
(19) United States 
US 2012O157176A1 

(12) Patent Application Publication (10) Pub. No.: US 2012/0157176A1 
SPEED (43) Pub. Date: Jun. 21, 2012 

(54) ARTIFICIAL INTELLIGENCE FOR GAMES Publication Classification 

75) Inventor: Erek SPEED, Tokyo (JP (51) Int. Cl. (75) Inventor e , Tokyo (JP) G06F 7700 (2006.01) 

(73) Assignee: KABUSHIK KAISHA SQUARE (52) U.S. Cl. ............................................................ 463/1 
ENIX (also trading as SQUARE 
ENIX Co., Ltd.), Tokyo (JP) (57) ABSTRACT 

A program for platform games using AI and make a computer 21) Appl. No.: 13A309,036 (21) Appl. No 9 to act including steps of deciding a solution for platform 
(22) Filed: Dec. 1, 2011 game includes: initializing solutions (S101), selecting an ini 

9 tial solution and a new solution (S102), a first comparison of 
(30) Foreign Application Priority Data fitness score (S103); generating a current solution (S104); 

repeating generating another new solution and comparing 
Dec. 20, 2010 (JP) ............................. JP2O10-283389 fitness scores (S105); and replacing a state (S106). 

1OO 

Machine body 
Frame memory 

22 

11 Control part 
(CPU, ROM, etc.) Graphics 

processing part Video output 
apparatus 

V 17 
Communication 
interface 

Sound processing 
part 

30 

21 Operation input part 

Sound output 
interface part 18 

2O 

41 

40 

A. 
Touch panel 

Recording medium 
(Flash memory) 

  



Patent Application Publication Jun. 21, 2012 Sheet 1 of 5 US 2012/01571.76 A1 

FIG. 1 100 

Machine body 
19 

22 

Control part 15 
11 (CPU, ROM, etc.) Graphics 

processing part video output 

12- RAM - - - - - 17 

Communication 

13 

14 Sound processing 
part interface part 18 

Sound output 

apparatus 

A. 41 
Touch panel - 40 

FG. 2 

Mapping 

Solutions Search 

  



Patent Application Publication Jun. 21, 2012 Sheet 2 of 5 US 2012/O1571.76 A1 

FG. 3 D R OO   



Patent Application Publication Jun. 21, 2012 Sheet 3 of 5 US 2012/O1571.76 A1 

FIG. 5 
S101 

initializing solutions 

Selection of Initial Solution and New Solution 

First comparison of fitness score 

Generating Current Solution 

Generating New Solution 

Second comparison of fitness score 

Replacing state 

S102 u/ 

S103 M 

S104 

S105 

S106 

  

  

    

  

  

  

  

    

    

  



Patent Application Publication Jun. 21, 2012 Sheet 4 of 5 US 2012/O1571.76 A1 

F.G. 6 

FIG. 7 

Number TSP 

Starting Value GD O) 1) 1D (A) B) Z) X) 

Small Change O O) O) O) (B) A) Z) X) 
Large Change CO) O) 1D 1D OX) B) A) Z) 



Patent Application Publication Jun. 21, 2012 Sheet 5 of 5 US 2012/O1571.76 A1 

FIG. 8 



US 2012/O1571.76 A1 

ARTIFICIAL INTELLIGENCE FOR GAMES 

TECHNICAL FIELD 

0001. The present invention relates to a program of artifi 
cial intelligence for platform games. 

BACKGROUND ART 

0002 The use of AI for playing various board games such 
as “chess” and “go' is widespread. These areas of research are 
similar to action games in that they provide their own inter 
esting problem spaces to explore. As such, the algorithms 
used tend to be quite domain specific. Similarly, several 
recent papers deal with modern games Such as racing and Pac 
Man, but the same caveats apply. AI for other platform games 
would be interesting but almost no work in this area has been 
done. 
0003 Interestingly, even though a platform game, like 
Super Mario Bros., has experienced enormous popularity, 
platform games have not been the target of much AI research. 
Possible reasons for this have been given elsewhere, includ 
ing the fact that the non-adversarial nature of the game makes 
character AI unnecessary (See non patent document 1). 
0004 WO2009-120601A1 discloses “COMBINING 
SPECULATIVE PHYSICS MODELING WITH GOAL 
BASED ARTIFICIAL INTELLIGENCE. The document 
discloses “goal-oriented AI for games and FIGS. 1A and 1B 
of the document disclose the map that has several states and 
actions. 

PRIOR ART DOCUMENTS 

Patent Document 

0005 Patent Document 1 WO2009-120601A1 

Non Patent Document 

0006 Non Patent Document 1 J. Togelius, S. Karak 
ovskiy, J. Koutnik, and J. Schmidhuber, “Super mario evolu 
tion.” in Proc. IEEE Symp. Computational Intelligence and 
Games CIG 2009, 2009, pp. 156-161. 

SUMMARY OF THE INVENTION 

Problem to be Solved by the Invention 
0007. It is an object of the present invention to provide a 
game AI program which is Suit for a platform game. 
0008. It is another object of the present invention to pro 
vide a game AI program which can attain high performance in 
platform games. 

Means for Solving the Problem 
0009. The present invention fundamentally based on a 
recently introduced search algorithm. The algorithm is espe 
cially well Suited toward searching Such large spaces in a 
platform games, especially when it employs the use of Levy 
flights. Unfortunately, these Levy flights cannot be applied to 
non numerical problems such as platform game. Thus pre 
ferred embodiment of the present invention introduce map 
ping. Mapping the levy flight from a number to an arbitrary 
change in solution which is composes of a status. With Such a 
mapping it can then be used for any platform games which 
include a set of states. To further optimize the search of 
platform game space, a Softmax heuristic is presented to focus 
on areas with likely solutions. 

Jun. 21, 2012 

0010. The first aspect of the invention relates to a program 
for artificial intelligence for platform games. The program 
may make a computer to perform following steps. The pro 
gram may make a computer to initialize solutions. Solution 
comprises one or a plurality of states of a character. One state 
is linked with another state via one action of the character. The 
example is start, move right, move right, jump, move right and 
fire. Initialization may be performed with at random. Namely, 
one or a plurality of actions may be selected at random. Then 
because following state is decided by an action, Solutions may 
be decided with using information of actions. Preferred 
embodiment of the present invention is that the initialization 
is executed by means of Softmax heuristics engine or algo 
rithm. 

0011. Then the computer selects an initial solution and a 
new solution. The initial solution may be selected at random 
from the solutions initialized the above or nothing. For 
example, the initial solution is start, move right, move right, 
jump, move right and fire. The new solution is start, and jump. 
0012. The computer then compares fitness score of the 
initial solution and fitness score of the new solution. The 
fitness score may be calculated by means of already known 
engine or algorithm. Then the computer generates a current 
solution. The current solution is the initial solution when the 
fitness score of the initial Solution is the same as or higher than 
that of the new solution. The current solution is the new 
solution when the fitness score of the new solution is higher 
than that of the initial solution. After the comparison non 
selected Solution may be discarded. 
0013 The computer repeats generating another new solu 
tion and comparing fitness scores of the current Solution and 
another new solution to generate a revised current Solution. 
0014 Solutions with many bad states will be bad solu 
tions, and with probability p will be replaced during the 
iteration of the above algorithm. Bad state may include death 
of the character. The computer may compare fitness scores of 
Solutions, which may include the initial solution and gener 
ated solutions, such that the solution that has the worst fitness 
score is replaced with predetermined probability with a newly 
selected solution selected at random from the candidates of 
Solution. Because the algorithm removes the worst solutions 
while keeping the best solutions, the solution becomes better. 
The random selections are performed with Levy flight algor 
ism using numbers that correspond to the states. 
0015 These Lévy distributions decrease according to the 
power law 1/(x'") for large x values, where ylies between 0 
and 2. Since Gaussians correspond to Y-2, Brownian motion 
can be regarded as an extreme case of Lévy motion. Com 
pared to Gaussian distributions, Lévy distributions do not fall 
off as rapidly at long distances. For Brownian motion, each 
jump is usually small and the variance of the distribution, 
<x>, is finite. For Lévy motion, however, the small jumps are 
interspersed with longer jumps, or "flights', causing the vari 
ance of the distribution to diverge. As a consequence, Lévy 
jumps do not have a characteristic length scale. Thus the levy 
flight is Suitable for an AI algorithm for platform games 
because the space of the platform games is so huge. 

Technical Effect of the Invention 

0016. The present invention can provide a game AI pro 
gram which is suitable for a platform game. 



US 2012/O1571.76 A1 

0017. The present invention can provide a game AI pro 
gram which can attain high performance in platform games. 

BRIEF DESCRIPTION OF DRAWINGS 

0018 FIG. 1 is a block diagram that illustrates an example 
of a configuration of a game apparatus 100 according to one 
embodiment of the present invention. 
0019 FIG. 2 depicts a conceptual block diagram of the 
computer in which the program of the present invention is 
implemented. 
0020 FIG. 3 is an example of the conceptual map. 
0021 FIG. 4 is an example of the conceptual map of solu 

tions. 
0022 FIG. 5 depicts a flow chart of attained by the pro 
gram of the present invention. 
0023 FIG. 6 depicts a set of state-action pairs that repre 
sents a solution. 
0024 FIG.7 explains small and large changes to a number 
and a solution to a TSP. 
0025 FIG. 8 depicts an example of a possible Levy muta 
tion applied to FIG. 6 

BEST MODE FOR CARRYING OUT THE 
INVENTION 

0026. The first aspect of the present invention relates to a 
program for game, especially AI program for platform games. 
The program may be implemented in a computer. The 
example of the computer is a game apparatus Such as Play 
Station (trademark), Nintendo DS (trademark) and Nintendo 
Wii (trademark). The program may cause a computer to act in 
accordance with orders from the program. 
0027 Platform game (or a platformer) is a video game 
genre. In the platform game, one or a plurality of characters 
move, get score and reach one or a plurality of goals. The 
examples of platform games are Super Mario Brothers 
(Trademark). 
0028. The present invention relates to an AI program for 
platform game. Thus a computer may implement a program 
for Such a platform game and the program of the present 
invention may use the already implemented game programs. 
Namely, the computer may comprise a memory that stores 
information on a platform game including a character, 
enemies, Surroundings, maps, actions and so on. 
0029. Hereinafter, one embodiment of the present inven 
tion will be described with reference to figures. FIG. 1 is a 
block diagram that illustrates an example of a configuration of 
a game apparatus 100 according to one embodiment of the 
present invention. The game apparatus 100 is provided with a 
portable body 10 on which each element of the apparatus is 
mounted. 
0030 The surface part of the machine body 10 has a dis 
play 50 and an operation input part 21. The display 50 has a 
plurality of image display parts, an upper image display part 
51 and a lower image display part 52. The operation input part 
21 is composed of Switches and keys Such as a power Switch 
and a cross key. 
0031. The circuit placed in the machine body 10 includes 
a control part 11, a RAM 12, a hard disc drive (HDD) 13, a 
Sound processing part 14, a graphics processing part 15, a 
communication interface 17, an interface part 18, a frame 
memory 19, and a card slot 20. The control part 11, the RAM 
12, the hard disc drive (HDD) 13, the sound processing part 

Jun. 21, 2012 

14, the graphics processing part 15, the communication inter 
face 17, and the interface part 18 are each connected to an 
internal bus 22. 
0032. The control part 11, including a CPU, a ROM, etc., 
controls the entire game apparatus 100 in accordance with the 
control program stored in the HDD 13 or a recording medium 
70. The control device 11 is provided with an internal timer 
which is used, for example, to generate timer interrupts. The 
RAM12 is also used as a working area for the control part 11. 
0033. The sound processing part 14, provided with a 
sound input/output interface function that performs D/A and 
A/D conversion of Sound signals, is connected to a Sound 
output apparatus 30 composed, for example, of a speaker. The 
Sound processing part 14 outputs Sound signals to the Sound 
output apparatus 30 in accordance with the Sound output 
instructions from the control part 11 that executes processes 
in accordance with various control programs. 
0034. The graphics processing part 15 is connected to the 
display 50 that has the upper image display part 51 and the 
lower image display part 52. The graphics processing part 15 
distributes images to the frame memory 19 in accordance 
with the drawing instructions from the control part 11 and 
also outputs video signals that display the images on the upper 
and lower image display parts 51 and 52 to the display 50. The 
Switching time for the images displayed according to the 
Video signals is set to "/30 seconds per frame, for example. 
0035. The recording medium 70 stored with programs etc. 

is inserted into the card slot 20. The recording medium 70 in 
the present embodiment is a semiconductor memory such as 
a writable flash memory. The communication interface 17 is 
connectable to another game apparatus 100 wired or wire 
lessly, and also is connectable to a communication network 
such as the Internet. The machine body 10 can communicate 
with another game apparatus 100 using the communication 
function of the communication interface 17. 
0036. The operation input part 21, the card slot 20 and a 
touch panel 40 are connected to the interface part 18. The 
interface part 18 stores, on the RAM 12, the instruction data 
from the operation input part 21 based on the player's (user's) 
operation and the instruction databased on the player's opera 
tion of the touch panel 40 using a touch pen 41 etc. Then, the 
control unit 11 executes various arithmetic processing in 
accordance with the instruction data stored in the RAM 12. 
0037. The touch panel 40 is stacked on the display screen 
(s) of both or either of the upper and lower image display parts 
51 and 52. Therefore, the control part 11 recognizes input 
information depending on the operation inputs by a player, by 
managing/controlling the timing of display of both or either 
of the upper and lower image display parts 51 and 52 where 
the touch panel 40 is stacked, and the timing and position 
coordinates of operation of the touch panel 40 using the touch 
pen 41 etc. The display 50 may be configured with a display 
screen having a single image display part instead of having a 
plurality of image display parts Such as the upper and lower 
image display parts 51 and 52. 
0038. The interface part 18 executes the processes, in 
accordance with the instructions from the control part 11, 
Such as storing the data that shows the progress of the game 
stored in the RAM 12 in the recording medium 70 which is 
inserted into the card slot 20, or reading out the game data at 
the time of interruption stored in the recording medium 70 
and transferring the data to the RAM 12. 
0039 Various data such as a control program for playing a 
game on the game apparatus 100 is stored in the recording 



US 2012/O1571.76 A1 

medium 70. The various data such as a control program stored 
in the recording medium 70 is read out by the control part 11 
through the card slot 20 where the recording medium 70 is 
inserted and is loaded into the RAM 12. 
0040. The control part 11 executes various processes, in 
accordance with the control program loaded into the RAM 
12, Such as outputting drawing instructions to the graphics 
processing part 15, or outputting Sound output instructions to 
the sound processing part 14. While the control part 11 is 
executing the processing, the data occurring intermediately 
depending on the game progress is stored in the RAM 12 used 
as a working memory. 
0041 FIG. 2 depicts a conceptual block diagram of the 
computer in which the program of the present invention is 
implemented. The game apparatus 100 comprises a mapping 
means 110, a solutions search means 111, a levy flight means 
112, and softmax means 113. Each means may be imple 
mented by the program and hardware of the game apparatus. 
0042. The computer (or a game apparatus) may produce a 
conceptual map which depicts relationship with states and 
actions. Because the program of the present invention is for 
platform games, one state relates to anther state of a main 
character through one action. The main character, like Mario, 
may be controlled by a player in a platform game in a normal 
mode. In the present scheme, the actions of the main charac 
ter, an AI character, are calculated by the present algorithm. A 
series of actions of the main character, i.e., a series of states of 
the AI character, is a solution of a game AI for platform 
games. 
0043 FIG. 3 is an example of the conceptual map. In the 
FIG. 3, the nodes are states in which the AI character can be 
and the edges are the actions it can take. The actions may 
include jump”. “move left and “move right', which are 
represented by “J”, “L’, and “R”, respectively. For Super 
Mario Brothers (Trademark) the action may further include 
“fire/move fast” and "duck”, which are represented by “F” 
and “D’. As shown in FIG. 3, the map contains a plurality of 
nodes which each can define a state in which the AI character 
is. All of the states are linked with other states by actions. The 
present AI algorithm can calculate a best solution to the goal. 
The solution may comprise several actions and several states. 
0044) For example, the mapping means 110, which may be 
attained by the program and the hardware of computer, may 
produce the map. The preferred embodiment of the present 
invention may use the softmax means 113, which comprises 
already known softmax program or which can realize the 
Softmax algorithm. The detailed of the Softmax program is 
explained at the Example section herein. Softmax program is 
commercially available and the Softmax squashing is 
described in. e.g., J. S. Bridle, “Probabilistic interpretation of 
feed-forward classification network outputs, with relation 
ships to statistical pattern recognition’. F. Fogelman Soulid 
and J. Herault, editors, Neurocomputing: Algorithms, Archi 
tectures and Applications, pages 227-236, NATO ASI Series. 
0045 FIG. 4 is an example of the conceptual map of solu 

tions. Each node of the map corresponds to a solution. The X 
in a circle means a failure State, e.g., a AI character is dead. 
The 10 in a circle means to get point. 
0046. The means 110 may read states from the memory 
that stores information of actions. The means 110 may read 
actions from the memory and can calculate a next state using 
the information of the initial state and a read action. The 
sequence of action to reach the goal may be a solution. 
Namely, a solution may be a set of states. 

Jun. 21, 2012 

0047. The initial solution may be selected at random from 
the calculated solutions. After the initial solution is selected, 
e.g. the mapping means 110 may calculate candidates of 
Solution. In executing the process, the mapping means 110 
may read one or plurality of actions from the memory and 
calculate the following solutions. The following solutions 
become candidates of solutions. 

0048. The solution search means 111 may pick up a new 
solution from the candidates of solutions. Then the means 111 
may compare fitness score of the initial Solution and fitness 
score of the new solution. The means for calculating the 
fitness score has already known in the art. Thus the present 
invention may comprise already known algorithm to calcu 
late the fitness score. For example, a solution which includes 
a bad State may get a low score. The example of the bad State 
is death or fail. Another factor of the fitness score may be a 
required time for reaching the goal. If one solution requires 
more time than other then the fitness score of the solution may 
below. The example of calculating fitness score is disclosed 
in the patent document 1. After the solution search means 111 
calculates the fitness score, it may store the score of Solution 
in the memory. In comparing the fitness scores, the means 111 
may read the stored fitness scores from the memory and then 
the means 111 may compare the scores. 
0049. The solution search means 111 may decide a current 
solution based on the result of the comparison. If the fitness 
score of the initial Solution is the same as or higher than that 
of the new solution, the means 111 may select the initial 
Solution as the current Solution. Contrary, if the fitness score 
of the initial solution is lower than that of the new solution, the 
means 111 may select the new solution as the current solution. 
0050. The solution search means 111 then pickup another 
new solution. In selecting the new Solution and another new 
solution, the preferred embodiment of the present invention 
may use a concept of levy flight. Such a selection may be 
executed by using levy flight engine. The levy flight engine 
may select the solution at random using levy flight algorithm. 
In selecting the Solution the engine allots numbers to the 
Solutions and selects the Solution using the allotted number. 
The Solution search means 111 may repeat generating another 
new Solution and a step of comparing fitness scores. Then the 
Solution search means 111 decide a revised current solution. 
The solution that has the worst score is discarded and is 
replaced, with predetermined probability, with a newly 
selected solution selected at random from the candidates of 
Solutions. 

0051. The above explanation is based on a program. The 
present invention may be a computer readable medium, Such 
as a CD-ROM, DVD, FD, MO, SD-Card, USB, Hard Disk or 
a memory, which comprises the above mentioned program. 
The present invention may be a game apparatus or a computer 
which includes the above mentioned program or which can 
attain the above described steps. 
0052 FIG. 5 depicts a flow chart of attained by the pro 
gram of the present invention. As shown in the FIG. 5, the 
method for deciding a solution for platform game includes: 
initializing Solutions (S101), selecting an initial solution and 
a new solution (S102), a first comparison of fitness score 
(S103); generating a current Solution (S104); repeating gen 
erating another new solution and comparing fitness scores 
(S105); and replacing a state (S106). The method may further 
comprise a step of discarding non selected Solutions and 
replace the solution that has worst fitness score. 



US 2012/O1571.76 A1 

0053. In initializing solutions step (S101), the computer 
calculates each of Solutions containing one or a plurality of 
states of a character as depict in FIG. 4. 
0054. In selecting an initial solution and a new solution 
step (S102), the computer may select an initial Solution and a 
new solution. Both of the solution may be selected form the 
initialized solutions. The initial Solution may nothing. In this 
case, the new solution may be selected as a current solution. 
The computer may compute the fitness score of the initial 
Solution and the new solution. 
0055. In the first comparing fitness score step (S103), the 
computer compares fitness score of the initial Solution and 
fitness score of the new solution. The fitness scores may be 
calculated by means of a conventional engine and may be 
stored at the memory of the computer. The fitness scores may 
be read from the memory to attain the comparison. 
0056. In generating a current solution step (S104), the 
computer generates a current solution. The states that has 
higher score becomes the current solution. 
0057. In repeating generating another new solution and 
comparing fitness scores step (S105), the computer repeats a 
step of generating another new solution and a step of com 
paring fitness scores of the current solution and the another 
new Solution to generate a revised current solution 
0058. In the replacing a state step (S106), the computer 
compares fitness scores of Solutions, including the initial 
Solution and generated Solutions. Such that the Solution that 
has the worst score is replaced with predetermined probabil 
ity with a newly selected solution selected at random from the 
candidates of solution. The step S106 may be executed in 
each end of step S105 and then the state that has low fitness 
score may be replaced with another state at random. The 
selection may be controlled by the levy flight engine. 

EXAMPLE1 

0059 For the generation which grew up playing Super 
Mario Bros. (trademark), the game represents the epitome of 
the platform genre. Even with a simple goal and basic con 
trols, the game has Supplied countless of hours of entertain 
ment as people tried to figure out the various traps and trea 
sures of the Mushroom Kingdom. 
0060 Thus the following examples are explained based on 
the Super Mario Brothers (trademark) but the invention is not 
limited to the AI algorithm for Super Mario Bros. (trade 
mark). 
0061. The current work is based on several diverse areas of 
previous work. The closest examples are those works which 
also explore the AI for the purpose of playing Super Mario 
Bros. A bit further away is AI meant to play other games, 
especially those which are evolutionary. 
0062. In the truest sense, Mario's state at any given 
moment of time is completely dictated by the Mario AI 
Benchmark. When implementing an AI, however, there is 
much choice in how much and what aspects of that state are 
represented in the algorithm of choice. By default, the Mario 
AI Benchmark provides a 22 by 22 grid of tiles centered 
around the Mario sprite. 
0063. The above gird is an example and may be different. 
0064. Every grid cell contains information about anything 
relevant existing at its respective location. Enemies, ground, 
blocks, power ups and Mario himself are examples of the 
information contained in the grid. Even though this informa 
tion is a good representation of the state, we introduce two 
additional factors which provide a finer look at the problem 

Jun. 21, 2012 

space. First, we include the time remaining to complete the 
level when any specific grid is observed. Secondly, we 
include the direction Mario is facing when the grid is 
observed. Thus, the entire state representation consists of the 
grid of Screen information augmented with time and direc 
tion. 
0065 Solution Representation 
0066. The solution representation is arguably the most 
important part of an optimization algorithm and there are no 
constraints in the framework on how a solution might be 
represented. Our representation is a mapping of States, 
described above, to actions. 
0067. The action space for Super Mario Bros. consist of 
the following combinable actions: 1) move left; 2) move 
right; 3) duck; 4) jump; 5) fireball/move faster. The solution 
representation does contain any explicit link between states. 
However, there is an implicit chain formed by the determin 
ism of a single level. If Mario is on a state “a” and performs 
action “X” then he will always move to state “a”. This form of 
representation is one reason that the algorithm in its present 
form doesn't generalize: the AI depends upon this implicit 
chain which does not exist outside the current level it's train 
ing on. A set of these state-action pairs represents a solution 
(FIG. 6). 
0068. In the FIG. 6, an arbitrary collection of Mario states 
represented as circles. The letters under the circles represent 
the action associated with each state where the letters corre 
spond to the starting letters of the actions given in the above 
section. The dotted line between states represents the implicit 
chain formed between states only as Mario travels between 
them. The chain also shows a successful solution. An X in a 
state means death. 
0069. Initializing the Solution 
0070 Similar to other evolutionary algorithms, we start 
with a process to initialize solutions to Some possibly random 
value. However, as we only visit a small set of the possible 
screens in any given solution, it would be a waste of resources 
to try to initialize them all (it would also be intractable). 
Instead we lazily initialize by starting with an empty solution, 
and as the AI explores a level, the first time he sees a screen it 
is initialized to some the appropriate value. In this way, we get 
the initialization properties we want with no waste. 
(0071 Cuckoo Search 
0072 Cuckoo Search is the newest of many other 
examples of learning algorithms which are based upon 
examples from nature. A full description is found elsewhere 
DX.-S. Yang and S. Deb, "Cuckoo search via Levy flights, in 
Proc. World Congress Nature & Biologically Inspired Com 
puting NaBIC 2009, 2009, pp. 210-214.), but for the present 
work, we will explain the essence of the algorithm in order 
that the reader can follow along for the rest of the paper. The 
best example of this is a cannon just outside the grid. Often, 
the AI will wait for it to fire even though it should have no 
knowledge of it. 
0073. The algorithm is based upon the behavior of certain 
species of Cuckoo which lay their eggs in the nests of other 
birds in a parasitic manner. If the properties of the egg laying 
has developed well enough then the eggs will Survive and take 
over the nest upon hatching. Otherwise, the egg will be 
destroyed by the host mother. This process of evolving to best 
lay parasitic eggs is the essence of cuckoo search. 
0074. Description of Algorithm 
0075 For a given optimization problem, a solution is rep 
resented by a nest (with egg). The basic algorithm calls for our 



US 2012/O1571.76 A1 

random initialization of Solutions. In each iteration step, two 
operations are performed. First, a new nest is generated by 
performing a random walk from Some current nest which is 
then evaluated. In practice, this nest will be the current best 
nest. In order to decide whether to keep this new nest, a 
random, already existing, nest is chosen and their fatnesses 
are compared. The better nest is kept and the worse nest is 
discarded. In the second part of the algorithm, the worst nests 
are removed with some probability p and replaced with ran 
dom nests. This is equivalent to saying that with some prob 
ability p the worst parasitic eggs are discovered. 
0076 Levy Flights 
0077. The core part of the algorithm described above can 
be done as described without Levy flights (i.e., with regular 
Brownian motion) but Such a version is not considered opti 
mal. Motion based on Levy flights is able to search large areas 
very quickly due to the heavy tailed nature of the Levy dis 
tribution. Thus, when exploring the area around a given solu 
tion, the search will mostly stay local, but occasionally will 
move a great distance, thus helping explore the space at a 
faster rate. Considering the huge search space that Mario 
presents, this type of behavior should be beneficial. A full 
explanation of this usage of Levy flight is explained in the 
original work. 
0078 Parameter Tuning 
0079. One specific feature of cuckoo search which is 
highly lauded is its lack of parameters. A common complaint 
with an algorithm like the genetic algorithm is that there are 
many parameters which must be tuned carefully to provide 
the best results. Cuckoo search can be said to only have a 
single parameter besides population size: the probability an 
egg is discovered. Even considering the parameters for the 
Levy distribution, this is far less than the common genetic 
algorithm. Additionally, at least in a set of specific examples, 
the parameters are considerably insensitive which allows for 
more error in any tuning that does occur. When applying the 
algorithm to the Mario problem space it was unknown 
whether this insensitivity would hold. From experimentation, 
it appears that it's true to a certain extent, though the sensi 
tivity of the parameters is not a focus of this work. Population 
size was varied from 15 to 30 nests with little change in the 
results while the relevant probability was independently var 
ied from 0.2 to 0.5 with little change. 
0080 Applying "Cuckoo Search with Levy Flights to 
Mario 
0081. In the initial work on cuckoo search, it was shown to 
work on several well known optimization problems. In the 
following year, there were further results showing Success on 
several real world engineering optimization problems "En 
gineering optimisation by cuckoo search.” Int. J. Mathemati 
cal Modelling and Numerical Optimisation, Vol. 1, no. 4, pp. 
330-343, May 2010.). However, the nature of these problems 
is similar in that they all exist in a numerical search space. 
This type of problem is especially suited to Levy flights 
because it's easy to conceptualize changing a number by a 
Small or large amount with respect to the Levy distribution. 
There has been no exploration of moving this technique to 
areas where the mapping isn't nearly as straightforward. 
However, as a possible area of future work, the traveling 
salesman problem (TSP) was suggested. 
0082 TSP, like Mario, represents an attempt to optimize a 
sequence of distinct states given some constraint. In TSP. 
each state is a city and the goal is to optimize the shortest path 
that visits each city once. In the case of Mario, the states are 

Jun. 21, 2012 

as described in previous section, and the goal is to maximize 
the distance Mario travels toward the end of the level. 
I0083) We propose a method for applying a similar trans 
formation to problems with state based solutions based on the 
Levy distribution. Weapply it first to the simpler TSP and then 
fully expand it to the Mario domain (though the situations are 
similar). 
I0084 Bridging the Gap Between States and Numbers 
I0085 Levy flights work by changing the solution in a 
specific way. When this solution is a number, it’s a simple 
process of producing a value from the Levy distribution and 
modifying the solution directly. In contrast, the TSP consist 
ing of a sequence of states, cannot currently be modified using 
the Levy flight method. By creating a mapping between num 
bers and state sequences, we enable an intuitive method for 
applying Levy values to the TSP problem. Indeed, such a 
system would apply to any problem which can be visualized 
in this manner. One Such relationship is the representation of 
a number as a sequence of states, where each state corre 
sponds to a bit in the number. Large and Small changes to this 
sequence are expressed as specific alterations of each state. 
The TSP can be viewed in the same way (FIG. 7). 
I0086. The FIG.7 demonstrates small and large changes to 
a number and a solution to a TSP. Both the number and the 
Solution are represented as state sequences. For the number, 
magnitude of change is mostly dependant on the significance 
of the bit a state encodes as its modified. For the TSP solution, 
the frequency of state modifications is most important. 
I0087. Note that the concept of large and small is 
expressed differently for the two examples. It is expected that 
a majority of problems will express such differences in mag 
nitude in domain specific ways. This relationship clearly 
demonstrates our goal in changing a TSP solution. In addi 
tion, however, a method must be created for using a numberto 
produce the required change. 
I0088 Recasting Numbers as Changes 
I0089. Now that we have formulated a method for repre 
senting arbitrary changes to state sequences, we need to cre 
ate a process for effecting such changes. Fortunately, there are 
numerous ways to take any number (from a Levy distribution 
perhaps) and use it as a parameter to change nearly anything. 
For example, one can treat the number as a probability. For 
each city in a TSP, with Levy probability p, exchange with a 
random city. Usually, the probability will be low resulting in 
only a few changes. Rarely, the entire solution will change. 
This is the wanted behavior. A more constrained example 
might be to treat the number from the Levy distribution as a 
fraction of the total number states. Using that fraction, ran 
domly change that many of the most recent states. This is 
especially useful if the algorithm develops solutions in Such a 
way that early states are already optimal and thus, the tail of 
the chain is the interesting part of exploration. Note that while 
were stating that selected States are changed randomly, there 
is certainly no requirement for that. Many optimization prob 
lems will want to use heuristics for choosing the new states. 
0090 TSP to Mario 
0091. The application of the algorithm to TSP was general 
enough that its application to Mario follows almost immedi 
ately. Using the state representation described above, it 
should be possible to describe a method similar to the one 
described in the last section which produces Levy mutations 
in our Mario solutions. However, with TSP, each state was 
known and the goal was to find the best path through all of 
them. Mario has so many states that enumeration is impos 



US 2012/O1571.76 A1 

sible. Moreover, the set of constraints which restricts transi 
tions from state to state is unknown as well. The Mario prob 
lem provides an unknown number of states and the transitions 
between them are mostly unknown as well. 
0092. However, as shown in previous section, one can 
easily reason about the Small Subset of States and transitions 
which make up a solution. Every state has an associated 
action which leads to the next state. It is this sequence of states 
we will modify using the Levy distribution. 
0093. Applying the Levy Mutation: 
0094. When the Levy probability indicates that a state 
should be changed, there is no way to choose a completely 
random state, as we could with the TSP, because the set of 
states are unknown. For any known state, it is most likely that 
the connection to the current state can’t be easily determined. 
Thus, instead, a new action is randomly (or heuristically) 
generated. Thus, the Levy mutation can be applied as follows. 
First, we use a value from the Levy distribution as the prob 
ability that we’ll change any one state-action pair in the 
Solution. Using said probability we visit every state-action 
pair and change its action as appropriate. Interestingly, a 
changed state's position in the sequence is not changed at all, 
but its link to every state which followed in the sequence is 
now severed (FIG. 8). 
0095 FIG. 8 depicts an example of a possible Levy muta 
tion applied to FIG. 6. Severed links are shown with black 
rectangles. The old actions use an arrow to point to the new 
ones. Note that even though the first mutation removed the 
relevance of Subsequent states, one was also mutated. This 
could play a role if future mutations return it to the state 
Sequence. 
0096. This means that the mutation will be much more 
severe than what was seen in TSP. Additionally, like in the 
number example in FIG. 7, the magnitude of the change is 
dependent mostly on the position of the changed States (early 
states in the sequence have the most impact). 
0097 Narrowing the Search Space with Softmax 
0098. With what has been presented to now, the evolved AI 

is fairly unsuccessful. That is, with random initialization of 
states, the AI converges very slowly. In fact, given the maxi 
mum number of simulation steps in the Mario AI competition, 
it never reaches areasonable solution. The final results can be 
seen in II. While the performance is disappointing, it's not 
unexpected. Finding Solutions in Such a large problem space 
is essentially impossible and the given constraints of the 
contest. Softmax is a policy used in Q-Learning which avoids 
a key drawback of greedy policies: terrible states are just as 
likely to be chosen as good ones. Instead, a softmax policy 
assigns a certain probability to each transition based on the 
various Q values. The algorithm presented here differs from 
Q-Learning, however, as there are no Q values upon which to 
base such probabilities for our transitions to new states. The 
concept embodied by Softmax is similar enough though, that 
we use the term to describe the heuristics which follow. As the 
AI presented in this work evolves over the course of a Mario 
level, it is constantly choosing actions which advance it to the 
next state. During these choices, by choosing betteractions to 
worse ones using some hand tuned heuristic, the essence of 
the Softmax policy is realized. First, we’ll look at applying a 
general heuristic to our algorithm. Second, we'll look at the 
specific heuristics we chose for optimizing Mario. 
0099. Applying a Heuristic 
0100. As explained, it is possible to apply a heuristic dur 
ing initialization and also as a part of the Levy mutation 

Jun. 21, 2012 

process. In each case, we're taking a state and deciding which 
transition action should be made at this state. This decides 
what the next state will be. Generally, in algorithms with 
Small search space, these decisions are made randomly. 
Instead, with probability p, some specific action is taken 
according to some predetermined heuristic. Otherwise, a ran 
dom action will be chosen. An additional difference from the 
original Softmax policy arises: the heuristic is not related to 
the current state. 
0101. No matter what the current state, the probabilities 
remain the same in the present work. Context specific prob 
abilities can be imagined but at the same time every additional 
probability increases the complexity of the algorithm, at the 
same time, approaching a hard coded rule based system. 
0102 Heuristic Choice 
0103) The choice of the primary heuristic was chosen after 
looking at the results of the Mario 2009 competition which 
showed an interesting result besides the dominance of the A* 
algorithm. Specifically, most evolutionary algorithms lost to 
the naive agent which was included with the Mario AI Bench 
mark system. That agent only did 2 things: 1) run forward; 2) 
jump. This makes sense given that most evolutionary algo 
rithms seemed to be exploring the search space uniformly. 
Our own work in that competition spent many seconds of 
levels trying to run to the left even at the very beginning of the 
stage. In contrast, the goal of Mario is to reach the goal posts 
at the far right of the level. Already, the naive agent is effec 
tively moving through the problem space even if it doesn't 
care about anything happening at all. The fundamental skill of 
running right has been shown to appear even in basic neural 
network Mario AI. 
0104. The first heuristic is simple then: with probability p 
run forward, and jump. Otherwise, choose an action ran 
domly. Just this change made the seemingly impossible task 
of passing the easiest level trivial. The value for p is an 
important but fairly insensitive parameter. Experimentation 
found that 0.6 was too low and convergence was too slow for 
competition. On the other hand anything above 0.9 led to the 
AI converging too quickly and getting stuck in local optima. 
However, this single minded heuristic isn't how players play, 
even if it is a large part of their action space. Exploring harder 
and harder stages in Mario led to a realization: Sometimes, 
Mario needs to move left. Specifically, in a situation where 
hidden blocks are required to advance in the level, Mario will 
most likely run past them and then get stuck in a dead end. Of 
course, with enough time the stochastic element should lead 
Mario to the correct path, but the rate is slow enough that this 
has never been observed. A human player will see a problem 
and move left to explore spaces already explored. 
0105. One solution would be to add special code to detect 
dead ends and move back to search for hidden blocks, etc. 
This solution is fair, and Such a combination of learning 
techniques and hand coded algorithms can be successful. 
However, for the present work, it was more interesting to see 
if there is a heuristic which would lead to the desired behavior. 
The previous heuristic cannot be replaced with one which 
moves left for obvious reasons. Thus, the solution is simple: 
create a compound heuristic which allows exploring left for 
some probability p". 
0106. This final heuristic ends up being: 1) with probabil 
ity p, run forward and jump; 2) with probability p", run left and 
jump, 3) otherwise, choose an action randomly. The values of 
the heuristics in this case rely on each other. Before, we let p 
vary quite a lot, but in this instance experimentation shows 



US 2012/O1571.76 A1 

that p should be closer to 0.9 than 0.6.p' can vary between 0.6 
and 0.8 depending on the level. The reason p needs to be 
higher than before is because now the addition of moving left 
hinders general progress through a level. In order to counter 
act this, we move right more often which allows for good 
Solutions. 

TABLE I 

A TABLE SHOWING ACOMPARISON BETWEEN THE 
CUCKOO SEARCH ALGORITEHM PRESENTED IN THIS 

PAPER AND AGENETICALGORITEHM. BOTH ARE USING 
THE SOFTMAXHEURISTIC EXPLAINED INSECTION VI. 

Agent Type LD Default UG HB BOTH 

Cuckoo 3 91774 334O.S 5985.5 7566.6 
10 8054.9 2870.7 3951.9 2544.9 
2O 8010 2955.2 SO94.04 2733.1 

Genetic 3 9392.8 3363.2 S932.4 7531.2 
10 8098.7 28S.O.3 3413.2 2544.2 
2O 7710.6 2906.9 5525.8 2758.6 

LD ISLEVELDIFFICULTY. 

DEFAULTREFERS TOALEVEL WITHNOADDEDPARAMETERS 

U GREFERS TO ANUNDERGROUNDLEVEL 

BISALEVEL WITH HIDDENBLOCKS, 

BOTHIS ALEVELTHAT IS UNDERGROUND AND CONTAINSHIDDENBLOCKS, 

01.07 
0108. The AI described in this paper was tested on a set of 
levels of varying types and difficulties using an arbitrarily 
chosen seed to generate the levels. The levels were tested with 
and without the Softmax heuristic. Additionally, a generic 
genetic algorithm was used to evolve a comparison agent on 
the same levels. The results of the random heuristic agents can 
be seen in table I, while the softmax heuristic results are in 
table II. 

0109 
0110. The first thing to notice is that counter to previous 
assumptions, the genetic algorithm performs on par with 
cuckoo search. Generally, both perform fast and well on easy 
levels which are to be expected since in these are the cases that 
the naive agent mentioned could solve without the help of any 
learning at all. 
0111. In the harder levels, two things can happen: 1) The 
level is impossible and both bots converge to a mediocre 
answer nearly immediately. 2) The level is possible and both 
will converge to an answer (possibly not optimal) or one will 
be slightly better than the other. Given the difference in the 
two algorithms it seems almost certain that the use of the 
heuristic drives their behavior a huge amount. The hope was 
that in these cases the Supposed faster search capabilities of 
the Levy distribution would cause the cuckoo agent to Solve 
tricky areas at a higher rate than the generic genetic algorithm. 
This appears not to be the case. Given the difference in the two 
algorithms it seems almost certain that the use of the heuristic 
drives their behavior a huge amount. The hope was that in 
these cases the Supposed faster search capabilities of the Levy 
distribution would cause the cuckoo agent to solve tricky 
areas at a higher rate than the generic genetic algorithm. This 
appears not to be the case. 

Results 

Softmax Results 

Jun. 21, 2012 

TABLE II 

A TABLE SHOWING THE SAME COMPARISONAS IN 
TABLE IWITHOUT THE SOFTMAXHEURISTIC APPLIED. 
THAT IS THE SOLUTIONS ARE RANDOMILY INITIALIZED. 

Agent Type LD Default UG HB BOTH 

Cuckoo 3 1 OO1.2 2238.1 857.7 1827.6 
10 2204.2 2220.7 1921.9 2O71.3 
2O 31.87.7 1979.9 2216.5 2185.4 

Genetic 3 973.9 22O7.2 863.7 21794 
10 21 62.9 2256.7 1920.9 2O38.8 
2O 3276.1 1914.2 2281.3 2196.2 

0112 Random Results 
0113. The results for both AI were much worse without the 
use of a heuristic. This shows that regardless of the algorithm 
used, it can benefit from the use of softmax heuristics to focus 
the search of the problem space. Again, the expectation is that 
the fast searching of cuckoo with Levy should give it an 
advantage but this is not seen in the results. One possible 
explanation of this is that the search space is so large that a 
uniform search of it will essentially always fail, even if the 
cuckoo agent is searching at a relatively higher speed. 
Another explanation is simply that even though cuckoo 
search requires less parameter tuning, they are tuned subop 
timally leading to this undesired behavior. In contrast, the 
genetic algorithm could be better tuned than average. 
0114. The area of Mario AI is extremely wide open and the 
present work has certainly not solved it. Several extensions 
from the present work follow. 
0115 Examine Levy Mutation 
0116. As mentioned, there are many ways to use a value 
generated by the Levy distribution to modify the state space. 
Exploration of different choices in this regard might shed 
light on the lackluster performance in certain levels. 
0117 Finding the Perfect Heuristic 
0118 Most interesting would be a heuristic which main 
tained pressure to progress but didn't stifle exploration as 
much. 
0119 Generalizing the AI 
0.120. The current AI can only reliably work on levels for 
which it has been trained. This is useful for the Learning 
Track of the competition as well as real world game systems 
but not as interesting in the sense of wanting a "Mario Playing 
AI. Figuring out if Such evolutionary algorithms can com 
pete with the likes of A* is interesting work. 

CONCLUSION 

0.121. In this work, we have demonstrated an extension to 
the Cuckoo Search algorithm for use with Super Mario Bros. 
We have also added a softmax heuristic to allow for fast 
convergence to reasonable solutions. The use of cuckoo 
search with Levy flight performs comparably with a generic 
genetic algorithm. However, there was no indication of ben 
efit gained from the faster search capabilities of the cuckoo 
algorithm. 
0.122 The use of the softmax heuristic had dramatic effect 
on the performance of the AI agent, allowing it to regularly 
clear the hardest levels. 
I0123. The use of Cuckoo Search with Levy flights is a 
reasonable choice for an evolutionary algorithm which plays 
Mario. 
0.124. Furthermore, it is recommended that any such algo 
rithm use a Softmax heuristic to focus the search to reasonable 
aaS. 

EXPLANATION OF ELEMENT NUMERAL 

100 game apparatus 
110 a mapping means 

0.125 
0126 



US 2012/O1571.76 A1 

0127. 111 a solutions search means 
I0128 112 a levy flight means 
0129. 113 a softmax means 

1. A program for artificial intelligence for platform games 
which makes a computer to perform steps of: 

initializing solutions, each of solutions containing one or a 
plurality of states of a character; 

Selecting an initial solution and a new solution, the initial 
Solution being nothing or being selected from the initial 
ized solutions and the new solution being selected from 
the initialized solutions; 

comparing fitness score of the initial solution and fitness 
score of the new solution; 

generating a current solution, the current solution being the 
initial solution when the fitness score of the initial solu 
tion is the same as or higher than that of the new solution 
and the current solution being the new solution when the 
fitness score of the new solution is higher than that of the 
initial solution; 

Jun. 21, 2012 

repeating a step of generating another new solution and a 
step of comparing fitness scores of the current solution 
and the another new solution to generate a revised cur 
rent solution; 

comparing fitness scores of solutions, including the initial 
Solution and generated solutions, such that the solution 
that has the worst score is replaced with predetermined 
probability with a newly selected solution selected at 
random from the candidates of solution. 

2. The program in accordance with claim 1, wherein one 
state is linked with another state via one action of the char 
acter. 

3. The program in accordance with claim 2, wherein the 
actions include jump”. “move left” and “move right”. 

4. The program in accordance with claim 1, wherein the 
random selections are performed with Levy flight algorism 
using numbers that correspond to the states. 

5. The program in accordance with claim 1, wherein the 
initializing solutions are prepared by Softmax engine. 

ck ck ck ck ck 


