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(57) ABSTRACT

Systems and methods are disclosed to detect and/or classify
electrophysiological signals as motor events. In some
embodiments, a method may include: recording a first
plurality of electrophysiological signals from a first plurality
of probes inserted into the left hemisphere of the brain;
recording a second plurality of electrophysiological signals
from a second plurality of probes inserted into the right
hemisphere of the brain; pre-processing the first plurality of
electrophysiological signals and the second plurality of
electrophysiological signals; bipolar re-referencing the first
plurality of electrophysiological signals and the second
plurality of electrophysiological signals; determining an
optimal pair of electrophysiological signals from the bipolar
re-referenced first plurality of electrophysiological signals
and the bipolar re-referenced second plurality of electro-
physiological signals; matching the optimal pair of electro-
physiological signals with a template; and detecting motor
events from the matching.
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MOTOR TASK DETECTION USING
ELECTROPHYSIOLOGICAL SIGNALS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of U.S. patent application
Ser. No. 15/369,707, filed on Dec. 5, 2016, which claims
priority benefit of U.S. provisional patent Ser. No. 62/263,
173, filed on Dec. 4, 2015, titled “MOTOR TASK DETEC-
TION USING BRAIN SUBTHALAMIC NUCLEUS
LOCAL FIELD POTENTIALS.” All of the disclosures
which are hereby incorporated herein by this reference in
their entireties.

BACKGROUND

Parkinson’s disease is a chronic and progressive neuro-
degenerative disorder pertaining to the central nervous sys-
tem. Although, the main cause of this phenomenon is still
unknown, some studies show the interaction of distinct
processing circuits of the basal ganglia and cortex may be
involved. The symptoms of PD appear by the malfunction
and death of dopamine-generating cells in an area of the
brain called substantia nigra. The lack of these vital neurons
causes various motor disorders including tremor, rigidity,
bradykinesia, and postural instability

Although, there is currently no certain cure for PD, there
are different kinds of treatment options such as medication
and surgery to alleviate the disorder manifestations. In
recent years, Deep Brain Stimulation (DBS) has been con-
sidered as an effective treatment to deal with PD, specifically
when drug therapy is no longer sufficient. Using high
frequency (~130-185 Hz) electrical pulses, DBS stimulates
specific targets in the brain including the subthalamic
nucleus. This procedure is done through surgically
implanted electrodes that are supplied by a battery-powered
implanted pulse generator

SUMMARY

Some embodiments discussed in the present disclosure
are related to the asynchronous detection of movement.

Systems and methods are disclosed to detect and/or
classify electrophysiological signals as motor events. In
some embodiments, a method may include: recording a first
plurality of electrophysiological signals from a first plurality
of probes inserted into the left hemisphere of the brain;
recording a second plurality of electrophysiological signals
from a second plurality of probes inserted into the right
hemisphere of the brain; pre-processing the first plurality of
electrophysiological signals and the second plurality of
electrophysiological signals; bipolar re-referencing the first
plurality of electrophysiological signals and the second
plurality of electrophysiological signals; determining an
optimal pair of electrophysiological signals from the bipolar
re-referenced first plurality of electrophysiological signals
and the bipolar re-referenced second plurality of electro-
physiological signals; matching the optimal pair of electro-
physiological signals with a template; and detecting motor
events from the matching.

In some embodiments, the optimal pair of electrophysi-
ological signals are determined by performing a nonlinear
regression on the bipolar re-referenced first plurality of
electrophysiological signals and the bipolar re-referenced
second plurality of electrophysiological signals.
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In some embodiments, the nonlinear regression may
produce a measure of inter-correlation between each of the
bipolar re-referenced first plurality of electrophysiological
signals and each of the bipolar re-referenced second plural-
ity of electrophysiological signals.

In some embodiments, the optimal pair of electrophysi-
ological signals are determined from a time-frequency trans-
form applied to the electrophysiological signals.

In some embodiments, the optimal pair of electrophysi-
ological signals with a template includes applying a princi-
pal component analysis on the template and the bipolar
re-referenced first plurality of electrophysiological signals
and the bipolar re-referenced second plurality of electro-
physiological signals to obtain normalized correlation coef-
ficients.

In some embodiments, bipolar re-referencing the first
plurality of electrophysiological signals and the second
plurality of electrophysiological signals further comprises:
subtracting each of the first plurality of electrophysiological
signals from another of the first plurality of electrophysi-
ological signals; and subtracting each of the second plurality
of electrophysiological signals from another of the second
plurality of electrophysiological signals.

In some embodiments, the method may include determin-
ing an optimal first electrophysiological signal and an
optima second electrophysiological signal from the linear
regression.

In some embodiments, the electrophysiological signals
comprise local field potential (LFP) signals.

These illustrative embodiments are mentioned not to limit
or define the disclosure, but to provide examples to aid
understanding thereof. Additional embodiments are dis-
cussed in the Detailed Description, and further description is
provided there. Advantages offered by one or more of the
various embodiments may be further understood by exam-
ining this specification or by practicing one or more embodi-
ments presented.

BRIEF DESCRIPTION OF THE FIGURES

These and other features, aspects, and advantages of the
present disclosure are better understood when the following
Detailed Description is read with reference to the accom-
panying drawings.

Example embodiments will be described and explained
with additional specificity and detail through the use of the
accompanying drawings in which:

FIG. 1. Tllustrates an example flow of operations that may
be performed according to some embodiments of the present
disclosure.

FIG. 2 illustrates an example process according to some
embodiments.

FIG. 3 illustrates a flowchart of an example process 300
that may be performed according to some embodiments

FIG. 4 is a graphic showing three LFP signals from the
left hemisphere converted into three spectrographs; one for
each channel.

FIG. 5 shows two graphs showing the classification
accuracy (%) of different classification methods vs. sam-
pling frequency.

FIG. 6 illustrates a flowchart of an example process 300
that may be performed according to some embodiments

FIG. 7 shows is a graph showing the average classification
accuracy of the MKL approach for all LFP pairs.

FIG. 8A is a drawing showing example placements of an
electrode inserted within a human brain.
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FIG 8B is a drawing showing an electrode inserted into
the globus pallidus of the human brain.

FIG 8C is a drawing showing an electrode inserted into
the subthalmic nucleus of the human brain.

FIG. 9A is a drawing showing two probes inserted into a
human brain.

FIG. 9B is an MRI scan showing two probes inserted into
a human brain.

FIG. 10 shows an illustrative computational system for
performing functionality to facilitate implementation of
embodiments described herein.

DETAILED DESCRIPTION

Some embodiments described in the present disclosure
relate to methods and systems of recognizing behavioral
activity from neural feedback. The movements may be
voluntary by the subject and cued by an instruction.

Deep brain stimulation (DBS) is a treatment method used
for movement disorders such as Parkinson’s disease, among
other things. DBS devices may include electrodes, an exten-
sion, and an implantable pulse generator (IPG). The elec-
trodes may be thin, insulated wires inserted through a small
opening in the skull and implanted in the brain. The tip of
each electrode may be positioned in a specific brain area. A
plurality of electrodes may be implanted into each hemi-
sphere of the brain. For example, four, five, six, eight, ten,
twelve, fourteen, etc. electrodes may be implanted into each
hemisphere. The implantable pulse generator may deliver
electrical stimulation to specific areas in the brain that
control movement.

The implantable pulse generator may be implanted, for
example, under the skin near the collarbone or lower in the
abdomen. The IPG may deliver electrical stimulation, for
example, to specific areas in the brain that control move-
ment. An example DBS set up including the IPG is shown
in FIG. 8A.

As described below, systems and methods are described in
the present disclosure in which local field potential may be
collected and processed to detect movement by the subject.
The LFP signals may be recorded from, for example, 4
electrodes implanted in each hemisphere. The signals may
be then bipolar re-referenced by subtracting adjacent con-
tacts. The signals may then be down sampled. Using non-
linear regression the inter-correlation between each bilateral
pair of channels may be measured. A linear combination of
channels may be selected as a template using principal
component analysis (PCA). The correlation between the
inter-correlation of each bilateral pair of channels and the
template may be calculated to derive the feature vector.
Single motor events of movement may be detected by
thresholding the values of a feature vector.

In some embodiments, LFP signals may be recorded from
both hemispheres of the brain. The LFP signals may be
non-stationary, such as, for example, the activity in a given
area of the brain spreads to other areas of the brain over time.
This may cause a group delay or a phase delay. The group
delay, for example, may lead to a constant time delay based
on the locations of the leads. The group delay, for example,
may or may not distort the signal. Nonlinear methods, such
as nonlinear regression, mutual information, or synchroni-
zation of phases, for example, may be used to compensate
for the group delay due to the distance between the leads.

In some embodiments, preprocessing of the LFP signals
may be performed. To preprocess the data, for example, the
LFP signals may be bipolar re-referenced by subtracting lead
data from adjacent locations in the brain. A phase-filter, for
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example, may also be applied such as, for example, a
zero-phase filter with transient band of 80-100 Hz. The LFP
signals may be filtered, for example, after the re-referencing.
The data may, for example, be down sampled to 200 Hz.

In these and other embodiments the interdependency
between the two hemispheres may be determined based on
the pre-processed LFP data such as, for example, via non-
linear regression. For example, in some embodiments, non-
parametric nonlinear regression of signals from both hemi-
spheres of the brain may be performed. This method may
determine, for example, the dependency between the signals
from both hemispheres when the LFP data from one hemi-
sphere is shifted forward in time. Using this method, a
nonlinear correlation coefficient may be determined from the
highest amount of nonlinear correlation for a limited range
of time shifts.

In some embodiments, correlation coefficients corre-
sponding to at least two bilateral pairs may be calculated. A
bilateral pair may be, for example, LFP signals from both the
left and right hemispheres of the brain, and may, for
example, include LFP signals from the same section of the
brain on opposing hemispheres. Principal component analy-
sis (PCA) may be applied to each bilateral pair of data to
obtain the normalized correlation coefficients. In some
embodiments, a template for all of the components may be
created and a template matching algorithm may be applied
to each component. In some embodiments, receiver operat-
ing characteristic (ROC) curves may be calculated and the
component corresponding to the highest area under the
curve (AUC) is selected as the optimum component.

In some embodiments a template may be created to find
occurrences of voluntary movements (such as, for example,
pressing a button on cue). There may be a pattern of the LFP
signals when movement occurs and the template may reflect
this pattern.

Template matching may be performed, for example, after
a template has been created. After creating a template the
pattern of the preprocessed and nonlinearly regressed data
may be analyzed. For example, correlation between the data
and a short template may be calculated. A feature vector, for
example, may be a time series of normalized correlation
coeflicients between the template and the most recent seg-
ment of real time data. For example, if there is a potentially
similar shape between the data and the template, the tem-
plate may be time-shifted to determine if there is a pattern
match. Alternatively or additionally, either the data or the
template may be time-shifted in either direction to find a
pattern match.

In some embodiments, the feature vector obtained by a
template matching method may be fed to a motor event
detection block to determine the detected times. In some
embodiments, a threshold value of the detection algorithm
may be used to classify binary motor events. For example,
values above that threshold may be considered detected
motor events (e.g., voluntary movement) and values below
that threshold may be considered non-motor events (e.g.,
non-movement).

Modifications, additions, or omissions may be made to the
system without departing from the scope of the present
disclosure. For example, in some embodiments, the method
for detecting asynchronous movement may include any
number of other components that may not be explicitly
illustrated or described.

FIG. 1 illustrates a flowchart of an example process 100
that may be performed according to some embodiments of
the present disclosure. The process 100 is merely an
example and variations may be present. As another example,
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additional blocks or steps may be included. As another
example, one or more blocks or steps may not be included.
As yet another example, in some embodiments, a prior-
created template may be used for template matching and
motor event detection. Additionally or alternatively, alter-
nate methods of preprocessing the LFP signals, including
performing mutual information or synchronization of
phases, may be done to compensate for the group delay. The
process 100 may, for example, be executed and/or controlled
at least in part with a computational system 1000 shown in
FIG. 10.

In some embodiments, at block 105 LFP signals may be
recorded using more than one electrode placed in the brain.
Any type of system or sensors may be used to detect and/or
record LFP signals. For example, a DBS system may detect
and record LFP signals.

In some embodiments, at block 110 the LFP signals may
be preprocessed. For example, a zero-phase filter with a
transient band of 80-100 Hz (or any other frequency band)
may be applied to the signals. Alternatively or additionally,
the signals may be down sampled to 200 Hz. Various other
sampling, amplifying, digitizing, down sampling, filtering,
mathematical processing, etc. may be performed on the LFP
signals at block 110. In some embodiments, the LFP signals
may be amplified, digitized (e.g., 5 kHz), band passed
filtered (e.g., 1-100 Hz), and/or combined with motor event
markers and/or subject responses.

In some embodiments, at block 115 noise may be
removed from the LFP signals. In some embodiments, a
bipolar re-referencing may occur that may remove pre-
existing average reference projections from the LFP signals.
In some embodiments, removing the noise, for example,
may remove power line interference (PLI) without any
filtering related distortions. In some embodiments, the sig-
nals from adjacent electrodes in each hemisphere may be
subtracted from each other to remove systematic noise. For
example, if three electrodes are being used in a given
hemisphere, for a given LFP signal, LFP |, one of the other
two LFP signals, LFP, or LFP; may be subtracted therefrom.
This may be done with each of the three LFP signals.

In some embodiments, signals from each probe may be
subtracted from every other probe signal of the same hemi-
sphere or from more than one probe signal from the same
hemisphere. For example, if four probes record signals from
the left hemisphere, then each probe signal may be sub-
tracted from each of the other three probe signals resulting
in nine signals. In some embodiments, if there are N probes,
then (N-1)? signals may be produced by subtracting every
probe signal from every other probe signal. Any type of
bipolar re-referencing algorithm may be used.

In some embodiments, at block 120, a nonlinear regres-
sion of the LFP signals from the left hemisphere and the
right hemisphere may be calculated. For example, the non-
linear regression may be based on an estimation of nonlinear
correlation between the signals from the left hemisphere and
the right hemisphere. The nonlinear regression, for example,
may be performed on the subtracted signals from block 115.

In some embodiments, the nonlinear regression of two
LFP signals from different hemispheres may represent the
dependency of one signal on the other signal when one
signal is shifted forward in time. The nonlinear regression
between signal X and signal Y may, for example, be calcu-
lated when signal Y is shifted T samples suing the following:

VAR(Y[n+7]) | X[n]

2 =1
ey =1 VAR [z +7])
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where VAR(Y[n+t]IX[n]) is the conditional variance of
Y[n+t] given X[n]. In some embodiments, the highest
amount of non-linear correlation for a limited range of time
shifts may be calculated which may lead to a non-linear
correlation coefficient:

thz*:maXcthz(T)

In some embodiments, a rectangular window of, for
example, one second may be applied to the down sampled
signals where the overlap of two consecutive windows may
be 90% of the window length. From this a time series of
correlation coefficients may be determined.

In some embodiments, at block 125 a principal compo-
nent analysis (PCA) or a similar process, algorithm, or
technique may be used to determine an optimum compo-
nent. The optimum component may be calculated, for
example, for every possible bilateral pair.

For example, a linear combination of LFP signals with
optimal coeflicients may be created for use in block 130. The
coeflicients, for example, may be calculated using training
data and/or PCA. As another example, the coefficients can be
calculated from the following:

N2
2: 2:
Ky 1= > ek y, Inl.
k=1

In some embodiments, at block 130 template matching
using the normalized correlation coefficient from the non-
linear regression may be used to find occurrences of a
movement motor event. For example, a template may be
created by applying rectangular time windows to each trial
and synchronized to form a pattern for each subject over the
time interval.

A template may be created in any number of ways. For
example, a template may span a known time period (e.g., 1,
2,3, 4,5, or more seconds). A template may be created, for
example, by averaging a training motor event of a known
motor event. In some embodiments, time windows w|[n-k|
starting a period of time before the onset of the trial m, are
applied to each trial i in the first task block and the results
may be synchronized averaged to form a 3 seconds (30
samples) pattern for each subject. A template may, for
example, be calculated from:

Nirigl
2 2
Pxy = Z cxylnlwln —m;].

i=1

In some embodiments, a correlation between optimal LFP
signals (e.g., a linear combination of LFP signals and/or
synchronized LFP signals from process 600) and a template
may be determined from:

w D Py k=)
= i PRYIKIZ, cxylk —nl’
where v,,>* is time series of normalized correlation coef-
ficients between the template p,~*[n] and the most recent
segments of the optimal LFG signals c,,>*.

In some embodiments, at block 135 motor events may be
detected based on the template matching performed in block
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130. In some embodiments, motor events may be detect in
the motor event that the correlation between a template and
the optimal LFP signals when the correlation coefficient, v,
is greater than a given threshold. In some embodiments, a
binary thresholding algorithm may be used that returns a one
value with a motor event has occurred (e.g., when y is
greater than a given threshold) and a zero when a motor
event has not yet occurred (e.g., when vy is less than a given
threshold). In some embodiments, motor event detection
may return a time when the matched motor event occurred.

FIG. 2 illustrates an example process according to some
embodiments. FIG. 2 may, for example, be considered a
graphical representation of the process 100 shown in FIG. 1.
In this example, at “A” four right LFP signals are recorded
and four left LFP signals are recorded for a total of 8 LFP
signals. This may be performed, for example, as described
above in block 105.

At “B” the LFP signals may be down sampled and/or
bipolar re-referenced. This may be performed in a manner
similar to what is shown in blocks 110 and/or 115.

At “C” a nonlinear regression may be performed on the
signals. The nonlinear regression, for example, may be
performed in a manner similar to what is shown in block
120.

At “D” channel selection may occur. Channel selection,
for example, may include any process that determines cor-
relation coefficients such as, for example, as shown in block
125, and uses the correlation coeflicients to select channels.

At “E” template matching may occur, which may be
similar to block 130.

At “F” motor event detection may occur, which may be
similar to block 135.

FIG. 3 illustrates a flowchart of an example process 300
that may be performed according to some embodiments of
the present disclosure. The process 300 is merely an
example and variations may be present. As another example,
additional blocks or steps may be included. As another
example, one or more blocks or steps may not be included.
As yet another example, process 300 may use a time-
frequency representation (or spectrogram) of the LFP signal
for feature extraction and/or motor event classification. The
process 300 may, for example, be executed and/or controlled
at least in part with a computational system 1000 shown in
FIG. 10.

For instance, different behavioral tasks may yield differ-
ent representations in the time-frequency domain. Thus, the
time-frequency domain may be an appropriate measure to
differentiate between various human behaviors.

At block 305, bilaterally re-referenced LFP signals may
be obtained. For example, bilaterally re-referenced LFP
signals may be obtained via blocks 105, 110, and/or 115. The
bilaterally re-referenced LFP signals may be obtained in any
possible way.

At block 310, identify motor events in portions of the LFP
signals that correspond with a specific motor event. In some
embodiments, the motor events in the LFP signals may be
identified by correlating the LFP signals with data specifying
the time a specific motor event occurred by a patient with
electrodes placed within their brain. For instance, a data file
may include the time period when a specific motor event
occurred along with an identifier specifying the motor event
type.

In some embodiments, the portions of the LFP signals
may be identified based on the timing. For instance, if a
given motor event occurred at a specific time, then the LFP
signal data corresponding with the specific time may be
identified. In some embodiments, a time window may be
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identified. The time window, for example, may have a
specific time length, may start at the onset of the given motor
event, may start prior to the onset of the given motor event
(e.g., 1 second prior to the onset of the motor event, may end
a given period of time after the onset of the motor event
(e.g., 1 second after the onset of the motor event). In some
embodiments, the motor events may be identified in the LFP
signals prior to bilaterally re-referencing the LFP signals.

At block 315, a time-frequency domain transform may be
applied to the bilaterally re-referenced LFP signals. For
example, a continuous wavelet transform (CWT) may be
applied to the bilaterally re-referenced LFP signals. Any
other algorithm, mathematical function, and/or process may
be used to create a time-frequency domain representation of
the bilaterally re-referenced LFP signals. For example, a
complex Morlet (C-Morlet) mother wavelet transform can
be used:

Xu(a, b):i;m%w(%]dt,

_2
ot

W) =

eijrfCr’
7y

where, X (a,b) is the CWT of the function x(t) with two
variables a (scaling parameter) and b (shift parameter). ¥(t)
is the C-Morlet mother wavelet. f_ and f, are respectively the
wavelet center frequency and bandwidth parameter. In some
embodiments, the §§ frequency components may be of inter-
est and/or £, can be set in the appropriate frequency range
(e.g., 13-35 Hz).

In some embodiments, the time-frequency domain trans-
form may return a two dimensional spectrograph for each
channel. Each spectrograph may be a matrix of time-fre-
quency values for a given channel. Two sets of spectrograph
data may be returned: one set for the right hemisphere and
another set for the left hemisphere. In some embodiments,
the spectrograph data may include a spectrograph for each
channel.

FIG. 4 is a graphic showing three LFP signals from the
left hemisphere converted into three spectrographs; one for
each channel. The graphic in FIG. 4 also shows three LFP
signals from the right hemisphere converted into three
spectrographs; one for each channel.

At block 320, wavelet coeflicients in a given frequency
range can be found for the motor event windows identified
in block 310 by solving the equations noted above for the
CWT and/or the C-Morlet mother wavelet.

At block 325, in some embodiments, the spectrographs
can be converted into vectors. For example, each matrix of
spectrograph values may be converted into a vector. This
may be accomplished, for example, by arranging the col-
umns or the rows of the matrix in a vector.

At block 330, in some embodiments, the spectrograph
vectors may optionally be filtered. For instance, the spec-
trograph vectors may be low-pass filtered using any type of
filtering algorithm such as, for example, the Butterworth
filter of any order. These spectrograph vectors may be used
as feature vectors in a machine learning algorithm.

At block 335, in some embodiments, the spectrograph
vectors may optionally be down-sampled. This down-sam-
pling, for example, may provide a smaller data set to
improve computational costs and/or efficiencies. In some
embodiments, down sampling may not be needed.
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At block 340 a machine learning classifier can be applied
to the spectrograph vectors of both left hemisphere LFP data
and right hemisphere LFP data. Any type of machine learn-
ing classifier can be use such as, for example, a multiple
kernel learning classifier, may be used to classify the LFP
signals data with the motor event identified in block 310.
Any type of machine learning or supervised learning algo-
rithm can be used. For example, the machine learning
classifier may include supervised learning, semisupervised
learning, or unsupervised learning approaches. In some
embodiments, an 1,-norm classifier may be used.

FIG. 5 shows two graphs showing the classification
accuracy (%) of different classification methods vs. sam-
pling frequency. Left and right graphs respectively show the
results for 3-task (Speech, Button press, Random segment)
and 5-task (Speech, Button press, Arm movement, Mouth
movement, and Random segment) classification respec-
tively. The random segments were used to train the classifier
to recognize other tasks rather than the known tasks. The
“Chance Rate” is included in the graphs to show the quali-
fication of each classifier. If the accuracy is below the
“Chance Rate”, it means that the classifier is not a suitable
choice; it is nothing but a random operator.

FIG. 5 shows that the presented 1,-norm MKL classifier
outperforms the other compared classifiers. In the example
experiments, the results of the MKL classifier are robust
even when the sampling frequency of the feature vectors is
drastically low. To measure the robustness of different
methods against the size of the feature vectors, all the
experiments are redone for different down-sampling rates.

Some embodiments include processing of a plurality of
LFP signals. In some embodiments, the various channels
may be blended prior to classification. In some embodi-
ments, one or more channels may be selected based on
correlation and/or synchronization of the signals. For
example, a channel from each hemisphere may be selected
based on the highest synchronization and/or correlation of
the signals. In some embodiments, an FFT-based synchro-
nization approach may be used to select (e.g., automatically
select) an FFT-based synchronization approach to select a
relevant pair of LFP signals and use the pair together with
a classifier (e.g., an MKIL -based SVM), for example, for
behavior recognition purposes.

In some embodiments, an FFT-based approach may be
used to find a synchronous pair of LFP signals in each,
which may provide a reliable dataset for training an
employed classifier. An LFG signal may have many phase
values associated with each Fourier components. The FFT-
based synchronization considers the phase values of each
frequency component separately, which may, for example,
lead to a more minute measure of phase synchronization
based on a finer resolution compared to the statistical
correlation-based measures. In some embodiments, the FFT-
based approach may be independent of the amplitude of
signal

FIG. 6 is a flowchart of an example process 600 of an
FFT-based approach for determining whether two LFP sig-
nals are synchronized according to some embodiments. The
process 600 is merely an example and variations may be
present As another example, additional blocks or steps may
be included. As another example, one or more blocks or
steps may not be included. The process 600 may, for
example, be executed and/or controlled at least in part with
a computational system 1000 shown in FIG. 10.

Process 600 may be used to determine whether two LFP
signals are synchronized. The process 600 may be repeated
any number of times to compare the synchronization
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between any two LFP signals. The process 600, for example,
may be implemented in conjunction with process 100 such
as, for example, after block 120. In some embodiments, the
two signals may include a right hemisphere signal and a left
hemisphere signal.

At block 605 the frequency components of the LFP
signals may be calculated. For example, the FFT coefficients
a,, b, a,,and b, may be calculated for the n” frequency
component for the left hemisphere, i, and the right hemi-
sphere, j using any FFT protocol or algorithm. In some
embodiments, additional FFT coefficients may be calcu-
lated. The corresponding phase components 6,,, and 6, may
also be calculated from:

ind Vind

At block 610 the phase lag of the LFP signals may also be
calculated. For instance, two LFP signals may be considered
synchronous when the phase components, 6,, and 6,,, are
almost equal. For the nth frequency component the phase

lag, PL, value may be calculated from:

Ainb jy = binajp
PL(T) = 0 = 0] ~ 0 = PL(n) = ~0.

Qinljn + binb jn

In some embodiments, the phase lag values for all (or a
plurality of) harmonics may be taken into account.

At block 615, the mean and/or standard deviation of the
calculated phase lag values may be calculated. The two LFP
signals may be considered to be synchronous, for example,
when the mean and/or standard deviation values of the phase
lag are low

At block 620 the synchronization of the two LFP signals
may be calculated such as, for example, from:

1
T+ mean(E(n) +std(En))’

syrc(x;(1), x;(1) =

and, in some embodiments:

Ew = 1Ly — PLn + 1)) = 220~ b
i) = i) — n+ = -
Qinljn + binb jn

Ainp 10 juit = Dint1@jnst

,
Qint1@jni1 + Diny1Djny1

where, mean(-) and std(-) are respectively the average and
standard deviation of the quantity E(n) calculated across all
the frequency components. These equations may guarantee
that the synchronization values are normalized in the range
of' [0, 1], so the more phase synchronous two signals are the
closer to 1 is the value of sync(-). The synchronization may
be calculated for all possible LFP pairs.

In some embodiments, one of the main advantages of the
FFT-based synchronization is the low computational com-
plexity, which may be equal to that of the FFT algorithm. As
a result, this approach might lead to near optimal LFP pairs
for each subject without imposing any further computational
burden.

In some embodiments, process 600 may be used to select
LFP pairs for classification such as, for example, the MKI.-
based SVM classifier described in process 300.
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FIG. 7 shows is a graph showing the average classification
accuracy of the MKL approach for all LFP pairs. The red bar
on the far right shows the result using the FFT synchroni-
zation. The red dash-line shows the average of all 9 blue
bars, and the black dash-dot line represents the chance rate.

In particular, the average classification accuracy given by
the LFP pair 3L-2R (60.22%) is comparable to that of the
FFT synchronization approach (61%). However, while the
synchronization method can automatically select the optimal
LFP pair for each subject without imposing a considerable
computational cost (i.e., the computational time is no longer
than the FFT algorithm), it may be useful to repeat the
time-consuming training and validation phases for all pos-
sible LFP pairs to get the optimal pair in each case.

FIG. 8A is a drawing showing example placements of an
electrode inserted within a human brain. FIG. 8B is a
drawing showing an electrode inserted into the globus
pallidus of the human brain. FIG. 8C is a drawing showing
an electrode inserted into the subthalmic nucleus of the
human brain. In some embodiments, the electrode may be
inserted into any portion of the human brain. The electrodes
may be coupled with a pulse generator that may, for
example, be placed subcutaneously within the human. The
electrodes, for example, may be connected with the pulse
generator via an electrode lead. Various other electrode
configurations and/or electrode placements may be used
without limitation.

FIG. 9A is a drawing showing two probes inserted into a
human brain. FIG. 9B is an MRI scan showing two probes
inserted into a human brain.

The various flowcharts, processes, computers, servers,
etc. described in this document may be executed, for
example, using the computational system 1000 (or process-
ing unit) illustrated in FIG. 10. For example, the computa-
tional system 1000 can be used alone or in conjunction with
other components. As another example, the computational
system 1000 can be used to perform any calculation, solve
any equation, perform any identification, and/or make any
determination described here.

The computational system 1000 may include any or all of
the hardware elements shown in the figure and described
herein. The computational system 1000 may include hard-
ware elements that can be electrically coupled via a bus 1005
(or may otherwise be in communication, as appropriate).
The hardware elements can include one or more processors
1010, including, without limitation, one or more general-
purpose processors and/or one or more special-purpose
processors (such as digital signal processing chips, graphics
acceleration chips, and/or the like); one or more input
devices 1015, which can include, without limitation, a
mouse, a keyboard, and/or the like; and one or more output
devices 1020, which can include, without limitation, a
display device, a printer, and/or the like.

The computational system 1000 may further include
(and/or be in communication with) one or more storage
devices 1025, which can include, without limitation, local
and/or network-accessible storage and/or can include, with-
out limitation, a disk drive, a drive array, an optical storage
device, a solid-state storage device, such as random access
memory (“RAM”) and/or read-only memory (“ROM”),
which can be programmable, flash-updatable, and/or the
like. The computational system 1000 might also include a
communications subsystem 1030, which can include, with-
out limitation, a modem, a network card (wireless or wired),
an infrared communication device, a wireless communica-
tion device, and/or chipset (such as a Bluetooth® device, a
802.6 device, a Wi-Fi device, a WIMAX device, cellular
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communication facilities, etc.), and/or the like. The com-
munications subsystem 1030 may permit data to be
exchanged with a network (such as the network described
below, to name one example) and/or any other devices
described herein. In many embodiments, the computational
system 1000 will further include a working memory 1035,
which can include a RAM or ROM device, as described
above.

The computational system 1000 also can include software
elements, shown as being currently located within the work-
ing memory 1035, including an operating system 1040
and/or other code, such as one or more application programs
1045, which may include computer programs of the inven-
tion, and/or may be designed to implement methods of the
invention and/or configure systems of the invention, as
described herein. For example, one or more procedures
described with respect to the method(s) discussed above
might be implemented as code and/or instructions execut-
able by a computer (and/or a processor within a computer).
A set of these instructions and/or codes might be stored on
a computer-readable storage medium, such as the storage
device(s) 1025 described above.

In some cases, the storage medium might be incorporated
within the computational system 1000 or in communication
with the computational system 1000. In other embodiments,
the storage medium might be separate from the computa-
tional system 1000 (e.g., a removable medium, such as a
compact disc, etc.), and/or provided in an installation pack-
age, such that the storage medium can be used to program
a general-purpose computer with the instructions/code
stored thereon. These instructions might take the form of
executable code, which is executable by the computational
system 1000 and/or might take the form of source and/or
installable code, which, upon compilation and/or installation
on the computational system 1000 (e.g., using any of a
variety of generally available compilers, installation pro-
grams, compression/decompression utilities, etc.), then
takes the form of executable code.

The term “substantially” means within 5% or 10% of the
value referred to or within manufacturing tolerances.

Terms used in the present disclosure and especially in the
appended claims (e.g., bodies of the appended claims) are
generally intended as “open” terms (e.g., the term “includ-
ing” should be interpreted as “including, but not limited to,”
the term “having” should be interpreted as “having at least,”
the term “includes™ should be interpreted as “includes, but
is not limited to,” etc.).

Additionally, if a specific number of an introduced claim
recitation is intended, such an intent will be explicitly recited
in the claim, and in the absence of such recitation no such
intent is present. For example, as an aid to understanding,
the following appended claims may contain usage of the
introductory phrases “at least one” and “one or more” to
introduce claim recitations. However, the use of such
phrases should not be construed to imply that the introduc-
tion of a claim recitation by the indefinite articles “a” or “an”
limits any particular claim containing such introduced claim
recitation to embodiments containing only one such recita-
tion, even when the same claim includes the introductory
phrases “one or more” or “at least one” and indefinite
articles such as “a” or “an” (e.g., “a” and/or “an” should be
interpreted to mean “at least one” or “one or more”); the
same holds true for the use of definite articles used to
introduce claim recitations.

In addition, even if a specific number of an introduced
claim recitation is explicitly recited, those skilled in the art
will recognize that such recitation should be interpreted to
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mean at least the recited number (e.g., the bare recitation of
“two recitations,” without other modifiers, means at least
two recitations, or two or more recitations). Furthermore, in
those instances where a convention analogous to “at least
one of A, B, and C, etc.” or “one or more of A, B, and C,
etc.” is used, in general such a construction is intended to
include A alone, B alone, C alone, A and B together, A and
C together, B and C together, or A, B, and C together, etc.

All examples and conditional language recited in the
present disclosure are intended for pedagogical objects to
aid the reader in understanding the invention and concepts
contributed by the inventor to furthering the art, and are to
be construed as being without limitation to such specifically
recited examples and conditions. Although embodiments of
the present disclosure have been described in detail, various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the present
disclosure.

Various embodiments are disclosed. The various embodi-
ments may be partially or completely combined to produce
other embodiments.

Numerous specific details are set forth herein to provide
a thorough understanding of the claimed subject matter.
However, those skilled in the art will understand that the
claimed subject matter may be practiced without these
specific details. In other instances, methods, apparatuses, or
systems that would be known by one of ordinary skill have
not been described in detail so as not to obscure claimed
subject matter.

Some portions are presented in terms of algorithms or
symbolic representations of operations on data bits or binary
digital signals stored within a computing system memory,
such as a computer memory. These algorithmic descriptions
or representations are examples of techniques used by those
of ordinary skill in the data processing art to convey the
substance of their work to others skilled in the art. An
algorithm is a self-consistent sequence of operations or
similar processing leading to a desired result. In this context,
operations or processing involves physical manipulation of
physical quantities. Typically, although not necessarily, such
quantities may take the form of electrical or magnetic
signals capable of being stored, transferred, combined, com-
pared, or otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to
such signals as bits, data, values, elements, symbols, char-
acters, terms, numbers, numerals, or the like. It should be
understood, however, that all of these and similar terms arc
to be associated with appropriate physical quantities and are
merely convenient labels. Unless specifically stated other-
wise, it is appreciated that throughout this specification
discussions utilizing terms such as “processing,” “comput-
ing,” “calculating,” “determining,” and “identifying” or the
like refer to actions or processes of a computing device, such
as one or more computers or a similar electronic computing
device or devices, that manipulate or transform data repre-
sented as physical, electronic, or magnetic quantities within
memories, registers, or other information storage devices,
transmission devices, or display devices of the computing
platform.

The system or systems discussed herein are not limited to
any particular hardware architecture or configuration. A
computing device can include any suitable arrangement of
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components that provides a result conditioned on one or
more inputs. Suitable computing devices include multipur-
pose microprocessor-based computer systems accessing
stored software that programs or configures the computing
system from a general-purpose computing apparatus to a
specialized computing apparatus implementing one or more
embodiments of the present subject matter. Any suitable
programming, scripting, or other type of language or com-
binations of languages may be used to implement the
teachings contained herein in software to be used in pro-
gramming or configuring a computing device.

Embodiments of the methods disclosed herein may be
performed in the operation of such computing devices. The
order of the blocks presented in the examples above can be
varied—for example, blocks can be re-ordered, combined,
and/or broken into sub-blocks. Certain blocks or processes
can be performed in parallel.

The use of “adapted to” or “configured to” herein is meant
as open and inclusive language that does not foreclose
devices adapted to or configured to perform additional tasks
or steps. Additionally, the use of “based on” is meant to be
open and inclusive, in that a process, step, calculation, or
other action “based on” one or more recited conditions or
values may, in practice, be based on additional conditions or
values beyond those recited. Headings, lists, and numbering
included herein are for ease of explanation only and are not
meant to be limiting.

While the present subject matter has been described in
detail with respect to specific embodiments thereof, it will be
appreciated that those skilled in the art, upon attaining an
understanding of the foregoing, may readily produce altera-
tions to, variations of, and equivalents to such embodiments.
Accordingly, it should be understood that the present dis-
closure has been presented for-purposes of example rather
than limitation, and does not preclude inclusion of such
modifications, variations, and/or additions to the present
subject matter as would be readily apparent to one of
ordinary skill in the art.

That which is claimed:

1. A method for using electrophysiological signals to
detect motor events by a subject, the method omprising:

using deep brain stimulation devices implanted in a left

hemisphere of a brain of the subject to measure left
local field potential (LFP) signals from the left hemi-
sphere of the brain;

using deep brain stimulation devices implanted in a right

hemisphere of the brain of the subject to measure right
LFP signals from the right hemisphere of the brain; and
with a processor:

bipolar re-referencing each of the left LFP signals and the

right LFP signals to produce a plurality of bilateral
pairs of bipolar re-referenced left and right LFP signals;
using nonlinear regression to estimate nonlinear correla-
tion between the plurality of bilateral pairs of bipolar
re-referenced left and right LFP signals;
determining an optimal pair of electrophysiological sig-
nals from the plurality of bilateral pairs of bipolar
re-referenced left and right LFP signals;

matching the optimal pair of electrophysiological signals

with a template; and

detecting motor events from the matching.

#* #* #* #* #*



