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IMAGE PROCESSING OF
DRONE-CAPTURED IMAGE FOR ASSET
MANAGEMENT

TECHNICAL FIELD

[0001] The subject matter disclosed herein generally
relates to methods, systems, and machine-readable storage
media to utilize aerial images for asset management.

BACKGROUND

[0002] Autonomous vehicles and Unmanned Aerial
Vehicles (UAV) (drones) are collecting vast amounts of data
for business purposes, such as to inspect business assets
(e.g., wind turbine, power distribution, communication tow-
ers, storage tanks, avian mortality assessment), but the large
amount of data may be difficult to process. For example, a
large number of images can be captured, and it would take
a human a large amount of time to inspect this large number
of images, so automated analysis by computers is desired.
Further, an inspection may involve coordinating the drone
hardware, preparation activities, flight planning, traveling to
the inspection site, downloading the instructions to the
vehicle, gathering the data, storing the data, provide search
tools for searching the data, and analyze the data to present
useful insights for the business unit.

[0003] In many cases, there is knowledge about the loca-
tion of an asset to be inspected, and an image is taken of the
location. However, due to tolerances in the position of the
asset and the location of the drone when the image was
taken, the exact location of the asset within the image may
vary considerably, which makes image processing compli-
cated when looking for defects in the asset. Sometimes, a
neural network may be used to process an image, but this
may require significant amounts of human-annotated ground
truth data to train the neural network, which is very time and
resource consuming to obtain.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Various of the appended drawings merely illustrate
example embodiments of the present disclosure and cannot
be considered as limiting its scope.

[0005] FIG.1 is a diagram illustrating a sample method for
inspecting assets using an autonomous drone.

[0006] FIG. 2 is a flowchart of a method for drone data
management, according to some example embodiments.

[0007] FIG. 3 is an aerial image of a solar-panel installa-
tion.
[0008] FIG. 4 is a thermal image taking by a drone for

damage detection of solar panels, according to some
example embodiments.

[0009] FIG. 5 shows examples of positive and negative
masks, target regions for masking, and results of applying
the masks, according to some example embodiments.
[0010] FIG. 6 illustrates parameters available for design-
ing a solar string mask, according to some example embodi-
ments.

[0011] FIGS. 7-8 illustrate the process for calculating the
goodness of fit of the mask, according to some example
embodiments.

[0012] FIG. 9A illustrates example parameters for per-
spective padding, according to some example embodiments.
[0013] FIG. 9B shows the results for the example perspec-
tive padding of FIG. 9A.
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[0014] FIG. 10 illustrates the solar inference process,
according to some example embodiments.

[0015] FIGS. 11-15 show an example of a particle swarm
optimization, according to some example embodiments.
[0016] FIG. 16 is a flowchart of a method for asset
inspection, according to some example embodiments.
[0017] FIG. 17 illustrates a sample image of a wind
turbine with positive and negative masks, according to some
example embodiments.

[0018] FIG. 18 illustrates a sample architecture for imple-
menting example embodiments.

[0019] FIG. 19 is flowchart of a method for inspecting an
asset using drone imagery, according to some example
embodiments.

[0020] FIG. 20 is a block diagram illustrating an example
of'a machine upon or by which one or more example process
embodiments described herein may be implemented or
controlled.

DETAILED DESCRIPTION

[0021] Example methods, systems, and computer pro-
grams are directed to inspecting an asset using drone imag-
ery. Examples merely typify possible variations. Unless
explicitly stated otherwise, components and functions are
optional and may be combined or subdivided, and opera-
tions may vary in sequence or be combined or subdivided.
In the following description, for purposes of explanation,
numerous specific details are set forth to provide a thorough
understanding of example embodiments. It will be evident to
one skilled in the art, however, that the present subject
matter may be practiced without these specific details.
[0022] In one aspect, a drone-captured image is processed
using one or more masks in order to detect the location of an
asset within the image by using optimization methods to fit
the mask to the image. Additionally, perspective correction
is applied to correct for the viewing angle of the image when
taken. By using masks and optimization methods, asset
detection may be used without utilizing machine-learning
models, which may require large amounts of training data
that has to be labeled by humans, resulting in an expensive
process to keep the models relevant.

[0023] One general aspect includes a method that includes
operations for identifying an approximate location of an
asset in an image, and for defining parameters of a mask
associated with the asset in the image. The method further
includes operations for performing a global optimization
method to determine values for the parameters to obtain an
optimized mask that corresponds to the asset in the image,
and for extracting pixels of the image using the optimized
mask to obtain asset pixels. The method further includes
performing damage analysis for the asset based on the
extracted pixels, and presenting results of the damage analy-
sis on a display.

[0024] FIG. 1 illustrates a sample method for inspecting
assets 106 using a drone 102. A user interfaces with a control
program 116 to request autonomous inspection of assets
106, e.g., a wind turbine. A data center 108 includes elec-
tronic equipment that includes software and hardware for
managing missions, storing data, analyzing the data, etc.
[0025] Additionally, cloud services 112, 114 are used for
data storage and for using computer processors to analyze
the data. Once the user enters the request for inspection,
(e.g., communicated to the field via wireless communica-
tions 110), the drone 102 flies to the asset and captures
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sensor data, (e.g., images of the turbines to detect defects,
images of the ground to detect dead birds, measurements of
gas sensor, temperature measurements, LIDAR measure-
ments). A housing 104 hosts the drone 102 while not in use.
[0026] After the drone 102 returns to the housing 104, the
data is uploaded, such as to one of the cloud services 112,
114. Data analysis is then performed on the collected data to
determine problems. For example, image processing and
defect detection are performed to analyze the data in order
to detect defects on the wind turbines. The results may then
be observed by the user via the user interface (UI) of the
control program 116.

[0027] Each mission requires an authorization before it
can be executed. In some example embodiments, the opera-
tion of the drone 102 is autonomous because the mission
assigned to the drone 102 includes the required parameters
for the drone 102 to fly to the required asset 106, capture the
necessary data (e.g., multiple pictures of sections of each of
the blades), package the data, and then download the data for
analysis.

[0028] It is noted that some embodiments are presented
with autonomous UAVs, but the same principles may be
used for other autonomous vehicles, which are referred to as
robots. Further, the inspections may be many types of assets
besides wind turbines, such as avian mortality assessment,
or agricultural crops.

[0029] FIG. 2 is a flowchart of a method for drone data
management, according to some example embodiments. The
architecture for drone data management builds on use cases
and enables the use of automated workflows.

[0030] At operation 202, the mission is approved. An
administrator utilizes the management program to select a
workflow and then entering the request. The authorization
process includes approving the mission by one or more
persons that have authority to enable the mission.

[0031] After the mission is approved, the method flows to
operation 204 where a mission request is generated. The
mission is requested by an operator on the field that is
authorized to initiate the mission.

[0032] The mission is then executed by the robot that
travels to the programmed location to inspect the asset and
captures the data 206. After the robot ends the task, the data
captured by the robot is downloaded and placed in a package
that is stored on a server, such as a cloud server.

[0033] The stored data is then analyzed, and the results
delivered to the user at operation 208. For example, the data
may show images of a solar panel or a wind turbine and the
result may be a fault on one of the panels or turbines, such
as a broken panel or a crack on a turbine blade.

[0034] FIG. 3 is an aerial image 302 of a solar-panel
installation. The installation includes several strings 304 of
solar panels 306, where each string 304 includes one or more
rows of solar panels. The example shows several strings 304
in a 2x18 configuration (2 rows by 19 columns).

[0035] The image 302 was captured by a drone flying on
a mission to inspect the solar-panel installation. The goal of
image processing is finding the details about each string,
which include the location of the string 304 within the image
(defined by horizontal and vertical offsets from a corner of
the image) and the locations within the image of the four
corners of the string 304. Since each corner location includes
a horizontal and vertical value, the location of the eight
corners means identifying ten different values.
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[0036] Typically, the approximate location of the panel
(defined by latitude and longitude) is known since the panels
are in a fixed location. However, the location may not be
very accurate. Also, some panels may rotate during the day
depending on the position of the sun, so the position may not
be static.

[0037] Further, the drone taken the image also knows its
GPS location when the image was taken, which provides an
approximation on the location of the strings 304. Addition-
ally, the viewing angle of the camera when taking the image
is also known.

[0038] Thus, there is a general idea of the location of the
string, just by using simple geometry. However, a small lack
of'accuracy due to the factors identified above, may result in
an incorrect offset of the string within the image. Thus, if
analysis is done on the part of the image corresponding to
the string 304, the analysis may fail because the wrong
pixels are being analyzed. Therefore, image processing is
performed on the captured image 302 to determine accu-
rately the location of the string 304 in the image and the four
corners within the string 304.

[0039] That is, in general, for troubleshooting problems
for any asset using imagery, image processing is performed
to obtain an accurate location of the asset within the image,
and once the location is determined, defect detection may be
performed to look for problems within the asset that can be
detected visually (e.g., broken asset, obstructed asset, miss-
ing asset, etc.), including analysis of thermal images, color
images, or black and white images.

[0040] Although some embodiments are described with
reference to solar panels and turbines, the same principles
may be used for any type of asset being inspected using
images captured by a robot or a fixed security camera.
[0041] FIG. 4 is a thermal image 402 taking by a drone for
damage detection of solar panels, according to some
example embodiments. The image 402 covers several
strings of solar panels. It can be observed that the blue areas
of the solar panels appear as light grey, the frames of the
solar cells appear in dark grey, and the surrounding terrain
is mostly dark grey.

[0042] The goal is to identify the locations of the strings
within the image 402 based on analysis of the pixels in the
image 402. Although a thermal image is shown for the
description of the method, or other types of images may also
be used, such as black-and-white images and color images.
For example, when analyzing color images, the search to
locate the solar cells will be based on finding blue pixels that
correspond to the solar cells, while pixels outside the solar
cells will appear in other colors such as green for the grass,
brown for the dirt, black or white for the frames, etc. The
embodiments illustrated should therefore not be interpreted
to be exclusive or limiting, but rather illustrative.

[0043] The process of identifying the exact location of the
string begins with an approximate string location 404 based
on the coordinates of the drone and the expected location of
the string. In this example, the approximate string location
404 1s slightly up and to the left of the exact location of the
string in the image 402.

[0044] FIG. 5 shows examples of positive and negative
masks, target regions for masking, and results of applying
the masks, according to some example embodiments. To
detect strings in thermal (or RGB) imagery, masks are used
to extract pixels closer to white where the light pixels (or a
particular color for RGB images) are expected, and extract
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pixels closer to black where the dark pixels (or another
particular color for RGB images) are expected.

[0045] Asused herein, a mask is a pattern in an image used
to extract pixels from another image by passing through
some pixels (e.g., remain unchanged) and discarding (e.g.,
making black or white) the rest of the pixels to obtain a
masked image. In some example embodiments, the mask
includes black and white pixels, where white pixels in the
mask are used to keep the corresponding pixels from the
processed image in the masked image, and the black pixels
in the mask are used to block the corresponding pixels in the
masked image, and the blocking may include replacing the
blocked pixels with black pixels, although other values may
be used instead, such as white pixels or some other RGB
value. Other embodiments may utilize different values for
the mask pixels. The embodiments illustrated in FIG. 5
should therefore not be interpreted to be exclusive or lim-
iting, but rather illustrative.

[0046] In some example embodiments, there are two types
of' masks: a positive mask 502 and a negative mask 504. The
positive mask 502 is to mask the thermal image (e.g., image
402, or a section thereof, of FIG. 4) to obtain the expected
dark pixels in the processed image. The negative mask 504
is to mask the thermal image to obtain the expected light
pixels in the processed image.

[0047] The target positive region window 506 shows the
area 510 of the image 402 where the positive mask 502 is to
be applied. The target positive masked region window 514
shows the results of applying the positive mask 502, which
include blocked (e.g., black) pixels from the image 402 and
pass-through pixels from the image 402 corresponding to the
white pixels on the positive mask 502. The result is positive
masked image 518.

[0048] Similarly, the target negative region window 508
shows the area 512 of the image 402 where the negative
mask 504 is to be applied. The target negative masked region
window 516 shows the results of applying the negative mask
504, which include blocked (e.g., black) pixels from the
image 402 and pass-through pixels from the image 402
corresponding to the white pixels on the negative mask 504.
The result is negative masked image 520. In some example
embodiments, the mask may be applied via a bitwise logical
AND operation between the corresponding pixels in the
image and the mask.

[0049] Thus, the positive masked image 518 is supposed
to include the dark pixels from the masked image and the
negative masked image 520 is supposed to include the light
pixels from the masked image. In an ideal world, the positive
masked image 518 would have all dark pixels, and the
negative masked image 520 would have all the light or white
pixels. However, when the match is not perfect, mismatches
may be observed, such as the appearance of double lines on
the left side of the negative masked image 520. The goal is
to find the best location of the mask that provides the best
matching of light and dark pixels.

[0050] The optimization process aims at calculating ten
different values corresponding to coordinates (x and y
values) of five points. The first point is the best location of
the mask for application on the image to be masked, and the
other four points correspond to the coordinates of the four
corners of the solar string. It is noted that the four corners
may not be a perfect rectangle because of an angled per-
spective view or some distortion.
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[0051] Once the five coordinates are calculated, a perspec-
tive transform is performed to transform the masked area to
a rectangle, as if the image would have been taken by a
camera in front of the string with a perpendicular viewing
angle to the string. The process includes applying perspec-
tive distortion to find the best match. The result is a
rectangular image with the pixels from the solar string. This
image may then be processed for damage detection on the
solar string.

[0052] FIG. 6 illustrates the parameters available for
designing a string mask 602, according to some example
embodiments. In some example embodiments, several
parameters can be configured to define the string mask 602:

[0053] string dimension x: width of the solar panel
expressed as the number of modules (e.g., solar panels)
in the horizontal direction (x is equal to six in the
illustrated example);

[0054] string dimension y: height of the solar panel
expressed as the number of modules (e.g., solar panels)
in the vertical direction (v is equal to two in the
illustrated example);

[0055] panel width 608: the width in pixels of one
panel, where the pixels inside the panel are expected to
be white or close to white in the image (e.g., 16 pixels).
The width of the panel (e.g., measured in meters) is
converted to the number of pixels in the image;

[0056] panel height 610: the height in pixels of one
panel (e.g., 31 pixels). The height of the panel (e.g.,
measured in meters) is converted to the number of
pixels in the image;

[0057] panel padding 606: number of pixels between
and around panels in the mask (e.g., 1 pixel) (these
pixels are expected to be black);

[0058] gap padding 612: number of pixels on the sides
of the string representing the gap between strings (e.g.,
5 pixels) (these pixels are expected to be black);

[0059] fade radius 604: rate of change (e.g., how
quickly) to fade in from the black module padding to
the white inside modules (e.g., radius of 8 pixels);

[0060] having the fade radius 604 makes the models, for
searching the best fit of the mask, easier to optimize
because the search space is smoother; and

[0061] perspective padding 614: provides extra padding
(e.g., 4 pixels) around the entire mask which allows for
corner adjustments when performing an optimization
method (either local or global).

[0062] FIGS. 7-8 illustrate the process for calculating the
goodness of fit of the mask, according to some example
embodiments. The target mask 702 of FIG. 7 is an example
of the mask created with the values presented above with
reference to FIG. 6. The additional padding around the
panels allows for perspective deformations during optimi-
zation.

[0063] In addition, a mask region 704 is generated to
extract the target area in the target image which can be used
as a binary mask. The mask region 704 includes the black
gap padding pixels (but not the extra perspective padding
pixels 614), used to extract the region of the image to
compare against the mask.

[0064] Target mask region 706 is the area of interest in the
thermal image. Target masked region 708 is the result of
performing a bitwise between the target mask region 706
and the mask region 704 to get the pixels of interest.
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[0065] The pixels in the target masked region 708 can then
be subtracted from the pixels in the target mask 702. In some
example embodiments, a sum of squared distance between
the mask and target region is used; however, with less pixels
that should be blacker, capturing these lines between panels
is important for accurately capturing the string and panel
positions. Because of this, it is possible to separate into
pixels values which were less than the mask (should have
been more white/positive difference) to obtain the positive
difference 710, and pixels that were greater than the mask
(should have been more black/negative difference) to obtain
the negative difference 712.

[0066] The distance for the pixels that should have been
blacker and the pixels that should have been whiter is
calculated, and weights are assigned to the distances. For
example, the distance may be calculated as the sum of the
squared distance between the mask and the target pixels.
[0067] In some example embodiments, the quality of the
fit of the mask (also referred to as fitness) is calculated as
follows:

dm(difference matrix)=target mask-target masked
region;

pd(positive difference)=sum of the squared differ-
ence of pixels greater than O in dm;

nd(negative difference)=sum of the squared differ-
ence of pixels less than O in dm;

fitness=nd-weight+pd

[0068] Here, weight is a parameter for controlling how
much weight is given to pixels that should have been blacker
in calculating the fitness. For example, weight is usually
given a value greater than 1.

[0069] It is noted that that this process works while
performing perspective transforms which simulate looking
at the target region from different angles. When a perspec-
tive transform is performed, it is done both to the mask and
to the mask region, which can result in nonrectangular target
mask regions, such as target mask 802 in FIG. 8. Also in
FIG. 8, examples of a non-rectangular mask region 804 and
a non-rectangular target masked region 806 are illustrated.
[0070] FIG. 9A illustrates example parameters for per-
spective padding, according to some example embodiments.
The original string mask 602 is presented with a perspective
transformed string 902, string width 904 (without gap pad-
ding), string height 906, and the extra perspective padding
pixels 614.

[0071] Further, the range for potential corners 908 shows
the area where the string corners could potentially be
optimized via perspective transforms with the example
transformation shown for the perspective transformed string
902.

[0072] FIG. 9B shows the results for the example perspec-
tive padding of FIG. 9A. The perspective transforms the
target mask and the mask region, which can be used to
extract the pixels to compare the mask against. The results
include target mask 910, mask region 912, target masked
region 914, negative difference 916, and positive difference
918 to compute the fitness.

[0073] FIG. 10 illustrates the solar inference process,
according to some example embodiments. The solar infer-
ence process assumes the existence of previously calculated
estimates of the latitudes and longitudes of the solar string
center points. Given an image and its potential latitude and
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longitude range, the solar inference process calculates which
solar strings are contained within the image.

[0074] The process begins with the approximate string
location 404 as illustrated in FIG. 4, which corresponds to
the initial mask. In some example embodiments, the process
to identify the location of the string includes four operations:

[0075] 1. Local Search

[0076] 2. String Extraction

[0077] 3. Module Extraction

[0078] 4. Module anomaly detection, hot spot detection,

and cold spot detection.

[0079] In some example embodiments, the local search is
performed with the hill-climbing method, but other search
algorithms may be used. Given the rough initial placement
of the mask (with no perspective distortions), a local search
is performed, using hill climbing, to refine the corner points
of the solar string. The optimization parameters include the
following:

[0080] 1. an x and a y offset (corresponding to the top
right corner of the mask location);

[0081] 2. a panel width adjustment and a panel height
adjustment (to assist in adapting to the panel size),
which allow the search to select from a range of panel
widths and heights, and

[0082] 3. four corner point adjustments to perform
perspective transforms to the mask, which shift each of
the four string corners within the mask (represented as
x1/y1 for top left, x2/y2 for bottom left, x3/y3 for top
right, and x4/y4 for bottom right) to allow for different
camera angles when the image was taken of the solar
string.

[0083] This totals 12 different parameters (x offset, y
offset, panel width adjustment, panel height adjustment, x1
shift, y1 shift, x2 shift, y2 shift, x3 shift, y3 shift, x4 shift,
and y4 shift) for the optimization method to determine.
[0084] The initial x and y offsets are set initially to provide
the conversion from the string latitude and longitude to the
pixel location, and the other parameters are set to 0.
[0085] While any local search method could be used for
the mask optimization process, in some example embodi-
ments any, or a mixture, of the following hill climbing
strategies are used: deterministic hill climbing, stochastic
hill climbing, and multi-stochastic hill climbing. These
methods provided good performance in practice, taking just
a few seconds in a laptop computer to calculate.

[0086] The deterministic hill climbing method, given a
step radius, takes the current set of parameters, generates a
list of potential moves, evaluates the mask fitness at each of
these moves, and selects the move which most improves the
mask fitness. The method terminates when there are no more
move improvements for the mask fitness.

[0087] The list of potential steps is calculated for move
m=1, 2, . . . N, where Nis the step radius, and m is the
number of pixels difference. The steps include:

[0088] 1. for each parameter, m is added to the one
parameter, and then the list of parameters is added to
the list (this will generate 12 moves, one for each
parameter).

[0089] 2. for each parameter, m is subtracted from one
parameter and the list of parameters is added to the list
(this will generate 12 moves, one for each parameter).

[0090] 3. for each pair of parameters and for each
combination of plus and minus for the pair (i.e., ++, +-,
-+, ++), add or subtract m from the chosen two
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parameters (keeping the rest at the initial parameters)
and add that to the list. This results in 12 choose 2 (66)
parameter pairs with 4+/— options for a total of 264
moves.
[0091] Thus, for a step size of 3, a total of 792 moves will
be evaluated for each iteration of deterministic hill climbing.
In general, the deterministic hill climbing method is good for
very fine local refinement but may get stuck in local optima.
[0092] The stochastic hill climbing method, given a step
radius and a number of termination iterations, randomly
generates a move by modifying a parameter within the range
of [-step radius, +step radius]. If the fitness of the move is
better than the fitness of the current parameters, the move is
made, and the new parameters are set as the current param-
eters. If the number of termination iterations moves have
been attempted without an improvement in fitness, the step
radius is reduced by 1 and the process repeats. The local
search terminates when the step radius reaches 0.
[0093] The stochastic hill climbing method is more robust
for breaking out of local optima, but can miss out on the final
refinement.
[0094] The multi-stochastic hill climbing method per-
forms multiple stochastic hill climbing runs at the expected
coordinates but also with starting points around the original
coordinates. This results in more robustness against inaccu-
racy with the initial latitude and longitude pixel locations.
[0095] Givenax offset, a y offset, and a radius, the method
performs nine stochastic hill climbing runs with the follow-
ing initial x and y offsets (up, down, left, right, four corners

by radius):

[0096] 1. x offset, y offset

[0097] 2. x offset-radius, y offset+radius
[0098] 3. x offset, y offset+radius

[0099] 4. x offset+radius, y offset+radius
[0100] 5. x offset+radius, y offset

[0101] 6. x offset+radius, y offset-radius
[0102] 7. x offset, y offset—radius

[0103] 8. x offset-radius, y offset-radius

[0104] 9. x offset-radius, y offset

[0105] In some example embodiments, radius is usually
0.75 times the panel width, but other values may also be
used. If more robustness to inaccuracy in the latitude and
longitude conversion is required, the radius could be
expanded in a grid with multiple steps around the original
location. The best mask across all hill-climbing runs is
selected to define the best fit of the mask to the solar string.
[0106] In some example embodiments, the hill-climbing
methods are combined. For example, multi-stochastic hill
climbing is performed first with the radius equal to 75% of
the panel width. Then the multi-stochastic hill climbing is
performed again with the radius equal to 25% of the panel
width, and then again with the radius equal to 5% of the
panel width. After, deterministic hill climbing is performed
using the best parameters from the previous local search as
the starting point for the next search to ensure the tightest fit
of the mask to the module.

[0107] Once the optimized location of the mask over the
solar string is determined, the next operation is to extract the
string pixels from the image for analysis.

[0108] The target masked region 1002 is extracted from
the image. The target masked region 1002 has the original
corner point locations and updated corner point locations
(calculated from the x1, y1, x2, y2, X3, y3, x4, and y4 shift
parameters), which convert from the mask’s original rect-
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angle to the polygon which optimizes the masks fit to the
region through a perspective transform calculated using the
old and new corners.

[0109] The new corners can then be untransformed by
calculating the perspective transform matrix from the new
corners to the old corners (the opposite transform), which
will transform the image such that the polygon made from
the new corners is now a rectangle with the old corners as
shown in the untransformed masked pixels 1004.

[0110] The image is clipped by removing the perspective
and gap padding, which isolates the string as a rectangle,
resulting in the pixels for string only 1006.

[0111] Then, given the extracted string only 1006, then the
panel extraction is performed. With the string extracted as a
rectangle, extracting the panels is a simple process by
dividing up the string by the number of panels in the x and
y dimensions, resulting in the extracted panels 1008. In the
extracted panels 1008, the pixels for each panel are known
and can be analyzed separately to find anomalies, such as
broken panels, hot spots, cold spots, etc.

[0112] For anomaly detection, given a set of extracted
panels from a string (or potentially a row or a hand selected
set of representative set of panels), the average and standard
deviation of the pixel value for each pixel in a panel are
calculated. Hot and cold thresholds are configurable in the
system, and each pixel in the panel is analyzed to determine
if the pixel value exceeds the hot or cold threshold value.

[0113] Further, the method identifies anomalous pixels
that fall outside a predetermined number N of standard
deviations away from the average pixel value in the panel.
If at least a configurable number M of pixels are flagged as
anomalous, then the panel is flagged as having an issue and
requiring human review.

[0114] For damage classification, machine-learning mod-
els may be trained to analyze each panel separately. Given
enough human annotated modules to form a training set,
classification models are trained to determine damage types.
Additionally, simpler computer vision methods may be used
to determine if there is an anomalous hot region in a
damaged panel. If there are multiple damaged panels orga-
nized in specific patterns, these are flagged as high-level
damages. Similarly, anomalous cold regions of various sizes
and configurations can be flagged, as well as other issues
such as vegetation obstruction or some other panel obstruc-
tion.

[0115] FIGS. 11-15 show an example of a particle swarm
optimization, according to some example embodiments. The
localization process for calculating corner points for solar
strings, begins with a global optimization method (e.g.,
particle swarm optimization, differential evolution, CMA-
ES, firefly algorithm), as discussed above, to find the best
mask positions in an image. In some example embodiments,
the global optimization method optimizes the 12 different
parameters described above.

[0116] Particle swarm optimization (PSO) is a computa-
tional method that optimizes a problem by iteratively trying
to improve a candidate solution with regard to a given
measure of quality. It solves a problem by having a popu-
lation of candidate solutions, here dubbed particles, and
moving these particles around in the search-space according
to simple mathematical formula over the particle’s position
and velocity. Each particle’s movement is influenced by its
local best known position, but it is also guided toward the
best known positions in the search-space, which are updated
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as better positions are found by other particles. This is
expected to move the swarm toward the best solutions.
[0117] FIG. 11 shows image 1102 with the particle’s best
found previous position. FIG. 12 shows image 1202 with the
particle’s current positions.

[0118] The global search is improved by making the
particles memetic and incorporating a short local search,
such as hill climbing when each new potential mask position
is evaluated. This locally adapts and improves the position
and return the fitness and updated position for the search.
[0119] After the global search concludes, the global best
found mask can be further refined by a longer running local
search (hill climbing) process, as global searches tend to be
overall less accurate for final refinement.

[0120] The final optimized mask is removed (blacked out)
from the image and this process repeats until a user specified
number of strings have been extracted from the image.
[0121] FIG. 13 shows image 1302 when running PSO
again after removing one string from the image. FIG. 14
shows image 1402 with the particle’s current positions after
removing one string from the image. Further, FIG. 15 shows
image 1502 with the identified mask 1504 for the string.
[0122] For each string/mask removed from the image, the
string corner points are calculated. The string corner points
are equal to the optimized x and y offsets plus the perspec-
tive padding, gap padding (for x values) and the x1, y1, x2,
y2, X3, y3, x4, and y4 shifts.

[0123] The four corner points are then fed into a localiza-
tion method, which takes the image metadata (drone alti-
tude, latitude and longitude; flight pitch, yaw, roll; and
gimbal pitch, yaw, and roll) to convert the corner point pixel
locations in the image to actual refined latitude and longi-
tudes which can then be used to specity the locations of each
string at a solar farm.

[0124] FIG. 16 is a flowchart of a method 1600 for asset
inspection, according to some example embodiments. While
the various operations in this flowchart are presented and
described sequentially, one of ordinary skill will appreciate
that some or all of the operations may be executed in a
different order, be combined or omitted, or be executed in
parallel.

[0125] At operation 1602, a mission is configured to fly
the drone and check an asset. Then, at operation 1604, the
drone captures one or more images of the asset.

[0126] After the image is taken, an optimization method is
used to determine the location of the asset in the image,
including parameters to compensate for the perspective view
or a slight deviation of the location of the asset from the
expected location (e.g., a solar panel has rotated to increase
solar view). In some example embodiments, the method to
find the five coordinates is a mathematical optimization
algorithm to obtain the best match of the image pixels.
[0127] Mathematical optimization or mathematical pro-
gramming is the selection of a best element, with regard to
some criterion, from some set of available alternatives. In
the more general approach, an optimization problem con-
sists of maximizing or minimizing a real function by sys-
tematically choosing input values from within an allowed set
and computing the value of the function. Generally, optimi-
zation includes finding “best available” values of some
objective function given a defined domain (or input), includ-
ing a variety of different types of objective functions and
different types of domains.
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[0128] In some example embodiments, the optimization
process is for selecting a mask that maximizes the number
of pixels that match the expected value (e.g., light or dark
pixel).

[0129] Some algorithms are iterative methods that con-
verge to a solution, or heuristics that may provide approxi-
mate solutions to some problems. There is a long list of
optimization algorithms, such as hill-climbing methods,
gradient-descent methods, particle swarm, Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), differen-
tial evolution, etc. The embodiment illustrated is for utiliz-
ing a particle swarm method, but other methods may be
utilized.

[0130] In one example embodiment, the candidate solu-
tions include candidate values for the 12 parameters
searched in the case of the solar string. At operation 1606,
at least one mask is applied to the captured image in multiple
positions of the image. In one embodiment, the positive and
the negative mask are used as described above. Other
embodiments may utilize only the positive mask or the
negative mask. Further, other embodiments may include
more than two masks to be able to focus on different parts
of the asset.

[0131] For solar string detection, the corner points and a
transformation matrix are used to determine the alignment of
the solar string related to the drone, and feed into the
methods for geo-location and automated generation of solar
site information for flight planning.

[0132] At operation 1608, a fitness score is calculated for
each candidate, where the fitness score combines a fitness
score for the positive mask and a negative score for the
negative mask. The positive score indicates how well the
positive mask works for masking the image by calculating
the number of unmasked pixels that have a value within a
predetermined range (e.g., the value of the pixel corresponds
to dark pixels). The negative score indicates how well the
native mask works for masking the image by calculating the
number of unmasked pixels that have a value within a
predetermined range (e.g., the value of the pixel corresponds
to light pixels). For example, the more light pixels remaining
in the target negative masked region, the higher the negative
score.

[0133] Insome embodiments, the distance of each pixel to
the color white is calculated for the negative mask, and the
distance of each pixel to black for the positive mask. Then
the distances of all the pixels are added up to generate the
score.

[0134] The positive score on the negative score may be
combined in any form, such as calculating an average, but
other methods may be utilized such as calculating a
weighted average, a geometric average, etc. For example, in
some cases, the black pixels are weighted higher than the
light pixels because the black pixels provide more value
when trying to find the boundaries of the solar string.
[0135] In one example for using color, the goal may be to
find white and blue pixels that correspond to the solar string.
One score may be calculated by calculating the distance
from each pixel to the color blue, and another score may be
calculated by calculating the distance from each pixel to the
color white, after applying the respective masks for blue and
white.

[0136] At operation 1610, the best mask (including the ten
parameters) is selected based on the evaluated candidates. It
is noted that operations 1606, 1608, and 1610 may be
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calculated in a loop, that is, one candidate at a time, and the
loop will end once the desired threshold accuracy is
obtained.

[0137] At operation 1612, a perspective transform is
applied based on the calculated parameters for the selected
mask to obtain an optimized image ready for analysis. The
perspective transform transforms the captured image so the
four selected corners form a rectangle. When human eyes
see near objects, the objects look bigger as compared to
those that are far away. This is called perspective. Perspec-
tive transformation converts images from the three-dimen-
sional world into a two-dimensional image without perspec-
tive.

[0138] The optimized image of the solar string includes
the panels of the solar string with the different panels, such
as the 2x18 panels of FIG. 3. In some embodiments, an
image then may be extracted for each separate solar panel by
dividing the optimized image according to the 2x18 panel
configuration. Thus, the damage analysis may be performed
on the string as a whole, or on each panel individually.
[0139] Further, the metadata of the drone image includes
the latitude and longitude of the image (e.g., top left loca-
tion), of the latitude and longitude of the drone, as well as
the viewing angle when the image was captured. From this
metadata, it is possible to calculate the latitude and longitude
of the solar string.

[0140] At operation 1614, a check for damage is per-
formed based on the transformed image. For example, are
there hotspots in the solar string, is there vegetation or
another obstacle limiting the exposure to the sun, any broken
panels, etc.

[0141] Image analysis may be performed to detect dam-
age. In some example embodiments, image-recognition
machine-learning models may be used to check for damage,
such as neural networks. Because the analysis is performed
on the exact location of the string, the analysis is more
accurate than simply analyzing the drone-captured image.
Further, the models may be smaller because of the accurate
location of the solar panel. For example, if vegetation is
obstructing the solar panel, the analysis of the complete
image would have to determine if vegetation is over the
panel or is part of the space between the strings. However,
when analyzing the exact location of the string, if vegetation
is found, it is because the vegetation is obstructing the view
of the sun.

[0142] Finding hotspots on the panel may be simply
detected by determining if some pixels (in the thermal
image) in the solar cell are significantly hotter or colder than
the majority of the pixels in the string. This may be deter-
mined by using a threshold difference between each pixel
and the average of all the pixels. This operation may be
performed with a simple algorithm that checks the tempera-
ture of the pixels, or by a small neural network.

[0143] The advantage of using masks is that it is possible
to start asset damage detection without requiring training
data. Also, the computer vision methodologies for solar
damage detection are more accurate than simply image
analysis of the whole image, right from the start without
requiring training data.

[0144] As discussed above, the process determines the
latitudes and longitudes of the asset, and when problems are
found, the latitude and longitudes of the trouble spots are
also determined with great accuracy. Thus, it is possible to
report something like, “there is a problem in string 27, third
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panel on first row, with coordinates (x, y).” Also, the data
may be stored for multiple missions over time, so showing
images with the evolution of the problem is straightforward.
[0145] FIG. 17 illustrates a sample image 1702 of a
spinner 1708 of a wind turbine with a positive mask 1706
and a negative mask 1704, according to some example
embodiments. Similar methodology described above for
solar panels may be used for the wind turbine.

[0146] Analysis parameters for the wind turbine include
the current rotation of the spinner 1708 and the identification
of the blades (e.g., blades 1 to 3). The rotation parameter
indicates the angle for each blade in the image, where the
blades are separated by 120°. For example, the analysis may
indicate angles of 13°, 133°, and 253° for the blades.
[0147] In general, one, two or multiple masks can be used
to extract the objects of interest from the image. The
optimization finds the place where the object is and how to
distort the object in the image, if needed, due to perspective.
[0148] In the illustrated example, to determine which
blade is blade 1/A on a turbine (e.g., a Vestas V120 turbine)
one or two masks are generated. The negative mask 1704 is
where pixels are desired after performing edge detection,
and the positive mask 1706 is where pixels are not desired
after performing the edge detection.

[0149] Blade assignment is important to be able to distin-
guish the different blades in the turbine and follow their
evolution over time, so when inspections are performed over
time, it is useful to know how the blade looked previously
(e.g., last year. The problem is that the location of the blade
changes over time, so it’s not possible to say straightforward
from the image which blade is which.

[0150] In some turbines, there is a hatch 1710 on the
spinner 1708, so by identifying where the hatch 1710 is in
the spinner 1708, it is possible to determine the rotation of
the spinner 1708.

[0151] The optimization process then finds the location of
the spinner 1708 in the wind turbine and its rotation, by
maximizing how many edge detection pixels are in the
positive mask, and by minimizing how many edge detection
pixels are in the negative mask.

[0152] In the optimization process, the rotation is an
additional parameter to the 12 parameters discussed above.
The process is the same, the candidate masks are placed on
the image and the fitness calculated until the best mask is
found.

[0153] Once the parameters are identified, the pixels of
interest are extracted from the sample image 1702 to analyze
the status of the turbine, such as possible damage, obstruc-
tion, etc.

[0154] FIG. 18 illustrates a sample architecture for imple-
menting example embodiments. The inspection server 1802
includes a mission manager 1804, a damage inspector 1806,
a drone manager 1808, an image analyst 1810, a manage-
ment user interface 1812, an image database 1814, and an
asset database 1816.

[0155] The mission manager 1804 handles the operation-
related activities, such as scheduling drones and configure
missions. The damage inspector 1806 performs analysis on
the extracted asset pixels to determine damage. Further, the
drone manager 1808 interacts with the drones that will be
flying to the assets.

[0156] The image analyst 1810 analyzes the drone-cap-
tured images to find the masks for extracting the asset pixels.
The management user interface 1812 provides options for



US 2024/0202901 Al

configuring asset-management activities, such as drone con-
figuration, flight paths, expected asset location, etc.

[0157] The image database 1814 stores the images of
assets captured by the drones or other equipment, and the
asset database 1816 stores information about the assets 106,
such as location and results from previous inspections.
[0158] The drone 102 includes a mission manager 1818, a
flight manager 1820, sensors 314, an operator user interface
1822, and a sensor-data database 316.

[0159] The mission manager 1818 handles the different
aspects of the mission and provides the operator user inter-
face 1822 for interacting with the operator before the drone
takes off for the mission. The flight manager 1820 interacts
with the drone hardware to specify routes, altitudes, where
to stop to take images, etc.

[0160] FIG. 19 is flowchart of a method 1900 for inspect-
ing an asset using drone imagery, according to some
example embodiments. While the various operations in this
flowchart are presented and described sequentially, one of
ordinary skill will appreciate that some or all of the opera-
tions may be executed in a different order, be combined or
omitted, or be executed in parallel.

[0161] Operation 1902 is for identifying an approximate
location of an asset in an image.

[0162] From operation 1902, the method 1900 flows to
operation 1904 to define parameters of a mask associated
with the asset in the image.

[0163] From operation 1904, the method 1900 flows to
operation 1906 for performing a global optimization method
to determine values for the parameters to obtain an opti-
mized mask that corresponds to the asset in the image.
[0164] From operation 1906, the method 1900 flows to
operation 1908 where pixels of the image are extracted using
the optimized mask to obtain asset pixels.

[0165] From operation 1908, the method 1900 flows to
operation 1910 for performing damage analysis for the asset
based on the extracted pixels,

[0166] From operation 1910, the method 1900 flows to
operation 1912 to present results of the damage analysis on
a display.

[0167] In one example, the parameters comprise: horizon-
tal offset and vertical offset of a top right corner in the image,
horizontal shift for four corner locations of the mask, and
vertical shift for the four corner locations of the mask.
[0168] Inone example, the asset is a string of solar panels,
and the parameters further comprise a panel width adjust-
ment, and a panel height adjustment.

[0169] Inone example, the method 1900 further comprises
extracting pixels for each of the panels in the string of solar
panels, wherein performing damage analysis for the asset
comprises performing damage analysis for each panel based
on the extracted pixels for the panel.

[0170] Inoneexample, the asset is wind turbine, where the
parameters further comprise a rotation angle of the wind
turbine.

[0171] In one example, extracting pixels of the image
further comprises performing a bitwise logical AND
between corresponding pixels in the image and the mask.
[0172] In one example, the global optimization method is
a particle swarm optimization based on hill climbing.
[0173] In one example, the method 1900 further com-
prises, before identifying the approximate location of the
asset, capturing the image the asset with an autonomous
drone.
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[0174] In one example, identifying the approximate loca-
tion of the asset comprises determining the approximate
location of the asset based on a location of the drone when
taking the image.

[0175] In one example, performing damage analysis com-
prises: calculating an average pixel value of the pixels in the
asset, and determining pixels that deviate a predetermined
amount from the average pixel value.

[0176] Another general aspect is for a system that includes
a memory comprising instructions and one or more com-
puter processors. The instructions, when executed by the one
or more computer processors, cause the one or more com-
puter processors to perform operations comprising: identi-
fying an approximate location of an asset in an image;
defining parameters of a mask associated with the asset in
the image; performing a global optimization method to
determine values for the parameters to obtain an optimized
mask that corresponds to the asset in the image; extracting
pixels of the image using the optimized mask to obtain asset
pixels; performing damage analysis for the asset based on
the extracted pixels; and presenting results of the damage
analysis on a display.

[0177] In yet another general aspect, a tangible machine-
readable storage medium (e.g., a non-transitory storage
medium) includes instructions that, when executed by a
machine, cause the machine to perform operations compris-
ing: identifying an approximate location of an asset in an
image; defining parameters of a mask associated with the
asset in the image; performing a global optimization method
to determine values for the parameters to obtain an opti-
mized mask that corresponds to the asset in the image;
extracting pixels of the image using the optimized mask to
obtain asset pixels; performing damage analysis for the asset
based on the extracted pixels; and presenting results of the
damage analysis on a display.

[0178] FIG. 20 is a block diagram illustrating an example
of' a machine 2000 upon or by which one or more example
process embodiments described herein may be implemented
or controlled. In alternative embodiments, the machine 2000
may operate as a standalone device or may be connected
(e.g., networked) to other machines. Ina networked deploy-
ment, the machine 2000 may operate in the capacity of a
server machine, a client machine, or both in server-client
network environments. In an example, the machine 2000
may act as a peer machine in a peer-to-peer (P2P) (or other
distributed) network environment. Further, while only a
single machine 2000 is illustrated, the term “machine” shall
also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodolo-
gies discussed herein, such as via cloud computing, software
as a service (SaaS), or other computer cluster configurations.
[0179] Examples, as described herein, may include, or
may operate by, logic, various components, or mechanisms.
Circuitry is a collection of circuits implemented in tangible
entities that include hardware (e.g., simple circuits, gates,
logic). Circuitry membership may be flexible over time and
underlying hardware variability. Circuitries include mem-
bers that may, alone or in combination, perform specified
operations when operating. In an example, hardware of the
circuitry may be immutably designed to carry out a specific
operation (e.g., hardwired). In an example, the hardware of
the circuitry may include variably connected physical com-
ponents (e.g., execution units, transistors, simple circuits)
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including a computer-readable medium physically modified
(e.g., magnetically, electrically, by moveable placement of
invariant massed particles) to encode instructions of the
specific operation. In connecting the physical components,
the underlying electrical properties of a hardware constituent
are changed (for example, from an insulator to a conductor
or vice versa). The instructions enable embedded hardware
(e.g., the execution units or a loading mechanism) to create
members of the circuitry in hardware via the variable
connections to carry out portions of the specific operation
when in operation. Accordingly, the computer-readable
medium is communicatively coupled to the other compo-
nents of the circuitry when the device is operating. In an
example, any of the physical components may be used in
more than one member of more than one circuitry. For
example, under operation, execution units may be used in a
first circuit of a first circuitry at one point in time and reused
by a second circuit in the first circuitry, or by a third circuit
in a second circuitry, at a different time.

[0180] The machine 2000 (e.g., computer system) may
include a hardware processor 2002 (e.g., a central processing
unit (CPU), a hardware processor core, or any combination
thereof), a graphics processing unit (GPU 2003), a main
memory 2004, and a static memory 2006, some or all of
which may communicate with each other via an interlink
2008 (e.g., bus). The machine 2000 may further include a
display device 2010, an alphanumeric input device 2012
(e.g., a keyboard), and a user interface (UI) navigation
device 2014 (e.g., a mouse). In an example, the display
device 2010, alphanumeric input device 2012, and UI navi-
gation device 2014 may be a touch screen display. The
machine 2000 may additionally include a mass storage
device 2016 (e.g., drive unit), a signal generation device
2018 (e.g., a speaker), a network interface device 2020, and
one or more sensors 2021, such as a Global Positioning
System (GPS) sensor, compass, accelerometer, or another
sensor. The machine 2000 may include an output controller
2028, such as a serial (e.g., universal serial bus (USB)),
parallel, or other wired or wireless (e.g., infrared (IR), near
field communication (NFC)) connection to communicate
with or control one or more peripheral devices (e.g., a
printer, card reader).

[0181] The mass storage device 2016 may include a
machine-readable medium 2022 on which is stored one or
more sets of data structures or instructions 2024 (e.g.,
software) embodying or utilized by any one or more of the
techniques or functions described herein. The instructions
2024 may also reside, completely or at least partially, within
the main memory 2004, within the static memory 2006,
within the hardware processor 2002, or within the GPU 2003
during execution thereof by the machine 2000. In an
example, one or any combination of the hardware processor
2002, the GPU 2003, the main memory 2004, the static
memory 2006, or the mass storage device 2016 may con-
stitute machine-readable media.

[0182] While the machine-readable medium 2022 is illus-
trated as a single medium, the term “machine-readable
medium” may include a single medium, or multiple media,
(e.g., a centralized or distributed database, and/or associated
caches and servers) configured to store the one or more
instructions 2024.

[0183] The term “machine-readable medium” may include
any medium that is capable of storing, encoding, or carrying
instructions 2024 for execution by the machine 2000 and
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that cause the machine 2000 to perform any one or more of
the techniques of the present disclosure, or that is capable of
storing, encoding, or carrying data structures used by or
associated with such instructions 2024. Non-limiting
machine-readable medium examples may include solid-state
memories, and optical and magnetic media. In an example,
a massed machine-readable medium comprises a machine-
readable medium 2022 with a plurality of particles having
invariant (e.g., rest) mass. Accordingly, massed machine-
readable media are not transitory propagating signals. Spe-
cific examples of massed machine-readable media may
include non-volatile memory, such as semiconductor
memory devices (e.g., Electrically Programmable Read-
Only Memory (EPROM), Electrically Erasable Program-
mable Read-Only Memory (EEPROM)) and flash memory
devices; magnetic disks, such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks.

[0184] The instructions 2024 may further be transmitted or
received over a communications network 2026 using a
transmission medium via the network interface device 2020.
[0185] Throughout this specification, plural instances may
implement components, operations, or structures described
as a single instance. Although individual operations of one
or more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed in the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

[0186] The embodiments illustrated herein are described
in sufficient detail to enable those skilled in the art to
practice the teachings disclosed. Other embodiments may be
used and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. The Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which
such claims are entitled.

[0187] Additionally, as used in this disclosure, phrases of
the form “at least one of an A, a B, or a C,” “at least one of
A, B, and C,” and the like, should be interpreted to select at
least one from the group that comprises “A, B, and C.”
Unless explicitly stated otherwise in connection with a
particular instance, in this disclosure, this manner of phras-
ing does not mean “at least one of A, at least one of B, and
at least one of C.” As used in this disclosure, the example “at
least one of an A, a B, or a C,” would cover any of the
following selections: {A}, {B}, {C}, {A, B}, {A, C}, {B,
C}, and {A, B, C}.

[0188] Moreover, plural instances may be provided for
resources, operations, or structures described herein as a
single instance. Additionally, boundaries between various
resources, operations, modules, engines, and data stores are
somewhat arbitrary, and particular operations are illustrated
in a context of specific illustrative configurations. Other
allocations of functionality are envisioned and may fall
within a scope of various embodiments of the present
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disclosure. In general, structures and functionality presented
as separate resources in the example configurations may be
implemented as a combined structure or resource. Similarly,
structures and functionality presented as a single resource
may be implemented as separate resources. These and other
variations, modifications, additions, and improvements fall
within a scope of embodiments of the present disclosure as
represented by the appended claims. The specification and
drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.

What is claimed is:

1. A computer-implemented method comprising:

identifying an approximate location of an asset in an

image;

defining parameters of a mask associated with the asset in

the image;

performing a global optimization method to determine

values for the parameters to obtain an optimized mask
that corresponds to the asset in the image;

extracting pixels of the image using the optimized mask

to obtain asset pixels;

performing damage analysis for the asset based on the

extracted pixels; and

presenting results of the damage analysis on a display.

2. The method as recited in claim 1, wherein the param-
eters comprise:

horizontal offset and vertical offset of a top right corner in

the image;

horizontal shift for four corner locations of the mask; and

vertical shift for the four corner locations of the mask.

3. The method as recited in claim 2, wherein the asset is
a string of solar panels, wherein the parameters further
comprise a panel width adjustment, and a panel height
adjustment.

4. The method as recited in claim 3, the method further
comprising:

extracting pixels for each of the panels in the string of

solar panels, wherein performing damage analysis for
the asset comprises performing damage analysis for
each panel based on the extracted pixels for the panel.

5. The method as recited in claim 2, wherein the asset is
wind turbine, wherein the parameters further comprise a
rotation angle of a spinner in the wind turbine.

6. The method as recited in claim 1, wherein extracting
pixels of the image further comprises:

performing a bitwise logical AND between corresponding

pixels in the image and the mask.

7. The method as recited in claim 1, wherein the global
optimization method is a particle swarm optimization based
on hill climbing.

8. The method as recited in claim 1, further comprising:

before identifying the approximate location of the asset,

capturing the image the asset with an autonomous
drone.

9. The method as recited in claim 8, wherein identifying
the approximate location of the asset comprises:

determining the approximate location of the asset based

on a location of the drone when taking the image.

10. The method as recited in claim 1, wherein performing
damage analysis comprises:

calculating an average pixel value of the pixels in the

asset; and

determining pixels that deviate a predetermined amount

from the average pixel value.
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11. A system comprising:

a memory comprising instructions; and

one or more computer processors, wherein the instruc-

tions, when executed by the one or more computer

processors, cause the system to perform operations

comprising:

identifying an approximate location of an asset in an
image;

defining parameters of a mask associated with the asset
in the image;

performing a global optimization method to determine
values for the parameters to obtain an optimized
mask that corresponds to the asset in the image;

extracting pixels of the image using the optimized mask
to obtain asset pixels;

performing damage analysis for the asset based on the
extracted pixels; and

presenting results of the damage analysis on a display.

12. The system as recited in claim 11, wherein the
parameters comprise:

horizontal offset and vertical offset of a top right corner in

the image;

horizontal shift for four corner locations of the mask; and

vertical shift for the four corner locations of the mask.

13. The system as recited in claim 12, wherein the asset
is a string of solar panels, wherein the parameters further
comprise a panel width adjustment, and a panel height
adjustment.

14. The system as recited in claim 13, wherein the
instructions further cause the one or more computer proces-
sors to perform operations comprising:

extracting pixels for each of the panels in the string of

solar panels, wherein performing damage analysis for
the asset comprises performing damage analysis for
each panel based on the extracted pixels for the panel.

15. The system as recited in claim 12, wherein the asset
is wind turbine, wherein the parameters further comprise a
rotation angle of a spinner in the wind turbine.

16. A tangible machine-readable storage medium includ-
ing instructions that, when executed by a machine, cause the
machine to perform operations comprising:

identifying an approximate location of an asset in an

image;

defining parameters of a mask associated with the asset in

the image;

performing a global optimization method to determine

values for the parameters to obtain an optimized mask
that corresponds to the asset in the image;

extracting pixels of the image using the optimized mask

to obtain asset pixels;

performing damage analysis for the asset based on the

extracted pixels; and

presenting results of the damage analysis on a display.

17. The tangible machine-readable storage medium as
recited in claim 16, wherein the parameters comprise:

horizontal offset and vertical offset of a top right corner in

the image;

horizontal shift for four corner locations of the mask; and

vertical shift for the four corner locations of the mask.

18. The tangible machine-readable storage medium as
recited in claim 17, wherein the asset is a string of solar
panels, wherein the parameters further comprise a panel
width adjustment, and a panel height adjustment.
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19. The tangible machine-readable storage medium as
recited in claim 18, wherein the machine further performs
operations comprising:

extracting pixels for each of the panels in the string of

solar panels, wherein performing damage analysis for
the asset comprises performing damage analysis for
each panel based on the extracted pixels for the panel.

20. The tangible machine-readable storage medium as
recited in claim 17, wherein the asset is wind turbine,
wherein the parameters further comprise a rotation angle of
a spinner in the wind turbine.
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