a2 United States Patent
Block et al.

US012034762B2

US 12,034,762 B2
Jul. 9, 2024

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR MANAGING
APPLICATION VULNERABILITIES

(71) Applicant: JPMorgan Chase Bank, N.A., New
York, NY (US)

(72) Inventors: Monika T S Block, River Forest, I,
(US); Animesh Kotwal, Panvel (IN);
Purvesh Shah, Mumbai (IN);
Shamanth Murthy, Bengaluru (IN);
Magesh Lakshmi, Aurora, 1L (US)

(73) Assignee: JPMORGAN CHASE BANK, N.A.,
New York, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 229 days.

(21) Appl. No.: 17/659,207

(22) Filed: Apr. 14, 2022

(65) Prior Publication Data
US 2023/0283625 Al Sep. 7, 2023

(30) Foreign Application Priority Data
Mar. 2, 2022 (IN) e 202211011152

(51) Imt.CL
HO4L 9/40
(52) US. CL
CPC HO4L 63/1433 (2013.01); HO4L 63/1416
(2013.01); HO4L 63/1425 (2013.01)
(58) Field of Classification Search
CPCcccue. HO04L 63/1433; HO4L 63/1425; HO4L
63/1416; HO4L 63/1441; HO4L 63/10;
HO04L 63/20; GO6F 21/577; GO6F
2221/033; GO6F 21/554; GOGF 21/568
See application file for complete search history.

(2022.01)

400

(56) References Cited
U.S. PATENT DOCUMENTS

9,977,904 B2* 52018 Khan ... HO4L 63/1433
10,129,118 B1* 11/2018 Ghare HO4L 43/028
10,552,616 B2* 2/2020 Bodin GOG6F 21/577
10,719,611 B2* 7/2020 Mohan HO4L 63/1433

11,374,958 B2* 6/2022 Ngo HO4L 63/10
2013/0276106 Al* 10/2013 Barton GOGF 21/56
726/22

2014/0075560 Al* 3/2014 Guy ..cccooevvvnneenee GO6F 21/577
726/25

2015/0309813 Al* 10/2015 Patelcccccceevennne GO6F 21/577
703/22

(Continued)

Primary Examiner — Lizbeth Torres-Diaz

(74) Attorney, Agent, or Firm — Greenblum & Bernstein,
PL.C.

(57) ABSTRACT

A method for providing vulnerability management to facili-
tate application development and deployment is disclosed.
The method includes receiving a monitoring request that
includes an identifier, the identifier corresponding to an
application; onboarding the application by using the identi-
fier; generating a scheduled task for the application based on
an outcome of the onboarding, the scheduled task relating to
source code vulnerability analytics; automatically initiating,
via an application programming interface, the scheduled
task based on a predetermined parameter; determining
whether a set of source codes that corresponds to the
application includes a vulnerability based on a result of the
automatically initiated scheduled task; and generating a
ticket when the vulnerability is included in the set of source
codes.

20 Claims, 6 Drawing Sheets

Recoive Monitoring
Applicstion k
3402

Oboard Applicati

1sing the Application

Juled Task basod
neter

nchnied i the

US 12,034,762 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2016/0127367 Al* 5/2016 Jevans GO6F 21/51
713/152

2019/0050319 Al* 2/2019 Gondalia . . GO6F 11/3664
2021/0352096 Al* 11/2021 Yadav HO4L 63/1433
2022/0014561 Al* 1/2022 Caceres GO6F 16/951
2022/0222350 Al* 7/2022 Franzen GO6F 21/577
2022/0237301 Al* 7/2022 Godowski . GO6F 21/53
2022/0342998 Al* 10/2022 Singh ... G02B 27/0172
2022/0374218 Al* 11/2022 Monteiro Vieira GOGF 8/433
2023/0078033 Al* 3/2023 Yadav HOA4L 63/1433
726/25

2023/0164042 Al* 5/2023 Barthcccceoeeene HO4L 67/63
709/224

2023/0247043 Al* 82023 Luttwak HOA4L 63/1433
726/25

2024/0062264 Al* 2/2024 Trikha ... G06Q 30/0282

* cited by examiner

U.S. Patent Jul. 9, 2024 Sheet 1 of 6 US 12,034,762 B2

100
v 102
8
) foput Medinm Network Output
Processor Memory Display Device(s} Reader Interface | | Device(s)
184 186 108 110 : 114 116
{lustructiens | || Instructions | [Instructions]
A y 4 ¥ K 4
Bus'118

US 12,034,762 B2

Sheet 2 of 6

Jul. 9, 2024

U.S. Patent

{WJon7 asequieq

(WF0Z 20180

REVRCIN

{T1907 »seqeieg

(TJF07 9018

IBATSS

A K

(07

/

x«\\iisﬁj\\\ I//«\\./J
" 017

(s}aoMmIBN HOBRDIUNLUIUIC]

e ey

H

207

331A3(] SonAjpuy
puR 1uswaieuey
Apgemump uogedyddy

(7807

32143(¢1 31D

(11807

3ITAS(B

U.S. Patent Jul. 9, 2024 Sheet 3 of 6 US 12,034,762 B2

380

\'\ 206{1}

202
204{1}

Application Source
Code Repository

Application !
Vulnerability 1
]
Management and (f

!

i

H

H

Analytics Madule
302

-

Developer Backiog
and Ticketing
Database

206(2)

208(2)

| \ 208(1)

FIG. 3

U.S. Patent Jul. 9, 2024 Sheet 4 of 6 US 12,034,762 B2

Recetve Momtoring Request that Inchides
Application dentifier

S462

¥

Omboard Application by using the Application
Identificr

¥

Generate Scheduled Task for the Application
based on Outcome of the Onboarding

S400

Automatically Initiate the Scheduled Task based
on Predetermined Parameter

Determine Whether Set of Application Source
Codes Includes Vulnerability based on the
Automatically Initiated Scheduled Task

Generate Ticket when the Vulnerability is
Included i the Set of Application Source Codes

5412

FIG. 4

US 12,034,762 B2

Sheet 5 of 6

Jul. 9, 2024

U.S. Patent

12,034,762 B2

US

Sheet 6 of 6

Jul. 9, 2024

U.S. Patent

9Ol

Aupgersigs SRES S0 P opeRun

RGN PONDEDIHNS ded

ARG PITHISRUNG @

swxnuubissy

P YRR SRR A DA

US 12,034,762 B2

1
METHOD AND SYSTEM FOR MANAGING
APPLICATION VULNERABILITIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of Indian Provisional
Patent Application No. 202211011152, filed Mar. 2, 2022,
which is hereby incorporated by reference in its entirety.

BACKGROUND
1. Field of the Disclosure

This technology generally relates to methods and systems
for vulnerability management, and more particularly to
methods and systems for providing vulnerability and code
scan management via automated job scheduling and auto-
mated issue ticketing to facilitate application development
and deployment.

2. Background Information

Many business entities utilize expansive application net-
works to provide services for users. Often, rigorous vulner-
ability management of each application is required to ensure
proper network operability. Historically, implementation of
conventional application vulnerability management tech-
niques has resulted in varying degrees of success with
respect to effective and efficient administration of applica-
tion vulnerabilities.

One drawback of using the conventional techniques is that
in many instances, developers must periodically check an
application code repository of each application to identify
vulnerabilities, determine appropriate fixes, and initiate the
appropriate fixes. For expansive application networks, the
developers must track large numbers of vulnerabilities
across numerous application repositories. As a result, man-
agement of application vulnerabilities is tedious and results
in operational inefficiencies such as, for example, individu-
ally resolving duplicate vulnerabilities. Additionally, since
the checks are based on individual developer actions, over-
sight of unresolved vulnerabilities is difficult.

Therefore, there is a need to provide vulnerability and
code scan management via automated job scheduling and
automated issue ticketing to facilitate effective application
development and deployment.

SUMMARY

The present disclosure, through one or more of its various
aspects, embodiments, and/or specific features or sub-com-
ponents, provides, inter alia, various systems, servers,
devices, methods, media, programs, and platforms for pro-
viding vulnerability and code scan management via auto-
mated job scheduling and automated issue ticketing to
facilitate application development and deployment.

According to an aspect of the present disclosure, a method
for providing vulnerability management to facilitate appli-
cation development and deployment is disclosed. The
method is implemented by at least one processor. The
method may include receiving at least one monitoring
request that includes at least one identifier, the at least one
identifier may correspond to an application; onboarding the
application by using the at least one identifier; generating at
least one scheduled task for the application based on an
outcome of the onboarding, the at least one scheduled task

10

20

25

40

45

50

2

may relate to source code vulnerability analytics; automati-
cally initiating, via an application programming interface,
the at least one scheduled task based on a predetermined
parameter; determining whether a set of source codes that
corresponds to the application includes at least one vulner-
ability based on a result of the automatically initiated at least
one scheduled task; and generating at least one ticket when
the at least one vulnerability is included in the set of source
codes.

In accordance with an exemplary embodiment, the at least
one ticket may relate to a work item of a responsible party
associated with the application, the work item may corre-
spond to an activity in a backlog that is managed by the
responsible party.

In accordance with an exemplary embodiment, the at least
one ticket may include a standardized template that facili-
tates issue tracking and monitoring, the standardized tem-
plate may include vulnerability detection tool information,
vulnerability labeling information, and developer assign-
ment information.

In accordance with an exemplary embodiment, the
method may further include identifying at least one labeling
strategy for the application based on the at least one vul-
nerability and a severity level; generating at least one
graphical element for the application, the at least one graphi-
cal element may include a dashboard that contains informa-
tion from the at least one ticket and the at least one labeling
strategy; and displaying, via a graphical user interface, the at
least one graphical element.

In accordance with an exemplary embodiment, the
method may further include compiling data that relates to at
least one from among the application and the at least one
vulnerability, the data may include deadline information
relating to resolution of the at least one vulnerability; and
updating the at least one ticket to include the data.

In accordance with an exemplary embodiment, the
method may further include automatically determining, by
using at least one model, at least one mitigation action that
relates to the at least one vulnerability; and updating the at
least one ticket to include information that relates to the at
least one mitigation action.

In accordance with an exemplary embodiment, the
method may further include automatically initiating the at
least one mitigation action based on a predetermined user
setting; and generating at least one execution report, the at
least one execution report may include data that corresponds
to the automatic determining of the at least one mitigation
action and the automatic initiating of the at least one
mitigation action.

In accordance with an exemplary embodiment, the
method may further include automatically determining
whether at least one pull request that relates to the at least
one vulnerability is generated, the at least one pull request
may relate to a previously generated mitigation action for
the at least one vulnerability; associating the at least one pull
request with the at least one ticket when the at least one pull
request is generated; and updating the at least one ticket to
include information that relates to the at least one pull
request.

In accordance with an exemplary embodiment, to onboard
the application, the method may further include pulling, by
using the application programming interface, data that cor-
responds to the application based on the at least one iden-
tifier; requesting, via a graphical user interface, at least one
privilege setting that corresponds to the application, the at
least one privilege setting may include at least one from
among a scanning privilege setting and a reading privilege

US 12,034,762 B2

3

setting; generating a configuration file that corresponds to
the application based on the pulled data and the at least one
privilege setting; and persisting the configuration file in a
source code repository that is hosting the application.

According to an aspect of the present disclosure, a com-
puting device configured to implement an execution of a
method for providing vulnerability management to facilitate
application development and deployment is disclosed. The
computing device including a processor; a memory; and a
communication interface coupled to each of the processor
and the memory, wherein the processor may be configured
to receive at least one monitoring request that includes at
least one identifier, the at least one identifier may correspond
to an application; onboard the application by using the at
least one identifier; generate at least one scheduled task for
the application based on an outcome of the onboarding, the
at least one scheduled task may relate to source code
vulnerability analytics; automatically initiate, via an appli-
cation programming interface, the at least one scheduled
task based on a predetermined parameter; determine whether
a set of source codes that corresponds to the application
includes at least one vulnerability based on a result of the
automatically initiated at least one scheduled task; and
generate at least one ticket when the at least one vulnerabil-
ity is included in the set of source codes.

In accordance with an exemplary embodiment, the at least
one ticket may relate to a work item of a responsible party
associated with the application, the work item may corre-
spond to an activity in a backlog that is managed by the
responsible party.

In accordance with an exemplary embodiment, the at least
one ticket may include a standardized template that facili-
tates issue tracking and monitoring, the standardized tem-
plate may include vulnerability detection tool information,
vulnerability labeling information, and developer assign-
ment information.

In accordance with an exemplary embodiment, the pro-
cessor may be further configured to identify at least one
labeling strategy for the application based on the at least one
vulnerability and a severity level; generate at least one
graphical element for the application, the at least one graphi-
cal element may include a dashboard that contains informa-
tion from the at least one ticket and the at least one labeling
strategy; and display, via a graphical user interface, the at
least one graphical element.

In accordance with an exemplary embodiment, the pro-
cessor may be further configured to compile data that relates
to at least one from among the application and the at least
one vulnerability, the data may include deadline information
relating to resolution of the at least one vulnerability; and
update the at least one ticket to include the data.

In accordance with an exemplary embodiment, the pro-
cessor may be further configured to automatically deter-
mine, by using at least one model, at least one mitigation
action that relates to the at least one vulnerability; and
update the at least one ticket to include information that
relates to the at least one mitigation action.

In accordance with an exemplary embodiment, the pro-
cessor may be further configured to automatically initiate the
at least one mitigation action based on a predetermined user
setting; and generate at least one execution report, the at
least one execution report may include data that corresponds
to the automatic determining of the at least one mitigation
action and the automatic initiating of the at least one
mitigation action.

In accordance with an exemplary embodiment, the pro-
cessor may be further configured to automatically determine

10

15

20

25

30

35

40

45

50

55

60

65

4

whether at least one pull request that relates to the at least
one vulnerability is generated, the at least one pull request
may relate to a previously generated mitigation action for
the at least one vulnerability; associate the at least one pull
request with the at least one ticket when the at least one pull
request is generated; and update the at least one ticket to
include information that relates to the at least one pull
request.

In accordance with an exemplary embodiment, to onboard
the application, the processor may be further configured to
pull, by using the application programming interface, data
that corresponds to the application based on the at least one
identifier; request, via a graphical user interface, at least one
privilege setting that corresponds to the application, the at
least one privilege setting may include at least one from
among a scanning privilege setting and a reading privilege
setting; generate a configuration file that corresponds to the
application based on the pulled data and the at least one
privilege setting; and persist the configuration file in a
source code repository that is hosting the application.

According to an aspect of the present disclosure, a non-
transitory computer readable storage medium storing
instructions for providing vulnerability management to
facilitate application development and deployment is dis-
closed. The storage medium including executable code
which, when executed by a processor, may cause the pro-
cessor to receive at least one monitoring request that
includes at least one identifier, the at least one identifier may
correspond to an application; onboard the application by
using the at least one identifier; generate at least one
scheduled task for the application based on an outcome of
the onboarding, the at least one scheduled task may relate to
source code vulnerability analytics; automatically initiate,
via an application programming interface, the at least one
scheduled task based on a predetermined parameter; deter-
mine whether a set of source codes that corresponds to the
application includes at least one vulnerability based on a
result of the automatically initiated at least one scheduled
task; and generate at least one ticket when the at least one
vulnerability is included in the set of source codes.

In accordance with an exemplary embodiment, the at least
one ticket may relate to a work item of a responsible party
associated with the application, the work item may corre-
spond to an activity in a backlog that is managed by the

responsible party.
BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is further described in the detailed
description which follows, in reference to the noted plurality
of drawings, by way of non-limiting examples of preferred
embodiments of the present disclosure, in which like char-
acters represent like elements throughout the several views
of the drawings.

FIG. 1 illustrates an exemplary computer system.

FIG. 2 illustrates an exemplary diagram of a network
environment.

FIG. 3 shows an exemplary system for implementing a
method for providing vulnerability and code scan manage-
ment via automated job scheduling and automated issue
ticketing to facilitate application development and deploy-
ment.

FIG. 4 is a flowchart of an exemplary process for imple-
menting a method for providing vulnerability and code scan
management via automated job scheduling and automated
issue ticketing to facilitate application development and
deployment.

US 12,034,762 B2

5

FIG. 5 is an architecture diagram of an exemplary process
for implementing a method for providing vulnerability and
code scan management via automated job scheduling and
automated issue ticketing to facilitate application develop-
ment and deployment.

FIG. 6 is a screen shot that illustrates a standardized
ticketing graphical user interface that is usable for imple-
menting a method for providing vulnerability and code scan
management via automated job scheduling and automated
issue ticketing to facilitate application development and
deployment, according to an exemplary embodiment.

DETAILED DESCRIPTION

Through one or more of its various aspects, embodiments
and/or specific features or sub-components of the present
disclosure, are intended to bring out one or more of the
advantages as specifically described above and noted below.

The examples may also be embodied as one or more
non-transitory computer readable media having instructions
stored thereon for one or more aspects of the present
technology as described and illustrated by way of the
examples herein. The instructions in some examples include
executable code that, when executed by one or more pro-
cessors, cause the processors to carry out steps necessary to
implement the methods of the examples of this technology
that are described and illustrated herein.

FIG. 1 is an exemplary system for use in accordance with
the embodiments described herein. The system 100 is gen-
erally shown and may include a computer system 102, which
is generally indicated.

The computer system 102 may include a set of instruc-
tions that can be executed to cause the computer system 102
to perform any one or more of the methods or computer-
based functions disclosed herein, either alone or in combi-
nation with the other described devices. The computer
system 102 may operate as a standalone device or may be
connected to other systems or peripheral devices. For
example, the computer system 102 may include, or be
included within, any one or more computers, servers, sys-
tems, communication networks or cloud environment. Even
further, the instructions may be operative in such cloud-
based computing environment.

In a networked deployment, the computer system 102
may operate in the capacity of a server or as a client user
computer in a server-client user network environment, a
client user computer in a cloud computing environment, or
as a peer computer system in a peer-to-peer (or distributed)
network environment. The computer system 102, or portions
thereof, may be implemented as, or incorporated into, vari-
ous devices, such as a personal computer, a tablet computer,
a set-top box, a personal digital assistant, a mobile device,
a palmtop computer, a laptop computer, a desktop computer,
a communications device, a wireless smart phone, a personal
trusted device, a wearable device, a global positioning
satellite (GPS) device, a web appliance, or any other
machine capable of executing a set of instructions (sequen-
tial or otherwise) that specify actions to be taken by that
machine. Further, while a single computer system 102 is
illustrated, additional embodiments may include any collec-
tion of systems or sub-systems that individually or jointly
execute instructions or perform functions. The term “sys-
tem” shall be taken throughout the present disclosure to
include any collection of systems or sub-systems that indi-
vidually or jointly execute a set, or multiple sets, of instruc-
tions to perform one or more computer functions.

15

20

25

30

35

40

45

50

55

60

65

6

As illustrated in FIG. 1, the computer system 102 may
include at least one processor 104. The processor 104 is
tangible and non-transitory. As used herein, the term “non-
transitory” is to be interpreted not as an eternal characteristic
of a state, but as a characteristic of a state that will last for
a period of time. The term ‘“non-transitory” specifically
disavows fleeting characteristics such as characteristics of a
particular carrier wave or signal or other forms that exist
only transitorily in any place at any time. The processor 104
is an article of manufacture and/or a machine component.
The processor 104 is configured to execute software instruc-
tions in order to perform functions as described in the
various embodiments herein. The processor 104 may be a
general-purpose processor or may be part of an application
specific integrated circuit (ASIC). The processor 104 may
also be a microprocessor, a microcomputer, a processor chip,
a controller, a microcontroller, a digital signal processor
(DSP), a state machine, or a programmable logic device. The
processor 104 may also be a logical circuit, including a
programmable gate array (PGA) such as a field program-
mable gate array (FPGA), or another type of circuit that
includes discrete gate and/or transistor logic. The processor
104 may be a central processing unit (CPU), a graphics
processing unit (GPU), or both. Additionally, any processor
described herein may include multiple processors, parallel
processors, or both. Multiple processors may be included in,
or coupled to, a single device or multiple devices.

The computer system 102 may also include a computer
memory 106. The computer memory 106 may include a
static memory, a dynamic memory, or both in communica-
tion. Memories described herein are tangible storage medi-
ums that can store data and executable instructions, and are
non-transitory during the time instructions are stored
therein. Again, as used herein, the term “non-transitory” is
to be interpreted not as an eternal characteristic of a state, but
as a characteristic of a state that will last for a period of time.
The term “non-transitory” specifically disavows fleeting
characteristics such as characteristics of a particular carrier
wave or signal or other forms that exist only transitorily in
any place at any time. The memories are an article of
manufacture and/or machine component. Memories
described herein are computer-readable mediums from
which data and executable instructions can be read by a
computer. Memories as described herein may be random
access memory (RAM), read only memory (ROM), flash
memory, electrically programmable read only memory
(EPROM), electrically erasable programmable read-only
memory (EEPROM), registers, a hard disk, a cache, a
removable disk, tape, compact disk read only memory
(CD-ROM), digital versatile disk (DVD), floppy disk, blu-
ray disk, or any other form of storage medium known in the
art. Memories may be volatile or non-volatile, secure and/or
encrypted, unsecure and/or unencrypted. Of course, the
computer memory 106 may comprise any combination of
memories or a single storage.

The computer system 102 may further include a display
108, such as a liquid crystal display (LCD), an organic light
emitting diode (OLED), a flat panel display, a solid-state
display, a cathode ray tube (CRT), a plasma display, or any
other type of display, examples of which are well known to
skilled persons.

The computer system 102 may also include at least one
input device 110, such as a keyboard, a touch-sensitive input
screen or pad, a speech input, a mouse, a remote-control
device having a wireless keypad, a microphone coupled to
a speech recognition engine, a camera such as a video
camera or still camera, a cursor control device, a global

US 12,034,762 B2

7

positioning system (GPS) device, an altimeter, a gyroscope,
an accelerometer, a proximity sensor, or any combination
thereof. Those skilled in the art appreciate that various
embodiments of the computer system 102 may include
multiple input devices 110. Moreover, those skilled in the art
further appreciate that the above-listed, exemplary input
devices 110 are not meant to be exhaustive and that the
computer system 102 may include any additional, or alter-
native, input devices 110.

The computer system 102 may also include a medium
reader 112 which is configured to read any one or more sets
of instructions, e.g., software, from any of the memories
described herein. The instructions, when executed by a
processor, can be used to perform one or more of the
methods and processes as described herein. In a particular
embodiment, the instructions may reside completely, or at
least partially, within the memory 106, the medium reader
112, and/or the processor 110 during execution by the
computer system 102.

Furthermore, the computer system 102 may include any
additional devices, components, parts, peripherals, hard-
ware, software, or any combination thereof which are com-
monly known and understood as being included with or
within a computer system, such as, but not limited to, a
network interface 114 and an output device 116. The output
device 116 may be, but is not limited to, a speaker, an audio
out, a video out, a remote-control output, a printer, or any
combination thereof.

Each of the components of the computer system 102 may
be interconnected and communicate via a bus 118 or other
communication link. As shown in FIG. 1, the components
may each be interconnected and communicate via an inter-
nal bus. However, those skilled in the art appreciate that any
of the components may also be connected via an expansion
bus. Moreover, the bus 118 may enable communication via
any standard or other specification commonly known and
understood such as, but not limited to, peripheral component
interconnect, peripheral component interconnect express,
parallel advanced technology attachment, serial advanced
technology attachment, etc.

The computer system 102 may be in communication with
one or more additional computer devices 120 via a network
122. The network 122 may be, but is not limited to, a local
area network, a wide area network, the Internet, a telephony
network, a short-range network, or any other network com-
monly known and understood in the art. The short-range
network may include, for example, Bluetooth, Zigbee, infra-
red, near field communication, ultraband, or any combina-
tion thereof. Those skilled in the art appreciate that addi-
tional networks 122 which are known and understood may
additionally or alternatively be used and that the exemplary
networks 122 are not limiting or exhaustive. Also, while the
network 122 is shown in FIG. 1 as a wireless network, those
skilled in the art appreciate that the network 122 may also be
a wired network.

The additional computer device 120 is shown in FIG. 1 as
a personal computer. However, those skilled in the art
appreciate that, in alternative embodiments of the present
application, the computer device 120 may be a laptop
computer, a tablet PC, a personal digital assistant, a mobile
device, a palmtop computer, a desktop computer, a commu-
nications device, a wireless telephone, a personal trusted
device, a web appliance, a server, or any other device that is
capable of executing a set of instructions, sequential or
otherwise, that specify actions to be taken by that device. Of
course, those skilled in the art appreciate that the above-
listed devices are merely exemplary devices and that the

10

15

20

25

30

35

40

45

50

55

60

8

device 120 may be any additional device or apparatus
commonly known and understood in the art without depart-
ing from the scope of the present application. For example,
the computer device 120 may be the same or similar to the
computer system 102. Furthermore, those skilled in the art
similarly understand that the device may be any combination
of devices and apparatuses.

Of course, those skilled in the art appreciate that the
above-listed components of the computer system 102 are
merely meant to be exemplary and are not intended to be
exhaustive and/or inclusive. Furthermore, the examples of
the components listed above are also meant to be exemplary
and similarly are not meant to be exhaustive and/or inclu-
sive.

In accordance with various embodiments of the present
disclosure, the methods described herein may be imple-
mented using a hardware computer system that executes
software programs. Further, in an exemplary, non-limited
embodiment, implementations can include distributed pro-
cessing, component/object distributed processing, and par-
allel processing. Virtual computer system processing can be
constructed to implement one or more of the methods or
functionalities as described herein, and a processor
described herein may be used to support a virtual processing
environment.

As described herein, various embodiments provide opti-
mized methods and systems for providing vulnerability and
code scan management via automated job scheduling and
automated issue ticketing to facilitate application develop-
ment and deployment.

Referring to FIG. 2, a schematic of an exemplary network
environment 200 for implementing a method for providing
vulnerability and code scan management via automated job
scheduling and automated issue ticketing to facilitate appli-
cation development and deployment is illustrated. In an
exemplary embodiment, the method is executable on any
networked computer platform, such as, for example, a
personal computer (PC).

The method for providing vulnerability and code scan
management via automated job scheduling and automated
issue ticketing to facilitate application development and
deployment may be implemented by an Application Vulner-
ability Management and Analytics (AVMA) device 202. The
AVMA device 202 may be the same or similar to the
computer system 102 as described with respect to FIG. 1.
The AVMA device 202 may store one or more applications
that can include executable instructions that, when executed
by the AVMA device 202, cause the AVMA device 202 to
perform actions, such as to transmit, receive, or otherwise
process network messages, for example, and to perform
other actions described and illustrated below with reference
to the figures. The application(s) may be implemented as
modules or components of other applications. Further, the
application(s) can be implemented as operating system
extensions, modules, plugins, or the like.

Even further, the application(s) may be operative in a
cloud-based computing environment. The application(s)
may be executed within or as virtual machine(s) or virtual
server(s) that may be managed in a cloud-based computing
environment. Also, the application(s), and even the AVMA
device 202 itself, may be located in virtual server(s) running
in a cloud-based computing environment rather than being
tied to one or more specific physical network computing
devices. Also, the application(s) may be running in one or
more virtual machines (VMs) executing on the AVMA
device 202. Additionally, in one or more embodiments of

US 12,034,762 B2

9

this technology, virtual machine(s) running on the AVMA
device 202 may be managed or supervised by a hypervisor.

In the network environment 200 of FIG. 2, the AVMA
device 202 is coupled to a plurality of server devices
204(1)-204(») that hosts a plurality of databases 206(1)-206
(n), and also to a plurality of client devices 208(1)-208(1)
via communication network(s) 210. A communication inter-
face of the AVMA device 202, such as the network interface
114 of the computer system 102 of FIG. 1, operatively
couples and communicates between the AVMA device 202,
the server devices 204(1)-204(), and/or the client devices
208(1)-208(n), which are all coupled together by the com-
munication network(s) 210, although other types and/or
numbers of communication networks or systems with other
types and/or numbers of connections and/or configurations
to other devices and/or elements may also be used.

The communication network(s) 210 may be the same or
similar to the network 122 as described with respect to FIG.
1, although the AVMA device 202, the server devices
204(1)-204(n), and/or the client devices 208(1)-208(»2) may
be coupled together via other topologies. Additionally, the
network environment 200 may include other network
devices such as one or more routers and/or switches, for
example, which are well known in the art and thus will not
be described herein. This technology provides a number of
advantages including methods, non-transitory computer
readable media, and AVMA devices that efficiently imple-
ment a method for providing vulnerability and code scan
management via automated job scheduling and automated
issue ticketing to facilitate application development and
deployment.

By way of example only, the communication network(s)
210 may include local area network(s) (LAN(s)) or wide
area network(s) (WAN(s)), and can use TCP/IP over Ether-
net and industry-standard protocols, although other types
and/or numbers of protocols and/or communication net-
works may be used. The communication network(s) 210 in
this example may employ any suitable interface mechanisms
and network communication technologies including, for
example, teletraffic in any suitable form (e.g., voice, modem,
and the like), Public Switched Telephone Network (PSTNs),
Ethernet-based Packet Data Networks (PDNs), combina-
tions thereof, and the like.

The AVMA device 202 may be a standalone device or
integrated with one or more other devices or apparatuses,
such as one or more of the server devices 204(1)-204(»), for
example. In one particular example, the AVMA device 202
may include or be hosted by one of the server devices
204(1)-204(n), and other arrangements are also possible.
Moreover, one or more of the devices of the AVMA device
202 may be in a same or a different communication network
including one or more public, private, or cloud networks, for
example.

The plurality of server devices 204(1)-204(») may be the
same or similar to the computer system 102 or the computer
device 120 as described with respect to FIG. 1, including any
features or combination of features described with respect
thereto. For example, any of the server devices 204(1)-204
(n) may include, among other features, one or more proces-
sors, a memory, and a communication interface, which are
coupled together by a bus or other communication link,
although other numbers and/or types of network devices
may be used. The server devices 204(1)-204(») in this
example may process requests received from the AVMA
device 202 via the communication network(s) 210 according

20

40

45

55

10
to the HTTP-based and/or JavaScript Object Notation
(JSON) protocol, for example, although other protocols may
also be used.

The server devices 204(1)-204(z) may be hardware or
software or may represent a system with multiple servers in
apool, which may include internal or external networks. The
server devices 204(1)-204(z) hosts the databases 206(1)-206
(n) that are configured to store data that relates to monitoring
requests, application data, application identifiers, scheduled
tasks, source codes, predetermined parameters, application
vulnerabilities, tickets, labeling strategies, pull requests, and
mitigation actions.

Although the server devices 204(1)-204(») are illustrated
as single devices, one or more actions of each of the server
devices 204(1)-204(z) may be distributed across one or
more distinct network computing devices that together com-
prise one or more of the server devices 204(1)-204(n).
Moreover, the server devices 204(1)-204(») are not limited
to a particular configuration. Thus, the server devices 204
(1)-204(») may contain a plurality of network computing
devices that operate using a controller/agent approach,
whereby one of the network computing devices of the server
devices 204(1)-204(») operates to manage and/or otherwise
coordinate operations of the other network computing
devices.

The server devices 204(1)-204(») may operate as a plu-
rality of network computing devices within a cluster archi-
tecture, a peer-to peer architecture, virtual machines, or
within a cloud architecture, for example. Thus, the technol-
ogy disclosed herein is not to be construed as being limited
to a single environment and other configurations and archi-
tectures are also envisaged.

The plurality of client devices 208(1)-208(72) may also be
the same or similar to the computer system 102 or the
computer device 120 as described with respect to FIG. 1,
including any features or combination of features described
with respect thereto. For example, the client devices 208
(1)-208(») in this example may include any type of com-
puting device that can interact with the AVMA device 202
via communication network(s) 210. Accordingly, the client
devices 208(1)-208(z) may be mobile computing devices,
desktop computing devices, laptop computing devices, tab-
let computing devices, virtual machines (including cloud-
based computers), or the like, that host chat, e-mail, or
voice-to-text applications, for example. In an exemplary
embodiment, at least one client device 208 is a wireless
mobile communication device, i.e., a smart phone.

The client devices 208(1)-208(7) may run interface appli-
cations, such as standard web browsers or standalone client
applications, which may provide an interface to communi-
cate with the AVMA device 202 via the communication
network(s) 210 in order to communicate user requests and
information. The client devices 208(1)-208(») may further
include, among other features, a display device, such as a
display screen or touchscreen, and/or an input device, such
as a keyboard, for example.

Although the exemplary network environment 200 with
the AVMA device 202, the server devices 204(1)-204(r), the
client devices 208(1)-208(%), and the communication net-
work(s) 210 are described and illustrated herein, other types
and/or numbers of systems, devices, components, and/or
elements in other topologies may be used. It is to be
understood that the systems of the examples described
herein are for exemplary purposes, as many variations of the
specific hardware and software used to implement the
examples are possible, as will be appreciated by those
skilled in the relevant art(s).

US 12,034,762 B2

11

One or more of the devices depicted in the network
environment 200, such as the AVMA device 202, the server
devices 204(1)-204(n), or the client devices 208(1)-208(7),
for example, may be configured to operate as virtual
instances on the same physical machine. In other words, one
or more of the AVMA device 202, the server devices
204(1)-204(n), or the client devices 208(1)-208(z) may
operate on the same physical device rather than as separate
devices communicating through communication network(s)
210. Additionally, there may be more or fewer AVMA
devices 202, server devices 204(1)-204(n), or client devices
208(1)-208(») than illustrated in FIG. 2.

In addition, two or more computing systems or devices
may be substituted for any one of the systems or devices in
any example. Accordingly, principles and advantages of
distributed processing, such as redundancy and replication,
also may be implemented, as desired, to increase the robust-
ness and performance of the devices and systems of the
examples. The examples may also be implemented on
computer system(s) that extend across any suitable network
using any suitable interface mechanisms and traffic tech-
nologies, including by way of example only teletraffic in any
suitable form (e.g., voice and modem), wireless traffic
networks, cellular traffic networks, Packet Data Networks
(PDNs), the Internet, intranets, and combinations thereof.

The AVMA device 202 is described and shown in FIG. 3
as including an application vulnerability management and
analytics module 302, although it may include other rules,
policies, modules, databases, or applications, for example.
As will be described below, the application vulnerability
management and analytics module 302 is configured to
implement a method for providing vulnerability and code
scan management via automated job scheduling and auto-
mated issue ticketing to facilitate application development
and deployment.

An exemplary process 300 for implementing a mecha-
nism for providing vulnerability and code scan management
via automated job scheduling and automated issue ticketing
to facilitate application development and deployment by
utilizing the network environment of FIG. 2 is shown as
being executed in FIG. 3. Specifically, a first client device
208(1) and a second client device 208(2) are illustrated as
being in communication with AVMA device 202. In this
regard, the first client device 208(1) and the second client
device 208(2) may be “clients” of the AVMA device 202 and
are described herein as such. Nevertheless, it is to be known
and understood that the first client device 208(1) and/or the
second client device 208(2) need not necessarily be “clients”
of the AVMA device 202, or any entity described in asso-
ciation therewith herein. Any additional or alternative rela-
tionship may exist between either or both of the first client
device 208(1) and the second client device 208(2) and the
AVMA device 202, or no relationship may exist.

Further, AVMA device 202 is illustrated as being able to
access an application source code repository 206(1) and a
developer backlog and ticketing database 206(2). The appli-
cation vulnerability management and analytics module 302
may be configured to access these databases for implement-
ing a method for providing vulnerability and code scan
management via automated job scheduling and automated
issue ticketing to facilitate application development and
deployment.

The first client device 208(1) may be, for example, a smart
phone. Of course, the first client device 208(1) may be any
additional device described herein. The second client device
208(2) may be, for example, a personal computer (PC). Of

10

20

30

40

45

12

course, the second client device 208(2) may also be any
additional device described herein.

The process may be executed via the communication
network(s) 210, which may comprise plural networks as
described above. For example, in an exemplary embodi-
ment, either or both of the first client device 208(1) and the
second client device 208(2) may communicate with the
AVMA device 202 via broadband or cellular communica-
tion. Of course, these embodiments are merely exemplary
and are not limiting or exhaustive.

Upon being started, the application vulnerability manage-
ment and analytics module 302 executes a process for
providing vulnerability and code scan management via
automated job scheduling and automated issue ticketing to
facilitate application development and deployment. An
exemplary process for providing vulnerability and code scan
management via automated job scheduling and automated
issue ticketing to facilitate application development and
deployment is generally indicated at flowchart 400 in FIG.
4.

In the process 400 of FIG. 4, at step S402, a monitoring
request that includes an identifier may be received. The
identifier may correspond to an application. In an exemplary
embodiment, the monitoring request may relate to a request
to monitor an application source code repository such as, for
example, a BITBUCKET repository. The application source
code repository may include source codes that correspond to
the application.

In another exemplary embodiment, the monitoring
request may include instructions to utilize an application
vulnerability and code error assessment tool such as, for
example, a RAVEN tool and a SONAR SCAN tool. The
application vulnerability and code error assessment tool may
scan an application source code to identify vulnerabilities
such as, for example, vulnerabilities from a corresponding
source code library as well as weaknesses in the written
source code that may lead to the vulnerabilities. The request
may indicate a desire to track an output related to the
application vulnerability and code error assessment tool
such as, for example, a RAVEN report and a unit test case
(UTC) coverage percentage. In another exemplary embodi-
ment, the monitoring request may include information that
relates to a set of monitoring parameters, the application,
and a group of corresponding developers. The application
information may include application data such as, for
example, fix version data and the corresponding developer
information may include developer data such as, for
example, a common group name across associated applica-
tion projects.

In another exemplary embodiment, the application may
include at least one from among a monolithic application
and a microservice application. The monolithic application
may describe a single-tiered software application where the
user interface and data access code are combined into a
single program from a single platform. The monolithic
application may be self-contained and independent from
other computing applications.

In another exemplary embodiment, the microservice
application may include a unique service and a unique
process that communicates with other services and processes
over a network to fulfill a goal. The microservice application
may be independently deployable and organized around
business capabilities. In another exemplary embodiment, the
microservices may relate to a software development archi-
tecture such as, for example, an event-driven architecture
made up of event producers and event consumers in a
loosely coupled choreography. The event producer may

US 12,034,762 B2

13

detect or sense an event such as, for example, a significant
occurrence or change in state for system hardware or soft-
ware and represent the event as a message. The event
message may then be transmitted to the event consumer via
event channels for processing.

In another exemplary embodiment, the event-driven
architecture may include a distributed data streaming plat-
form such as, for example, an APACHE KAFKA platform
for the publishing, subscribing, storing, and processing of
event streams in real time. As will be appreciated by a person
of ordinary skill in the art, each microservice in a micros-
ervice choreography may perform corresponding actions
independently and may not require any external instructions.

In another exemplary embodiment, microservices may
relate to a software development architecture such as, for
example, a service-oriented architecture which arranges a
complex application as a collection of coupled modular
services. The modular services may include small, indepen-
dently versioned, and scalable customer-focused services
with specific business goals. The services may communicate
with other services over standard protocols with well-de-
fined interfaces. In another exemplary embodiment, the
microservices may utilize technology-agnostic communica-
tion protocols such as, for example, a Hypertext Transfer
Protocol (HTTP) to communicate over a network and may
be implemented by using different programming languages,
databases, hardware environments, and software environ-
ments.

At step S404, the application may be onboarded by using
the identifier. Onboarding the application may require a
project configuration, a ticketing configuration, and a reposi-
tory configuration. In an exemplary embodiment, onboard-
ing the application may include pulling, by using an appli-
cation programming interface, data that corresponds to the
application based on the identifier. The data that corresponds
to the application may include information such as, for
example, hosting information, instance uniform resource
locator (URL) information, project key information, project
name information, and repository information. In another
exemplary embodiment, the data may be pulled automati-
cally and may be manually edited by a user with adequate
credentials such as, for example, an administrator credential.

In another exemplary embodiment, a privilege setting that
corresponds to the application may be requested via a
graphical user interface to facilitate the onboarding process.
The privilege setting may include at least one from among
a scanning privilege setting and a reading privilege setting.
The privilege setting may grant permission to the disclosed
invention to perform actions such as, for example, scanning
the source code of the application. In another exemplary
embodiment, the privilege setting may be requested from a
user that is associated with the application. The privilege
setting may be requested from the user based on an associ-
ated credential such as, for example, an administrator cre-
dential.

In another exemplary embodiment, to facilitate the
onboarding process, a configuration file that corresponds to
the application may be generated based on the pulled data
and the privilege setting. The configuration file may relate to
a lightweight data-interchange format such as, for example,
a JAVASCRIPT Object Notation (JSON) format that uses
human-readable text to store and transmit data objects
consisting of attribute value pairs and arrays. A secondary
identifier such as, for example, a JIRA EPIC that is usable
for associating vulnerability defects may also be generated
based on the pulled data and the privilege setting. Then, in
another exemplary embodiment, the configuration file may

10

15

20

25

30

35

40

45

50

55

60

65

14

be persisted in a source code repository such as, for example,
a BITBUCKET repository that is hosting the application.

At step S406, a scheduled task may be generated for the
application based on an outcome of the onboarding. The
scheduled task may relate to source code vulnerability
analytics. In an exemplary embodiment, the scheduled task
may relate to a job that is arranged to be performed based on
a predetermined parameter such as, for example, an execu-
tion schedule as well as an application deployment schedule.
The job may relate to a computing operation or group of
computing operations that are treated as a single and distinct
unit. In another exemplary embodiment, the scheduled task
may correspond to instructions to initiate a vulnerability
assessment tool such as, for example, a RAVEN tool, a
SONAR scan tool, and a UTC coverage tool.

At step S408, the scheduled task may be automatically
initiated via an application programming interface (API)
based on a predetermined parameter. In an exemplary
embodiment, the scheduled task may directly call an API
that is associated with the vulnerability assessment tool on
a scheduled basis. The API may relate to a software interface
that facilitates interactions between a plurality of software
components.

In another exemplary embodiment, the predetermined
parameter may correspond to a recurring schedule. For
example, the predetermined parameter may be based on a
weekly execution schedule to facilitate monitoring of appli-
cation development progress. In another exemplary embodi-
ment, the predetermined parameter may be associated with
an event. For example, the predetermined parameter may be
based on a deployment event to provide final validation of
the application prior to a transition of the application to a
production environment.

At step S410, whether a set of source codes that corre-
sponds to the application includes a vulnerability may be
determined based on a result of the automatically initiated
scheduled task. In an exemplary embodiment, the vulner-
ability may be determined based on output data that is
received from the initiated vulnerability assessment tool.
The output data may be received as raw data that requires
additional formatting as well as structured data from the
initiated vulnerability assessment tool. In another exemplary
embodiment, the vulnerability may correspond to an abnor-
mal application source code condition. The abnormal appli-
cation source code condition may relate to a RAVEN vul-
nerability, a SONAR scan issue, and a UTC coverage
percentage. A UTC coverage percentage that is below a
predetermined threshold such as, for example, a seventy
percent coverage threshold may indicate the abnormal appli-
cation source code condition.

At step S412, a ticket may be generated when the vul-
nerability is included in the set of source codes. In an
exemplary embodiment, the ticket may relate to a work item
of a responsible party associated with the application. The
work item may correspond to an activity in a backlog such
as, for example, a JIRA backlog that is managed by the
responsible party. In another exemplary embodiment, the
ticket may include a standardized template that facilitates
issue tracking and monitoring. The standardized template
may include vulnerability detection tool information, vul-
nerability labeling information, and developer assignment
information.

In another exemplary embodiment, a labeling strategy for
the application may be identified based on the vulnerability
and a severity level. The labeling strategy may correspond to
a labeling action which tags a corresponding ticket with a
predetermined label based on the vulnerability and the

US 12,034,762 B2

15

severity level. For example, the labeling strategy may indi-
cate that a certain vulnerability is displayed on the corre-
sponding ticket with an “S” label, which is associated with
a high severity vulnerability. Consistent with disclosures in
the present application, the labeling strategy, the predeter-
mined label, and the severity level may be adjusted based on
business requirements and/or user preference. In another
exemplary embodiment, a graphical element may be gener-
ated for the application. The graphical element may include
a dashboard that contains information from the generated
ticket and the identified labeling strategy. In another exem-
plary embodiment, the graphical element may be display-
able for a user via a graphical user interface.

In another exemplary embodiment, data that relates to at
least one from among the application and the vulnerability
may be compiled. The data may include deadline informa-
tion relating to resolution of the vulnerability. For example,
the data may include a deadline upon which the vulnerability
must be resolved. Further, the data may include source code
information such as, for example, a specific set of source
code that corresponds to the vulnerability. Then, in another
exemplary embodiment, the ticket may be updated to
include the data.

In another exemplary embodiment, whether a pull request
that relates to the vulnerability is generated may be auto-
matically determined. The pull request may relate to a
previously generated mitigation action for the vulnerability.
In another exemplary embodiment, the pull request may be
associated with the ticket when the pull request is deter-
mined to have been generated. Additionally, the ticket may
be updated to include information that relates to the pull
request. As will be appreciated by a person of ordinary skill
in the art, identification of a previously generated mitigation
action for the vulnerability may facilitate efficient resolution
of the vulnerability by preventing duplicate efforts by a
plurality of developers.

In another exemplary embodiment, a mitigation action
that relates to the vulnerability may be automatically deter-
mined by using a model. The mitigation action may corre-
spond to an action that resolves the vulnerability. For
example, the mitigation action may correspond to a replace-
ment of a faulty source code section with a source code
section that does not include the vulnerability. Then, in
another exemplary embodiment, the ticket may be updated
to include information that relates to the automatically
determined mitigation action.

In another exemplary embodiment, the model may
include at least one from among a machine learning model,
a statistical model, a mathematical model, a process model,
and a data model. The model may also include stochastic
models such as, for example, a Markov model that is used
to model randomly changing systems. In stochastic models,
the future states of a system may be assumed to depend only
on the current state of the system.

In another exemplary embodiment, machine learning and
pattern recognition may include supervised learning algo-
rithms such as, for example, k-medoids analysis, regression
analysis, decision tree analysis, random forest analysis,
k-nearest neighbors analysis, logistic regression analysis,
etc. In another exemplary embodiment, machine learning
analytical techniques may include unsupervised learning
algorithms such as, for example, Apriori analysis, K-means
clustering analysis, etc. In another exemplary embodiment,
machine learning analytical techniques may include rein-
forcement learning algorithms such as, for example, Markov
Decision Process analysis, etc.

10

15

20

25

30

40

45

50

55

60

65

16

In another exemplary embodiment, the model may be
based on a machine learning algorithm. The machine learn-
ing algorithm may include at least one from among a process
and a set of rules to be followed by a computer in calcula-
tions and other problem-solving operations such as, for
example, a linear regression algorithm, a logistic regression
algorithm, a decision tree algorithm, and/or a Naive Bayes
algorithm.

In another exemplary embodiment, the model may
include training models such as, for example, a machine
learning model which is generated to be further trained on
additional data. Once the training model has been suffi-
ciently trained, the training model may be deployed onto
various connected systems to be utilized. In another exem-
plary embodiment, the training model may be sufficiently
trained when model assessment methods such as, for
example, a holdout method, a K-fold-cross-validation
method, and a bootstrap method determine that at least one
of the training model’s least squares error rate, true positive
rate, true negative rate, false positive rate, and false negative
rates are within predetermined ranges.

In another exemplary embodiment, the training model
may be operable, i.e., actively utilized by an organization,
while continuing to be trained using new data. In another
exemplary embodiment, the models may be generated using
at least one from among an artificial neural network tech-
nique, a decision tree technique, a support vector machines
technique, a Bayesian network technique, and a genetic
algorithms technique.

In another exemplary embodiment, the mitigation action
may be automatically initiated based on a predetermined
user setting. The predetermined user setting may correspond
to a user preference for automatically initiating the mitiga-
tion action based on a severity level of a corresponding
vulnerability. For example, a user may prefer to automati-
cally resolve low level vulnerabilities while higher level
vulnerabilities may warrant closer inspection. In another
exemplary embodiment, an execution report may be gener-
ated. The execution report may include data that corresponds
to the automatic determining of the mitigation action and the
automatic initiating of the mitigation action.

In another exemplary embodiment, the execution report
may enable a zoomed-in as well as a zoomed-out view of the
vulnerabilities. The execution report may include a vulner-
ability budget utilization view for different stakeholders. The
execution report may help find an exact application and a
corresponding repository that causes a drop in an application
fit score. The execution report may provide a high-level
view of total vulnerabilities which are unattended, opened,
and closed.

FIG. 5 is an architecture diagram 500 of an exemplary
process for implementing a method for providing vulner-
ability and code scan management via automated job sched-
uling and automated issue ticketing to facilitate application
development and deployment. In FIG. 5, the exemplary
process may call application programming interfaces (APIs)
directly on a scheduled basis to generate and update real-
time issue tickets consistent with present disclosures.

As illustrated in FIG. 5, an application may be onboarded,
and corresponding configurations may be saved in a data-
base. A scheduled job may be generated based on the
configurations to automatically check for vulnerabilities.
When a vulnerability is identified, a real-time issue ticket
may be generated and updated with relevant information for
the vulnerability. The relevant information may include how
to fix information, when to fix the vulnerability by infor-
mation, etc.

US 12,034,762 B2

17

The real-time issue ticket may then be placed in a backlog
of'a user associated with the application. The real-time issue
ticket may notify the user that a vulnerability has been
detected in the application. Additionally, whether a pull
request has been generated to fix the vulnerability may be
determined. When the pull request has been generated to fix
the vulnerability, the real-time issue ticket may be linked to
the pull request. The linking of the pull request may enable
quick access for the user to possible resolutions.

FIG. 6 is a screen shot 600 that illustrates a standardized
ticketing graphical user interface that is usable for imple-
menting a method for providing vulnerability and code scan
management via automated job scheduling and automated
issue ticketing to facilitate application development and
deployment, according to an exemplary embodiment. In
FIG. 6, the standardized ticket may be usable across devel-
opment teams to facilitate resolution of detected vulnerabili-
ties.

As illustrated in FIG. 6, the standardized ticket may
include a standardized summary of the vulnerability. The
standardized summary may describe the vulnerability in a
standard manner to enhance identification of the vulnerabil-
ity across various development teams. Similarly, the stan-
dardized ticket may include standardized labels to present
the vulnerability in a standard manner.

In another exemplary embodiment, the standardized ticket
may include assignment information. The assignment infor-
mation may provide information relating to the developers
who are assigned to resolve the vulnerability. In another
exemplary embodiment, the standardized ticket may include
links to determined remediation actions for the vulnerability
as well as links to similar vulnerabilities. The linking of the
determined remediation actions and similar vulnerabilities
may enable quick access for a user to possible resolutions.

Accordingly, with this technology, an optimized process
for providing vulnerability and code scan management via
automated job scheduling and automated issue ticketing to
facilitate application development and deployment is dis-
closed.

Although the invention has been described with reference
to several exemplary embodiments, it is understood that the
words that have been used are words of description and
illustration, rather than words of limitation. Changes may be
made within the purview of the appended claims, as pres-
ently stated and as amended, without departing from the
scope and spirit of the present disclosure in its aspects.
Although the invention has been described with reference to
particular means, materials and embodiments, the invention
is not intended to be limited to the particulars disclosed;
rather the invention extends to all functionally equivalent
structures, methods, and uses such as are within the scope of
the appended claims.

For example, while the computer-readable medium may
be described as a single medium, the term “computer-
readable medium” includes a single medium or multiple
media, such as a centralized or distributed database, and/or
associated caches and servers that store one or more sets of
instructions. The term “computer-readable medium” shall
also include any medium that is capable of storing, encoding
or carrying a set of instructions for execution by a processor
or that cause a computer system to perform any one or more
of the embodiments disclosed herein.

The computer-readable medium may comprise a non-
transitory computer-readable medium or media and/or com-
prise a transitory computer-readable medium or media. In a
particular non-limiting, exemplary embodiment, the com-
puter-readable medium can include a solid-state memory

10

15

20

25

30

35

40

45

50

55

60

65

18

such as a memory card or other package that houses one or
more non-volatile read-only memories. Further, the com-
puter-readable medium can be a random-access memory or
other volatile re-writable memory. Additionally, the com-
puter-readable medium can include a magneto-optical or
optical medium, such as a disk or tapes or other storage
device to capture carrier wave signals such as a signal
communicated over a transmission medium. Accordingly,
the disclosure is considered to include any computer-read-
able medium or other equivalents and successor media, in
which data or instructions may be stored.

Although the present application describes specific
embodiments which may be implemented as computer pro-
grams or code segments in computer-readable media, it is to
be understood that dedicated hardware implementations,
such as application specific integrated circuits, program-
mable logic arrays and other hardware devices, can be
constructed to implement one or more of the embodiments
described herein. Applications that may include the various
embodiments set forth herein may broadly include a variety
of electronic and computer systems. Accordingly, the pres-
ent application may encompass software, firmware, and
hardware implementations, or combinations thereof. Noth-
ing in the present application should be interpreted as being
implemented or implementable solely with software and not
hardware.

Although the present specification describes components
and functions that may be implemented in particular
embodiments with reference to particular standards and
protocols, the disclosure is not limited to such standards and
protocols. Such standards are periodically superseded by
faster or more efficient equivalents having essentially the
same functions. Accordingly, replacement standards and
protocols having the same or similar functions are consid-
ered equivalents thereof.

The illustrations of the embodiments described herein are
intended to provide a general understanding of the various
embodiments. The illustrations are not intended to serve as
a complete description of all of the elements and features of
apparatus and systems that utilize the structures or methods
described herein. Many other embodiments may be apparent
to those of skill in the art upon reviewing the disclosure.
Other embodiments may be utilized and derived from the
disclosure, such that structural and logical substitutions and
changes may be made without departing from the scope of
the disclosure. Additionally, the illustrations are merely
representational and may not be drawn to scale. Certain
proportions within the illustrations may be exaggerated,
while other proportions may be minimized. Accordingly, the
disclosure and the figures are to be regarded as illustrative
rather than restrictive.

One or more embodiments of the disclosure may be
referred to herein, individually and/or collectively, by the
term “invention” merely for convenience and without
intending to voluntarily limit the scope of this application to
any particular invention or inventive concept. Moreover,
although specific embodiments have been illustrated and
described herein, it should be appreciated that any subse-
quent arrangement designed to achieve the same or similar
purpose may be substituted for the specific embodiments
shown. This disclosure is intended to cover any and all
subsequent adaptations or variations of various embodi-
ments. Combinations of the above embodiments, and other
embodiments not specifically described herein, will be
apparent to those of skill in the art upon reviewing the
description.

US 12,034,762 B2

19

The Abstract of the Disclosure is submitted with the
understanding that it will not be used to interpret or limit the
scope or meaning of the claims. In addition, in the foregoing
Detailed Description, various features may be grouped
together or described in a single embodiment for the purpose
of streamlining the disclosure. This disclosure is not to be
interpreted as reflecting an intention that the claimed
embodiments require more features than are expressly
recited in each claim. Rather, as the following claims reflect,
inventive subject matter may be directed to less than all of
the features of any of the disclosed embodiments. Thus, the
following claims are incorporated into the Detailed Descrip-
tion, with each claim standing on its own as defining
separately claimed subject matter.

The above disclosed subject matter is to be considered
illustrative, and not restrictive, and the appended claims are
intended to cover all such modifications, enhancements, and
other embodiments which fall within the true spirit and
scope of the present disclosure. Thus, to the maximum
extent allowed by law, the scope of the present disclosure is
to be determined by the broadest permissible interpretation
of the following claims and their equivalents, and shall not
be restricted or limited by the foregoing detailed description.

What is claimed is:

1. A method for providing vulnerability management to
facilitate application development and deployment, the
method being implemented by at least one processor, the
method comprising:

receiving, by the at least one processor, at least one

monitoring request that includes at least one identifier,
the at least one identifier corresponding to an applica-
tion;

onboarding, by the at least one processor, the application

by using the at least one identifier;
generating, by the at least one processor, at least one
scheduled task for the application based on an outcome
of the onboarding, the at least one scheduled task
relating to source code vulnerability analytics;

automatically initiating, by the at least one processor via
an application programming interface, the at least one
scheduled task based on a predetermined parameter;

determining, by the at least one processor, whether a set
of source codes that corresponds to the application
includes at least one vulnerability based on a result of
the automatically initiated at least one scheduled task;
and

generating, by the at least one processor, at least one ticket

when the at least one vulnerability is included in the set
of source codes.
2. The method of claim 1, wherein the at least one ticket
relates to a work item of a responsible party associated with
the application, the work item corresponding to an activity
in a backlog that is managed by the responsible party.
3. The method of claim 1, wherein the at least one ticket
includes a standardized template that facilitates issue track-
ing and monitoring, the standardized template including
vulnerability detection tool information, vulnerability label-
ing information, and developer assignment information.
4. The method of claim 1, further comprising:
identifying, by the at least one processor, at least one
labeling strategy for the application based on the at
least one vulnerability and a severity level;

generating, by the at least one processor, at least one
graphical element for the application, the at least one
graphical element including a dashboard that contains
information from the at least one ticket and the at least
one labeling strategy; and

25

40

45

55

60

20

displaying, by the at least one processor via a graphical

user interface, the at least one graphical element.

5. The method of claim 1, further comprising:

compiling, by the at least one processor, data that relates

to at least one from among the application and the at
least one vulnerability, the data including deadline
information relating to resolution of the at least one
vulnerability; and

updating, by the at least one processor, the at least one

ticket to include the data.
6. The method of claim 1, further comprising:
automatically determining, by the at least one processor
using at least one model, at least one mitigation action
that relates to the at least one vulnerability; and

updating, by the at least one processor, the at least one
ticket to include information that relates to the at least
one mitigation action.

7. The method of claim 6, further comprising:

automatically initiating, by the at least one processor, the

at least one mitigation action based on a predetermined
user setting; and

generating, by the at least one processor, at least one

execution report, the at least one execution report
including data that corresponds to the automatic deter-
mining of the at least one mitigation action and the
automatic initiating of the at least one mitigation
action.

8. The method of claim 1, further comprising:

automatically determining, by the at least one processor,

whether at least one pull request that relates to the at
least one vulnerability is generated, the at least one pull
request relating to a previously generated mitigation
action for the at least one vulnerability;

associating, by the at least one processor, the at least one

pull request with the at least one ticket when the at least
one pull request is generated; and

updating, by the at least one processor, the at least one

ticket to include information that relates to the at least
one pull request.
9. The method of claim 1, wherein onboarding the appli-
cation further comprises:
pulling, by the at least one processor using the application
programming interface, data that corresponds to the
application based on the at least one identifier;

requesting, by the at least one processor via a graphical
user interface, at least one privilege setting that corre-
sponds to the application, the at least one privilege
setting including at least one from among a scanning
privilege setting and a reading privilege setting;

generating, by the at least one processor, a configuration
file that corresponds to the application based on the
pulled data and the at least one privilege setting; and

persisting, by the at least one processor, the configuration
file in a source code repository that is hosting the
application.

10. A computing device configured to implement an
execution of a method for providing vulnerability manage-
ment to facilitate application development and deployment,
the computing device comprising:

a processor;

a memory; and

a communication interface coupled to each of the proces-

sor and the memory,

wherein the processor is configured to:

receive at least one monitoring request that includes at
least one identifier, the at least one identifier corre-
sponding to an application;

US 12,034,762 B2

21

onboard the application by using the at least one
identifier;
generate at least one scheduled task for the application
based on an outcome of the onboarding, the at least
one scheduled task relating to source code vulner-
ability analytics;
automatically initiate, via an application programming
interface, the at least one scheduled task based on a
predetermined parameter;
determine whether a set of source codes that corre-
sponds to the application includes at least one vul-
nerability based on a result of the automatically
initiated at least one scheduled task; and
generate at least one ticket when the at least one
vulnerability is included in the set of source codes.
11. The computing device of claim 10, wherein the at least
one ticket relates to a work item of a responsible party
associated with the application, the work item corresponding
to an activity in a backlog that is managed by the responsible

12. The computing device of claim 10, wherein the at least
one ticket includes a standardized template that facilitates
issue tracking and monitoring, the standardized template
including vulnerability detection tool information, vulner-
ability labeling information, and developer assignment
information.

13. The computing device of claim 10, wherein the
processor is further configured to:

identify at least one labeling strategy for the application

based on the at least one vulnerability and a severity
level,
generate at least one graphical element for the application,
the at least one graphical element including a dash-
board that contains information from the at least one
ticket and the at least one labeling strategy; and

display, via a graphical user interface, the at least one
graphical element.

14. The computing device of claim 10, wherein the
processor is further configured to:

compile data that relates to at least one from among the

application and the at least one vulnerability, the data
including deadline information relating to resolution of
the at least one vulnerability; and

update the at least one ticket to include the data.

15. The computing device of claim 10, wherein the
processor is further configured to:

automatically determine, by using at least one model, at

least one mitigation action that relates to the at least one
vulnerability; and

update the at least one ticket to include information that

relates to the at least one mitigation action.

16. The computing device of claim 15, wherein the
processor is further configured to:

automatically initiate the at least one mitigation action

based on a predetermined user setting; and

generate at least one execution report, the at least one

execution report including data that corresponds to the
automatic determining of the at least one mitigation
action and the automatic initiating of the at least one
mitigation action.

10

25

30

35

40

45

50

55

22

17. The computing device of claim 10, wherein the
processor is further configured to:

automatically determine whether at least one pull request

that relates to the at least one vulnerability is generated,
the at least one pull request relating to a previously
generated mitigation action for the at least one vulner-
ability;

associate the at least one pull request with the at least one

ticket when the at least one pull request is generated;
and

update the at least one ticket to include information that

relates to the at least one pull request.

18. The computing device of claim 10, wherein, to
onboard the application, the processor is further configured
to:

pull, by using the application programming interface, data

that corresponds to the application based on the at least
one identifier;

request, via a graphical user interface, at least one privi-

lege setting that corresponds to the application, the at
least one privilege setting including at least one from
among a scanning privilege setting and a reading
privilege setting;

generate a configuration file that corresponds to the appli-

cation based on the pulled data and the at least one
privilege setting; and

persist the configuration file in a source code repository

that is hosting the application.

19. A non-transitory computer readable storage medium
storing instructions for providing vulnerability management
to facilitate application development and deployment, the
storage medium comprising executable code which, when
executed by a processor, causes the processor to:

receive at least one monitoring request that includes at

least one identifier, the at least one identifier corre-
sponding to an application;

onboard the application by using the at least one identi-

fier;

generate at least one scheduled task for the application

based on an outcome of the onboarding, the at least one
scheduled task relating to source code vulnerability
analytics;

automatically initiate, via an application programming

interface, the at least one scheduled task based on a
predetermined parameter;

determine whether a set of source codes that corresponds

to the application includes at least one vulnerability
based on a result of the automatically initiated at least
one scheduled task; and

generate at least one ticket when the at least one vulner-

ability is included in the set of source codes.

20. The storage medium of claim 19, wherein the at least
one ticket relates to a work item of a responsible party
associated with the application, the work item corresponding
to an activity in a backlog that is managed by the responsible

party.

