or a server . The device or apparatus 
may comprise one or more microprocessors which execute 
appropriate software . For example , the processor subsystem 
may be embodied by a single Central Processing Unit 
( CPU ) , but also by a combination or system of such CPUs 
and / or other types of processing units . The software may 
have been downloaded and / or stored in a corresponding 
memory , e.g. , a volatile memory such as RAM or a non 
volatile memory such as Flash . Alternatively , the functional 
units of the system , e.g. , the data interface and the processor 
subsystem , may be implemented in the device or apparatus 
in the form of programmable logic , e.g. , as a Field - Program 
mable Gate Array ( FPGA ) and / or a Graphics Processing 
Unit ( GPU ) . In general , each functional unit of the system 
may be implemented in the form of a circuit . It is noted that 
the system 200 may also be implemented in a distributed 
manner , e.g. , involving different devices or apparatuses , 
such as distributed servers , e.g. , in the form of cloud 
computing 
[ 0070 ] FIG . 3 shows an example of the above , in that a 
control system 300 for controlling an autonomous device 62 
is shown that comprises a configuration system and / or an 
interaction system , e.g. , system 100 of FIG . 1 and / or system 
200 of FIG . 2. The autonomous device 62 may be trained to 
move around in a physical environment 010 , for example , a 
warehouse in which the autonomous device 62 operates . For 
example , as shown in the figure , control system 300 may 
control powering and / or steering of wheels 42 of the autono 
mous device 62. The state of the physical environment may 
be based at least in part on images obtained from a camera 
22 . 

[ 0071 ] For example , autonomous device 62 may be 
trained to perform a particular task , for example , to move 
around a warehouse to pick up a certain object . For example , 
autonomous device 62 may be trained to interact according 
to a reward function configured for the task to be performed . 
As further illustrated in FIG . 4 , however , it may be desired 
for autonomous device 62 to avoid certain unsafe state 
action pairs . For example , the physical environment 010 
may comprise certain objects to be avoided , e.g. , object 411 
shown in FIG . 4. For example , state - action pairs may be 
labelled as unsafe based on the objects to be avoided , e.g. , 
actions leading to the autonomous device 62 getting in 
contact with the objects to be avoided may be labelled as 
unsafe . 

[ 0072 ] As also shown in FIG . 4 , the autonomous device 62 
may perform certain actions , e.g. , to move in certain direc 
tions . Shown in the figure are four actions to move in 
respective directions : to the left 421 , to the top 422 , to the 
right 423 , or to the bottom 424. In this example , autonomous 
device 62 is relatively close to object 411. Moving to the 
right may not directly result in device 62 bumping into the 
object , but if device 62 would move to the right , it may be 
the case that a collision cannot be avoided anymore , e.g. , 
device 62 may have too much speed to avoid a collision . At 
least , based on empirical transition probabilities established 
at some point , it may be insufficiently certain that unsafe 
state - actions can be avoided if action 423 were taken . 

[ 0073 ] Interestingly , in order to determine whether action 
423 is safe in the long run for the autonomous device 62 at 
the present location , transition probabilities for taking action 
423 may be estimated based on empirical transition prob 
abilities of a similar other state - action pair , e.g. , taking 
action 427 by the autonomous device in the position 62 ' . For 
example , position 62 ' may be similar to position 62 , e.g. , in 
terms of surface material on which the device 62 moves , 
incline of the surface , etcetera . For example , it may be 
known that taking action 427 from position 62 ' is safe , e.g. , 
this state - action pair may be included in an initial safe set of 
state - action pairs , for example because there are no objects 
to be avoided within a certain range of that state . Moreover , 
it may be assumed that taking action 427 in state 62 ' has an 
analogous effect as taking action 423 in state 62 , and 
similarly for states 421 and 425 ; states 422 and 426 ; and 
states 424 and 428. At least , a probability of ending up at a 
certain distance to the right of position 62 by taking action 
423 may be assumed to be similar to a probability of ending 
up at a certain distance to the right of position 62 ' by taking 
action 427 , and similarly for the other actions . 
[ 0074 ) Accordingly , transition probabilities for a state 
action pair 423 may be estimated based on empirical tran 
sition probabilities for a similar state - action pair 427 . 
Although the state - action pairs may be similar , whether or 
not the resulting state - action pairs are unsafe may differ , e.g. , 
state - action pairs close to state 62 ' may all be safe . Accord 
ingly , transition probabilities of a state - action pair 423 that 
is potentially unsafe in the long run may be estimated based 
on transition probabilities of a state - action pair 427 that is 
comprised in a safe set of state - action pairs known to be safe 
in the long run . Moreover , if the state - action pair 423 is itself 
not labelled as unsafe and the safe set of state - action pairs 
can be reached with sufficient probability from the state 
action pair 423 based on the estimated transition probability , 
state - action pair 423 may be included in the safe set of 
state - action pairs . 
[ 0075 ] Accordingly , it may be made possible to perform 
action 423 , e.g. , if it is established from experience in state 
62 ' that the device can brake sufficiently fast without bump 
ing into object 411. Accordingly , the techniques described 
herein may allow device 62 to perform additional actions 
that were not initially known to be safe , and accordingly , 
device 62 may be better enabled to perform its tasks , e.g. , 
getting to the other side of object 411 or stopping close to 
object 411 for a warehouse item from storage 411 to be 
loaded onto a transport vehicle 62. In various embodiments , 
moreover , if an action 423 is not known to be safe but would 
be desirable to execute , actions may be selected for improv 
ing the estimated transition probabilities for the desirable 
action 423 , e.g. , by selecting an action to be performed based 
on which the transition probabilities may be improved , or 
even moving towards a state from which such an action can 
be performed . For example , device 62 may move to position 
62 ' in order to perform action 427 to refine estimated 
transition probabilities of action 423. Accordingly , the 
device may learn more efficiently to interact with the envi 
ronment 010 , e.g. , the device may learn to perform a task 
with higher sample efficiency . 
[ 0076 ] FIG . 5 shows a detailed , yet non - limiting , example 
of a model of states of a physical environment and actions 
of an interaction system interacting with the physical envi 
ronment . 
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[ 0077 ] Shown in the figure are states S1 , 511 ; S2 , 512 ; S3 , 
513 ; S4 , 514 ; and S5 , 515. As illustrated in detail for state 
Si , an action of the system in a state of the physical 
environment may result in an updated state of the physical 
environment according to a transition probability . For 
example , in state S1 , the interaction system may perform 
actions a and b . This is represented by two state - action pairs 
Ala 521 , and Alb , 522 , representing the interaction system 
performing actions a and b from state S1 , respectively . 
Similarly , from state S4 , the system may perform the same 
action a , represented by state - action pair A4a , 523. There 
may be additional states , actions , and / or state - action pairs 
that are not shown in this figure for ease of exposition . For 
example , the number of states may be at most or at least 10 , 
at most or at least 100 , or at most or at least 1000. In this 
example , a discrete state space with a finite number of states 
is illustrated . For example , such a state space may be 
obtained by discretizing a continuous state - space . There are 
typically multiple actions , e.g. , at most or at least 10 , at most 
or at least 100 , or at most or at least 1000. Typically , an 
interaction system interacting with a physical environment 
knows the current state of the environment , and knows 
which actions it performs , but an action can result in several 
states . 

[ 0078 ] For example , as shown in the figure , taking action 
a from state S1 , may result in state S2 with a probability 
Pla2 , 561 , and may result in state S3 with probability Plaz , 
563. Similarly , taking action b from state S1 may result in 
state S2 with probability P162 , 562 ; and in state S3 with 
probability P163 , 564. Taking action a in state S4 may result 
in state S5 with probability P4a5 , 565. Interestingly , the 
model illustrated in FIG . 5 may be a stochastic model in 
which the respective probabilities P *** do not need to be 
zero or one , e.g. , at least one of the probabilities is neither 
zero nor one . Taking an action in a state may also result with 
a nonzero probability in the state itself as an updated state , 
e.g. , one of the actions that can be selected may be to do 
nothing . In some cases , each action may be performed in 
each state , although it is also possible that some actions are 
only available to be performed in a subset of the states . 
Interestingly , an interaction system interacting with a physi 
cal environment may not have a priori knowledge of the 
transition probabilities , e.g. , may need to empirically deter 
mine them or estimate them based on experience of inter 
acting with the environment . 
[ 0079 ] As also shown in the figure , a subset of state - action 
pairs may be indicated as being an unsafe set of state - action 
pairs to be avoided when interacting with the physical 
environment . For example , shown in the figure are label 
US1a ?, 531 , for state - action pair Al ; label US1b ?, 532 , for 
state - action pair Alb , and label US4a ?, 533 , for state - action 
pair A4a . For example , state - action pair Alb may be labelled 
as unsafe and state - action pairs Ala and A4a may not be 
labelled as unsafe , as indicated by the underlining in the 
figure . The label may denote instantaneous safety , e.g. , if a 
state - action pair is not labelled as unsafe it may still be 
unsafe in the long run , e.g. , by taking the action it may be 
possible to arrive in another state from which only unsafe 
actions can be performed . 
[ 0080 ] For example , the states and actions shown in the 
figure may form a Markov Decision Process ( MDP ) . Math 
ematically , an MDP may be represented as a 5 - tuple ( S , A , 
R , T , YH > with sets of states S and actions A , a known , 
deterministic reward function R : SxAH + R , an unknown , 

stochastic dynamics function T : SxAH R S which maps a 
state - action pair to a probability distribution over next states , 
and a discount factor y . In various embodiments , S and / or A 
is finite . An interaction system may interact with the physi 
cal environment according to the reward function , e.g. , by 
maximizing an expected accumulated reward as is known 
from reinforcement learning , etc. The reward function may 
also provide the labelling of state - action pairs as unsafe , e.g. , 
a state - action pair may be labelled as unsafe if its reward is 
negative . In various embodiments , rewards are assumed to 
be bounded between -1 and 1. The discount factor y may be 
a value between 0 and 1 . 
[ 0081 ] FIG . 6 shows a detailed example of a model of 
states and actions in which transition probabilities are esti 
mated . For example , FIG . 6 may represent knowledge that 
an interaction system has about the model shown in FIG . 5 . 
[ 0082 ] As in FIG . 5 , states S1 , 611 ; S2 , 612 ; S3 , 613 ; S4 , 
614 ; and S5 , 615 are shown . State - action pairs Ala , 621 and 
Alb , 622 , may represent state - action pairs of performing 
actions a , and b , respectively , in from state S1 . Similarly , 
state - action pair A4a , 623 , may represent taking action a 
from state S4 . Also illustrated in the figure is a labelling of 
state - action pairs as unsafe action pairs to be avoided when 
interacting with the physical environment . As an example , 
the shown labels US1a ?, 631 and US4a ?, 633 may not label 
state - action pairs Ala and A4a as unsafe whereas label 
US162 , 632 may label state - action pair Alb as unsafe . As in 
FIG . 5 , the states and actions may form a Markov Decision 
Process , e.g. , with the labelling of unsafe state being pro 
vided by the reward function . 
[ 0083 ] While interacting with the physical environment , a 
safe set of state - action pairs may be maintained . This is 
illustrated in the figure by labels Sla ?, 641 , S1b ?, 642 ; and 
S4a ?, 643 ; illustrating whether respective state - action pairs 
Ala , Alb , and A4a are comprised in the safe set . In various 
embodiments , it may be guaranteed that the set is safe in the 
sense that it does not comprise state - action pairs labelled as 
unsafe and that it is closed , e.g. , starting from a state in the 
set and taking actions from the set , it may be guaranteed , at 
least with high probabilities , that the resulting state is also 
comprised in the set . Here and elsewhere , a state may be 
considered to be comprised in a set of state - action pairs if the 
set of state - action pairs includes an action from that state . 
[ 0084 ] For example , in the case of MDPs , the following 
mathematical definitions and notation may be adopted : 

[ 0085 ] ZESxA may be defined as closed if for every 
( sa ) EZ and for every next s ' for which T ( s , a , s ' ) > 0 , 
there exists a ' such that ( s ' , a ' ) EZ . 

[ 0086 ] ZES?A may be defined as a safe set if Z is 
closed and for all ( s , a ) EZ , R ( s , a ) 20 . ( sa ) EZ may be 
referred to as safe state - action pairs . For example , the 
safe set that is updated when interacting with a physical 
environment according to various embodiments , may 
be updated while satisfying this notion of safety . 

[ 0087 ] For any ZES?A , it may be said that sEZ if there 
exists any a E A such that ( sa ) EZ . 

[ 0088 ] A state - action pair ( s , a ) may be defined as an 
edge of Z if ( sa ) & Z but sEZ . 

[ 0089 ] P [ • ] may be used to denote the probability of 
an event occurring while following the policy w 

[ 0090 ] For a policy T , TEII ( Z ) may be used to denote 
that , for all sEZ , ( S , ( ) ) EZ . 

[ 0091 ] A subset of state - action pairs , ZCSxA may be 
defined as ergodic if Z is closed and for any sEZ , there 
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to , an empirical transition probability EMP4a5 of another 
action A4a leading to a state S5 , if it is determined that 
state - action pair A4a is sufficiently similar to state - action 
pair Ala and S5 relates to S4 similarly to how S2 relates to 
S1 . This is illustrated by the dashed arrow from EMP4a5 to 
EST1a2 . It is also possible to determine an estimated 
transition probability based on , e.g. , equal to , an empirical 
transition probability of the state - action pair itself , as illus 
trated by the dashed arrow from EMP1a2 to EST1a2 ; and / or 
based on multiple empirical transition probabilities , e.g. , as 
an average . 
[ 0097 ] A detailed example is now given in which a tran 
sition probability , e.g. , EST1a2 , for a state - action pair lead 
ing to a certain other state , e.g. , Ala leading to S2 , is 
determined by determining similarities between the state 
action pair , e.g. , Ala , and one or more other state - action 
pairs , e.g. , A4a , for which empirical transition probabilities , 
e.g. , EMP4a5 , are available . A most relevant other state 
action pair , e.g. , A4a , may be selected based on at least the 
similarities . The estimated transition probability , e.g. , 
EST1a2 for the state - action pair may then be determined 
based on , e.g. , equal to the empirical transition probabilities , 
e.g. , EMP4a5 , of the selected other state - action pair . 
[ 0098 ] In estimating transition probabilities , various 
embodiments use a predefined analogous state function a : 
( SxAXS ) x ( SxA ) -S and a predefined pairwise state - action 
distance mapping A : ( SxA ) x ( SxA ) - > [ 0,1 ] . It may be 
assumed that , for most or all state - action pairs ( s , a , š , š ) E ( Sx 
A ) X ( SxA ) , 

Es'es | T ( s , a , s ' ) – T ( , ã , a ( s , a , s , ? , ã ) | SA ( ( s , a ) , ( ? , ã ) ) . 

exists a policy a , ETI ( Z ) such that Vs ' , P [ at , s , = s'la??n 
So = s ] = 1 . For example , each state in Z may be reachable 
from each other state through a policy that never exits 
the subset Z. It may be observed that , when Z is the set 
of all state - action pairs in the MDP , this definition 
corresponds to definitions of ergodicity known in the 
art . 

[ 0092 ] In various embodiments , an initial safe set Zo may 
be obtained , e.g. an initial safe set satisfying the notion of 
safety for an MDP described mathematically as above . The 
initial state Sinit from which the controlling of an interaction 
with the physical environment starts , may be comprised in 
this initial safe set . Preferably , the initial safe set may be 
ergodic so that the interaction system can perform actions 
inside the safe set without the risk of getting stuck . 
[ 0093 ] In various embodiments , while interacting with the 
physical environment , empirical transition probabilities of 
state - action pairs resulting in an updated state may be 
maintained . As an illustration , shown in the figure are 
empirical transition probability EMP1a2 , 671 , of taking 
action a in state Si eadingtostate S2 ; empirical transition 
probability EMP162 , 672 , of taking action b in state S1 
leading to state S2 ; empirical transition probability 
EMP1a3 , 673 , of taking action a in state S1 leading to state 
S3 ; empirical transition probability EMP163 , 674 , of taking 
action b in state Si leading to state S3 ; and an empirical 
transition probability EMP4a5 , 675 , of taking action a in 
state S4 leading to state S5 . For example , quantities n ( sza , ) 
representing a number of times a state - action pair was 
performed and n ( s ,, a ,, Sz + 1 ) representing a number of times 
this led to update state St + 1 may be maintained . An empirical 
transition probability may be determined as n ( s ,, a ,, St + 1 ) / n ( S1 
a . ) . If n ( sa ) , e.g. , no empirical evidence of taking action a , 
from state s? , an estimated transition probability indicating 
maximal uncertainty may be returned , e.g. , a confidence 
interval [ 0,1 ] . 
[ 0094 ] If In some embodiments , empirical transition prob 
abilities of a state - action pair may be updated , and quantities 
depending on it recomputed , only if the number of times that 
the state - action pair is encountered does not exceed a 
threshold m . The inventors envisaged this measure to help 
reach the mathematical guarantee of PAC - MDP optimality 
but in many practical settings it is not needed . Preferably , 
threshold m is chosen bigger than 1 / t , where T is a threshold 
parameter further discussed below . 
[ 0095 ] Interestingly , in various embodiments , the safe set 
of state - action pairs may be updated while interacting with 
a physical environment , e.g. , by including additional state 
action pairs for which it is safe to do so , as discussed further 
below . However , in order to determine that it is safe to 
include a state - action pair , transition probabilities may be 
needed for state - action pairs that are not in the safe set , e.g. , 
for which it is not known to be safe to perform the action . 
Interestingly , in such cases , performing such potentially 
unsafe actions may be avoided by instead estimating tran 
sition probabilities EST *** for state - action pairs based on 
empirical transition probabilities EMP *** of other state 
action pairs . In particular , in at least one iteration , a transi 
tion probability may be estimated for a state - action pair for 
which no empirical transition probabilities are available , 
e.g. , leading to that action being selected to be performed . 
[ 0096 ] For example , as shown in the figure , an estimated 
transition probability EST1a2 , 681 , of state - action pair Ala 
leading to state S2 may be determined based on , e.g. , equal 

[ 0099 ] For example , for two state - action pairs , a bound on 
the distance , e.g. , L , distance , between their dynamics may 
be assumed , based on a mapping between analogous next 
states . For example , a may represent an identity mapping 
between respective next states , e.g. , a?s , a , s ' , š , ã ) = s ' ) . Other 
functions may also be used , allowing a wider set of analo 
gies to be represented . Conceptually , a may indicate a 
closeness of reactions of the physical environment in 
response to respective state - action pairs , allowing to transfer 
knowledge from previously seen state - action pairs to previ 
ously unseen or less seen state - action pairs . For example , the 
smaller A is , e.g. , the more similar the state - action pairs , the 
more knowledge transfer may take place . 
[ 0100 ] Accordingly , for respective transition probabilities , 
estimated transition probabilities 4 : SxAXS > [ 0,1 ] , e.g. , 
EST1a2 , may be mintained . Optionally , also confidence 
interval widths for the estimated transition probabilities ( not 
shown ) may be maintained , e.g. , per state - action pair 4 : Sx 
A > R . Also the confidence intervals may be used to select 
a most relevant other state - action pair . 
[ 0101 ] As a detailed example , let T denote the empirical 
transition probabilities EMP *** . Let E7 ( s , a ) denote a L1 
confidence interval for an empirical transition probability 
Î ( s , a ) . As known from “ An analysis of model - based Interval 
Estimation for Markov Decision Processes ” , if 

?T ( s , a ) = 2 [ ln ( 2181 – 2 ) - In ( 87 ) ] 
n ( s , a ) 

where n ( s , a ) is the number of times state - action ( sa ) is 
encountered , the Ll confidence intervals may hold with 
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probability dz . Beneficially , using analogies , tighter confi 
dence intervals @ 7 , centred around an estimated ? , may be 
determined , especially for unexperienced state - action pairs , 
by transferring a confidence interval from a sufficiently 
similar state - action pair with a relative small confidence 
interval to another state - action pair with a larger confidence 
interval . 
[ 0102 ] As an example , the following algorithm may be 
used to determine estimated transition probabilities , e.g. , 
EST1a2 , from empirical transition probabilities , e.g. , 
EMP4a5 : 

Algorithm . Compute Analogy - based Confidence Intervals 

compute Er ( s , a ) using di 
for ( s , a ) ESX A do 
( š , à ) < argmin { @ z?s , a ) , mingger ( š , à ) + A ( ( s , a ) , ( š , à ) ) } 
( s , a ) : = E ( š , a ) 
for s ' ES do 
s ' a { ( s , a , s ' ) , ( š , à ) ) 

A ( s , a , s ' ) : = T ( š , ã , š " ) 

of the candidate set of state - action pairs may be determined 
for which adding the subset to the safe set of state - action 
pairs results in an ergodic set of state - action pairs not 
labelled as unsafe . 
[ 0106 ] Specifically , the candidate set may be pruned in an 
iterative approach . In this iterative approach , state - action 
pairs may be eliminated that cannot be reached from the safe 
set of state - action pairs according to the estimated transition 
probabilities , or from which the safe set of state - action pairs 
cannot be reached according to the estimated transition 
probabilities . Accordingly , ergodicity may be achieved . 
Then , state - action pairs may be eliminated to ensure close 
ness , in other words to avoid reaching a state from which no 
action from the safe set of state - action pairs or the subset of 
the candidate set of state - action pairs can be taken . These 
iterations may be repeated , e.g. , until convergence . 
[ 0107 ] Interestingly , as the inventors were able to show , 
such an iterative approach may lead to a safe and ergodic set . 
Moreover , the inventors were also able to show that the 
approach is complete , in the sense that for each state on the 

for which there exists a return policy to Îs " safe 
which passes only through non - unsafe state - action pairs 
with sufficiently accurate estimated transition probabilities , 
this edge action and all of the actions in every possible return trajectory to ?safe may be added . Accordingly , this pruning 
approach may allow a relatively large amount of state - action 
pairs to be included in the safe set . 
[ 0108 ] As a detailed example , the following algorithm 
may be used to updated the safe set based on a candidate set 
of state - action pairs : 

edge of ?safe 

Algorithm . Compute Safe Set 

[ 0103 ] Interestingly , based on estimated transition prob 
abilities , e.g. , EST1a2 , a state - action pair , e.g. , Ala may be 
included in the safe set of state - action pairs . Specifically , a 
state - action pair may be included , e.g. , its label Sla ? 
adjusted , only if or whenever , the state - action pair is not 
labelled as unsafe , e.g. , by labelling US1a ?, and the safe set 
of state - action pairs can be reached with sufficient probabil 
ity from the state - action pair based on the estimated transi 
tion probability , e.g. , EST1a2 . 
[ 0104 ] Specifically , if estimated transition probabilities 
EST *** for a state - action pair are sufficiently reliable , e.g. , 
if a confidence interval is sufficiently small , then it may be 
established with sufficient confidence which other states 
may be reached as a result of a given action . In other words , 
the support of the next - state distribution of the state - action 
pair may be recovered with sufficient confidence . Specifi 
cally , the inventors realised that if it is assumed that all 
non - negative transition probabilities occur with a probabil 
ity at least T , then it may be sufficient for a confidence 
interval to satisfy A ( sa ) st / 2 . Here , T is an irrelevance 
threshold on unlikely transformations , e.g. , all transition 
probabilities may be assumed to be at least T. Based on 
determining which other states a state - action pair may result 
in , the state - action pair may be determined to be safe , e.g. , 
if each resulting state - action pair was already in the safe set 
or based on other techniques for updating the safe set 
discussed below . Preferably , threshold parameter t is to a 
small value , e.g. , smaller than 1 / ( ISI.tmax ) where ISI is the 
cardinality of the state set S and tmax is the maximum 
number of environment interactions to be performed by the 
interaction system . 
[ 0105 ] In various embodiments , instead of adding state 
action pairs to the safe set one - by - one , the safe set of 
state - action pairs may be updated based on a candidate set 
of state - action pairs that are not labelled as unsafe and for 
which sufficiently accurate estimated transition probabilities 
are available , e.g. , for which the support is known . In order 
to add candidate state - action pairs to ?safe while ensuring 
that ? is closed , a safe return policy to Îsafe may be ' safe 
needed , in the sense that for every state - action pair in the 
return path , the support of the next state distribution is 
known , and all possible resulting states allow to return to 
Žsafe with sufficiently high probability . Accordingly , a subset 

Zcandidate { ( s , a ) E ( S x A ) Zsafes.t . 7 ( s , a ) < t / 2 , R ( s , a ) 2 0 } 
while Z candidate 7 Zclosed in the last iteration do 

Zreachable { ( s , a ) E Z candidate : S E ?safe } 
while Zreachable changed in the last iteration do 

for ( s , a ) e Zreachable U Žsafe do 
add { ( s ' , a ' ) E Zcandidate s.t. 4 ( s , a , s ' ) > 0 } to Zreachable 

Zreturnable 40 
while Zreturnable changed in the last iteration do 

for ( s , a ) E Zreachable do 
if 3 ( s ' , a ' ) E Zreturnable s.t. A ( s , a , s ' ) > 0 then 

add ( s , a ) to Zreturnable 
Zclosed Zreturnable 
while Zclosed changed in the last iteration do 

for ( s , a ) E Zclosed do 
if ?s ' ES s.t. 4 ( s , a , s ' ) > 0 and Va ' E A , ( s ' , a ' ) & Zclosed U 
Zathen 

remove ( s , a ) from Zclosed 
Z candidate 

UŽ safe 

Žsafe 
Zclosed 

U Zsafe Zclosed ' safe 

[ 0109 ] Accordingly , by selecting an action to be per 
formed in a current state of the physical environment from 
the safe set of state - action pairs , and providing the action to 
be performed to the interaction system interacting with the 
physical environment , safety of the interaction with the 
physical environment may be improved , while still enabling 
the system to perform actions that were not initially labelled 
as unsafe . For example , in a random exploration setting , the 
interaction system may be able to randomly explore the 
environment in a safe way . Or , in a setting with a parametric 
policy , for example defined by an artificial neural network , 
an action may be determined according the parametric 
policy and performed only if the action from the current state 
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goal 

to I goal 

is comprised in the safe set . Generally , an alert may be raised 
if a determined action is not comprised in the safe set . 
[ 0110 ] In various embodiments , however , the interaction 
with the physical environment may take place according to 
a reward function . For example , a goal - oriented action to be 
performed in the current state of the physical environment 
may be determined based on the reward function , for 
example , to maximize an expected accumulated reward as is 
conventional . That action may then be performed only if it 
is comprised in the safe set of state - action pairs . In particu 
lar , a set of goal state - action pairs may be determined that 
are reachable by performing goal - oriented actions . For 
example , shown in the figure are labels Gla ?, 651 ; Glba ?, 
652 ; and G4a ?, 653 , indicating whether respective state 
action pairs Ala , Alb , and A4b are comprised in the set of 
goal - oriented actions . In such a case , the determined goal 
oriented action may be performed only if each of these goal 
state - action pairs is comprised in the safe set . As discussed 
elsewhere , this may reduce the likelihood of getting stuck in 
certain situations . 
[ 0111 ] Interestingly , in various embodiments , if a goal 
oriented action according to the reward function cannot be 
performed , e.g. , if the goal - oriented action is not comprised 
in the safe set or if a determined set of goal state - action pairs 
is not comprised fully in the safe set , then the reward 
function may nonetheless be used as a guide to determine an 
action to be performed in several ways . For example , in at 
least an iteration , a similar state - action pair may be deter 
mined that is similar to a goal - oriented state - action pair not 
comprised in the safe set , and transition probabilities for the 
goal - oriented state - action pair may be estimated based on 
empirical transition probabilities of the similar state - action 
pair , thereby possibly allowing the goal - oriented to be added 
to the safe set . Or , in at least an iteration , a return state - action 
pair may be selected for returning to the goal set of state 
action pairs . 
[ 0112 ] Several of the above possibilities are explained 
based on the following detailed pseudocode example of 
configuring an interaction system : 

[ 0113 ] The above example demonstrates three ways of 
selecting safe actions based on a reward function , defined by 
three different policies . The first policy is a goal - oriented 
policy ?goal . In this example , the goal - oriented policy is 
performed only if each goal state - action pair Z is com 
prised in the safe set of state - action pairs Zsafe . The second 
policy is an exploration policy Texplore that preferably selects 
similar state - action pairs based on the reward function for 
allowing the safe set of state - action pairs to be extended , as 
also discussed elsewhere . The Texplore policy can also 
expand the safe set arbitrarily , for example . The third policy 
is a switching policy Tswitch that can be thought of as a policy 
that enables switching from to ' explore 
[ 0114 ] The above algorithm also demonstrates several 
subsets of the set of state - action pairs that may be main 
tained throughout the environment interaction . The first set 
is the safe set of state - action pairs Žsafe which is initialized 
to an initial safe set Z , and may be gradually expanded over 
time . 

[ 0115 ] Another set is the set of goal - oriented actions Z 
e.g. , the set of state - action pairs that may be visited by 
following a goal - based policy regardless of the safe set . 
Another set is ?unsafe . This set may be initialized to the set 
of state - action pairs labelled as unsafe , but can optionally 
also be extended with additional state - action pairs , e.g. , as 
described herein . In the above example , the policies and sets 
are recomputed whenever a state - action pair is visited that 
has been explored fewer than m times with m a given 
hyperparameter . This way , the policies and sets may be 
recomputed when it may be expected that useful information 
will be added , while saving computational resources by not 
performing the re - computation if it is likely to be of little 
use . 

[ 0116 ] Below , an example algorithm is given by which the 
set of goal - oriented actions Z. goals and a set of similar 
state - action pairs Zexplore for estimating transition probabili 
ties , can be determined . 

Algorithm . Analogous Safe - state Exploration 

Zgoal 

Using . Parameters m , dt , Yexplore Yswitch 
Zsafe < Zo // initial safe set of state - action pairs 
Žunsafe { ( s , a ) ES * A : R ( s , a ) < 0 } // subset of state - action pairs labelled unsafe 
n ( s , a ) , nás , a , s ' ) < 0 for all ( s , a , s ' ) E S * A?S 1 ) empirical transition probabilities 

CSXA 
So Sinit 
Compute Igoal , Zgoal , Zexplore Il e.g. using algorithm discussed below 
Compute Nexplore , I switch 
for t = 1,2,3 , ... 

let St be the current state of the physical environment 
if Zgoai Žsafe // not all goal - oriented actions comprised in safe set 

choose action a ;: = Texplore ( s ) 1 / select similar state - action pair 
else 

if s : € Zgoal 
choose action an : = Tswitch ( s ) // select return state - action pair 

else 
choose action a ;: = ?goals :) // select goal - oriented action 

let St + 1 be the new state reached 
if n ( Sq , ay ) < m then 

n ( sz , ay ) n ( sx , a ) + 1 
n ( sz , az , Sz + 1 ) n ( sz , az , Sz + 1 ) + 1 // update empirical transition probabilities 
compute confidence intervals with parameter de 
compute Zsafe // update safe set based on estimated transition probabilities 
compute Igoal goals // e.g. using algorithm discussed below 
compute Mexplore , I switch 

Zgoal Zexplore 
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Algorithm . Compute Igoal , Zgoal and Zexplore 
Zexplore 

goal 

unsafe 

0 

0 

for i = 1,2 , do 
compute Igoal 
compute za 
if Zgoal - Zsafe then 

break 

Zedge « { ( s , a ) E Zgoalîsafe Is E ?safe } // compute Zexplore 
Zexplore 
Zreturn 
L = 0 
Zheº - 

Ø and Znext + Ø do 
Znext 0 
for ( s , a ) E Znext do 

if ( s , a ) > T / 2 then 
add { š , ã E Zsafe s.t.A { ( s , a ) , ( š , à ) ) < t / 4 ) to Zexplore 

else 
add { s ' , a ' E SXA : ( s , a , s ' ) > 0 } \ ( Zreturn U?safe U 
Zunsafe ) to Znext 

LL + 1 
Ø then 

add Zedge to ?unsafe 
else 

break 

Zedge 
while Zexplore L 

and Iswitch 

on , for example , until either Zexplore is non - empty or the BFS 
tree cannot be grown any further . Experiments have shown 
that this method is more effective than an exhaustive search , 
which is however also possible . 
[ 0120 ] If no similar state - action pair to be performed is 
determined , in the above algorithm , all of Zedge may be 
added to ? , In the next iteration , Tigoal may be updated 
to ignore Zunsafe . The inventors were able to show that this 
iterative approach terminates in polynomial time , and when 
it does , either a non - empty Zexplore is determined that can be explored by Texpigre , or an updated Tg goal is determined in a 
way that Zgoal EZ safe . 
[ 0121 ] Mathematical details of example policies Igoala 
Texplore for the above approach are now provided . 
[ 0122 ] Given transition probabilities ? and confidence 
interval width 4 : SxA > R as described herein , Tt may be 
referred to below as a candidate transition if it satisfies the 
following for all ( s , a ) ESxA : 
[ 0123 ] 1. || T4 ( s , alis ( sa ) . 
[ 0124 ] 2. if for some s ' , $ ( s , a , s ' ) = 0 and 47 ( s , a ) < t , then 
T * ( s , a , s ' ) = 0 . 
[ 0125 ] 3. if ( s , a ) EZ , then Vs ' & Z , T * ( s , a , s ' ) = 0 CI ( 4 ) may 
be used below to denote the space of all candidate transition 
probabilities . 
[ 0126 ] Given an MDP model of the physical environment , 
let M ' be an MDP that is the same as M but with an arbitrary 
reward function R * and discount factor yt . The optimistic 
state - action value function may be computed as follows : 

L + 1 

if Zexplore 

Q * ( s , a , 0 ) = 0 
( s , a , 1 ) = R * ( s , a ) 

@ * ( s , a , t ) = R * ( s , a ) + y * max T * ( s , a , s ' max * ( s ' , d ' , t - 1 ) , 
TTECI?SES a EA 

Vt > 0 . 

goal 

[ 0117 ] In order to include a state - action pair in the safe set 
Zsafe it is noted that accurate transition probabilities may be 
needed not just for the state - action pair itself but also for 
state - action pairs on return trajectories to Îsafe . Namely , 
such transition probabilities may allow to determine that the 
safe set of state - action pairs can be reached with sufficient 
probability from the state - action pair to be added . Accord 
ingly , in various embodiments , a similar state - action pair to 
be performed is determined that is similar to a goal - oriented 
state - action pair , or to a state - action pair on the return path 
from the goal - oriented state - action pair to the safe set , 
allowing transition probabilities for these latter state - action 
pairs to be estimated . This is not needed , however , e.g. , 
Zedge { ( s , a ) EŽsafe CISEîsafe } may be used . 
[ 0118 ] Practically , as demonstrated in the algorithm , the 
set of similar state - action pairs may be determined itera 
tively . In an iteration , current goal policy T?goal and set Z 
of goal - oriented actions may be determined . Based on this , 
a set Z edge may be defined as the intersection of Z. goal and the 
set of all edge state - action pairs of the safe set Zsafe . It may 
be desirable for state - action pairs of Zedge to be included in 
the safe set , to allow the safe set to be extended towards the goal . Accordingly , a set Zexplore Žsafe of similar state 
action pair may be determined based on set Zedge 
[ 0119 ] In order to determine set Zexplore , safety may need 
to be established of unexplored state - action pairs ( s , a ) 
EZedge Conceptually , state - action pairs from Zsafe may be 
explored that are similar to an unknown return policy from 
( s , a ) in order to learn that unknown policy . Interestingly , as 
shown in the above algorithm , this may be done without 
exploring Zsafe exhaustively by performing a breadth - first 
search from ( sa ) . The breadth - first search , demonstrated by 
the while loop in the above pseudocode , may enumerate a 
superset of trajectories that contains the true return trajec 
tories . For example , it may first enumerate a list of state 
action pairs that are a 1 - hop distance away and if any of them 
have a loose confidence interval , it may add to Zexplorea 
corresponding similar state - action pair from îsafe ( if any 
exist ) . If Zexplore is empty at this point , the algorithm may 
repeat this process for 2 - hop distance , 3 - hop distance and so 

[ 0127 ] Ast - o , Q ' ( s , a , t ) may converges to a value Q ' ( sa ) 
since the above mapping is a contraction mapping . For ease 
of exposition , it will be assumed that these values are 
computed for an infinite horizon , e.g. , Q ' ( s , a ) may be 
computed . 
[ 0128 ] Let Ti denote the transition probability from CIC 
A 

7 ) that corresponds to the optimistic transitions that maxi 
mizes Ot . Also , let M * denote the ' optimistic ' MDP , ( S , A , 
T , Rt , yt ) . 
[ 0129 ] Goal MDP . 
[ 0130 ] Mgoal may defined as an MDP that is the same as 
M , but without the state - action pairs from Žumsafe , a set of 
state - action pairs labelled as unsafe . More concretely , 
Mgoa ( S , A , T , RoadYgoat ) , where : 

- ( s , a ) e unsafe Rgoal ( s , a ) = 
R ( s , a ) otherwise 

[ 0131 ] Qgoal may then be defined as the finite - horizon 
optimistic Q - value computed on Mgoat , and Tgoai the policy 
dictated by the estimate of Qgoal . Also , let To denote the 
optimisitic transition probability and Mgoal the optimistic 
MDP . Define 

goal 
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Pgoal : = PT goal ' goal - Sinit 

corresponding to the state distribution following the opti 
mistic policy from the initial state in the optimistic MDP . For 
some H > ISI , define 

where å desired Zgoal : = { ( s , a , H ) ESxA : goal ( s , a ) > 0 . } 
[ 0132 ] In other words , Zgoal may be a set of state - action 
pairs that have a positive probability of being reached while 
following the policy Tgoal from the initial state Sinit for H 
steps . It may be shown that , if horizon H > ISI , then Pgoa ( s ' , 
a ' , H ) > 0 if and only if Pgoal ( s ' , a ' ) > 0 , e.g. , implying 
Zgoa { ( s ,, H ) ESXA : Pgoa ( sa ) > 0 } . 
[ 0133 ] Explore MDP . 
[ 0134 ] Mexplore = ( S , A , T , Rexplore : Yexplore ) may be defined 
as an MDP with the same states , actions , and transition 
function as M , but with a different reward function , Rexplore : 

1 ( s , a ) E Zexplore 
Rexplore ( s , a ) = 0 ( s , a ) € ?safe \ Zexplore 

otherwise 

[ 0135 ] Switch MDP . 
[ 0136 ] Mswitch = ( S.A , T , Rswitch Yexplore ) may be defined to 
be an MDP with the same states , actions , and transition 
function as M , but with a different reward function , Rswitch , 
and discount factor . More specifically , Rswitch may be 
defined as follows : 

analogous state function , a ( s , - , s ' ) , ( S . ) = ( x + ( xx - x ) , 75+ 
( ys - ys ) ) can be used , where the subscripts denote the state to 
which the attribute belongs . 
[ 0140 ] As a second example , a discrete platformer - like 
domain may be considered . The state space comprises tuples 
( x , y , x , y ) where x , y are the coordinates of the interaction 
system and x , y are the directional velocities of the system . 
The actions provided to the system are tuples ( X desiredaj ) 

is the desired x and ranges from -2 to 2 , and 
j is a boolean variable indicating whether or not the system 
should jump . While on the ground , at every step changes 
by at most 1 in the direction of desired and if j = 1 then ? is 
set to a value E { 1,2 } ( otherwise f remains unchanged ) . 
While in the air , however , the system's actions have no 
effect and gravity decreases y by one at every step . When the 
system returns to the ground , is set to 0. There are three 
types of surfaces in the environment : 1 ) concrete , 2 ) ice , and 
3 ) sand . These surfaces change how high the system can 
jump . On concrete , when the system jumps , y = 2 with 
probability 1 ; on ice ý = 2 with probability 0.5 and y = 1 with 
probability 0.5 ; and on sand y = 1 with probability 1 . 
[ 0141 ] The environment is arranged into three islands . The 
first island has all three surface materials from left to right : 
sand , ice , then concrete . The next two islands are just 
concrete , with the last one containing the goal state ( where 
the reward is 1 ) . The regions surrounding these islands are 
unsafe , meaning they produce rewards of -1 and are termi 
nal . The islands are spaced apart such that the system must 
be on concrete to make the full jump to the next islands , and 
vice versa . 
[ 0142 ] The initial safe set provided to the system in this 
example may be the whole first island and all actions that 
with probability 1 will keep the system on the centre island . 
The distance function A provided to the system may be 
A ( ( s , a ) , ( šã ) ) = 0 if a = ã and s and s are either both in the air 
or both on the same type of surface and A? ( s , a ) , ( š , ã ) ) = 1 
otherwise . The analogous state function a may be al ( s , ' , s ' ) , 
( Š , • ) ) = š ' where š ' has the same y , x , and y values as s ' with 
the x value shifted by the x difference between s and š . 
[ 0143 ] Several additional concrete embodiments for inter 
acting with a physical environment using safe sets of state 
action pairs are envisaged : 

[ 0144 ] The known E - greedy algorithm for reinforce 
ment learning may be adapted to perform safe explo 
ration by restricting the allowable set of actions to a 
safe set of actions as described herein ; 

[ 0145 ] The R - Max algorithm as described in R. Braf 
man , and M. Tennenholtz , “ R - max : A general polyno 
mial time algorithm for near - optimal reinforcement 
learning ” , Journal of Machine Learning Research , 3 
( Oct. ) , 2002 ( incorporated herein by reference ) may 
also be adapted to perform safe exploration by restrict 
ing the allowable set of actions to a safe set of actions 
as described herein . 

[ 0146 ] FIG . 7 shows a block - diagram of computer - imple 
mented method 700 of configuring a system which interacts 
with a physical environment . An action of the system in a 
state of the physical environment may result in an updated 
state of the physical environment according to a transition 
probability . The method 700 may correspond to an operation 
of the system 100 of FIG . 1 . 
[ 0147 ] However , this is not a limitation , in that the method 
700 may also be performed using another system , apparatus 
or device . 

1 ( s , a ) e Zgoal 
( s , a ) e Žsafe \ Zgoal Rswitch ( s , a ) = 0 

- otherwise 

[ 0137 ] Several illustrative examples of analogous state 
functions a : ( SxAXS ) x ( SxA ) -S and pairwise state - action 
distance mappings A are now provided . 
[ 0138 ] As a first illustrative example , a grid world domain 
may be considered with unsafe states , in which the interac 
tion system receives a reward of -1 for any action and the 
episode terminates . A state s may be described by its 
coordinates on the 2 - dimensional grid : s = ( xx , y ) . The system 
starts on a 7x7 island of safe states and is surrounded by four 
5x5 islands of safe states in all four directions , separated 
from the centre island by a one - state - thick line of dangerous 
states . The goal is placed on one of the surrounding islands . 
The system can take actions up , down , left , or right to move 
in those directions one step , or can take actions jump up , 
jump down , jump left , or jump right to move two steps , 
allowing the system to jump over dangerous states . There is 
a slipping probability of 60 % , which causes the system to 
fall left or right of the intended target , 30 % for either side . 
[ 0139 ] The initial safe set provided to the system in this 
example , can be the whole centre island and all actions that 
with probability 1 will keep the system on the centre island . 
The distance function A provided to the system can be 
Al ( s , a ) , ( š , ã ) = 0 if a = ã and s and s are within 5 steps from 
each other ( in Lo norm ) and A? ( s , a ) , ( s , ã ) ) = 1 otherwise . As 
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[ 0148 ] The method 700 may comprise , in an operation 
titled “ ACCESSING SAFE SET , UNSAFE SET ” , accessing 
710 data indicating a safe set of state - action pairs known to 
be safely performable and data indicating an unsafe set of 
state - action pairs to be avoided when interacting with the 
physical environment . The method 700 may further com 
prise iteratively controlling an interaction with the physical 
environment . 
[ 0149 ] In an iteration 720-750 , the method 700 may com 
prise , in an operation titled " OBTAINING CURRENT 
STATE ” , obtaining 720 data indicating a current state of the 
physical environment . In the iteration 720-750 , the method 
700 may comprise , in an operation titled " UPDATING 
SAFE SET ” , updating 730 the safe set of state - action pairs . 
[ 0150 ] To update the safe set , method 700 may comprise , 
in an operation titled “ ESTIMATING TRANSITION 
PROBABILITY BASED ON OTHER PAIR " , estimating 
732 a transition probability for a state - action pair based on 
an empirical transition probability of a similar other state 
action pair . To update the safe set , method 700 may com 
prise , in an operation titled “ INCLUDING PAIR IF SAFE ” , 
including 734 the state - action pair in the safe set of state 
action pairs if the state - action pair is not labelled as unsafe 
and the safe set of state - action pairs can be reached with 
sufficient probability from the state - action pair based on the 
estimated transition probability . 
[ 0151 ] In the iteration 720-750 , the method 700 may 
comprise , in an operation titled “ SELECTING ACTION 
FROM SAFE SET ” , selecting 740 an action to be performed 
in the current state of the physical environment from the safe 
set of state - action pairs . In the iteration 720-750 , the method 
700 may comprise , in an operation titled “ PROVIDING 
ACTION ” , providing 750 the action to be performed to the 
system . 
[ 0152 ] It will be appreciated that , in general , the opera 
tions of method 700 of FIG . 7 may be performed in any 
suitable order , e.g. , consecutively , simultaneously , or a com 
bination thereof , subject to , where applicable , a particular 
order being legated , e.g. , by input / output relations . 
[ 0153 ] The may be implemented on a computer 
as a computer implemented method , as dedicated hardware , 
or as a combination of both . As also illustrated in FIG . 8 , 
instructions for the computer , e.g. , executable code , may be 
stored on a computer readable medium 800 , e.g. , in the form 
of a series 810 of machine - readable physical marks and / or as 
a series of elements having different electrical , e.g. , mag 
netic , or optical properties or values . The executable code 
may be stored in a transitory or non - transitory manner . 
Examples of computer readable mediums include memory 
devices , optical storage devic ntegrated circuits , servers , 
online software , etc. FIG . 8 shows an optical disc 800 . 
[ 0154 ] Examples , embodiments or optional features , 
whether indicated as non - limiting or not , are not to be 
understood as limiting the present invention . 
[ 0155 ] It should be noted that the above - mentioned 
embodiments illustrate rather than limit the invention , and 
that those skilled in the art will be able to design many 
alternative embodiments without departing from the scope 
of the present invention . Use of the verb " comprise ” and its 
conjugations does not exclude the presence of elements or 
stages other than those described . The article “ a ” or “ an ” 
preceding an element does not exclude the presence of a 
plurality of such elements . Expressions such as “ at least one 
of ” when preceding a list or group of elements represent a 

selection of all or of any subset of elements from the list or 
group . For example , the expression , “ at least one of A , B , 
and C " should be understood as including only A , only B , 
only C , both A and B , both A and C , both B and C , or all of 
A , B , and C. The invention may be implemented by means 
of hardware comprising several distinct elements , and by 
means of a suitably programmed computer . In the descrip 
tion of a device enumerating several means , several of these 
means may be embodied by one and the same item of 
hardware . The mere fact that certain measures are described 
separately does not indicate that a combination of these 
measures cannot be used to advantage . 
What is claimed is : 
1. A computer - implemented method of configuring a 

system which interacts with a physical environment , 
wherein an action of the system in a state of the physical 
environment results in an updated state of the physical 
environment according to a transition probability , the 
method comprising the following steps : 

accessing data indicating a safe set of state - action pairs 
known to be safely performable and data indicating an 
unsafe set of state - action pairs to be avoided when 
interacting with the physical environment ; 

while the system interacts with the physical environment , 
maintaining empirical transition probabilities of state 
action pairs resulting in updated states ; and 

iteratively controlling an interaction with the physical 
environment by , in an iteration : 
obtaining data indicating a current state of the physical 

environment ; 
updating the safe set of state - action pairs , including : 

estimating an estimated transition probability for 
each state - action pair of the state action pairs 
resulting in the updated states based on an empiri 
cal transition probability of a similar other state 
action pair , and 

including the state - action pair in the safe set of 
state - action pairs when the state - action pair is not 
labelled as unsafe and the safe set of state - action 
pairs can be reached with sufficient probability 
from the state - action pair based on the estimated 
transition probability ; 

selecting an action to be performed in a current state of 
the physical environment from the safe set of state 
action pairs ; and 

providing the action to be performed to the system . 
2. The method according to claim 1 , wherein the system 

interacts with the physical environment according to a 
reward function , the method further comprising , in an itera 
tion : 

determining a goal - oriented action to be performed in the 
current state of the physical environment based on the 
reward function and selecting the action only when the 
action in the current state of the physical environment 
is included in the safe set of state - action pairs . 

3. The method according to claim 2 , further comprising : 
determining a set of goal state - action pairs reachable by 

performing goal - oriented actions , and performing the 
goal - oriented action only when each goal state - action 
pair of the set of goal state - action pairs is included in 
the safe set of state - action pairs . 

4. The method according to claim 2 , further comprising : 
selecting a similar state - action pair that is similar to a 

goal - oriented state - action pair not included in the safe 
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set , and estimating transition probabilities for the goal 
oriented state - action pair based on empirical transition 
probabilities of the similar state - action pair . 

5. The method according to any one of claim 2 , further 
comprising : 

selecting a return state - action pair for returning to the set 
of goal state - action pairs . 

6. The method according to claim 1 , further comprising : 
determining an action and raising an alert when the action 

is not included in the safe set of state - action pairs . 
7. The method according to claim 1 , further comprising : 
determining a similarity between the state - action pair and 

the other state - action pair by comparing only portions 
of respective states and / or actions relevant for transi 
tion probabilities . 

8. The method according to claim 1 , further comprising , 
in at least one iteration , estimating a transition probability 
for a first state - action pair for which no empirical transition 
probability is available and selecting the action from the first 
state - pair to be performed . 

9. The method according to claim 1 , wherein the estimat 
ing of the estimated transition probability for the state - action 
pair includes : 

determining similarities between the state - action pair and 
one or more other state - action pairs for which empirical 
transition probabilities are available ; 

selecting a most relevant other state - action pair based on 
at least the similarities ; and 

determining the estimated transition probability for the 
state - action pair based on the empirical transition prob 
abilities of the selected other state - action pair . 

10. The method according to claim 9 , further comprising : 
determining confidence intervals of the empirical transi 

tion probabilities of the one or more other state - action 
pairs , the most relevant other state - action pair being 
selected based additionally on the determined confi 
dence intervals . 

11. The method according to claim 1 , wherein the con 
trolling of the interaction with the physical environment is 
performed in a training phase , the method further compris 
ing : 

controlling a further interaction with the physical envi 
ronment in a use phase by repeatedly : 
obtaining the current state of the physical environment ; 
selecting the action to be performed in the current state 

of the physical environment from the safe set of 
state - action pairs determined in the training phase ; 
and 

providing the selected action to be performed to the 
system . 

12. The method according to claim 1 , wherein the data 
indicating the current state of the physical environment 
includes sensor data of a computer - controlled device , and 
the method further comprises determining control data for 
letting the computer - controlled device effect the selected 
action in the physical environment . 

13. The method according to claim 12 , wherein the 
physical environment includes objects to be avoided by the 
computer - controlled device , and wherein state - action pairs 
are defined as sufficiently similar regardless of the objects to 
be avoided . 

14. A configuration system for configuring an interaction 
system which interacts with a physical environment , 
wherein an action of the interaction system in a state of the 

physical environment results in an updated state of the 
physical environment according to a transition probability , 
the configuration system comprising : 

a data interface for accessing data indicating a safe set of 
state - action pairs known to be safely performable and 
data indicating an unsafe set of state - action pairs to be 
avoided when interacting with the physical environ 
ment ; 

a processor subsystem configured to , while the interaction 
system interacts with the physical environment , main 
tain empirical transition probabilities of state - action 
pairs resulting in updated states , and to iteratively 
control an interaction of the interaction system with the 
physical environment by , in an iteration : 
obtain , from the interaction system , data indicating a 

current state of the physical environment ; 
update the safe set of state - action pairs , including : 

estimating an estimated transition probability for 
each state - action pair of the state - action pairs 
resulting in updated states based on an empirical 
transition probability of a similar other state 
action pair , and 

including the state - action pair in the safe set of 
state - action pairs when the state - action pair is not 
labelled as unsafe and the safe set of state - action 
pairs can be reached with sufficient probability 
from the state - action pair based on the estimated 
transition probability ; 

select an action to be performed in the current state of 
the physical environment from the safe set of state 
action pairs ; 

providing the action to be performed to the interaction 
system . 

15. A non - transitory computer - readable medium on which 
is stored instructions for configuring a system which inter 
acts with a physical environment , wherein an action of the 
system in a state of the physical environment results in an 
updated state of the physical environment according to a 
transition probability , the instructions , when executed by a 
processor system , causing the processor system to perform 
the following steps : 

accessing data indicating a safe set of state - action pairs 
known to be safely performable and data indicating an 
unsafe set of state - action pairs to be avoided when 
interacting with the physical environment ; 

while the system interacts with the physical environment , 
maintaining empirical transition probabilities of state 
action pairs resulting in updated states ; and 

iteratively controlling an interaction with the physical 
environment in an iteration : 
obtaining data indicating a current state of the physical 

environment ; 
updating the safe set of state - action pairs , including : 

estimating an estimated transition probability for 
each state - action pair of the state action pairs 
resulting in the updated states based on an empiri 
cal transition probability of a similar other state 
action pair , and 

including the state - action pair in the safe set of 
state - action pairs when the state - action pair is not 
labelled as unsafe and the safe set of state - action 
pairs can be reached with sufficient probability 
from the state - action pair based on the estimated 
transition probability ; 
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selecting an action to be performed in a current state of 
the physical environment from the safe set of state 
action pairs ; and 

providing the action to be performed to the system . 
* 


