wo 20237233121 A1 |0 000 AR 00O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual Propert N
A i SR
International Bureau = (10) International Publication Number
(43) International Publication Date ——’/ WO 2023/233121 A1

07 December 2023 (07.12.2023) WIPOI|PCT

(51) International Patent Classification: (72) Inventor: MANSELL, David; ¢/o Arm Limited, 110 Ful-
GO6F 9/30 (2018.01) bourn Road, Cambridge Cambridgeshire CB1 9NJ (GB).
(21) International Application Number: (74) Agent: STEVEN-FOUNTALIN, Jessica;, D Young & Co
PCT/GB2023/051119 LLP, 120 Holborn, London ECIN 2DY (GB).
(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
27 April 2023 (27.04.2023) kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AOQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
(26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,

(30) Priority Data: KH, KN, KP, KR, KW, KZ. LA, LC, LK, LR, LS. LU, LY.

2208126.9 01 June 2022 (01.06.2022) GB MA, MD, MG, MK, MN, MU, MW, MX. MY, MZ, NA.
(71) Applicant: ARM LIMITED [GB/GB]; 110 Fulbourn NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
Road, Cambridge Cambridgeshire CB1 9NJ (GB). RS,RU,RW, SA, SC, SD, SE, 5G, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,7ZM, ZW.
(54) Title: CIRCUITRY AND METHOD
240~ 20 55
\!Scheme D \4{onfiguration state P
21=‘0 Input data in ; \ Processed data out
N (14 Z registers) {1-4 Z registers)
Direct i
o ng?é%ﬁé??f 4 Compression scheme black box 220
1-4 Z registers ouf) # Dynamic state {for context switch)
260/ 1
200
/

Interface circuifry

- /60
Processing circuitry d

FIG. 2

(57) Abstract: Circuitry comprises instruction decoder circuitry to decode instructions for execution; processing circuitry to execute
instructions decoded by the instruction decoder circuitry; interface circuitry defining an interface for data communication with data
compression circuitry; in which the processing circuitry is responsive to one or more instructions of an instruction set defined for the
processing circuitry to provide to the interface: input data to be processed by the data compression circuitry, and identification data
identifying a compression system for use by the data compression circuitry to process the input data; and in which the processing
circuitry is configured to receive from the interface: status data indicating whether data compression circuitry connected to the interface
can process data using the compression system identified by the identification data; and, when the status data indicates that the data
compression circuitry can process data using the compression system identified by the identification data, output data which has been

[Continued on next page]



WO 2023/233121 A [I 00000000 0RO VA 000 0 OO0

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE, LR,LS, MW, MZ,NA,RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
—  with international search report (Art. 21(3))

processed from the input data by the data compression circuitry using the compression system identified by the identification data.



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

CIRCUITRY AND METHOD

BACKGROUND
This disclosure relates to data processing apparatus, methods and virtual machines.

Some data processing arrangements allow for processing operations such as neural
processing to be performed using a set of processing values such as weight or activation values.
SUMMARY

In an example arrangement there is provided circuitry comprising:

instruction decoder circuitry to decode instructions for execution;

processing circuitry to execute instructions decoded by the instruction decoder circuitry;

interface circuitry defining an interface for data communication with data compression
circuitry;

in which the processing circuitry is responsive to one or more instructions of an instruction
set defined for the processing circuitry to provide to the interface: input data to be processed by the
data compression circuitry; and identification data identifying a compression system for use by the
data compression circuitry to process the input data; and

in which the processing circuitry is configured to receive from the interface: status data
indicating whether data compression circuitry connected to the interface can process data using the
compression system identified by the identification data; and, when the status data indicates that
the data compression circuitry can process data using the compression system identified by the
identification data, output data which has been processed from the input data by the data
compression circuitry using the compression system identified by the identification data.

In another example arrangement there is provided a method comprising:

decoding instructions for execution;

executing, using processing circuitry, instructions decoded by the instruction decoding step;

defining an interface for data communication with data compression circuitry;

in response to one or more instructions of an instruction set defined for the processing
circuitry, the processing circuitry providing to the interface: input data to be processed by the data
compression circuitry; and identification data identifying a compression system for use by the data
compression circuitry to process the input data; and

the processing circuitry receiving from the interface: status data indicating whether data
compression circuitry connected to the interface can process data using the compression system
identified by the identification data; and, when the status data indicates that the data compression
circuitry can process data using the compression system identified by the identification data, output
data which has been processed from the input data by the data compression circuitry using the

compression system identified by the identification data.
1



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

Further respective aspects and features of the disclosure are defined by the appended
claims.
BRIEF DESCRIPTION OF THE DRAWINGS

The present technique will be described further, by way of example only, with reference to

embodiments thereof as illustrated in the accompanying drawings, in which:
Figure 1 schematically illustrates a data processing apparatus;
Figure 2 schematically illustrates an interface to a compression processor;
Figures 3 and 4 are schematic flowcharts illustrating respective methods; and
Figure 5 schematically illustrates a simulator example

DESCRIPTION OF EMBODIMENTS

Overview of processor

Referring now to the drawings, Figure 1 schematically illustrates a data processing system
10 comprising a processor 20 coupled to a memory 30 storing data values 32 and program (or
processing) instructions 34. The processor 20 includes an instruction fetch unit 40 for fetching
program instructions 34 from the memory 30 and supplying the fetch program instructions to
decoder circuitry 50. The decoder circuitry 50 decodes the fetched program instructions and
generates control signals to control processing circuity 60 to perform processing operations upon
registers stored within register circuity 70 as specified by the decoded vector instructions.

The processor 20 can optionally access a storage array 90. This is drawn in broken line to
illustrate that it may or may not be provided as part of the processor 20. In example embodiments,
the storage array 90 may store a square array portion of a larger or even higher-dimensioned array
or matrix of data items in memory. The storage array may be considered in at least some
examples as an accumulation array, referred to as “ZA” in a so-called Scalable Matrix Extension
(SME) system provided or specified by Arm Limited.

In at least some examples, ZA is implemented as an n x m (square or rectangular) array of
storage (or accumulation) elements. In some examples, n and m may be the same and may be
equal to SVL or in other words the streaming vector length in use within the system (as defined with
a so-called Scalable Vector Extension (SVE) or SVE2 system provided or specified by Arm
Limited).

SME instructions can refer to various types of matrix operands, including “tiles” representing
a subset of ZA. In some examples the tile is itself a square array but this is not a requirement and
(for example) rectangular tiles could be used. So-called “tile vectors” represent rows or columns of
ZA. An operand referred to as the “accumulator matrix” refers to the whole of ZA.

The processing circuitry 60 may provide or may include vector and/or matrix processing
circuitry. A general distinction between scalar processing and vector processing is as follows.

Vector processing involves applying a single vector processing instruction to data items of a data
2



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

vector having a plurality of data items at respective positions in the data vector. Scalar processing
operates on, effectively, single data items rather than on data vectors. Vector processing can be
useful in instances where processing operations are carried out on many different instances of the
data to be processed. In a vector processing arrangement, a single instruction can be applied to
multiple data items (of a data vector) at the same time. This can improve the efficiency and
throughput of data processing compared to scalar processing.

The processing circuitry can be used to perform operations with respect to matrices. Here,
a matrix may be considered as an array of matrix elements. The array may be two dimensional or
may have a higher dimensionality.

While the present embodiments may be relevant to vector and/or matrix processing, it is not
a requirement that a vector or matrix processor is used.

The discussion below relates to example program instructions 34. Embodiments of the
present disclosure include an apparatus, for example of the type shown in Figure 1, operable or
configured to decode and execute such program instructions.

The register circuitry 70 provides a set of physical registers, which can be allocated to
architectural registers for the execution of the processing instructions. Architectural registers are
defined by the processor architecture and its instruction set architecture (ISA). An instruction will
define one or more architectural registers to hold source or destination (output) operands, but in
actual execution these architectural registers will be implemented by respective physical registers
70. Where the registers are vector registers, these may be referred to as “Z” registers. In some
examples, these may be scalable vector registers according to the prevailing vector length SVL in
use, in accordance with the SVE or SVE2 systems mentioned above.

In performing such execution, the storage array may act as an accumulation array of the
type discussed above as ZA. The processing circuitry, in response to a decoded instruction, may
perform a processing operation such as a matrix processing operation using the storage array to
accumulate the results of the operation. In other words, the instruction execution circuitry executes
instructions decoded by the instruction decoder circuitry 50, the instruction execution circuitry being
configured to execute a decoded instruction by reference to one or more source operands stored
by the set of architectural registers and to hold one or more values generated by that decoded
instruction. This could be an output for storage to an architectural register, or one or more values
for storage to memory, or the like.

Compression circuitry 55 is provided which can provide a compression function as
discussed below. In some examples the compression circuitry 55 can access at least a subset of
the registers provided by the register circuitry 70. In general terms, interface circuitry between the
compression circuitry 55 and the processing circuitry 60 may be provided; while this is not shown in

Figure 1 for clarity of that diagram, it will be discussed in connection with Figure 2.
3



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

Neural processing and weight compression

In a particular example, in some situations the circuitry of Figure 1 can be used for neural
network processing. In this type of arrangement, data values to be processed are typically
combined with (for example, multiplied by) a set of weight values. Such processing can involve
performing many of these combinations and so can be performed conveniently by vector or matrix
processors.

Weight compression can be a useful technique for neural networks. Compressing weights
has the potential advantage of making overall models smaller and easier to distribute and also has
the potential for higher performance as a lower bandwidth is required to load weight data into the
processor for processing.

Two examples of this are lookup table based clustering and structured sparsity.

Examples of these techniques are discussed in Gong, Yunchao et al. “Compressing Deep
Convolutional Networks using Vector Quantization.” ArXiv abs/1412.6115 (2014)
(https://arxiv.org/pdf/1412.6115.pdf) and https://developer.nvidia.com/blog/accelerating-inference-
with-sparsity-using-ampere-and-tensorrt/ , the entire contents of both of these being incorporated
by reference in the present application.

Clustering is a technique where processing values (typically weight or activation values) are
coerced to one of a finite number of specific values. Each processing value can then be stored as
an index into the codebook of values. Before such processing values can be used in a computation
they need to be expanded back to the full sized representation.

Structured sparsity is a different technique where some of the processing values are forced
to be zero. "Structured" means that the level of sparsity is enforced at a fine-grain level, for
example so-called “2-in-4 sparsity” divides the processing values into blocks of 4, of which at least
2 must be zero. This allows the data to be represented as a half-sized array of the non-zero data
values and some sideband "presence” data indicating where they lie within each block.

Both of these techniques are compelling due to the memory and bandwidth advantages -
the sparse or clustered representation allows processing values to occupy less memory space and
consume less bandwidth (or offer higher performance for a given fixed bandwidth) when they are
used by an operation. Technical literature indicates this compression can be achieved with little or
no impact on the functioning of the neural network (as measured by accuracy). It is also likely that
these are far from the only techniques that can be used for this purpose. This presents a challenge
for processors to convert the data to a more suitable form prior to computation, or else implement
specialist operations to work directly on the compressed representation.

Example arrangements relate to the provision and interfacing of compression circuitry to
handle such decompression, for example of processing values such as weight or activation values

(though the techniques are independent of the nature of the actual data to be decompressed).
4



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

However, although processing value decompression is discussed as a worked example of the
present techniques, the present examples are not limited to decompression. The compression
circuitry could be used for data compression rather than decompression, for example by applying
the 2-in-4 sparsity technique discussed in the present application. Indeed, at a basic level, the
operation of the compression processor can be considered to provide a process to transform a data
set from one representation to another. In general terms, “compression” is normally taken to imply
that the destination format provides a representation using less data than the input format (whether
losslessly or otherwise), whereas “decompression” is normally taken to imply that the destination
format provides a representation using more data than the input format. The term “compression”
as used here in connection with the data compression circuitry 55 or in connection with an
algorithm, system, set of parameters or the like relating to operation of the compression circuitry 55
can encompass compression or decompression.

As mentioned above, a variety of compression schemes are in use, and this is an area of
ongoing research, which implies that further compression schemes may be developed in the future.
Given the value of compression but the lack of widespread standardization of the compression
methodologies, example embodiments aim to provide a mechanism capable of supporting a variety
of compression schemes.

One approach to supporting data compression or decompression could be to add
extensions to the instruction set (as defined by the instruction set architecture or ISA applicable to
the processing circuitry). This approach would require modifying the ISA in response to the
development (or increased prevalence) of a compression technique. However, a process to modify
the ISA of a processor can be relatively thorough and lengthy. Also, this could lead to obsolete
techniques occupying the ISA encoding space, which is to say the set of values which can be used
to represent instructions. This could be undesirable given that the ISA encoding space is finite and
also that the presence of the obsolete techniques in the ISA could require a compatible processor
to provide hardware to implement such obsolete techniques.

The techniques of the present disclosure can potentially provide one or more of: allowing a
variety of compression schemes to be supported; allowing the inclusion of new schemes (and/or
the deprecation of old ones) without necessarily requiring changes to operating systems or
processing circuitry; and avoiding the need to consume further instruction set space for each
additional compression scheme.

Example of compression circuitry 55

Figure 2 provides a schematic example showing the compression circuitry 55 (as an
example of a data compression processor or circuitry), the processing circuitry 60 and interface
circuitry 200 defining an interface for data communication between the processing circuitry 60 and
the compression circuitry 55.



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

The compression circuitry 55 may be considered, for the purposes of this discussion, as a
“‘compression scheme black box”, which is to say that from the point of view of the processing
circuitry 60, in many respects it does not matter how the compression circuitry 55 operates; just that
it is capable of receiving data and/or parameters in a certain format and outputting data in another
certain format.

In some examples, the compression circuitry can receive clustered processing (for example
weight or activation) values and/or weight values in a structured sparsity format and output
decompressed processing values for use in neural processing by the processing circuitry 60.

The processing circuitry 60 is responsive to one or more instructions of an instruction set
defined for the processing circuitry to provide to the interface:

e input data to be processed by the data compression circuitry; and

e identification data identifying a compression system for use by the data compression
circuitry to process the input data. In other words, in these examples, the ISA provides for
control of a generic ability of the processing circuitry to communicate with the compression
circuitry 55 via the interface circuitry 200, but there is no need for the ISA to provide for
specific control of a particular compression system or algorithm.

In particular, the data communication with the compression circuitry 55 may include a
scheme ID (identifier) 240 which can define or identify a particular compression scheme to be used;
a configuration state 250, for example defining parameters for use by the selected compression
scheme such as a lookup table (LUT) for use in connection with the selected compression scheme;
and optionally a dynamic state 260 to allow operation such as a context switch to occur (so that, for
example, the dynamic state of the compression processor 55 can be retrieved and stored by the
processing circuitry at a context switch and then reinstated when appropriate at a subsequent
context switch). In other words, in connection with the dynamic state 260, the processing circuitry
may be configured to receive state data defining a current operational state of the data
compression circuitry from the interface; to execute a context switch comprising at least storing the
state data; and to execute a further context switch comprising at least providing the stored state
data back to the data compression circuitry.

The scheme ID and configuration state (and optionally the dynamic state) together allow for
the definition of the compression scheme to be operated by the compression circuitry 55. In terms
of data to be processed by the compression circuitry 55, this can be provided as input data to
hundred 10 via a subset such as 1-4 of the Z registers accessible by the processing circuitry and by
the compression circuitry 55, and processed data 220 can be output by the compression circuitry
55 again using a subset such as 1-4 of the Z registers.

The configuration state can be a bidirectional communication, so that the compression

circuitry 55 can return data to the processing circuitry 60 via the interface circuitry 200 indicative of
6



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

matters such as the compression circuitry 55’s ability to perform the compression scheme defined
by the scheme ID. So in these examples, the processing circuitry is configured to receive from the
interface:

e status data indicating whether data compression circuitry connected to the interface can
process data using the compression system identified by the identification data (for example
via the bidirectional communication of the configuration state); and

¢ when the status data indicates that the data compression circuitry can process data using
the compression system identified by the identification data, output data which has been
processed from the input data by the data compression circuitry using the compression
system identified by the identification data (for example as the processed data 220).

The interface circuitry 200 can provide data communication with the compression circuitry
55, for example making use of one or more of the registers implemented by the register circuitry 70,
which registers may be accessible by the processing circuitry 60 and by the compression circuitry
55. In fact, all of the data communication functions of the interface circuitry 200 can be
implemented by processor registers, or separate circuitry configured to receive data from each of
the processing circuitry 60 and the compression circuitry 55 and to provide data to each of the
processing circuitry 60 and the compression circuitry 55 can be used. In other words, in examples,
the interface circuitry comprises one or more processor registers which are accessible by the
processing circuitry and by data compression circuitry connected to the interface. For example, the
processing circuitry may be configured to write at least the identification data to the one or more
processor registers and to read at least the status data from the one or more processor registers.

The techniques defined here may apply to the processing circuitry and to the interface
circuitry, with or without the compression circuitry 55 being present. In other words, the features of
the present disclosure can be defined with respect to the arrangement of the processing circuitry
and the interface circuitry.

As discussed above, the arrangement may comprise a data memory (for example, the
memory 30 and/or the storage array 90); in which the processing circuitry is configured to execute
instructions defining a neural network in which processing values are applied to data values; to
read compressed data from the data memory defining the processing values; to provide the
compressed data to the interface as input data and to receive, as output data, decompressed
processing values for use by the instructions defining the neural network.

Similarly, the arrangement can be used to compress the processing values for use by other
processors, for example in which the processing circuitry is configured to read data defining the
processing values from the data memory; to provide the data defining the processing values to the
interface as input data and to receive, as output data, compressed processing values.

Direct processing path



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

A direct processing path 230 is also shown, comprising in this example 1 Z register as an
input and 1-4 Z registers as an output. This provides a selectable pass-through path if required by
the application in use.

In some examples at least two modes of operation are supported.

In one mode, loading input data and extracting output data are separate operations. This
may be appropriate, for example, for structured sparsity where the “sideband” presence bits need
to be provided but don’t immediately produce output. It may also be useful for more advanced
variable rate schemes where there is no fixed relationship between the input and output streams.

In another mode, so-called direct processing, the operations are combined so a single
operation can provide input data and extract the corresponding output data. This may be useful for
a lookup table scheme where there is a straightforward correspondence between the two — it
reduces the number of instructions needed to perform the decompression and simplifies conte xt
switching (if separate input and output instructions are being used then the input data becomes part
of the state in the meantime).

In practice a mixture could be used — for example structured sparsity could use the “input”
mechanism to load the presence data, and then the “direct decompression” mode to expand an
input vector to output vectors (implicitly consuming some of the presence data).

Example operations

Figure 3 is a schematic flowchart illustrating an example of operations as between the
processing circuitry 60 (operations shown to the left of a vertical schematic boundary 300) and the
compression circuitry 55 (operation shown to the right of the boundary 300).

At step 310, the processing circuitry establishes parameters for processing by the
compression circuitry 55. As discussed above, this can be in response to execution of one or more
instructions within the ISA of the processing circuitry 60, with the decoder circuitry 50 decoding the
instructions for execution and the processing circuitry 60 executing those instructions as decoded
by the decoder circuitry 50.

At a step 320 the processing circuitry provides at least the identification data to the
compression circuitry 55 via the interface circuitry 200, and at a step 330, the compression circuitry
receives at least the identification data.

At a step 340, the compression circuitry 55 compares the identification data, for example
defining at least the scheme ID, with the processing capabilities of the compression circuitry 55 and
returns a response to the processing circuitry 60 by sending status data at a step 343 and the
processing circuitry receiving the status data at a step 346. This response may represent the status
data discussed above.

At a step 350, the processing circuitry detects whether the status data indicates that the

compression circuitry 55 is capable of handling the compression scheme defined by the scheme ID.
8



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

In terms of the negative outcome of the step 350, the processing circuitry is configured,
when the status data indicates that the compression circuitry 55 cannot process data using the
compression system identified by the identification data, to execute instructions to control the
processing circuitry to perform processing of the input data.

If the outcome is yes then processing is performed so that the compression circuitry 55
processes and returns data. In particular, a step 360 represents the initiation of processing the
data using the compression circuitry 55. At a step 363, depending on the interface technique in
use, the processing circuitry 60 writes data to be processed to one or more registers and the
compression circuitry 55 reads that data at a step 366. The compression circuitry 55 processes the
data at a step 370. At a step 373 the compression circuitry writes the processed data to one or
more registers and at a step 376 the processing circuitry reads the processed data. Control then
optionally returns to the step 360 when there are more data to be processed in this way.
Particular example

A particular example will now be described.

The scheme ID (as an example of identification data) identifies the particular compression
scheme in use. The scheme selected here controls how input data is transformed to output data
and how the other framework features are used.

Within the overall system defined by the scheme ID, a scheme-specific state may be
considered. This may define a configuration state; for example, as discussed above many
compression schemes require a static state to be configured before processing can be take place.
For example, a look-up table (LUT) based scheme requires the LUTs themselves to be set up.
This may not be required by all schemes. If configuration data is only a few bits (e.g. an
input/output width selector) it can be incorporated into the scheme ID.

With reference to the terminology used above, in these examples the identification data may
be configured to define a compression algorithm and one or more parameters for use during
execution of the compression algorithm. For example, the one or more parameters may comprise
one or more look up tables for use with a compression algorithm defined by the identification data.
In some examples the one or more parameters may comprise data defining an initial state to be
applied to the data compression algorithm defined by the identification data.

The scheme-specific state may also define a dynamic state.

Most compression schemes will have dynamic state, such as compressed data that has
been loaded in but not yet extracted or “internal” state such as dictionaries that are derived from the
incoming data stream but need to be maintained to implement decompression.

Schemes which only support direct decompression might not require dynamic state.

The scheme-specific state may also define a combined state.



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

In order for the generic compression system to function, there should be a scheme-agnostic
way to switch all the state associated with the scheme on context switch (and also potentially in
user code, if a mechanism similar to ZA is used to manage it). This may include any configuration
state. Also, software (that is to say, instructions for execution by the processing circuitry 60)
making use of a particular scheme can use scheme-specific knowledge about how to configure and
use it.

With regard to the reference above to a mechanism similar to ZA, the following further
explanation is provided. In user code an ABI (application binary interface) mechanism may be
provided which allows a calling function using ZA to call a second function (where the second
function may or may not use any SME features), leaving a live state in ZA and storing a pointer to a
save area for the ZA state. If at some point during processing of the second function (which might
involve further function calls) ZA needs to be used, the called function checks the relevant status bit
and, if necessary, stores the contents of ZA to the pointer before using ZA for whatever
requirement is defined by the second function or a function called by the second function. When
the second function returns, the calling function checks the status bit to see if the ZA contents have
been saved, and if so restores them from the save area before resuming processing.

This potentially allows lower overhead if the second function does not use ZA (as the calling
function does not have to save out ZA and later restore it when it actually has not changed), while
not incurring too much overhead if it does, in that checks of the status bit would be needed on the
entry to a function which uses ZA and on return from such a function call.

A similar scheme may be used for the state in the compression circuitry — such that the
save code should be able to save the data out without knowing exactly what it is saving (which is
similar to the context switch requirements).

In other words, in some examples, user functions might need to save/restore across
function calls.

As discussed above, in terms of data input/output, all of the schemes make use of a
mechanism (for example) to pass compressed (or input) data into the scheme and get
decompressed (or processed) data out again. At least two variations are considered here.

e Separate input/output instructions. Two distinct operations are provided: move from register
to compressor (1-4 Z registers), and move from compressor to register (1-4 Z registers).

This is well suited to schemes where there is not a simple, fixed ratio between input and

output, or if multiple pieces of data are needed to effect processing (e.g. block or structured

sparsity schemes).
e Combined input/output instruction. This is a single instruction which consumes a single Z
register and produces 1-4 Z registers of output.

10



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

In some examples, a register is dedicated or added to select a compression scheme. Bits
31:0 of this register identify the compression scheme to be used, with the reserved value of 0
indicating that no scheme is selected. If the value written to this register identifies a scheme that
the current implementation does not support, the register is set to 0 by the compression circuitry 55.
Software can read back the register to verify (as the status data) that the scheme is supported.

Further examples might enable the use of multiple compression schemes concurrently.

Compression schemes can have an associated state, either configured in advance before
the scheme is used or populated during operation.

In some examples a system register is added or dedicated to indicate the amount of state
currently stored (or, depending on scheme, can be set to configure the amount of state needed). It
is scheme defined whether this register is read only or read write. Some schemes (e.g. lookup
table) can function without reference to this register.

A further register may be dedicated or added to indicate the maximum possible live state
size for any supported compression scheme. This can be used by operating systems to size fixed
context switch buffers appropriately.

Two new instructions are added to read and write the state:

MOVCSSRO0 — Move to compression scheme state from register

The syntax may be: MOVCSSRO Zt, Xn{, #<imm>, MUL VL}

This instruction would be to load state into the compression scheme. The compression
scheme’s state is modelled as a single 1D buffer of some length (as described in the preceding
paragraph). Zt identifies a vector register holding the state to be loaded in, and Xn (possibly with
“imm * VL” added on) indicating the offset in the buffer to be written to.

MOVRCSSO0 — Move from compression scheme state to register

The syntax may be: MOVRCSSO Zt, Xn{, #<imm>, MUL VL}

This is similar to above, but Xn identifies which bit of the buffer to copy and Zt indicates
where to copy it to.

Three new instructions may be provided to actually do the compression, decompression or
both.

Load compressed data:

MOVCRO — Move to compression scheme from register

The syntax may be: MOVCRO CRx, Zt {or multiple}

CRx is a compressed register ID, scheme specific meaning, maybe 3-4 bits.

The use of MOVRCSS0 and MOVCRO as set out above provides an example of the
provision by the ISA of separate respective instructions to provide identification data to the interface
(MOVRCSSO in this example) and to provide input data to the interface (MOVCRO in this example).

Extract decompressed data:
11



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

MOVRCO — Move to register from compression scheme

The syntax may be: MOVRCO Zt {or multiple}, CRx

Zt defines a Z register. CRXx is a register ID — a relationship between MOVCR and MOVRC
is up to the compression scheme.

The use of the MOVRCO instruction provides an example of the provision by the ISA of a
further instruction to retrieve output data from the interface.

Direct decompression

DECOMPOQ — Decompress with scheme 0.

The syntax may be: DECOMPO Zd {or multiple}, Zs, {sub ID}

Here, Zs is a source register and Zd is a destination register. The sub ID may be provided
to select parts of the register if one Zs decompresses to more than one Zd.

This direct decompression instruction can provide an example of an instruction (defined by
the ISA) to provide to the interface the input data and the identification data and to initiate
processing of the input data by the data compression circuitry using a compression system defined
by the identification data

An example relating to Lookup Tables will now be discussed. In this example, a scheme
can be implemented which expands 2-bit or 4-bit compressed values to 8-, 16- or 32-bit values.

The input/output widths are encoded into the scheme ID, so there is a 1-bit field for 2 vs 4
bit encoded values, though in other examples this could leave space for 1- or 8- bit fields, and a 2-
bit field encoding output width. The remaining 28-29 bits may have a constant value identifying this
as the lookup table scheme. This provides an example in which in which the one or more
parameters are configured to define respective input and output data widths for the compression
scheme.

Input width ~ Output width Register to indicate amount of state

2-bit 8-bit 4 bytes
2-bit 16-bit 8 bytes
2-bit 32-bit 16 bytes
4-bit 8-bit 16 bytes
4-bit 16-bit 32 bytes
4-bit 32-bit 64 bytes

MOVCSSRO is used to load in the lookup table state. Depending on VL and the state size
(see table above), this might be possible with one operation or may require several.

Lookups are performed with DECOMPO. The lookup table, input and output width are all
configured as described above, 1 input and 1-4 output registers are provided. In cases where the
ratio is more than 4:1, the “sub ID” can be used to indicate which slice of the input to consume.

An example relating to structured sparsity will now be described.
12



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

This may for example support “2-in-4” structured sparsity for 8-, 16- or 32-bit datatypes.
The nature of the sparsity scheme, for example defining a number (such as 2) of sparse blocks in a
group of blocks (such as 4 blocks in an example “2-in-4” scheme) and/or the datatype in use are
aspects which can separately or collectively be defined by parameters provided by or associated
with the identification data.

The scheme ID could include a 2-bit width indicator as it affects the ratio of register
accesses.

The register to indicate amount of state may indicate how much unused sparsity data
remains in the sparsity data register — up to VL bytes.

In terms of the compression scheme state, nothing necessarily needs to be explicitly set up
before using the scheme. Context switch code will read the register to indicate amount of state and
use the state instructions to save/restore the sparsity data.

At decompression, it is assumed that sparsity data is stored separately. MOVCRO is used
to load the sparsity data. DECOMPO is then used to convert one register of packed data into two
registers of unpacked data, consuming an appropriate portion of sparsity data. The kernel is
required to maintain the correct ratio between these two operations (i.e. 4:1 for 8-bit data, 8:1 for
16-bit data or 16:1 for 32-bit data).

In summary, example arrangements can offer the following features:

o The full architectural detail can be defined in a separate specification for each scheme.

Scheme development does not need to be aligned with the rest of the architectural process.

e For implementations where the actual operations are handled by a remote unit, a host CPU
can decode the architecturally specified operations and pass them on to the remote unit
without needing to understand the details of the scheme in use. As such, schemes could be
added to the remote unit without needing to touch the host CPU. This refers to some

potential example arrangements implementing SME where there is a host processor and a

separate SME unit which handles SME instructions. For non-SME code, the processor

operates independently like any other. When SME code is encountered, the SME
instructions are sent via a bus to the SME unit. The SME unit typically has its own memory
input/output path and register bank. In the context of the present examples, where the

“compression circuitry” is part of that SME unit, the host CPU does not necessarily need to

know which compression schemes are supported or not. All accesses can be sent over to

the SME unit for processing.

e Unused schemes can be made obsolete independently of the actual architecture, although
particular architecture releases could mandate support of certain schemes if desired.

e There is no need to consume additional instruction set space with each additional scheme.

13



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

Method example

Figure 4 is a schematic flowchart illustrating a method comprising:

decoding (at a step 400) instructions for execution;

executing (at a step 410), using processing circuitry, instructions decoded by the instruction
decoding step;

defining (at a step 420) an interface for data communication with data compression circuitry;

in response to one or more instructions of an instruction set defined for the processing
circuitry, the processing circuitry providing (at a step 430) to the interface: input data to be
processed by the data compression circuitry; and identification data identifying a compression
system for use by the data compression circuitry to process the input data; and

the processing circuitry receiving (at a step 440) from the interface: status data indicating
whether data compression circuitry connected to the interface can process data using the
compression system identified by the identification data; and, when the status data indicates that
the data compression circuitry can process data using the compression system identified by the
identification data, output data which has been processed from the input data by the data
compression circuitry using the compression system identified by the identification data.
Simulator example

Figure 5 illustrates a simulator implementation that may be used. Whilst the earlier
described embodiments implement the present disclosure in terms of apparatus and methods for
operating specific processing hardware supporting the techniques concerned, it is also possible to
provide an instruction execution environment in accordance with the embodiments described herein
which is implemented through the use of a computer program. Such computer programs are often
referred to as simulators, insofar as they provide a software based implementation of a hardware
architecture. Varieties of simulator computer programs include emulators, virtual machines,
models, and binary translators, including dynamic binary translators. Typically, a simulator
implementation may run on a host processor 530, optionally running a host operating system 520,
supporting the simulator program 510. In some arrangements, there may be multiple layers of
simulation between the hardware and the provided instruction execution environment, and/or
multiple distinct instruction execution environments provided on the same host processor.
Historically, powerful processors have been required to provide simulator implementations which
execute at a reasonable speed, but such an approach may be justified in certain circumstances,
such as when there is a desire to run code native to another processor for compatibility or re-use
reasons. For example, the simulator implementation may provide an instruction execution
environment with additional functionality which is not supported by the host processor hardware, or

provide an instruction execution environment typically associated with a different hardware

14



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

architecture. An overview of simulation is given in “Some Efficient Architecture Simulation
Techniques”, Robert Bedichek, Winter 1990 USENIX Conference, Pages 53 - 63.

To the extent that embodiments have previously been described with reference to particular
hardware constructs or features, in a simulated embodiment, equivalent functionality may be
provided by suitable software constructs or features. For example, particular circuitry may be
implemented in a simulated embodiment as computer program logic. Similarly, memory hardware,
such as a register or cache, may be implemented in a simulated embodiment as a software data
structure. In arrangements where one or more of the hardware elements referenced in the
previously described embodiments are present on the host hardware (for example, host processor
530), some simulated embodiments may make use of the host hardware, where suitable.

The simulator program 510 may be stored on a computer-readable storage medium (which may be
a non-transitory medium), and provides a program interface (instruction execution environment) to
the target code 500 (which may include applications, operating systems and/or a hypervisor) which
is the same as the application program interface of the hardware architecture being modelled by
the simulator program 510. Thus, the program instructions of the target code 500, including code
for implementing the functionality described above such as that described with reference to Figure
4, may be executed from within the instruction execution environment using the simulator program
510, so that a host computer 530 which does not actually have the hardware features of the
apparatus 10 discussed above can emulate these features.

General matters

In the present application, the words “configured to...” are used to mean that an element of
an apparatus has a configuration able to carry out the defined operation. In this context, a
“configuration” means an arrangement or manner of interconnection of hardware or software. For
example, the apparatus may have dedicated hardware which provides the defined operation, or a
processor or other processing device may be programmed to perform the function. “Configured to”
does not imply that the apparatus element needs to be changed in any way in order to provide the
defined operation.

Although illustrative embodiments of the present techniques have been described in detail
herein with reference to the accompanying drawings, it is to be understood that the present
techniques are not limited to those precise embodiments, and that various changes, additions and
modifications can be effected therein by one skilled in the art without departing from the scope and
spirit of the techniques as defined by the appended claims. For example, various combinations of
the features of the dependent claims could be made with the features of the independent claims
without departing from the scope of the present techniques.

15



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

CLAIMS

1. Circuitry comprising:

instruction decoder circuitry to decode instructions for execution;

processing circuitry to execute instructions decoded by the instruction decoder circuitry;

interface circuitry defining an interface for data communication with data compression
circuitry;

in which the processing circuitry is responsive to one or more instructions of an instruction
set defined for the processing circuitry to provide to the interface: input data to be processed by the
data compression circuitry; and identification data identifying a compression system for use by the
data compression circuitry to process the input data; and

in which the processing circuitry is configured to receive from the interface: status data
indicating whether data compression circuitry connected to the interface can process data using the
compression system identified by the identification data; and, when the status data indicates that
the data compression circuitry can process data using the compression system identified by the
identification data, output data which has been processed from the input data by the data
compression circuitry using the compression system identified by the identification data.

2. The circuitry of claim 1, in which the identification data is configured to define a compression

algorithm and one or more parameters for use during execution of the compression algorithm.

3. The circuitry of claim 2, in which the one or more parameters comprise at least a portion of
one or more look up tables for use with a compression algorithm defined by the identification data.

4. The circuitry of claim 3, in which the one or more parameters are configured to define
respective input and output data widths for the compression scheme.

5. The circuitry of claim 2, in which the one or more parameters are configured to define one or
more aspects of a structured sparsity compression algorithm, the one or more aspects comprising
one or both of a number of sparse blocks in a group of blocks and a datatype in use by the
algorithm.

6. The circuitry of any one of claims 2 to 5, in which the one or more parameters comprise
data defining an initial state to be applied to the data compression algorithm defined by the
identification data.

16



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

7. The circuitry of any one of the preceding claims, in which the instruction set defined for the
processing circuitry comprises:

an instruction to provide to the interface the input data and the identification data and to
initiate processing of the input data by the data compression circuitry using a compression system
defined by the identification data.

8. The circuitry of any one of the preceding claims, in which the instruction set defined for the
processing circuitry comprises separate respective instructions to provide identification data to the
interface and to provide input data to the interface.

9. The circuitry of claim 8, in which the instruction set defined for the processing circuitry
comprises a further instruction to retrieve output data from the interface.

10. The circuitry of any one of the preceding claims, in which the processing circuitry is
configured to receive state data defining a current operational state of the data compression
circuitry from the interface; to execute a context switch comprising at least storing the state data;
and to execute a further context switch comprising at least providing the stored state data back to
the data compression circuitry.

11. The circuitry of any one of the preceding claims, in which the interface circuitry comprises
one or more processor registers which are accessible by the processing circuitry and by data
compression circuitry connected to the interface.

12. The circuitry of claim 11, in which the processing circuitry is configured to write at least the
identification data to the one or more processor registers and to read at least the status data from

the one or more processor registers.

13. The circuitry of any one of the preceding claims, comprising a data memory; in which the
processing circuitry is configured to execute instructions defining a neural network in which
processing values are applied to data values; to read compressed data from the data memory
defining the processing values; to provide the compressed data to the interface as input data and to
receive, as output data, decompressed processing values for use by the instructions defining the

neural network.

14. The circuitry of any one of claims 1 to 12, in which the processing circuitry is configured to

execute instructions defining a neural network in which processing values are applied to data
17



10

15

20

25

30

35

WO 2023/233121 PCT/GB2023/051119

values; to read data defining the processing values from the data memory; to provide the data
defining the processing values to the interface as input data and to receive, as output data,
compressed processing values.

15. The circuitry of any one of the preceding claims, comprising:
data compression circuitry connected to the interface.

16. The circuitry of any one of the preceding claims, in which the processing circuitry is
configured, when the status data indicates that the data compression circuitry cannot process data
using the compression system identified by the identification data, to execute instructions to control
the processing circuitry to perform processing of the input data.

17. A method comprising:

decoding instructions for execution;

executing, using processing circuitry, instructions decoded by the instruction decoding step;

defining an interface for data communication with data compression circuitry;

in response to one or more instructions of an instruction set defined for the processing
circuitry, the processing circuitry providing to the interface: input data to be processed by the data
compression circuitry; and identification data identifying a compression system for use by the data
compression circuitry to process the input data; and

the processing circuitry receiving from the interface: status data indicating whether data
compression circuitry connected to the interface can process data using the compression system
identified by the identification data; and, when the status data indicates that the data compression
circuitry can process data using the compression system identified by the identification data, output
data which has been processed from the input data by the data compression circuitry using the
compression system identified by the identification data.

18. A virtual machine computer program comprising instructions for controlling a host data
processing apparatus to provide an instruction execution environment comprising:

instruction decoder circuitry to decode instructions for execution;

processing circuitry to execute instructions decoded by the instruction decoder circuitry;

interface circuitry defining an interface for data communication with data compression
circuitry;

in which the processing circuitry is responsive to one or more instructions of an instruction

set defined for the processing circuitry to provide to the interface: input data to be processed by the

18



WO 2023/233121 PCT/GB2023/051119

data compression circuitry; and identification data identifying a compression system for use by the
data compression circuitry to process the input data; and

in which the processing circuitry is configured to receive from the interface: status data
indicating whether data compression circuitry connected to the interface can process data using the
compression system identified by the identification data; and, when the status data indicates that
the data compression circuitry can process data using the compression system identified by the
identification data, output data which has been processed from the input data by the data
compression circuitry using the compression system identified by the identification data.

19



PCT/GB2023/051119

WO 2023/233121

1/5

g/

SUOIONASY]
weifoid

ze/]

ele(]

E R

//
0€

L "Old
yaje e
| "1 sepooeq |\0G
- N
5o VoA
Aynain 1 Ainoug
uossaudwon || Buissadaid [\.gg
VL ]
GG i
e . m ¥
ey LT
@m\m abesog ! PIS Nos
105583014
N
AT 0¢




WO 2023/233121 PCT/GB2023/051119

2/5

240, 20 55
\lSCheme D\ Configuration state
21{ 0 Input data in $ ' Processed data out
\‘\ (1-4 Z registers) (14 Z iegasiers)
25 D”ﬁ% ‘ﬁ?é?;%?‘?f; 4 Compression scheme black box 220
1-4 Z registers out) /% Dynamic state (for context switch)

260

|

/260
interface circuilry

/60

Processing circuitry

FIG. 2



WO 2023/233121

3/5

Processing Circuitry

PCT/GB2023/051119

Compression Circuitry

330
S/

Establish /510 300
parameters ;
¥
Send via 320
Interface /
| ! Receive
i
Compare with
Capabilities
f
Send status
data
Receive status | E
data

Execute
instruction to
decompress

Process using
compression
circuitry

'

write data to

1 read data from

registers

363

376
.

1 Read processed

registers

¥

Process

¥

Write processed

data

FIG. 3

data to registers




WO 2023/233121 PCT/GB2023/051119

4/5

Decode / 400
Execute 410
Define 4 420
Provide / 430
Receive /’f440

FIG. 4



WO 2023/233121 PCT/GB2023/051119

5/5

Simulator Implementation

Target code 500
&
AP1 (Virtual)
¥
Simulator 510
a
¥ 2
Host OS 520
J
¥
530

Host Hardware

FIG. 5



INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2023/051119

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO06F9/30

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

24 July 2014 (2014-07-24)
the whole document

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2020/272565 Al (KLEIN MATTHIAS [US] ET 1-18
AL) 27 August 2020 (2020-08-27)
paragraphs [0090], [0091], [0109],
[0112], [0147], [0152]
X EP 3 435 240 Al (APPLE INC [US]) 1,17,18
30 January 2019 (2019-01-30)
paragraphs [0022], [0024], [0033];
figure 1
A US 2014/208068 Al (WEGENER ALBERT W [US]) 1-18

I:‘ Further documents are listed in the continuation of Box C.

‘zl See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified}

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

9 June 2023

Date of mailing of the international search report

19/06/2023

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Gratia, Romain

Form PCTASA/210 {second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2023/051119
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2020272565 Al 27-08-2020 NONE
EP 3435240 Al 30-01-2019 CN 109308192 A 05-02-2019
EP 3435240 Al 30-01-2019
EP 3671471 a1l 24-06-2020
JP 6678207 B2 08-04-2020
JP 7005670 B2 21-01-2022
JP 2019029023 A 21-02-2019
JP 2020102258 A 02-07-2020
KR 20190013538 A 11-02-2019
KR 20200107910 A 16-09-2020
us 2019034333 Al 31-01-2019
uUs 2019294541 A1l 26-09-2019
US 2014208068 Al 24-07-2014 NONE

Form PCTASA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

